Take Action

Home | Faculty & Research Overview | Research

Research Details

Emotion and Motion: Toward Emotion Recognition Based on Standing and Walking, Plos One

Abstract

Emotion recognition is key to interpersonal communication and to human–machine interaction. Body expression may contribute to emotion recognition, but most past studies focused on a few motions, limiting accurate recognition. Moreover, emotions in most previous research were acted out, resulting in non–natural motion, which is unapplicable in reality. We present an approach for emotion recognition based on body motion in naturalistic settings, examining authentic emotions, natural movement, and a broad collection of motion parameters. A lab experiment using 24 participants manipulated participants’ emotions using pretested movies into five conditions: happiness, relaxation, fear, sadness, and emotionally–neutral. Emotion was manipulated within subjects, with fillers in between and a counterbalanced order. A motion capture system measured posture and motion during standing and walking; a force plate measured center of pressure location. Traditional statistics revealed nonsignificant effects of emotions on most motion parameters; only 7 of 229 parameters demonstrate significant effects. Most significant effects are in parameters representing postural control during standing, which is consistent with past studies. Yet, the few significant effects suggest that it is impossible to recognize emotions based on a single motion parameter. We therefore developed machine learning models to classify emotions using a collection of parameters, and examined six models: k-nearest neighbors, decision tree, logistic regression, and the support vector machine with radial base function and linear and polynomial functions. The decision tree using 25 parameters provided the highest average accuracy (45.8%), more than twice the random guess for five conditions, which advances past studies demonstrating comparable accuracies, due to our naturalistic setting. This research suggests that machine learning models are valuable for emotion recognition in reality and lays the foundation for further progress in emotion recognition models, informing the development of recognition devices (e.g., depth camera), to be used in home-setting human–machine interactions.

Type

Article

Author(s)

Angela Y. Lee, Raziel Riemer

Date Published

2024

Citations

Lee, Angela Y., and Raziel Riemer. 2024. Emotion and Motion: Toward Emotion Recognition Based on Standing and Walking. Plos One.(9): 1-21.

KELLOGG INSIGHT

Explore leading research and ideas

Find articles, podcast episodes, and videos that spark ideas in lifelong learners, and inspire those looking to advance in their careers.
learn more

COURSE CATALOG

Review Courses & Schedules

Access information about specific courses and their schedules by viewing the interactive course scheduler tool.
LEARN MORE

DEGREE PROGRAMS

Discover the path to your goals

Whether you choose our Full-Time, Part-Time or Executive MBA program, you’ll enjoy the same unparalleled education, exceptional faculty and distinctive culture.
learn more