Take Action

Home | Faculty & Research Overview | Research

Research Details

Statistical Inference in Games, Econometrica

Abstract

We consider statistical inference in games. Each player obtains a small random sample of other players’ actions, uses statistical inference to estimate their actions, and chooses an optimal action based on the estimate. In a Sampling Equilibrium with Statistical Inference (SESI), the sample is drawn from the distribution of players' actions based on this process. We characterize the set of SESIs in large two-action games, and compare their predictions to those of Nash Equilibrium, and for different sample sizes and statistical inference procedures. We then study applications to competitive markets, markets with network effects, monopoly pricing, and search and matching markets.

Type

Article

Author(s)

Yuval Salant, Joshua Cherry

Date Published

2020

Citations

Salant, Yuval, and Joshua Cherry. 2020. Statistical Inference in Games. Econometrica. 88(4): 1725-1752.

LINK
KELLOGG INSIGHT

Explore leading research and ideas

Find articles, podcast episodes, and videos that spark ideas in lifelong learners, and inspire those looking to advance in their careers.
learn more

COURSE CATALOG

Review Courses & Schedules

Access information about specific courses and their schedules by viewing the interactive course scheduler tool.
LEARN MORE

DEGREE PROGRAMS

Discover the path to your goals

Whether you choose our Full-Time, Part-Time or Executive MBA program, you’ll enjoy the same unparalleled education, exceptional faculty and distinctive culture.
learn more