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We consider statistical inference in games. Each player obtains a small random sam-
ple of other players’ actions, uses statistical inference to estimate their actions, and
chooses an optimal action based on the estimate. In a sampling equilibrium with sta-
tistical inference (SESI), the sample is drawn from the distribution of players’ actions
based on this process. We characterize the set of SESIs in large two-action games, and
compare their predictions to those of Nash equilibrium, and for different sample sizes
and statistical inference procedures. We then study applications to competitive mar-
kets, markets with network effects, monopoly pricing, and search and matching mar-
kets.

KEYWORDS: Statistical inference, bounded rationality, games, search and matching
markets.

1. INTRODUCTION

THERE ARE MANY SITUATIONS in which an individual needs to decide whether to take
an action whose value depends on the number of people taking it. For example, deciding
whether to drive to work depends on road congestion; market thickness affects the like-
lihood that a job search is successful; and the value of adopting a new network product
is influenced by other people’s adoption decisions. In such settings, the individual has to
estimate the number of people taking the action in order to determine its value.

The individual may act as a statistician when estimating this number. He may first obtain
some data on other people’s actions. For example, he may ask a few co-workers whether
they drive to work. The individual may then use some form of statistical inference to esti-
mate how many people take the action. For example, he may combine the data collected
with some prior perception he has about road congestion, or perhaps estimate the most
likely road congestion parameter to have generated the data. The individual can then use
the estimate to determine the action’s value and decide whether to take it.

This paper considers such statistical decision making in games. Each player obtains a
small sample of other players’ actions. To describe how players make inferences from
the sample, we introduce the notion of an inference procedure, which is the analogue of
an estimator in the statistics literature. An inference procedure assigns to every possible
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sample a player may obtain an estimate, which is a distribution over possible proportions
of players taking the action. Estimates are assumed to relate to one another monotoni-
cally: fixing the sample size, a player puts a larger weight on more players taking the action
as the number of observations in which people take the action increases. Examples of in-
ference procedures include Bayesian updating from a non-degenerate prior, maximum
likelihood estimation, and Beta estimation, among others. Inference procedures can also
be used to describe various heuristics in information processing such as the tendency to
underestimate sample variability (Tversky and Kahneman (1971)). Each player uses the
estimate to choose an action that maximizes his payoff.

A sampling equilibrium with statistical inference (SESI) incorporates this statistical
decision making procedure into Osborne and Rubinstein’s (2003) sampling equilibrium.
A SESI is a distribution of actions with the property that sampling from this distribution
and using statistical inference to arrive at an optimal action results in the same distribu-
tion of actions. A SESI depends on players’ sample sizes and inference procedures.

In a SESI, players have access to the equilibrium distribution of actions. Osborne and
Rubinstein (1998, 2003) interpreted this assumption as reflecting a steady state of a dy-
namic process in which new players sample the actions of past players. We formalize this
interpretation in Section 8.1 Another interpretation is that of noisy retrieval of informa-
tion from memory. A player may have been involved in the same or a similar interaction in
the past and encoded in memory the distribution of actions. However, because of memory
decay and forgetting, the player can only retrieve from memory a few imperfect signals
about his past experience.2 Put differently, instead of sampling other players’ actions, a
player retrieves information from his own memory. In this interpretation, Nash equilib-
rium (NE) reflects an ability to perfectly retrieve information from memory in contrast to
the imperfect retrieval in a SESI.3

Section 3 studies SESIs in large games in which the action players consider taking has
an idiosyncratic benefit and a cost that is increasing and convex in the number of play-
ers taking the action. We establish three main results, which serve as building blocks for
studying applications in later sections. First, for any inference procedure and any sample
size, there is a unique SESI. Second, the proportion of players who take the action in the
SESI, which we call the SESI proportion, is smaller than the unique NE proportion for
any sample size and any unbiased inference procedure with the property that the expected
value of the estimate is the sample mean. The SESI proportion could be as small as half
of the NE proportion for natural cost specifications. Third, the SESI proportion increases
in the sample size under additional assumptions on the inference procedure. These three
results extend, under certain assumptions, to cost specifications that are non-monotone
in the number of players taking the action.

Section 4 studies two simple applications. The main one is to competitive markets.
A unit mass of producers face a known demand function for their product. Each producer
has to decide whether to produce a unit of the product at an idiosyncratic cost to be sold at
the market price. The market price depends on the production decisions of all producers,
and so each producer obtains data on the production decisions of other producers, and
uses statistical inference to estimate the market supply.

1Sethi (2000) formalized this interpretation in a different context.
2A classic contribution to the study of memory decay and forgetting is Ebbinghaus (1885). (See Ebbinghaus

(2003) for the English version.) A more recent contribution is Schacter (1999, 2002).
3A possible difficulty with the information retrieval interpretation is that sample observations are assumed

to be independent. Vul and Pashler (2008) provided partial support for this independence assumption.
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Because there is a unit mass of producers, their data—when aggregated over all
producers—reflect the market supply accurately. But because each producer only ob-
tains a small sample, some producers will underestimate and some will overestimate the
market supply. This is in contrast to a standard competitive equilibrium in which each
producer estimates the market supply accurately. We show that there is a unique SESI in
this environment, and that the market supply in this SESI depends on the curvature of the
inverse demand function. In particular, when the inverse demand is convex, there is over-
production and a lower market price in the unique SESI than in the standard competitive
equilibrium.

Section 5 considers an application to markets with positive network effects. Each con-
sumer needs to decide whether to adopt a new product at an idiosyncratic cost. Adoption
benefits are positive and increasing in the number of adopters. Marginal adoption benefits
initially increase and then decrease in the number of adopters resulting in an S-shaped
benefit function. An S-shaped benefit function supports three NEs. We establish that
there is a unique SESI in this environment for small sample sizes, and up to three SESIs
for larger sample sizes. All the SESI proportions are between the smallest and largest NE
proportions.

Section 6 considers an application to monopoly pricing when the value of a product to
a consumer decreases in the number of other consumers who purchase the product. A
leading example is status goods. We ask how the monopolist’s optimal profit changes as
consumers obtain more information on other consumers’ purchase decisions. We estab-
lish that the monopolist’s profit decreases in the amount of information consumers obtain,
suggesting the monopolist wishes to reduce consumers’ access to information about other
consumers’ demand.

Section 7 considers an application to search and matching markets. Workers in this
market decide whether to engage in costly search for jobs, and firms decide whether to
engage in costly search for workers. Following Petrongolo and Pissarides (2001), we pos-
tulate that a Cobb–Douglas matching function determines the likelihood of a worker-firm
match as a function of the matching friction and market thickness on the workers side and
the firms side.4

We depart from the rational expectations modeling assumption by assuming that work-
ers (and similarly firms) do not know the thickness on the other side of the market and
use statistical inference to estimate it. A SESI in this environment is a steady state in
which workers obtain data from the distribution of firms’ actions based on the firms’ sta-
tistical inference, and firms obtain data from the distribution of workers’ actions based on
workers’ statistical inference.

We establish that market thickness and employment are smaller in the unique SESI with
positive employment than in the unique rational expectations equilibrium with positive
employment. The gap in market thickness and employment can be proportional to the
matching friction itself. This implies that statistical inference amplifies the effect of shifts
in the matching friction on employment relative to the predictions of the standard rational
expectations equilibrium.

Section 8 concludes with two comments. The first is about the steady-state interpreta-
tion of SESIs. We consider a dynamic process based on the primitives of Section 2, and
establish that it converges to the unique SESI. The second comment is about heterogene-
ity in players’ sample sizes and inference procedures. Such heterogeneity may arise due to

4Petrongolo and Pissarides (2001) wrote: “the stylized fact that emerges from the empirical literature is that
there is a stable aggregate matching function of a few variables that satisfies the Cobb–Douglas restrictions
with constant returns to scale in vacancies and unemployment.”
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differences in players’ ability to obtain or process information, different time constraints,
or different preferences over statistical inference methods. We establish that our unique-
ness and comparison to NE results extend to environments with heterogeneous players.
We also identify conditions on the profile of players’ sample sizes and inference proce-
dures under which our comparative statics results continue to hold.

This paper is related to the literature on belief formation in games that relaxes the NE
assumption that players have correct beliefs about the equilibrium distribution of actions.
Most relevant to the current paper is Osborne and Rubinstein’s (2003) sampling equilib-
rium in which players obtain a sample of other players’ actions and best-respond to the
sample average. Osborne and Rubinstein (2003) analyzed the sampling equilibria of a vot-
ing model with two or three samples. Osborne and Rubinstein’s (1998) S(k)-equilibrium
is an earlier contribution in which players do not know the mapping from actions to pay-
offs, sample the payoff of each action k times, and choose the action with the highest pay-
off. Sethi (2000) studied the dynamic stability of S(1)-equilibria, and Mantilla, Sethi, and
Cárdenas (2020) analyzed the efficiency and stability of S(1)-equilibria in public goods
games. Spiegler (2006a,b) studied competition between firms that face consumers who
sample their prices or another payoff-relevant parameter once.

There are other prominent approaches to belief formation in games. In a self-
confirming equilibrium (Fudenberg and Levine (1993), Battigalli and Guaitoli (1997),
Battigalli, Cerreia-Vioglio, Maccheroni, and Marinacci (2015)), players’ beliefs cannot
contradict the (possibly partial) feedback they obtain about payoffs and other players’ be-
havior on the equilibrium path. In a cursed equilibrium (Eyster and Rabin (2005)), players
may not account for the correlation between players’ behavior and private information,
and in a behavioral equilibrium (Esponda (2008)), players may also not account for the
correlation between behavior and other payoff-relevant parameters. In an analogy-based
equilibrium (Jehiel (2005)), players form coarse beliefs about the average behavior in
analogy classes, which are a partition of other players’ strategy sets. In a Berk–Nash equi-
librium (Esponda and Pouzo (2016)), players entertain a collection of possible beliefs and
use the one that fits best (according to a relative entropy criterion) the feedback they ob-
tain. In Spiegler (2019), players use the maximum entropy criterion to form beliefs about
payoff-relevant parameters after obtaining partial feedback on the correlations between
them.

We make three contributions to this literature. First, we consider players who use sta-
tistical inference to form beliefs. Statistical inference is captured by the notion of an in-
ference procedure, which is flexible enough to model a rich class of possible statistical
inferences from data. A related contribution is Liang (2018) who studied whether players
with different statistical learning rules converge to NE after observing the same long se-
quence of data on payoff-relevant parameters. In contrast, our emphasis is on statistical
inference from small heterogeneous samples that leads to different predictions than NE.
Another related contribution is Al-Najjar (2009) who studied statistical decision making
in a single-person environment.

Our second contribution is to provide a comprehensive characterization of SESIs in
large two-action games. Our ability to do so relies on the connection between SESIs and
Bernstein polynomials that we discuss in detail in Section 3.1. Nöldeke and Peña (2016)
and Peña, Lehmann, and Nöldeke (2014) used Bernstein polynomials in other game-
theoretic settings to study NEs of voter participation games and evolutionary dynamics
in two-action N-player games.

Our third contribution is to develop applications to competitive and network markets,
monopoly pricing, and search and matching markets.
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2. MODEL

This section presents the model. After describing the model primitives in Section 2.1,
Section 2.2 discusses players’ statistical decision making. Section 2.3 discusses the data
generating process and the solution concept. Section 2.4 provides an example.

2.1. Primitives

There is a unit mass of players, and each of them has to decide whether to take action A
or action B. The utility from action B is 0. The utility from action A is u(θ�α)= θ− f (α),
where θ is a player’s idiosyncratic benefit from A, and f (α) is the cost incurred by a player
taking action A if a proportion α of players take action A. The benefit θ is distributed
uniformly on [0�1], and the function f is continuous, convex, and increasing with f (0)≥ 0
(i.e., f is a cost) and f (1) ≤ 1 (i.e., the cost is weakly smaller than the maximal benefit of
action A). Alternative cost specifications are considered in Section 3.6. A model with
more than two actions is considered in the Supplemental Material (Salant and Cherry
(2020)).

2.2. Statistical Decision Making

In order to decide which action to take, each player estimates the proportion α of play-
ers taking action A. The player obtains k independent observations from a Bernoulli
distribution with probability of success α. Observing a success is interpreted as observ-
ing a player who takes action A, and a failure as observing a player who takes action B.
The resulting sample is denoted by (k� z), where the integer k ≥ 1 is the sample size and
z ∈ [0�1] is the sample mean, that is, the proportion of successes in the sample.5

An inference procedure, which is the analogue of an estimator in the statistics litera-
ture, describes how a player makes inferences from the sample. It requires that the player
puts more weight on more players taking action A as the sample mean increases.

DEFINITION: An inference procedure G= {Gk�z} assigns a cumulative distribution func-
tion Gk�z , called an estimate, to every sample (k� z) such that the estimate Gk�ẑ strictly
first-order stochastically dominates the estimate Gk�z when ẑ > z.

Following are a few examples of inference procedures.

EXAMPLE 1—Bayesian Updating: A player has a non-degenerate prior on α, and he
uses Bayes’ rule to update this prior based on the sample. By Proposition 1 in Milgrom
(1981), the family of posteriors is an inference procedure.

EXAMPLE 2—Maximum Likelihood Estimation (MLE): A player uses the maximum
likelihood method to estimate the most likely parameter to generate the sample, that is,
the player solves for the α that maximizes αkz(1 − α)k(1−z). It is easy to verify that this
α is z. The player treats this α as the proportion of players taking action A. Thus, the
inference procedure is

Gk�z(α)= 1α≥z =
{

0 α< z�

1 α≥ z�

5The proportion z can take any value in [0�1] even though players only observe proportions of the form of
j/k for j = 0�1� � � � �k. This is useful for comparative statics.
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EXAMPLE 3—Beta Estimation: A player has “complete ignorance” about α. Such igno-
rance is often captured in the statistics literature by “Haldane’s prior” (Haldane (1932),
Zhu and Lu (2004)), which is the limit of the Beta(ε� ε) distribution as ε→ 0.

When the player’s sample includes only failures (z = 0) or successes (z = 1), the player
concentrates his estimate on the sample mean similarly to MLE. When the sample in-
cludes both successes and failures, the player’s estimate is the Beta(zk� (1 − z)k) distri-
bution. The mean of this estimate is z and its variance is z(1−z)

k+1 .
To understand why a player with complete ignorance who observes the sample (k� z)

may arrive at the estimate Beta(zk� (1 − z)k), recall that the Beta distribution is a
conjugate prior for Binomial distributions. Thus, a player with a Beta(a�b) prior on α
who observes the sample (k� z) and uses Bayesian updating would have the posterior
Beta(a+ zk�b+ (1 − z)k). The sum a+ b+ k of the two Beta parameters of the poste-
rior can be divided into the weight (a+b) placed on the prior and the weight k placed on
the sample. For example, a uniform prior, which is a Beta(1�1) distribution, corresponds
to putting a weight of 2 on the prior and the rest on the sample. In the current example,
players are ignorant in the sense that they put no weight on a prior and base their estimate
solely on the sample.6

EXAMPLE 4—Truncated Normal: A player believes that α is distributed according to a
normal distribution truncated symmetrically around the mean. He estimates the mean to
be z and the variance to be z(1−z)

k
.

After obtaining the sample (k� z) and deriving the estimate Gk�z , a player best-responds
to the estimate. That is, he takes the action A if and only if

θ ≥ Fk�z�

where Fk�z is the expected value of f under Gk�z:

Fk�z =
∫ 1

0
f (α)dGk�z(α)�

2.3. Equilibrium

Players obtain their sample from the distribution of actions based on players’ statis-
tical decision making. That is, players obtain data from a source that is representative
of the parameter they wish to estimate. A sampling equilibrium with statistical inference
describes the resulting solution concept.

DEFINITION: A sampling equilibrium with statistical inference (SESI) is a number αk�G ∈
[0�1] such that an αk�G proportion of players take action A when each player obtains k
independent observations from a Bernoulli distribution with probability of success αk�G,
forms an estimate according to the inference procedure G, and best-responds to this esti-
mate in choosing an action. We refer to αk�G as the SESI proportion of degree k with respect
to the inference procedure G.

6Beta estimation is not included in Example 1 because there does not exist a proper prior that, together with
Bayesian updating based on the sample (k� z), generates a Beta(zk� (1 − z)k) posterior.
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A SESI embodies two procedural constraints on players’ decision making. The first
is informational: Players obtain data on the behavior of a small subset of players, for
example, because of time or other constraints. If players had obtained data on the actions
of all players, they would fully learn the equilibrium action profile, and the predictions
of the model would coincide with those of NE in which players are assumed to know
this profile. The second constraint is cognitive: Players use only their data and statistical
inference to estimate the distribution of actions. If each player had investigated how other
players make decisions, the player would arrive at the “correct” distribution of actions
and best-respond to it, so the predictions of the model would again be identical to those
of NE. The combination of the informational and cognitive constraints, however, implies
different predictions than those of NE as we will see below.

2.4. Example

Assume that the utility of action A is u(θ�α) = θ − α4, that is, f (α) = α4, and that
players use MLE. To solve for α1�MLE, the SESI proportion of degree 1 with respect to
MLE, suppose that players obtain one observation from a Bernoulli distribution with
success probability α. Then:

• With probability 1 − α, a player observes a failure. He estimates that no one takes
action A, and hence takes this action if θ ≥ f (0).

• With probability α, a player observes a success. He estimates that everybody takes
action A, and hence takes this action if θ ≥ f (1).
Thus, the proportion α1�MLE has to satisfy α = (1 − α) · (1 − f (0))+ α · (1 − f (1)). Rear-
ranging, we obtain the equilibrium equation

1 − α= (1 − α) · f (0)+ α · f (1)�
This linear equation has a unique solution at α1�MLE = 1/2.

To solve for α2�MLE, suppose that players obtain two observations. Then,
• With probability (1 −α)2, a player observes two failures. He estimates that no one

takes action A, and hence takes this action if θ ≥ f (0).
• With probability 2α(1 − α), a player observes one success and one failure. He

believes that half of the population takes action A, and hence takes this action if θ ≥
f (1/2).

• With probability α2, a player observes two successes. He estimates that everybody
takes action A, and hence takes this action if θ ≥ f (1).
Thus, the proportion α2�MLE has to solve the equilibrium equation

1 − α= (1 − α)2f (0)+ 2α(1 − α)f (1/2)+ α2f (1)�

which is quadratic in α and has a unique solution in [0�1] at α2�MLE ≈ 0�60 >α1�MLE.
Similarly, for sample size 3, the proportion α3�MLE has to solve the equilibrium equation

1 − α= (1 − α)3f (0)+ 3α(1 − α)2f (1/3)+ 3α2(1 − α)f (2/3)+ α3f (1)�

which is cubic in α and has a unique solution in [0�1] at α3�MLE ≈ 0�64 >α2�MLE.
If players use Beta estimation as in Example 3 instead of MLE, then the SESI propor-

tion changes for samples with two or more observations. For example, when the sample
size is 2, a player who observes one success and one failure estimates that α is distributed
according to the Beta(1�1) distribution, and so the expected cost is F2�1/2 = ∫ 1

0 f (z)dz.
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FIGURE 1.—Ranking of SESIs.

The equilibrium equation in this case is similar to the one that characterizes α2�MLE except
for F2�1/2 replacing f (1/2):

1 − α= (1 − α)2f (0)+ 2α(1 − α)F2�1/2 + α2f (1)�

This equation also has a unique solution in [0�1] at α2�Beta ≈ 0�57 <α2�MLE.
Figure 1 provides a graphical illustration. It plots in solid black the function 1 − α that

appears on the left-hand side of all equilibrium equations. It plots in dashed colors the
functions Bk�G, where k ∈ {1�2�3} denotes sample size and G ∈ {MLE, Beta} denotes the
inference procedure. The functions Bk�G correspond to the right-hand side of the various
equilibrium equations. As can be seen from the figure, all the Bk�G functions lie above f ,
which is plotted in solid black. The Bk�G functions are ranked and their ranking implies
the ranking of the corresponding SESIs.

3. EQUILIBRIUM CHARACTERIZATION

This section establishes several properties of SESIs, which will serve as building blocks
for solving applications in later sections. These properties include existence and unique-
ness (Section 3.2), how SESIs relate to NEs (Section 3.3), and how they change as the
sample size or the inference procedure changes (Sections 3.4 and 3.5, respectively). Cor-
responding properties for alternative cost specifications are established in Section 3.6.
The analysis relies on the theory of Bernstein polynomials presented in Section 3.1.

3.1. SESIs and Bernstein Polynomials

The main tool that we use in equilibrium analysis is the theory of Bernstein polynomials.

DEFINITION: For a function v defined on the closed interval [0�1], the kth-order Bern-
stein polynomial of v is a function on [0�1] defined by

Bernk(x;v) ≡
k∑

j=0

(
k
j

)
xj(1 − x)k−jv(j/k)�

That is, Bernk(x;v) is a polynomial of degree k in x. It is the weighted average
of the values of v at the k + 1 points {0� 1

k
� � � � � k−1

k
�1}, where the weight assigned to
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v(j/k) is the probability of obtaining j successes in k independent observations from
a Bernoulli distribution with success probability x. By definition, Bernk(0;v) = v(0) and
Bernk(1;v) = v(1).

OBSERVATION 1: A number αk�G is a SESI proportion if and only if it solves the equation

1 − α= Bernk(α;Fk)� (1)

where Fk is a function that assigns to every z ∈ [0�1] the value Fk�z , that is, Fk(z) = Fk�z .

PROOF: Suppose players obtain k independent observations from a Bernoulli distri-
bution with success probability α and use the inference procedure G. The probability of
observing j successes is

(
k

j

)
αj(1 − α)k−j . Conditional on observing j successes, all players

with θ ≤ Fk�j/k take the action B, where 0 ≤ Fk�j/k ≤ 1 because 0 ≤ f (α) ≤ 1. Thus, the
fraction of players who observe j successes and take the action B is

(
k
j

)
αj(1 − α)k−jFk�j/k�

Summing over j yields the total measure of players taking the action B, which is

k∑
j=0

(
k
j

)
αj(1 − α)k−jFk�j/k = Bernk(α;Fk)�

In equilibrium, this measure is equal to 1 − α. Q.E.D.

Observation 1 indicates that analyzing properties of SESIs is related to studying the
behavior of Bernstein polynomials. The following properties of these polynomials, which
they inherit from the function on which they operate, will be relevant in the analysis.

PROPERTY 1: If v increases in x, then Bernk(x;v) increases in x.

PROPERTY 2: If v is convex, then Bernk(x;v) is convex, and Bernk(x;v) ≥ Bernk+1(x;
v) ≥ v(x) for any x with strict inequality for 0 < x< 1 if v is not linear.

Proofs of Properties 1 and 2 can be found in Phillips (2003). Another useful property
that we prove directly is the following:

PROPERTY 3: Consider two inference procedures G and Ĝ such that Gk�z is a mean-
preserving spread of Ĝk�z for any sample (k� z). Then, Bernk(α;Fk) ≥ Bernk(α; F̂k) for
any α ∈ [0�1].

PROOF: Jensen’s inequality and the convexity of f imply that Fk�j/k ≥ F̂k�j/k for any
0 ≤ j ≤ k, which in turn implies the ranking of the corresponding Bernstein polynomials.

Q.E.D.
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3.2. Equilibrium Existence and Uniqueness

Our first result is about existence and uniqueness of SESIs.

THEOREM 1: For any inference procedure and any sample size, there exists a unique SESI.

PROOF: Fix an inference procedure G and sample size k, and consider Equation (1).
The expression 1 − α on the left-hand side is strictly decreasing and continuous in α, it
takes the value 1 at α= 0, and it takes the value 0 at α= 1.

The Bernstein polynomial Bernk(α;Fk) on the right-hand side of Equation (1) has
the following properties. First, it is a continuous function in α on [0�1]. Second, it in-
creases in α. This is because the first-order stochastic dominance of G implies that Fk is
an increasing function, and so Bernk(α;Fk) is an increasing function (Property 1). Third,
0 ≤ Bernk(0;Fk) < 1 because 0 ≤ Fk(0) < Fk(1) ≤ 1 and Fk(0) = Bernk(0;Fk). Similarly,
0 < Bernk(1;Fk)≤ 1.

Thus, 1−α and Bernk(α;Fk) cross exactly once on [0�1] implying existence and unique-
ness. Q.E.D.

Figure 1 provides a graphical illustration. The Bernstein polynomials corresponding
to the right-hand side of Equation (1) are plotted in dashed colors and are increasing
in α. Each of them crosses the decreasing function 1 − α (plotted in solid black), which
corresponds to the left-hand side of Equation (1), exactly once.

The proof of Theorem 1 does not rely on f being convex and thus extends to any contin-
uous and increasing function. Section 3.6 identifies conditions on the inference procedure
such that uniqueness also holds for any convex non-monotone f with 0 < f(0)� f (1) < 1.

3.3. Relationship to Nash Equilibrium

There is a unique NE proportion of players taking action A. To see this, consider a NE
distribution of actions and let αNE denote the proportion of players taking action A in this
NE. All players with θ above (below) f (αNE) strictly prefer to take action A (B) and thus
the proportion αNE has to satisfy α= 1 − f (α) or

1 − α = f (α)� (2)

Because f is increasing—and 1 − α is decreasing—in α, this equation has a unique solu-
tion on [0�1].

To compare the SESI proportion, which depends on the inference procedure and the
sample size, to the NE proportion, we restrict attention to unbiased inference procedures.

DEFINITION: An inference procedure G is unbiased if, for any sample (k� z), the ex-
pected value of the estimate Gk�z is equal to the sample mean, that is,

∫ 1

0
αdGk�z(α)= z for any sample (k� z)�

In the statistics literature, estimates are often concentrated on a single point, and an
estimator is unbiased if its expected value is equal to the underlying parameter. Unbi-
asedness in the current context implies a similar property. Fixing the sample size k and
the underlying success probability α of the Bernoulli distribution, the expected value of
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Gk�j/k is j/k. This expected value is distributed according to a k-trial binomial distribution
with success probability α, and so its expected value is α.

The inference procedures in Examples 2, 3, and 4 are unbiased. However, the Bayesian
updating procedure in Example 1 is not. This is because whenever a player has a proper
prior on α and he updates using Bayes’ rule, the posterior mean of α depends on both the
prior mean and the sample mean. In particular, the posterior mean cannot coincide with
the sample mean for all samples.

THEOREM 2: The SESI proportion is strictly smaller than the NE proportion for any unbi-
ased inference procedure G, any sample size k, and any cost f that is not linear.

PROOF: Fix a cost f , an unbiased inference procedure G, and a sample size k. The
unique NE proportion solves Equation (2) and the unique SESI proportion solves Equa-
tion (1). Because the left-hand side of the equations is identical, it suffices to prove—in
order to establish the result—that the continuous and increasing functions on the right-
hand side of both equations are ranked such that Bernk(α;Fk)≥ f (α) with strict inequal-
ity for 0 <α< 1 when f is not linear. This follows immediately from the equalities:

(i) Bernk(α;Fk)≥ Bernk(α; f ) for every α ∈ [0�1], and
(ii) Bernk(α; f ) ≥ f (α) for every α ∈ [0�1] with strict inequality for 0 < α < 1 when f

is not linear.
Inequality (ii) holds by Property 2. Inequality (i) holds by Property 3 because any es-

timate of an unbiased inference procedure is a mean-preserving spread of the corre-
sponding MLE estimate, and the expected cost function for the MLE procedure is f
itself. Q.E.D.

Figure 1 provides a graphical illustration. The Bernstein polynomials corresponding to
the right-hand side of Equation (1) lie above the function f , which corresponds to the
right-hand side of Equation (2). The ranking of the SESI and NE proportions follows
because these proportions are the intersection points of the Bernstein polynomials and f ,
respectively, with 1 − α.

When the cost f is linear, the NE proportion and the SESI proportion coincide. This is
because the linearity of f implies that Fk = f and so Bernk(α;Fk)= Bernk(α; f ), and be-
cause the Bernstein polynomial of a linear function coincides with the function. This case
is useful for highlighting another important difference between the two solution concepts,
which relates to the selection of players who take each action.

In a NE, all players hold the same “correct” belief about the proportion of players
taking each action. Therefore, there is a positive sorting of players to actions in the sense
that if a player takes action A, then players with higher types also take action A. In a
SESI, players’ estimates differ from one another based on their sample. Players with a
larger sample mean tend to take action A less than players with a smaller sample mean,
leading to a weaker positive sorting than in a NE. It is even possible that there is no
positive sorting of types to actions in a SESI. This happens, for example, in the SESI with
sample size 1 in Section 2.4, in which players’ actions depend only on their sample and
not their type.

How different are the predictions of the unique SESI and the unique NE? We return
to the example of Section 2.4 to demonstrate that the gap between the SESI and the NE
proportions can be large. Recall that α1�MLE is 1/2 in this example. The NE proportion is
the solution to 1−α= α4, which is about 0.72. Consider now the function f (α)= αn. As n
increases, α1�MLE does not change. However, αNE increases and converges to 1 as n → ∞.
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3.4. Comparative Statics: Sample Size

To evaluate how the SESI proportion changes as the sample size k increases, we make
two additional assumptions on the inference procedure. The first is that players become
more confident in their estimate as the sample size increases.

DEFINITION: An inference procedure G satisfies noise reduction if, for any two samples
(k� z) and (k̂� z) such that k̂ > k, the estimate Gk�z is a mean-preserving spread of Gk̂�z .

All the unbiased inference procedures in Section 2.2 satisfy noise reduction.
The second assumption is that fixing the sample size k, the inference procedure pre-

serves the shape of the function f in the sense that the expected value of f as a function
of the proportion of successes in the sample z is convex when f is convex.

DEFINITION: An inference procedure G preserves shape if the expected cost function
Fk is convex when the cost function f is convex.

The maximum likelihood procedure trivially preserves shape because Fk = f . A suffi-
cient condition for an unbiased inference procedure G to preserve shape is that, fixing
k, the densities of the estimates Gk�z(α) are totally positive of degree 3 in (z�α) (cf. Je-
witt (1988)).7 The inference procedures in Examples 3 and 4 preserve shape because they
belong to the exponential family, and exponential family densities are totally positive of
every degree.

THEOREM 3: If the inference procedure is unbiased, satisfies noise reduction, and preserves
shape, then the SESI proportion of degree k is strictly smaller than the SESI proportion of
degree k+ 1 when f is not linear.

PROOF: Fix an inference procedure G. By Observation 1, it suffices to prove that for
all α ∈ [0�1],

Bernk(α;Fk) ≥ Bernk+1(α;Fk+1)

with strict inequality for 0 <α< 1. We establish this inequality in two steps.

STEP 1: Bernk(α;Fk) ≥ Bernk(α;Fk+1). The convexity of f together with noise reduc-
tion imply by Jensen’s inequality that Fk(z) ≥ Fk+1(z) for any z ∈ [0�1]. The inequality
follows.

STEP 2: Bernk(α;Fk+1)≥ Bernk+1(α;Fk+1) with strict inequality for 0 <α< 1. Because
the inference procedure is shape preserving, Fk+1 is convex. The inequality now follows
from Property 2. Q.E.D.

Figure 1 provides a graphical illustration. Fixing the inference procedure, the Bernstein
polynomials are ranked according to the sample size, and this ranking implies the ranking
of the corresponding SESI proportions.

7A function h(x� y) is totally positive of degree 3 if, for any x1 < x2 < x3 and y1 < y2 < y3, the matrix
(h(xi� yj)) has a non-negative determinant for every minor of size ≤ 3. Total positivity of degree 2 is the mono-
tone likelihood ratio property and is implied by total positivity of degree 3. Intuitively, total positivity of degree
3 ensures that the likelihood ratios increase sufficiently quickly to preserve convexity under integration.
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Theorem 3 establishes that the SESI proportion gets closer to the NE proportion as the
sample size increases. To obtain convergence to the NE proportion, we consider consis-
tent inference procedures.

DEFINITION: An inference procedure G is consistent if, for any z, the sequence of esti-
mates {Gk�z}∞

k=1 converges in probability to the distribution 1α≥z that puts a unit mass on
z.

All the inference procedures discussed in Section 2 are consistent.

OBSERVATION 2: The SESI proportion converges to the NE proportion for any consistent
inference procedure.

PROOF: Fix a consistent inference procedure G. For any proportion of successes z,
Fk�z −−→

k→∞
f (z) because Gk�z −−→

k→∞
1α≥z . Moreover, the kth-order Bernstein polynomial of

any continuous function converges to function as k tends to infinity (see, e.g., Phillips
(2003) for a proof). Thus, the right-hand side of Equation (1) converges to the right-hand
side of Equation (2), implying that the SESI proportion converges to the NE proportion.

Q.E.D.

Intuitively, consistency implies that, fixing the sample mean z, players’ estimates con-
verge to z as the sample size k tends to infinity. Moreover, as k tends to infinity, the
sample mean z, treated as a random variable, converges in probability to the underlying
parameter α. Thus, players become fully informed about α as k tends to infinity similarly
to NE.

3.5. Comparative Statics: Inference Procedure

The predictions of all unbiased inference procedures coincide when players obtain a
single observation. This is because unbiasedness implies that a player who observes a suc-
cess must concentrate his estimate on α = 1, and a player who observes a failure must
concentrate his estimate on α= 0. However, two unbiased inference procedures may dif-
fer in how they estimate α when players obtain two or more observations.

DEFINITION: The inference procedure G is more dispersed than the inference proce-
dure Ĝ if Gk�z is a mean-preserving spread of Ĝk�z for any sample (k� z).

Fix a sample size k. If G is more dispersed than Ĝ, then Bernk(α;Fk)≥ Bernk(α; F̂k) by
Property 3, and hence by Observation 1, the SESI proportion with respect to G is smaller
than the SESI proportion with respect to Ĝ. Thus, more dispersed inference implies a
smaller proportion of players taking action A.

MLE is the least dispersed procedure among all unbiased procedures. Thus, for any
given sample size, MLE provides the closest prediction to NE among all unbiased infer-
ence procedures. This is because, by Theorem 2, the SESI proportions of all unbiased
inference procedures are smaller than the NE proportions.
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3.6. Alternative Cost Specifications

The results of Sections 3.2–3.5 extend to additional cost specifications. We consider
two extensions. The first extension is to cost functions that are increasing and concave.
Theorem 1 continues to hold in this case as it relies only on the cost being increasing.
The comparison between the SESI proportion and the NE proportion in Theorem 2 is
reversed, that is, the SESI proportion is larger than the NE proportion, because the di-
rection of the two relevant inequalities is reversed. As the sample size increases, the SESI
proportion decreases because the relevant inequalities in Theorem 3 are also reversed.
Finally, the SESI proportion is larger for a more dispersed inference procedure because
the direction of the relevant Jensen inequality in Property 3 is reversed.

The second extension is to cost functions that are convex but not monotone. (Establish-
ing analogous results for concave non-monotone functions follows the discussion in the
previous paragraph.)

THEOREM 4: Fix a strictly convex cost function f with 0 < f(0)� f (1) < 1 and an unbiased
inference procedure G that preserves shape and satisfies noise reduction. Then, there exists a
unique SESI for any sample size. The SESI proportion is smaller than the NE proportion and
it increases in the sample size k.

The proof of Theorem 4 is analogous to the proofs of Theorems 1–3. It appears in the
Appendix, which contains all proofs that do not appear in the main text.

4. TWO EXAMPLES

This section incorporates statistical inference and the analysis of Section 3 into the the-
ory of competitive markets (Section 4.1) and environments with a coordination dilemma
(Section 4.2).

4.1. Statistical Inference in a Competitive Market

A unit mass of producers face a known inverse demand function P(Q) for a good.8

Each producer has to decide whether to produce a unit of the good at an idiosyncratic
cost θ to be sold at the market price. The market price depends on the market supply Q,
and so each producer needs to estimate Q in order to decide whether to produce.

In a NE, producers best-respond to the same correct belief about the market supply
QNE. Producers may arrive at this belief using the following thought process: The market
supply has to be equal to the proportion of producers who decide to produce given this
market supply, that is, all producers with θ below the market price. Hence, QNE has to
solve Q = P(Q).

On the other hand, when producers act as statisticians, each of them obtains data on
the production decisions of a few producers, uses statistical inference to estimate the
market supply and the market price, and makes a decision based on the estimate. In a
SESI, producers obtain their data from a Bernoulli distribution with success probability

8The function P(Q) summarizes a demand model with a unit mass of consumers whose valuations are
distributed on the interval [0�1] with a positive density function. Because consumers’ valuations are between 0
and 1, we can assume without loss of generality that P(Q) is between 0 and 1.
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governed by the market supply. Hence, the market supply QSESI solves

Q =
k∑

j=0

(
k
j

)
Qj(1 −Q)k−jPk�j/k�

where Pk�j/k is the expected market price after obtaining the sample (k� j/k) and forming
the estimate Gk�j/k of the market supply Q.

To apply the results of Section 3, we label the action “don’t produce” as action A.
Its benefit is θ and its cost is the foregone revenue from producing. Letting N = 1 − Q
denote the proportion of producers who do not produce, this cost is f (N) = P(1 − N).
Thus, the utility of not producing becomes θ− f (N) and the utility of producing becomes
0. Because P decreases in Q, f increases in N . And by definition, the functions f and P
have the same convexity properties. The following result is a corollary of Theorem 1.

COROLLARY 1: For any inference procedure and any sample size, there exists a unique
SESI market supply QSESI.

Because there is also a unique NE market supply, we can apply Theorem 2 and the
market clearing condition to obtain the following result.

COROLLARY 2: Fix an unbiased inference procedure. If the inverse demand function is
convex in volume, then there is over-supply of the good and a lower market price in the SESI
than in the NE. On the other hand, if the inverse demand function is concave in volume, then
there is under-supply of the good and a higher market price in the SESI than in the NE.

4.2. Statistical Inference and the Dilemma of Limited Coordination

This example is a variant of the El Farol Bar Problem (Arthur (1994)).
There is a unit mass of individuals and each of them needs to decide whether to go

to a bar that offers entertainment on a Thursday night. The idiosyncratic travel cost to
the bar is θ. The positive benefit f (α) of going to the bar depends on the proportion α
of individuals going to the bar. As α increases, the marginal benefit f ′ decreases: it is
positive up to ᾱ < 1, after which it is negative because of overcrowding. Thus, this is a
coordination problem in which coordination benefits are maximized at ᾱ and the benefit
function f is positive, non-monotone, and concave.

A NE coordination level αNE has the property that all individuals with θ ≤ f (αNE) go to
the bar, so αNE has to solve α = f (α). Despite the non-monotonicity of f , there a unique
NE because the concave function f crosses the linear function α exactly once.

In a SESI, an individual who obtains the sample (k� z) goes to the bar if θ ≤ Fk�z , where
Fk�z is the expected value of f according to the estimate Gk�z . Thus, the coordination level
in a SESI solves α= ∑k

j=0

(
k

j

)
αj(1 − α)k−jFk�j/k.

Similarly to the analysis of Section 4.1, we need to label the action “don’t go to the bar”
as action A in order to apply Theorem 4 and obtain the following result.

COROLLARY 3: Fix an unbiased inference procedure that preserves shape and satisfies
noise reduction. Then, for any sample size, there exists a unique SESI. The coordination level
in the SESI is smaller than in the unique NE, and it increases in the sample size.
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5. STATISTICAL INFERENCE IN NETWORK MARKETS

Comparing the SESI and NE proportions in Sections 3 and 4 relied on f being convex
or concave. There are settings in which neither holds. For example, in the context of costly
product adoption in a market with positive network effects, adoption benefits may be S-
shaped: they may have increasing returns up to a certain level of users after which the
returns may be decreasing. This section considers such a setting.

There is a unit mass of consumers and each of them needs to decide whether to adopt
a new product at an idiosyncratic cost θ. The adoption benefit f is S-shaped: it is positive
and increasing in the number of adopters, convex up to an inflection point i ∈ (0�1), and
then concave. Suppose that f crosses the 45◦ line three times, f (0) > 0, and f (1) < 1.9
And for tractability, suppose consumers use MLE to estimate the proportion of adopters.

Similarly to the analysis of Section 4, a SESI proportion has to solve α = Bernk(α; f ),
where Bernk operates on f because consumers use MLE. Because Bernk(0; f )= f (0) > 0
and Bernk(1; f ) = f (1) < 1, Bernk(α; f ) crosses the 45◦ line at least once and thus there
is at least one SESI. There are three NEs because an NE proportion has to solve α= f (α)
and f crosses the 45◦ line three times.

The exact number of SESIs depends on the sample size and the variation in f close
to 0 and 1. For sample size 1, there is a unique SESI because the SESI proportion is the
intersection of the line αf(1)+ (1 − α)f (0) with the 45◦ line and f (0) > 0.

For larger sample sizes, the variation in f at the point j/k is δk
j = �k

j+1 − �k
j , where

�k
m = f (m

k
) − f (m−1

k
). Thus, δk

j is positive (negative) if the line connecting f ( j−1
k
) and

f ( j+1
k
) is above (below) f ( j

k
).

THEOREM 5: There is a unique SESI of degree k ≥ 2 if δk
1 ≤ 0 or δk

k−1 ≥ 0. Otherwise,
there are at most three SESIs. Let k̄ be the largest k such that either δk

1 ≤ 0 or δk
k−1 ≥ 0. Then,

there is a unique SESI of degree k≤ k̄.

The intuition for the result is that δk
k−1 ≥ 0 guarantees that the concave part of f does

not affect the curvature of its Bernstein polynomial, which is convex and therefore inter-
sects the 45◦ line once. Similarly, δk

1 ≤ 0 guarantees that the convex part of f does not
affect the curvature of its Bernstein polynomial, which is concave and therefore intersects
the 45◦ line once. When δk

1 > 0 and δk
k−1 < 0, the Bernstein polynomial is S-shaped and

may therefore cross the 45◦ line up to three times. Because δk
1 ≤ 0 implies δk−1

1 ≤ 0 and
δk
k−1 ≥ 0 implies δk−1

k−2 ≥ 0, similar conclusions hold for smaller sample sizes.
The top panel of Figure 2 provides a graphical illustration. There are three NEs because

f (in solid black) crosses the 45◦ line (also in solid black) three times. There is a unique
SESI of degree 1 because the curve B1 (in dashed blue), which denotes the first-order
Bernstein polynomial of f , is linear. There is also a unique SESI of degree 2 because
δ2

1 > 0 and hence B2 (in dashed-dotted red) is convex. For sample sizes k ≥ 3, δk
1 > 0 and

δk
k−1 < 0 and hence the corresponding Bernstein polynomials are S-shaped. For k = 3�4,

the Bernstein polynomials (not depicted in the figure) cross the 45◦ line once despite being
S-shaped and so there is a unique SESI. For larger sample sizes, the S-shaped Bernstein
polynomial crosses the 45◦ three times, implying there are three SESIs. This is depicted in
the figure for the curve B5 (in dotted green). Note that the SESI proportions are between

9This assumption guarantees that there are three NEs and that the NE proportions are in the interior of
[0�1].
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FIGURE 2.—SESIs in a network market: SESI and NE proportions (top) and the convex hull of f (bottom).

the smallest and largest NE proportions. To characterize the location of the SESI propor-
tions relative to the NE proportions more generally, consider the convex hull co(f ) of f
depicted in the bottom panel of Figure 2. The lower envelope of co(f ) is f itself from
0 up to the point m0 and is then the line segment connecting f (m0) and f (1).10 Because
f (m0) < m0, the smallest NE proportion is smaller than m0. Similarly, the upper enve-
lope of co(f ) is the line segment connecting f (0) and f (m1) up to the point m1 and is
then f itself.11 Because f (m1) >m1, the largest NE proportion is larger than m1. Because
Bernk(α; f ) is the convex combination of the values of f , its graph lies inside co(f ). It is
above f between 0 and m0 and below f between m1 and 1. Thus, the following holds.

OBSERVATION 3: If f (m0) <m0 and f (m1) >m1, then any SESI proportion is larger than
the smallest NE proportion and is smaller than the largest NE proportion.

6. STATISTICAL INFERENCE AND MONOPOLY THEORY

This section demonstrates how statistical inference can be incorporated into monopoly
theory when consumers have a preference for uniqueness, and discusses how the predic-
tions of statistical inference differ from those of rational expectations in this context.

10Formally, m0 = arg maxα∈[0�1]
f (1)−f (α)

1−α
.

11Formally, m1 = arg maxα∈[0�1]
f (α)−f (0)

α
.
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Consumers have a preference for uniqueness when their consumption utility from a
good decreases in the number of individuals consuming the good. Such a preference may
arise when the good conveys social status (e.g., jewelry) or when its consumption reflects
freedom or independence (e.g., a designer clothing item).

To model preference for uniqueness, suppose an individual has consumption value θ
for the good, and a disutility of −1 if he meets one or more individuals who also consume
the good in t random encounters. Thus, if an α proportion of the population consumes
the good, the expected disutility is 1 − (1 − α)t . For tractability, we will replace (1 − α)t

with e−αt and use the consumption utility u(θ�α)= θ− (1 − e−αt) in the analysis.
A monopolist produces the good at zero marginal cost and sets a price p to maximize

profit. Consumers observe the price and estimate the expected consumer demand for the
good at this price. They then decide whether to purchase the good. The monopolist knows
how consumers make decisions and takes this knowledge into account when pricing.

We are interested in comparing the monopolist’s profit when consumers use statistical
inference and when they use rational expectations. This comparison may be informative
about the monopolist’s incentives when deciding how much information to release about
the expected demand for the good. We first solve an example and then provide a general
characterization.

EXAMPLE 5: Suppose that t = 4 and that the monopolist sets a price p for the good.
An individual who purchases the good obtains a utility of θ − p− (1 − e−4α). Otherwise,
his utility is 0.

Rational expectations require α to be equal to the proportion of consumers with
θ ≥ p + (1 − e−4α), so α has to satisfy α = 1 − p − (1 − e−4α). The monopolist’s inverse
demand is therefore p= e−4α −α. Solving the monopolist’s profit maximization problem,
we obtain that the monopolist’s profit under rational expectations is 0.060 with an optimal
quantity of 0�135 and an optimal price of 0�448.

Unbiased statistical inference from a single observation implies that when a consumer
observes a success, he estimates α to be 1 and hence his utility to be θ − p − (1 − e−4).
For p ≥ 0�02, this utility is negative for any θ ≤ 1, and thus no consumer will purchase the
good in this case. When the consumer observes a failure, he estimates α to be 0 and hence
his utility to be θ−p. The proportion of individuals who purchase the good in this case is
1 − p. Thus, at a price p ≥ 0�02, the SESI demand has to satisfy α = α · 0 + (1 − α)(1 −
p) and the inverse demand is p = 1 − α

1−α
. Solving the monopolist’s profit maximization

problem, we obtain that the monopolist’s profit is 0�17 with an optimal quantity of 0�29
and an optimal price of 0�59. The monopolist’s profit is almost three times larger than
with rational expectations.

Unbiased statistical inference from two observations depends on how consumers esti-
mate demand after observing one success and one failure. Suppose that consumers use
Beta estimation and so have the estimate Beta(1�1) in this case. The estimated disu-
tility is then the expected value of 1 − e−4α with respect to Beta(1�1), which is about
0.75. The proportion of individuals who purchase the good conditional on this sample is
max{0�25 − p�0}. It is easy to verify that p ≤ 0�25 is not optimal for the monopolist and
thus the monopolist will cater only to consumers who observe two failures. The optimal
profit is smaller than with one observation at 0.14, the optimal quantity is also smaller at
0.23, but the optimal price is higher at 0.62.

More generally, we have the following comparative static result.
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THEOREM 6: Fix an unbiased inference procedure that preserves shape and satisfies noise
reduction. The monopolist’s profit when consumers use statistical inference is larger than
when consumers have rational expectations, and it decreases in the sample size.

PROOF: Suppose the monopolist sets a price p for the good. Fix an inference procedure
G and a sample size k. A consumer who observes j successes purchases the good if his θ is
larger than p+ 1 −Fk�j/k, where Fk�j/k is the expected value of e−αt with respect to Gk�j/k.
Thus, conditional on observing j successes, the proportion of consumers who purchase
the good is max{Fk�j/k − p�0}. Demand at price p, αk�G(p), is therefore determined by
the solution to the equation

α=
k∑

j=0

(
k
j

)
αj(1 − α)k−j max{Fk�j/k −p�0}�

which can be rewritten as

1 − α=
k∑

j=0

(
k
j

)
αj(1 − α)k−j min{1 +p− Fk�j/k�1}�

Because the function e−αt is convex and decreasing, the function Fk is convex and
decreasing, and the function 1 + p − Fk is concave and increasing in α. The function
min{1 + p− Fk�1} is therefore concave and increasing. We thus have an equation which
is similar to Equation (1) and the results of Section 3 continue to hold. That is, for ev-
ery price p, the demand αk�G(p) decreases in k and is above the rational expectations
demand, which is the α(p) that solves α = 1 − e−αt − p. We thus obtain a ranking of
the demand functions the monopolist faces, and this ranking implies the ranking of the
monopolist’s profit. Q.E.D.

Thus, the monopolist has no incentive to inform consumers about the demand for the
good.

7. STATISTICAL INFERENCE IN TWO-SIDED MARKETS

This section incorporates statistical inference to two-sided markets in which workers
and firms need to decide whether to engage in costly search in order to create jobs.

There is a unit mass of workers, and each of them needs to decide whether to search for
a job at an idiosyncratic cost θ. Workers’ costs are distributed uniformly on [0�1]. There
is also a unit mass of firms, and each of them needs to decide whether to post a vacancy at
an idiosyncratic cost ω. Firms’ costs are also distributed uniformly on [0�1]. If α workers
search for jobs and β firms search for workers, the number of jobs created is given by the
matching function

m(α�β)≡ μαxβ1−x�

where 0 < μ < 1 is the matching friction that prevents full employment even if all work-
ers and all firms participate in the market. As noted by Petrongolo and Pissarides (2001),
“the matching function summarizes a trading technology between agents who place ad-
vertisements, read newspapers and magazines, go to employment agencies, and mobilize
local networks that eventually bring them together into productive matches. The key idea



1744 Y. SALANT AND J. CHERRY

is that this complicated exchange process is summarized by a well-behaved function that
gives the number of jobs formed at any moment in time in terms of the number of workers
looking for jobs, the number of firms looking for workers, and a small number of other
variables.... The stylized fact that emerges from the empirical literature is that there is
a stable aggregate matching function of a few variables that satisfies the Cobb–Douglas
restrictions with constant returns to scale in vacancies and unemployment.”

A worker who searches for a job finds one with probability m(α�β)

α
when α workers and β

firms participate in the market. Assuming that each match creates a surplus of 2 to be split
equally between the worker and the firm, the expected utility of a worker who searches for
a job is m(α�β)

α
−θ. Similarly, the expected utility of a firm that posts a vacancy is m(α�β)

β
−ω.

Firms and workers who do not participate in the market obtain a utility of 0.
In a NE, all workers and firms form the same belief about the market thickness

(αNE�βNE). This belief satisfies the rational expectations assumption whereby if work-
ers and firms best-respond to the belief, actual market thickness is (αNE�βNE). Thus,
market thickness on the workers’ side αNE has to satisfy that all workers with cost
θ ≤ m(αNE�βNE)

αNE
= μαx−1

NE β1−x
NE search for jobs. Applying the same reasoning for firms, we

obtain that the two equations that characterize the NE participation are α = μαx−1β1−x

and β= μαxβ−x. Rearranging, we obtain the following equilibrium equations:

αNE(β)≡ (
μβ1−x

) 1
2−x � (3)

βNE(α)≡ (
μαx

) 1
1+x � (4)

We prove below that there is a unique NE with positive participation.
We relax the rational expectations assumption. We postulate that while each worker

estimates market thickness on the workers’ side accurately, he uses statistical inference
to estimate firms’ participation. The difference between workers’ reasoning ability re-
garding workers’ participation and firms’ participation aims to capture situations in which
each worker has a good understanding of his side of the market, for example because he
observes the decisions of many workers, but he struggles to understand firms’ decision
making, for example because his access to information on firms’ decision making is lim-
ited. In order to get a better understanding of firms’ decision making, he obtains data on
a few firms and uses statistical inference to estimate the market thickness on the firms’
side. We make an analogous assumption on firms’ reasoning abilities: each firm estimates
the market thickness of the firms’ side accurately and obtains data on a few workers in
order to estimate workers’ participation.

DEFINITION: A SESI in a two-sided market is a pair (αk�Gw�βm�Gf ) ∈ [0�1] × [0�1] such
that:

(i) Proportion αk�Gw of workers search for jobs when each worker obtains k observa-
tions about firms’ behavior from a Bernoulli distribution with probability of success βm�Gf

and best-responds to the estimate he forms according to the inference procedure Gw and
αk�Gw , and

(ii) Proportion βm�Gf of firms search for workers when each firm obtains m observa-
tions about workers’ behavior from a Bernoulli distribution with probability of success
αk�Gw and best-responds to the estimate it forms according to the inference procedure Gf

and βm�Gf .

To develop the equations that characterize SESIs in this setting, fix a pair of unbi-
ased inference procedures (Gw�Gf ) that preserve shape and satisfy noise reduction. Let
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M(α� (k�z)) denote the expected matching probability of a worker who estimates that α
workers are in the market, obtains the sample (k� z) regarding firms’ behavior, and uses
the inference procedure Gw. Let M((m�z′)�β) denote the analogous expected match-
ing probability of a firm that observes the sample (m�z′) of workers’ behavior. Then, the
proportion of workers who participate in the market conditional on observing the sample
(k� z) is M(α� (k�z)) and similarly the proportion of firms is M((m�z′)�β). The prob-
ability that a worker observes the sample (k� z) with z = j/k is

(
k

j

)
βj(1 − β)k−j and the

probability that a firm observes the sample (m�z′) with z′ = i/m is
(
m

i

)
αi(1 − α)m−i. The

equations that characterize SESIs are therefore

α=
k∑

j=0

(
k
j

)
βj(1 −β)k−jM

(
α� (k� j/k)

)
�

β=
m∑
i=0

(
m
i

)
αi(1 − α)m−iM

(
(m� i/m)�β

)
�

The expected matching probability of workers M(α� (k� z)) satisfies M(α� (k� z)) =
μαx−1Mw(k�z), where Mw(k�z) is the expected value of β1−x with respect to the esti-
mate Gw

k�z . Rewriting the expected matching probability of firms similarly, we obtain the
equilibrium equations

αk(β) ≡
(
μ

k∑
j=0

(
k
j

)
βj(1 −β)k−jMw(k� j/k)

) 1
2−x

� (5)

βm(α)≡
(
μ

m∑
i=0

(
m
i

)
αi(1 − α)m−iMf (m� i/m)

) 1
1+x

� (6)

While the environment and the equations characterizing SESIs in two-sided markets
are different from those of Sections 2 and 3, we can still use the theory of Bernstein
polynomials to characterize SESIs in two-sided markets.

THEOREM 7: Fix a pair of unbiased inference procedures Gw and Gf that preserve shape
and satisfy noise reduction, and sample sizes k for workers and m for firms. Then, there
exists a unique SESI with positive employment. In the positive SESI, market thickness on the
workers’ and the firms’ sides, and hence employment, are smaller than in the unique NE with
positive employment. Moreover, as k or m increase, market thickness and employment in the
positive SESI increase.

PROOF: The function αk(β) is strictly concave and strictly increasing in β. This is be-
cause (1) β1−x is concave and strictly increasing in β, hence (2) Mw(k�z) is concave and
strictly increasing in z because Gw is an inference procedure that preserves shape, hence
(3) the Bernstein polynomial of Mw(k�z), which is the expression in parentheses in Equa-
tion (5), is concave and strictly increasing, hence (4) this expression raised to the power
of 1

2−x
< 1 is strictly concave and strictly increasing in β. A similar argument establishes

that βm(α) is strictly concave and strictly increasing in α, which implies that its inverse
function α̂m(β) is strictly convex and strictly increasing in β. Now, β is part of a SESI if
and only if it is a point in which the functions αk(β) and α̂m(β) intersect. Because αk(β)
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is strictly concave and α̂m(β) is strictly convex and both are increasing, they intersect in at
most one positive point. Since the value of both functions at β = 0 is zero, and at β = 1,
αk(β) < α̂m(β), we obtain that such a point exists. A similar argument can be used to
establish that there is a unique NE with positive employment.

Arguments similar to the ones used in Theorems 2 and 3 can be used to show that the
function αk(β) lies below the function αNE(β) and that the function αk+1(β) lies between
these two functions for any 0 < β< 1. Similarly, the function α̂m(β) lies above the func-
tion α̂NE(β) and the function α̂m+1(β) lies between these two functions. This implies the
ranking of the equilibria. Q.E.D.

The magnitude of underemployment in a SESI can be substantial. The following exam-
ple illustrates.

EXAMPLE 6: Suppose x = 1/2. Then, the unique positive NE has to solve α =
μ(β/α)1/2 and β = μ(α/β)1/2. Participation in this NE is α = β = μ and employment
is μ2. The unique positive SESI with unbiased inference procedures and k = m = 1 has
to solve α = βμ(1/α)1/2 and β = αμ(1/β)1/2. Participation in the SESI is smaller than in
the NE by a factor of μ at α = β = μ2 and employment is smaller by the same factor and
is μ3.

8. CONCLUDING COMMENTS

This paper made modest progress in incorporating statistical inference into games. We
postulated that players act as statisticians. They obtain data on the actions of a few other
players and use statistical inference procedures such as MLE or Beta estimation to es-
timate other players’ actions. In particular, they do not “think strategically” about how
other players make inferences or choose actions. In order to “close” the model, we as-
sumed that the data generating process from which players obtain data is representative
of the distribution of players’ actions. A solution to this model, which depends on players’
sample size and inference procedure, is called a SESI. We developed tools for the anal-
ysis of SESIs, and used these tools to study the predictions of SESIs in several settings
including competitive and network markets, monopoly pricing, and two-sided markets.

We conclude with three comments. The first is about the interpretation of SESI as the
steady state of a dynamic process, the second is about the robustness of the analysis and
the results to heterogeneous sample sizes, and the third is about robustness to heteroge-
neous inference procedures. For simplicity, all comments focus on the setting of Sections 2
and 3 in which the function f is convex, the inference procedures are unbiased, preserve
shape, and satisfy noise reduction, and the SESI is unique.

8.1. The Steady-State Interpretation of SESI

A SESI is interpreted as a steady state of a dynamic process in which the entry of new
statisticians to an existing population does not alter the distribution of actions in the pop-
ulation.

To formalize this interpretation, consider a population of measure 1, and let 0 ≤ α0 ≤ 1
denote the proportion of players in the population who take action A in period 0. In every
subsequent period t = 1�2� � � � � a proportion 1 − ε of the population is randomly selected
to survive. These players continue to take the same action as in the previous period. The
remaining ε-proportion leaves the population and is replaced by an ε-proportion of new
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players. The new players obtain data on the previous period’s actions, use statistical in-
ference to estimate the proportion of players taking the action, and best-respond to the
resulting estimate. Thus, the proportion of players who take action A evolves according
to the process

αt = (1 − ε)αt−1 + ε
(
1 − Bernk(αt−1;Fk)

) ≡ h(αt−1)�

A steady state of this process is a proportion α∗ that satisfies α∗ = 1 − Bernk(α
∗;Fk),

that is, it is a SESI proportion of degree k with respect to the corresponding inference
procedure. By the results of Section 3, there is a unique steady state. The following result
establishes convergence of the dynamic process to this steady state.

THEOREM 8: Let ε < 1
1+f ′(1) . Then, for any initial proportion α0, the proportion αt of play-

ers who take action A converges to the unique SESI proportion as t tends to infinity.

Theorem 8 continues to hold for a concave function f when ε < 1
1+f ′(0) .

12

8.2. Heterogeneous Sample Sizes

Heterogeneous sample sizes may arise due to differences in individuals’ access to infor-
mation or due to differences in the ability to recall or process information. To model such
heterogeneity, let γi denote the proportion of individuals who obtain a sample of size i

with 1 ≤ i ≤ K and
∑K

i=1 γi = 1, and let γ = (γ1� � � � � γK).
A SESI of degree γ = (γ1� � � � � γK) with respect to the inference procedure G is a num-

ber αγ�G ∈ [0�1] such that a proportion αγ�G of players take action A when, for every
1 ≤ i ≤K, a proportion γi of players obtains i independent observations from a Bernoulli
distribution with probability of success αγ�G, and each player best-responds to the estimate
he forms using the inference procedure G.

Similarly to Observation 1, any SESI proportion αγ�G solves

1 − α=
K∑
i=1

γi Berni(α;Fi)� (7)

where Fi is a function that assigns the value Fi�z to every z ∈ [0�1].
The left-hand side of Equation (7) is identical to the left-hand side of Equation (1).

The function on the right-hand side of Equation (7) is a finite convex combination of the
functions on the right-hand side of Equation (1). This convex combination inherits the
properties of the functions on which it operates that we used in the proofs of Theorems
1 and 2. It therefore follows that (i) for any γ and G, there exists a unique SESI, and (ii)
the SESI proportion is smaller than the NE proportion.

In order to rank two SESI proportions, αγ�G and αγ̂�G, we treat γ and γ̂ as discrete
distributions over the values 1� � � � �K. Then, the proportion αγ�G is strictly smaller than
αγ̂�G if γ is first-order stochastically dominated by γ̂ .

To see why, recall that we established in Theorem 3 that Berni(α;Fi) ≥ Berni+1(α;Fi+1)
with strict inequality for 0 < α < 1. This implies that for every 0 < α < 1, the right-hand
side of Equation (7) with respect to γ is larger than with respect to γ̂ by the first-order
stochastic dominance. Therefore, the SESI proportion αγ�G is smaller.

12The upper bound on ε changes because the concavity of f implies that the corresponding Bernstein poly-
nomial of Fk lies below f and its derivative decreases in α.
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8.3. Heterogeneous Inference Procedures

Heterogeneous inference procedures may arise for various reasons such as a preference
for a particular estimation procedure or different levels of confidence in the estimation.
To model such heterogeneity, let G1� � � � �GM denote the M inference procedures used by
players, and let γi denote the proportion of players who use the inference procedure Gi.

A SESI of degree k with respect to the distribution γ = (γ1� � � � � γM) of inference pro-
cedures G= (G1� � � � �GM) is a number αk�γ ∈ [0�1] such that a proportion αk�γ of players
take action A when each player obtains k independent observations from a Bernoulli dis-
tribution with probability of success αk�γ , a proportion γi of players form an estimate ac-
cording to the inference procedure Gi for every 1 ≤ i ≤M , and each player best-responds
to his estimate in choosing an action.

Assume that every Gi is unbiased, preserves shape, and satisfies noise reduction. Fix a
convex cost function f and a sample size k, and let Fi

k denote the function that assigns to
any z ∈ [0�1] the expected value of f with respect to Gi conditional on the sample (k� z).

Similarly to Observation 1, any SESI proportion αk�γ has to solve

1 − α=
M∑
i=1

γi Bernk

(
α;Fi

k

)
� (8)

Arguments similar to the ones used above and in Section 3 can now be used to establish
that (i) for any sample size and any collection of inference procedures, there exists a
unique SESI, (ii) the SESI proportion is smaller than the NE proportion, and (iii) the
SESI proportion αk�γ increases in k.

Thus, the results of Section 3 extend to heterogeneous samples and heterogeneous
inference procedures. A challenge for future research is to study settings with dynamic or
correlated sampling.

APPENDIX: PROOFS

PROOF OF THEOREM 4. By Jensen’s inequality and the convexity of f , the function Fk

is larger than the function f . Because G preserves shape and f is strictly convex, the
function Fk is strictly convex, so Property 2 implies Bernk(α;Fk) is convex and larger than
Fk. In fact, Bernk(α;Fk) is strictly convex for k≥ 2.13 Similarly to the proof of Theorem 2,
one can also show that Bernk(α;Fk) ≥ Bernk+1(α;Fk+1) with strict inequality for 0 < α<
1 as the relevant arguments rely only on f being convex. Thus, we have the ranking

f (α)≤ Fk(α)≤ Bernk(α;Fk)≤ Bernk+1(α;Fk+1)�

where the second and third inequalities are strict for 0 <α< 1.
Equation (2) implies that the number of NEs is equal to the number of times f (α)

intersects the function 1 − α. Observation 1 implies that the number of SESIs of degree
k is equal to the number of times Bernk(α;Fk) intersects 1 − α.

Because f (0) = Fk(0) = Bernk(0;Fk) < 1 and f (1) = Fk(1) = Bernk(1;Fk) > 0, the
functions f (α) and Bernk(α;Fk) intersect 1 − α at least once. And because f (α) and
Bernk(α;Fk) for k ≥ 2 are strictly convex, they intersect 1 − α exactly once. For k = 1,

13Strict convexity follows because the second derivative of Bernk(x;v) for k≥ 2 is proportional to a convex
combination of expressions of the form v( j

k
)+ v( j+2

k
)− 2v( j+1

k
) for 0 ≤ j ≤ k− 2.
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Bernk(α;Fk) is a linear function with a larger slope than that of 1 − α, so they intersect
exactly once. This establishes that there is a unique NE and a unique SESI for any sample
size.

The ranking of the NE and the SESI proportions of different degrees now follows from
the ranking of the functions f , Bernk, and Bernk+1. Q.E.D.

PROOF OF THEOREM 5. By the discussion following the statement of Theorem 5, it suf-
fices to prove the following:

PROPOSITION A1: For k≥ 2, the kth-order Bernstein polynomial of an S-shaped function
f is convex if δk

k−1 ≥ 0, is concave if δk
1 ≤ 0, and is otherwise S-shaped. Moreover, if the kth-

order Bernstein polynomial of f is convex (concave), then so is the (k−1)th-order polynomial
of f .

We first state and prove four observations and then use them to prove the proposition.
Let i be the inflection point of f . For any β > i and any γ < β, let sβ(γ) = f (β)−f (γ)

β−γ

denote the slope of the line segment Lf(γ�β) connecting f (γ) and f (β) on the graph
of f . Because f is S-shaped, sβ initially increases and then decreases in γ, implying that
mβ = arg maxγ<β sβ(γ) is unique. The point mβ is weakly smaller than the inflection point
because sβ strictly decreases to the right of the inflection point. If mβ > 0, then Lf(mβ�β)
is tangent to f at mβ.

OBSERVATION A1: For any ζ ∈ (mβ�β), the line segment Lf(ζ�β) is strictly below f (α)
for α ∈ (ζ�β).

PROOF: The line segment Lf(ζ�β) is strictly below the line segment Lf(α�β) between
α and β because mβ < ζ < α. The result follows because Lf(α�β) intersects the graph of
f at α. Q.E.D.

OBSERVATION A2: If β2 >β1 > i, then mβ2 ≤mβ1 .

PROOF: By the definition of mβ1 , f ′(mβ1) ≥ sβ1(mβ1) with equality if mβ1 > 0. Because
β2 > β1, sβ2(mβ1) < sβ1(mβ1) (the slope of Lf(mβ1�β1) decreases when it is rotated to
Lf(mβ1�β2) because β1 > i). Thus, f ′(mβ1) > sβ2(mβ1), implying that mβ2 ≤ mβ1 . Q.E.D.

OBSERVATION A3: If δk
j ≥ 0, then δk

h ≥ 0 for h< j with strict inequality for h< j − 1.

PROOF: If j

k
≤ i, then the convexity of f to the left of the inflection point implies the

result.
Suppose j

k
> i. Then, j−1

k
< i (otherwise δk

j < 0 by the strict concavity of f to the right
of i). The strict convexity of f to the left of the inflection point implies the result for
h< j − 1.

To show that δk
j ≥ 0 implies δk

j−1 ≥ 0, assume to the contrary that δk
j−1 < 0. This implies

that f ( j−1
k
) is above the line segment Lf(

j−2
k
� j

k
). The line segment Lf(

j−2
k
� j

k
) has up to

two intersection points with f to the left of j

k
. Let η denote the larger one if more than

one exists. Then, j−1
k

> η (the line segment Lf(
j−2
k
�η) lies above f to the left of η if

η > j−2
k

). By construction, m j
k
< η and thus mj+1

k
< η by Observation A2. This implies

δk
j < 0 by Observation A1, which is a contradiction. Q.E.D.
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OBSERVATION A4: If δk
k−1 ≥ 0, then δk−1

k−2 ≥ 0. Similarly, if δk
1 ≤ 0, then δk−1

1 ≤ 0.

PROOF: Suppose δk
k−1 ≥ 0. Then, k−2

k
< m1 (otherwise, by Observation A1, δk

k−1 < 0)
and the line segment Lf(

k−2
k
� k
k
) intersects the graph of f at an intermediate point η ≥

k−1
k

(otherwise, if η < k−1
k

, then δk
k−1 < 0). Because k−2

k
< m1 < i and k−3

k−1 <
k−2
k

, the line
segment Lf(

k−3
k−1 �

k
k
) is above Lf(

k−2
k
� k
k
) and is therefore above the graph of f to the left of

η. Since k−2
k−1 <

k−1
k

< η, we obtain that Lf(
k−3
k−1 �

k
k
) is above f (k−2

k−1) and the result follows.
Q.E.D.

PROOF OF PROPOSITION A1. Fix k ≥ 2. The second derivative of the kth-order Bern-
stein polynomial of f is

Bern′′
k(α; f )= k(k− 1)

k−2∑
j=0

(
k− 2
j

)
αj(1 − α)k−2−j

(
f

(
j + 2
k

)
− 2f

(
j + 1
k

)
+ f

(
j

k

))

= k(k− 1)
k−2∑
j=0

(
k− 2
j

)
αj(1 − α)k−2−jδk

j+1� (9)

that is, it is proportional to a convex combination of {δk
j }k−1

j=1 .
If δk

k−1 ≥ 0, then all the other δ’s are non-negative by Observation A3. The second
derivative is therefore non-negative and Bernk(α; f ) is convex. Similarly, if δk

1 ≤ 0, then
so are all the other δ’s and Bernk(α; f ) is concave.

Suppose δk
1 > 0 and δk

k−1 < 0. Let l be the largest integer such that δk
l ≥ 0. Then, l <

k − 1. By Observation A3, all the δk
j ’s with j ≤ l are non-negative (and at least δk

1 is
positive) and all the δk

j ’s with j > l are negative.
Let t = ∑k−2

j=l

(
k−2
j

)
αj(1 − α)(k−2−j). Then t increases in α, and we can write the second

derivative as follows:

Bern′′
k(α; f )= k(k− 1)

[
P

1 − t
(1 − t)+ N

t
t

]
�

where P = ∑l−1
j=0

(
k−2
j

)
αj(1 − α)(k−2−j)δk

j+1 is positive and N = ∑k−2
j=l

(
k−2
j

)
αj(1 − α)(k−2−j)δk

j+1

is negative. The second derivative is therefore a convex combination of a positive expres-
sion and a negative one. At α = 0, Bern′′

k(α; f ) is positive, at α = 1, it is negative, and it
decreases in α. Hence, Bern′′

k(α; f ) has a unique root on [0�1], it is positive to the left of
this root, and negative to its right, implying Bernk(α; f ) is S-shaped.

If Bernk(α; f ) is convex, then δk
k−1 ≥ 0 by the above arguments (otherwise, if δk

k−1 < 0,
then Bernk(α; f ) is either concave or S-shaped). By Observation A4, this implies that
δk−1
k−2 ≥ 0, and thus by the above arguments, Bernk−1(α; f ) is convex. The proof for a con-

cave Bernstein polynomial is analogous. Q.E.D.
Q.E.D.

PROOF OF THEOREM 8. By the monotone convergence theorem and the uniqueness of
the steady state, it suffices to prove that one of the following two conditions holds for any
t ≥ 1:

(i) αt−1 <αt < α∗, or
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(ii) αt−1 >αt > α∗.
Suppose αt−1 <α∗. The following four steps establish that condition (i) holds.

STEP 1: αt−1 <αt .
This follows from the fact that 1 − Bernk(α;Fk) > α for any α < α∗ and the definition

of the dynamic process.

STEP 2: Bern′
k(α;Fk) ≤ f ′(1) for any α ∈ [0�1] where Bern′

k denotes the derivative of
the corresponding Bernstein polynomial.

Because f is convex and the inference procedure is unbiased and preserves shape, the
function Fk is convex and lies above f . The Bernstein polynomial of Fk is also convex
and lies above Fk. The derivative of the Bernstein polynomial increases in α because of
convexity, and its value at 1 is smaller than f ′(1) because Bernk(α;Fk) ≥ f (α) for any α
with equality at 1 and both functions are convex.

STEP 3: h′(α) > 0 for any α ∈ [0�1].
By definition,

h′(α)= 1 − ε− εBern′
k(α;Fk)≥ 1 − ε− εf ′(1) > 0�

where the second inequality is by Step 2 and the third inequality is by the choice of ε.

STEP 4: αt < α∗.
By the fundamental theorem of calculus,

h
(
α∗) − h(αt−1)=

∫ α∗

αt−1

h′(α)dα > 0�

where the last inequality is by Step 3. Since h(αt−1)= αt and h(α∗)= α∗, the result follows.

Proving that αt−1 >α∗ implies condition (ii) is analogous. Q.E.D.
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