Take Action
Research Details
Queue-and-Idleness-Ratio Controls in Many-Server Service Systems, Math of OR
Abstract
Motivated by call centers, we study large-scale service systems with multiple customer classes and multiple agent pools, each with many agents. We propose a family of routing rules called Queue-and- Idleness-Ratio (QIR) rules. A newly available agent next serves the customer from the head of the queue of the class (from among those he is eligible to serve) whose queue length most exceeds a specified state-dependent proportion of the total queue length. An arriving customer is routed to the agent pool whose idleness most exceeds a specified state-dependent proportion of the total idleness. We identify regularity conditions on the network structure and system parameters under which QIR produces an important state-space collapse (SSC) result in the Quality-and-Efficiency-Driven (QED) many-server heavy-traffic limiting regime. The SSC result is applied here to prove stochastic-process limits and in subsequent papers to solve important staffing and control problems for large-scale service systems.
Type
Article
Author(s)
Itai Gurvich, Ward Whitt
Date Published
2009
Citations
Gurvich, Itai, and Ward Whitt. 2009. Queue-and-Idleness-Ratio Controls in Many-Server Service Systems. Math of OR. 34(2): 363-396.
LINK