Take Action
Research Details
The Retail Planning Problem Under Demand Uncertainty, Production and Operations Mangement
Abstract
We consider the retail planning problem in which the retailer chooses suppliers and determines the production, distribution, and inventory planning for products with uncertain demand to minimize total expected costs. This problem is often faced by large retail chains that carry private-label products. We formulate this problem as a convex-mixed integer program and show that it is strongly NP-hard. We determine a lower bound by applying a Lagrangian relaxation and show that this bound outperforms the standard convex programming relaxation while being computationally efficient. We also establish a worst-case error bound for the Lagrangian relaxation. We then develop heuristics to generate feasible solutions. Our computational results indicate that our convex programming heuristic yields feasible solutions that are close to optimal with an average suboptimality gap at 3.4%. We also develop managerial insights for practitioners who choose suppliers and make production, distribution, and inventory decisions in the supply chain.
Type
Article
Author(s)
George Georgiadis, Kumar Rajaram
Date Published
2013
Citations
Georgiadis, George, and Kumar Rajaram. 2013. The Retail Planning Problem Under Demand Uncertainty. Production and Operations Mangement. 22(5): 1200-1213.
LINK