Take Action

Home | Faculty & Research Overview | Research

Research Details

The Equity Estimator for Marketing Research, Marketing Science

Abstract

We introduce a new biased estimator called the Equity estimator to estimate parameters of linear models in the presence of multicollinearity. We then employ a comprehensive simulation methodology to evaluate OLS, the Equity estimator, and a particular form of the Ridge estimator which has received some attention in the statistical literature. We show that both Equity and Ridge perform significantly better than OLS on a variety of performance measures over most of the parameter space. The Equity estimator does much better than the Ridge estimator on the squared error criterion. On other criteria, the Equity estimator performs marginally better than Ridge. In particular, Equity does well when the degree of multicollinearity among the explanatory variables is high and/or the Rsup2/sup of OLS for the sample is less than 0.7, conditions frequently encountered in marketing research. We discuss how the results of this study can be used by marketing researchers in choosing an appropriate estimator for their particular application.

Type

Article

Author(s)

Lakshman Krishnamurthi, Arvind Rangaswamy

Date Published

1987

Citations

Krishnamurthi, Lakshman, and Arvind Rangaswamy. 1987. The Equity Estimator for Marketing Research. Marketing Science. 6(4): 336-357.

KELLOGG INSIGHT

Explore leading research and ideas

Find articles, podcast episodes, and videos that spark ideas in lifelong learners, and inspire those looking to advance in their careers.
learn more

COURSE CATALOG

Review Courses & Schedules

Access information about specific courses and their schedules by viewing the interactive course scheduler tool.
LEARN MORE

DEGREE PROGRAMS

Discover the path to your goals

Whether you choose our Full-Time, Part-Time or Executive MBA program, you’ll enjoy the same unparalleled education, exceptional faculty and distinctive culture.
learn more

Take Action