Take Action

Home | Faculty & Research Overview | Research

Research Details

Validity of heavy-traffic steady-state approximations in multiclass queueing networks: The case of queue-ratio disciplines, Mathematics of Operations Research


A class of stochastic processes known as semi-martingale reflecting Brownian motions (SRBMs) is often used to approximate the dynamics of heavily loaded queueing networks. In two influential papers, Bramson (1998) and Williams (1998) laid out a general and structured approach for proving the validity of such heavy-traffic approximations, in which an SRBM is obtained as a diffusion limit from a sequence of suitably normalized workload processes. However, for multiclass networks it is still not known in general whether the steady-state distribution of the SRBM provides a valid approximation for the steady-state distribution of the original network. In this paper we study the case of queue-ratio disciplines and provide a set of sufficient conditions under which the above question can be answered in the affirmative. In addition to standard assumptions made in the literature towards the stability of the pre- and post-limit processes and the existence of diffusion limits, we add a requirement that solutions to the fluid model are attracted to the invariant manifold at linear rate. For the special case of static-priority networks such linear attraction is known to hold under certain conditions on the network primitives. The analysis elucidates some interesting connections between stability of the pre- and post-limit processes, their respective fluid models and state-space collapse, and identifies the respective roles played by all of the above in establishing validity of heavy-traffic steady-state approximations.




Itai Gurvich

Date Published



Gurvich, Itai. 2014. Validity of heavy-traffic steady-state approximations in multiclass queueing networks: The case of queue-ratio disciplines. Mathematics of Operations Research.(1): 121-162.


Explore leading research and ideas

Find articles, podcast episodes, and videos that spark ideas in lifelong learners, and inspire those looking to advance in their careers.
learn more


Review Courses & Schedules

Access information about specific courses and their schedules by viewing the interactive course scheduler tool.


Discover the path to your goals

Whether you choose our Full-Time, Part-Time or Executive MBA program, you’ll enjoy the same unparalleled education, exceptional faculty and distinctive culture.
learn more