Take Action

Home | Faculty & Research Overview | Research

Research Details

Simulation of microporosity formation in modified and unmodified A356 alloy castings, Metallurgical and Materials Transactions B

Abstract

In order to comprehensively model both the performance and inspectability of early design stage safety critical aluminum castings, the size, shape, and location of defects such as pores should be determined by simulation. In this article, a two-dimensional (2-D) model to predict grain size, pore size, pore morphology, and location is presented. The proposed model couples hydrogen gas evolution and microshrinkage pore formation mechanisms with a grain growth simulation model. The nucleation and growth of grains are modeled with a probabilistic method that uses the information from a macroscale heat transfer simulation to determine the rules of transition for grain evolution. Microshrinkage pores and the combination of microshrinkage and gas pores are addressed. The proposed model and postprocessing can provide direct simulated views of the microstructure of the solidifying casting. In the present work, the effect of Sr modifier and hydrogen content on pore size and morphology for equiaxed aluminum alloy A356 is modeled. The simulation results correlate well with the experimental observation of cast structures and other published data. In addition, Sievert's law and the conditions for spontaneous growth of a gas pore are derived from first principles in the Appendix.

Type

Article

Author(s)

Julie Huang, T. Mori, James Gerard Conley

Date Published

1998

Citations

Huang, Julie, T. Mori, and James Gerard Conley. 1998. Simulation of microporosity formation in modified and unmodified A356 alloy castings. Metallurgical and Materials Transactions B.(6): 1249-1260.

KELLOGG INSIGHT

Explore leading research and ideas

Find articles, podcast episodes, and videos that spark ideas in lifelong learners, and inspire those looking to advance in their careers.
learn more

COURSE CATALOG

Review Courses & Schedules

Access information about specific courses and their schedules by viewing the interactive course scheduler tool.
LEARN MORE

DEGREE PROGRAMS

Discover the path to your goals

Whether you choose our Full-Time, Part-Time or Executive MBA program, you’ll enjoy the same unparalleled education, exceptional faculty and distinctive culture.
learn more