Take Action

Home | Faculty & Research Overview | Research

Research Details

Minimum Cost Capacity Installations for Multicommodity Network Flows, Mathematical Programming


Consider a directed graph G = (V,A), and a set of traffic demands to be shipped between pairs of nodes inV. Capacity has to be installed on the edges of this graph (in integer multiples of a base unit) so that traffic can be routed. In this paper we consider the problem of minimum cost installation of capacity on the arcs to ensure that the required demands can be shipped simultaneously between node pairs. We study two different approaches for solving problems of this type. The first one is based on the idea of metric inequalities (see Onaga and Kakusho, On feasibility conditions of multicommodity flows in networks, IEEE Transactions on Circuit Theory, CT-18 (4) (1971) 425-429.), and uses a formulation with only |A| variables. The second uses an aggregated multicommodity flow formulation and has |V||A| variables. We first describe two classes of strong valid inequalities and use them to obtain a complete polyhedral description of the associated polyhedron for the complete graph on three nodes. Next we explain our solution methods for both of the approaches in detail and present computational results. Our computational experience shows that the two formulations are comparable and yield effective algorithms for solving real-life problems.




Daniel Bienstock, Sunil Chopra, Oktay Gunluk, Chih-Yang Tsai

Date Published



Bienstock, Daniel, Sunil Chopra, Oktay Gunluk, and Chih-Yang Tsai. 1998. Minimum Cost Capacity Installations for Multicommodity Network Flows. Mathematical Programming.(2): 177-199.


Explore leading research and ideas

Find articles, podcast episodes, and videos that spark ideas in lifelong learners, and inspire those looking to advance in their careers.
learn more


Review Courses & Schedules

Access information about specific courses and their schedules by viewing the interactive course scheduler tool.


Discover the path to your goals

Whether you choose our Full-Time, Part-Time or Executive MBA program, you’ll enjoy the same unparalleled education, exceptional faculty and distinctive culture.
learn more