Take Action

Home | Faculty & Research Overview | Research

Research Details

Modeling the Effects of Cooling Rate, Hydrogen Content, Grain Refiner and Modifier on Microporosity Formation in Al A356 Alloys, Materials Science and Engineering


Cast Aluminum-Silicon alloys are used in numerous automotive and industrial weight sensitive applications because of their low density and excellent castability. The presence of trapped gas and or shrinkage pores in certain locations within castings has been shown to influence fatigue life. These micromechanical defects can be found most anywhere in a casting depending on processing conditions. A large amount of porosity located in the center of the cast material thickness may have no effect on mechanical properties or fatigue performance. A smaller, isolated pore near a surface may have a significant impact on mechanical properties. Hence, it is important to develop a comprehensive model to predict the size, location and distribution of microporosity in castings. In this work, we model the effect of various casting process parameters on microporosity formation for aluminum A356 alloy castings. The process parameters include cooling rate, hydrogen content, grain refiner and modifier. The proposed two-dimensional model predicts the size, morphology and distribution of microporosity at a given location in the casting. The method couples a mathematical model of porosity evolution with a probabilistic grain structure prediction model. The porosity evolution model is based on the simultaneous solution of the continuity and momentum equations for the metal and the mass conservation equation for the dissolved gas. The nucleation and growth of grains are simulated with a probabilistic method that uses the information from a heat transfer simulation, i.e. temperature and solid fraction, to determine the transition rules for grain evolution. The simulation results correlate well with experimental observation of porosity in cast structures.




James Gerard Conley, Julie Huang, Jo Asada, Kenji Akiba

Date Published



Conley, James Gerard, Julie Huang, Jo Asada, and Kenji Akiba. 2000. Modeling the Effects of Cooling Rate, Hydrogen Content, Grain Refiner and Modifier on Microporosity Formation in Al A356 Alloys. Materials Science and Engineering.(1-2): 49-55.


Explore leading research and ideas

Find articles, podcast episodes, and videos that spark ideas in lifelong learners, and inspire those looking to advance in their careers.
learn more


Review Courses & Schedules

Access information about specific courses and their schedules by viewing the interactive course scheduler tool.


Discover the path to your goals

Whether you choose our Full-Time, Part-Time or Executive MBA program, you’ll enjoy the same unparalleled education, exceptional faculty and distinctive culture.
learn more