Take Action

Home | Faculty & Research Overview | Research

Research Details

Limit Theorems for Power Variations of Pure-Jump Processes with Application to Activity Estimation, Annals of Applied Probability

Abstract

We define a new concept termed the activity signature function, which is constructed from discrete observations of a process evolving continuously in time. Under quite general regularity conditions, we derive the asymptotic properties of the function as the sampling frequency increases and show that it is a useful device for making inferences about the activity level of an Ito semimartingale. Monte Carlo work confirms the theoretical results. One empirical application is from finance. It indicates that the classical model comprised of a continuous component plus jumps is more plausible than a pure-jump model for the spot $/DM exchange rate over 1986-1999. A second application pertains to internet traffic data at NASA servers. We find that a pure-jump model with no continuous component and paths of infinite variation is appropriate for modeling this data set. In both cases the evidence obtained from the signature functions is quite convincing, and these two very disparate empirical outcomes illustrate the discriminatory power of the methodology.

Type

Article

Author(s)

Viktor Todorov, George Tauchen

Date Published

2011

Citations

Todorov, Viktor, and George Tauchen. 2011. Limit Theorems for Power Variations of Pure-Jump Processes with Application to Activity Estimation. Annals of Applied Probability. 21(2): 546-588.

LINK
KELLOGG INSIGHT

Explore leading research and ideas

Find articles, podcast episodes, and videos that spark ideas in lifelong learners, and inspire those looking to advance in their careers.
learn more

COURSE CATALOG

Review Courses & Schedules

Access information about specific courses and their schedules by viewing the interactive course scheduler tool.
LEARN MORE

DEGREE PROGRAMS

Discover the path to your goals

Whether you choose our Full-Time, Part-Time or Executive MBA program, you’ll enjoy the same unparalleled education, exceptional faculty and distinctive culture.
learn more