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Abstract

A firm faces a persistent demand curve and initially knows little

about its shape. It learns about its demand by setting a price each

period and observing quantity sold. We characterize the unique, se-

quentially optimal pricing strategy that maximizes guaranteed profits.

This strategy is memoryless and sets prices as if the true demand curve

were the flattest conceivable line passing through last period’s price and

quantity. On path, the firm’s prices and profits rise monotonically.

1 Introduction

Firms do not spring into existence knowing the shape of their demand curves.

Those with new products or scant data often experiment with various prices

over time to learn demand. How exactly should they experiment?

To answer this question, we characterize sequential pricing strategies that

maximize the guaranteed sum of discounted flow profits in the face of uncer-

tain demand. One interpretation is that an uninformed firm may want to be

robust to rich space of possible shapes that its demand curve might take. Al-

ternatively, this objective captures the pricing behavior of an ambiguity averse
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firm. More broadly, a firm may want to know its guaranteeable profits as a

benchmark against which to evaluate other strategies. We show how prices

evolve, where they converge, and how much money a firm might leave on the

table when it maximizes its profit guarantee.

In the model, a firm faces a persistent, unknown demand curve. Each

period, it sets a price and learns demand at that price. The state space

is all downward sloping curves satisfying certain slope bounds in a relevant

range of prices and a lower bound on sales at some focal price. The firm is

forward-looking and solves for a strategy that always maximizes its worst-case

continuation profits, no matter the shape of the true demand curve.

The unique, sequentially optimal strategy is to price as if the demand

curve were linear and passed through the previous period’s price and quantity

with a slope equal to the known lower bound. Under this strategy, prices rise

monotonically over time. If prices ever strictly rise on path, then they remain

below any price that would be set by an informed monopolist. Profits also

rise, as the sequentially optimal strategy coincides with the myopic strategy

on path. Finally, we show a tight bound on how far long-run profits can be

from the informed monopoly benchmark, given what the firm knows about

consumer price sensitivity. This bound indicates how much money may be left

on the table by following the guarantee maximizing strategy. Knowing this

bound can help a firm decide between pursuing such a strategy or first learning

more about demand through costly consumer surveys or industry analysis.

These results have a positive interpretation. The model rationalizes how

firms with market power and limited pricing experience may profitably inflate

prices over time despite time-invariant costs and demand. The mechanism

is simple. The firm estimates demand conservatively and prices low. It is

then likely to make more sales than anticipated, which creates an incentive to
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raise price. But the price is raised conservatively, based on an overestimate of

demand elasticity. Therefore, the firm is likely to be positively surprised by

sales again at the new price, and so on.

The results also have a normative interpretation. Management consulting

firms encourage clients to price based on industry elasticity ranges. Venture

capitalists also prescribe simple pricing policies that rely only on elasticity

estimates, e.g., y-combinator suggests startups raise prices to the point where

a 5% price hike would drop sales by 20%. We also produce a simple rule

of thumb for which firms need only input their elasticity estimates in some

relevant range of prices. But our rule enjoys an economic justification: no

other policy has a higher profit guarantee.

Finally, the results address two gaps in the rational price experimentation

literature in economics, which aims to characterize strategies that maximize a

firm’s expected sum of discounted flow profits. First, little has been said about

the price path of a rational firm with a long horizon:

“Two approaches have appeared to the question of experimentation

in the face of a random demand curve. . . One involves formulating

an infinite horizon model in which attention turns to the limit-

ing expectation. . . A second approach is restricted to two-period

models” (Mirman, Samuelson and Urbano, 1993).

The second gap is that, when optimal experimentation does not converge to

an informed monopoly price, existing models do not describe how far off and

in which direction firms tend to misprice:

“When adequate learning does not obtain one cannot understand

the long-run outcome independently of the priors or the adjustment
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process by which it was reached. An entirely new kind of analy-

sis is called for in these cases: in order to determine the nature

of the long-run behaviour of the agent, one needs to characterise

the optimal learning strategy. Unfortunately this is possible ana-

lytically only in very simple learning problems” (Aghion, Bolton,

Harris and Jullien, 1991).

These gaps persist because price experimentation is a multi-arm bandit with

correlated arms: trying any price confers information about demand at other

nearby prices. It is known that “except in very special cases, such [problems

are] unsolvable—–either analytically or numerically” (Francetich and Kreps,

2020). By studying sequentially guarantee-maximizing strategies, we make

progress. Such strategies are rational in the sense in which “everyone more or

less agrees . . . [they consistently maximize] a well-ordered function, such as a

utility or profit function” (Becker, 1962).

Outline. Section 2 describes the model. Section 3 characterizes optimal

price experimentation. Section 4 considers optimal strategies for more general

state spaces. Section 5 concludes with a discussion of the related literature.

2 Model

A demand curve is a decreasing function d : R+ → R+ of price. A firm faces a

persistent, unknown demand curve, D. It initially knows only that D is some

element of a set Ω. In each period t = 0, 1, 2 . . ., it sets a price pt+1, observes

demand at that price, D(pt+1), and earns a flow payoff of pt+1 ·D(pt+1).

Assumption 1. Let p0, q0 > 0 and τ < τ < 0. Ω is the set of all demand

curves d such that d(p0) ≥ q0, and
d(x)−d(y)

x−y
∈ [τ , τ ] if x ̸= y and d(x), d(y) > 0.
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Assumption 1 says the firm only knows that demand is downward sloping,

limits to how quickly demand changes with price and a lower bound to sales at

some focal price. For example, consider a firm that wants to enter the ready-

to-eat cereal industry in an unoccupied niche (e.g., protein-fortified cereal).

The firm determines that it can at least make enough sales q0 to break even at

the average price of other branded cereals, p0. It knows something about how

elastic (τ) or inelastic (τ̄) demand can get, based on industry level estimates

(e.g., Nevo (2001) estimates price elasticities in the cereal industry). The firm

knows little else about the shape of its demand curve prior to making a sale.

Histories ht ∈ Ht are finite sequences of points discovered on some d ∈ Ω,

{(pi, d(pi))}ti=1. Paths h ∈ H are infinite sequences of points such that any

t-truncation of h is a history in Ht. Let p
h
i be the ith price along path h ∈ H.

The set of strategies S consists of any function

σ :
⋃
t∈N

Ht → R+,

that maps histories to prices.1 Starting from a history ht, a strategy σ ∈ S

and a demand curve d together induce a path h(σ, d, ht) ∈ H, where the

t-truncation of h(σ, d, ht) is ht.

The firm has a discount rate of δ ∈ (0, 1) and constant marginal cost,

normalized to zero. Its continuation payoff at any history ht is the sum of

discounted profits,

Π(σ,D, ht) ≡
∞∑
i=t

δi · ph(σ,D,ht)
i+1 ·D(p

h(σ,D,ht)
i+1 ).

For any pricing strategy σ ∈ S, the guaranteed payoff to following σ is

min
d∈Ω

Π(σ, d, h0).

1Allowing random strategies does not change any results, as they are never optimal. The

restriction to deterministic strategies is for ease of exposition only.
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Strategy σ∗ is ex-ante optimal if it maximizes the firm’s guaranteed payoff,

i.e., σ∗ solves

max
σ∈S

min
d∈Ω

Π(σ, d, h0). (1)

We characterize strategies that are not only ex-ante optimal but maximize

the firm’s guaranteed continuation payoff at every point in time, given what it

learned about D. To that end, let Ωht be the set of consistent demand curves

at ht, i.e., the demand curves in Ω that pass through the points discovered at

ht. Next, for any strategy σ, say ht is a reachable history if it is the empty

history or if there exists d ∈ Ω such that ht is the t-truncation of h(σ, d, h0).

Strategy σ∗ is sequentially optimal if at every reachable history ht, it solves

max
σ∈S

min
d∈Ωht

Π(σ, d, ht). (2)

Sequentially optimal strategies are also ex-ante optimal, as condition 2 at h0

is condition 1.

2.1 Discussion

We interpret the firm’s environment, information structure and objective.

2.1.1 Absence of strategic considerations

The model applies to settings where learning demand is a primary concern and

strategic responses by other firms or consumers are absent or second-order.

The firm may be thought of as a monopolist or as being in a monopolis-

tically competitive industry with a “large enough number [of firms] that they

might ignore strategic interactions, a small enough number that they still face

downward sloping demand curves” (Stiglitz, 2017).
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Similarly, demand can be interpreted as arising from a large population of

price-taking consumers with unit demand every period. We can consider goods

that are neither durable (so consumers do not delay purchases when price

exceeds their value) nor storable (so consumers do not stock up in anticipation

of higher prices); or we can suppose consumers are short-lived or myopic.

2.1.2 Alternative assumptions about what the firm knows

Assumption 1 captures a firm that, having not yet entered the market, knows

only a lower-bound on quantity demanded at some price. It also says that the

firm knows limits to the slope of demand at any price.

We could instead study a firm that already knows a point on its demand

curve, and more realistically, knows tighter slope bounds near the focal price

and looser bounds farther away. Section 4.2 extends results to such settings.

2.1.3 Sequential Optimality

Sequentially optimal strategies are those that, at every point in time, yield the

best guaranteed continuation profit. As the firm learns more about demand,

the set of plausible states shrinks, and the worst-case outcome associated with

any strategy may change. But a sequentially optimal strategy plans for every

contingency at the outset, so the firm would never want to deviate from it.

3 Optimal experimentation

Section 3.1 characterizes the unique sequentially optimal strategy. Section

3.2 shows how prices and profits evolve on path. Section 3.3 and 3.4 discuss

where prices and profits converge in the long run, relative to the price set and

7



profit enjoyed by a firm that knows its demand curve. Section 3.5 sketches the

arguments driving the results.

3.1 The sequentially optimal strategy

At history ht = {(pi, qi)}ti=1, let

dht(p) ≡ qt +min{τ(p− pt), τ(p− pt)},

and define the linear pricing strategy as

σlin(ht) ≡ argmax
p

p · dht(p).

This strategy is depicted in Figure 3.1.

There are two senses in which σlin is simple. First, σlin is memoryless : it

depends on any history ht only through last period’s price pt and quantity qt.
2

Next, computing σlin(ht) is elementary: it is the monopoly price if demand

were piecewise linear with a single kink at (pt, qt), even if such a curve is

inconsistent with past data (as in Figure 3.1 (viii)).

Proposition 1. σlin is a sequentially optimal strategy.

Section 3.5 gives intuitions for the results, while proofs are in Appendix A.

The sequentially optimal strategy is essentially unique if for any two se-

quentially optimal strategies σ1, σ2 and any d ∈ Ω, both strategies lead down

the same path, i.e., h(σ1, d, h0) = h(σ2, d, h0).

Proposition 2. The sequentially optimal strategy is essentially unique.

2Formally, let λ(ht) = (pt, qt) for any ht = {(p1, q1), . . . , (pt, qt)} ∈ Ht. Strategy σ is

memoryless if it is measurable with respect to λ.
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Three Steps of σlin

Figure 1: The first row shows the transition from h0 to h1 under σlin when

D is the true demand curve. The firm sets the monopoly price p1 under

the assumption that demand is dh0 (top middle) and learns that the actual

quantity demanded at p1 is q1 (top right). The second row shows the transition

from h1 to h2, where now the firm sets p2 under the assumption demand is

dh1 . The third row shows the transition from h1 to h2. The firm knows dh2

cannot be the true demand curve at h2, as it does not pass through (p1, q1).
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Every first course in economics covers monopoly pricing when demand is

known and linear. Students often question the value of this exercise when

demand curves are often unknown and nonlinear.

Propositions 1 and 2 give one justification. A firm that knows little about

its demand curve beyond some bounds to elasticity may want to guarantee

itself high profits. While its demand curve may be very irregularly shaped, the

unique guarantee maximizing experimentation strategy only involves finding

monopoly prices for linear demand curves.

3.2 Price and profit path

We say prices always rise under strategy σ if for any d ∈ Ω, along the path

h = h(σ, d, h0), phi is increasing in i. Similarly, profits always rise under

strategy σ if flow profit, phi · d(phi ), is increasing in i.

Proposition 3. Prices and profits always rise under a sequentially optimal

strategy.

In surveys, people frequently cite ‘big businesses pursuing profits’ or ‘greed’

as a primary cause for rising prices (Shiller, 1997; Stantcheva, 2024). Based

on such responses, Shiller suggests that “most people seem to fail to think of

the models that come naturally to economists.”

Indeed, it is hard to rationalize rising prices as a consequence of profit

maximization, absent any changes to supply and demand. A firm that knows

its demand should start and remain at a profit-maximizing price. A firm that

is uncertain of its demand might experiment with price hikes and cuts, some

of which would lower profits as it stumbles to find an optimal price.

However, Proposition 3 shows that maximizing guaranteed profits neces-

sarily involves starting at a lower price and increasing from there. Firms that
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experiment in this manner enjoy higher profits every step of the way. Finally,

these dynamics arise even in the absence of any innovation to a firm’s demand

or cost, though in that case, the process eventually converges.

3.3 Long-run price

Proposition 3 implies that for any d ∈ Ω, prices along the path h(σ, d, h0)

generated by a sequentially optimal strategy σ converge to a limit point p∞d .

The next result describes the relationship between the long-run price, p∞d , and

any informed monopoly price, p∗d ∈ argmaxp p · d(p).

Proposition 4. If σlin(h0) > p0 or σlin(h1) > σlin(h0), then p∞D ≤ p∗D. Con-

versely, if σlin(h0) ≤ p0, there is a d ∈ Ω such that p∞d ≥ p∗d.

Unless the initial price is set below p0 and never revised, the firm always

sets prices below any price it would set if it knew its demand curve.

3.4 Long-run profit

For any d ∈ Ω, the next result describes the relationship between the long-run

flow profit, p∞d · d(p∞d ), and the informed monopoly flow profit, p∗d · d(p∗d)?

Proposition 5. For any d ∈ Ω,

p∞d · d(p∞d )

p∗d · d(p∗d)
≥ 4 · τ · τ

(τ + τ)2
,

and this bound is tight.

If τ = τ , in which case the true demand curve is known with certainty, then

the firm achieves the informed monopoly flow profit. In general, when τ > τ ,

the firm is eventually guaranteed only a fraction of the informed monopoly flow

11



profit. The fraction of informed monopoly profits that the firm is guaranteed

to eventually capture through experimentation is

inf
d∈Ω

p∞d · d(p∞d )

p∗d · d(p∗d)
.

Proposition 5 gives a lower bound on this guarantee in terms of only what it

knows about the sensitivity of demand to price. Therefore, the tighter is the

firm’s estimated range of price elasticity, the larger is the fraction of informed

monopoly profits it is guaranteed to capture.

Importantly, this lower bound can be computed prior to any experimenta-

tion. Suppose a firm’s estimated τ and τ are such that long-run flow profits

capture, say, 90% of informed monopoly flow profits, and the firm’s discount

rate is sufficiently high. Such a firm may find it attractive to follow σlin, even

if its original objective was not to maximize guaranteed profits. On the other

hand, suppose the range of estimated slope bounds is wide enough that the

firm is only guaranteed 35% of the informed monopoly benchmark. The firm

may choose to pursue an alternative pricing strategy or conduct costly con-

sumer surveys and market research to sharpen its estimates of τ and τ . In sum,

Proposition 5 may be useful for a firm, whether its objective is to maximize

its profit guarantees or not.

Next, note that the guaranteed profit ratio in Proposition 5 depends only

on the bounds on the slope to the demand curve. It does not depend on the

extent to which the firm underestimates demand, D(p0)−q0, at the focal price,

p0. An implication is that a more accurate estimate of price elasticity gives the

firm a better sense of guaranteed profits, while accuracy in estimating quantity

demanded does not help in this respect.
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3.5 Explanations and remarks

We define a myopic strategy, show that it is sequentially optimal. While it is

distinct from the linear pricing strategy and is not memoryless, we show that it

coincides with the linear pricing strategy at reachable histories. Propositions

1, 2 and 3 follow from these steps. In the proof of Proposition 4, we show that

the linear pricing strategy has a simpler characterization where the kinked

curve, dht , can be replaced with a linear demand curve at most histories. This

fact is useful in proving Proposition 5.

3.5.1 The myopic pricing strategy

At any history ht, let dht
be the lower envelope of all the d ∈ Ωht . This is the

most conservative plausible estimate of the firm’s demand at any price, given

what it knows at history ht.

Any price in argmaxp p · dht
(p) is a myopically optimal price at ht. A

myopic pricing strategy sets a myopically optimal price at every history, and

σ denotes one such strategy.

The firm in the model is forward-looking: it maximizes guaranteed payoff,

which accounts for the flow of all future profits. On the other hand, the myopic

pricing strategy at any point in time maximizes the guaranteed profits in that

period only.

Lemma 1. Prices and profits always rise under strategy σ.

The intuition for increasing prices is that if a firm conservatively estimates

demand, it starts at a lower price and can only be positively surprised by

its actual sales. The unanticipated windfall of inframarginal consumers then

makes it more attractive to raise prices. Profits are increasing because the
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myopic pricing strategy only experiments with a new price if that experiment

is guaranteed to yield an improvement in that very period.

Lemma 2. σ is a sequentially optimal strategy.

We argue that σ is sequentially optimal by showing that (σ, dht
) is a saddle

point of the continuation payoff, Π(·, ·, ht) at every history ht.

If D = dht
, then an optimal strategy is to always choose the corresponding

informed monopoly price. This is exactly what σ does on path.

On the other hand, if the firm follows strategy σ, then by construction, its

profit would be weakly higher in period t under any demand curve D ̸= dht
.

Moreover, by lemma 1, its profit in all subsequent periods would be weakly

higher as well. Therefore, when the firm plays strategy σ, its profits are

minimized when D = dht
, proving lemma 2.

3.5.2 Intuition for Propositions 1 and 3

The final step to proving Propositions 1 and 3 is to argue that the linear

pricing strategy coincides with the myopic pricing strategy at every reachable

history ht. At most reachable histories, dht
takes on a complex shape. The

proof of Proposition 1 shows that at those histories, certain regions of dht
can

be ‘ironed’ to be linear without affecting the monopoly price; see Figure 3.5.2.

3.5.3 Intuition for Proposition 2

The argument for lemma 2 shows that if a strategy maximizes the guaranteed

continuation profit at ht, it chooses a myopically optimal price. Therefore, the

sequentially optimal strategy is essentially unique if at every reachable history

ht, there is only one myopically optimal price. This holds at the empty history,

because dh0
is concave. At any other history, dht

is maximized on [pt,∞), by
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σlin = σ

Figure 2: Two kinds of reachable histories under σ are shown where dht ̸= dht
.

The left panel shows a reachable history h1 at which p1 < p0. At h0, price p1

was chosen over any p where dh1
(p) > dh1(p). Next, dh1

(p) = dh0
(p) at all such

prices. Therefore σ(h1) must fall in the region where dh1
and dh1 coincide,

so σlin(h1) = σ(h1). The right panel shows a reachable history ht at which

pt > p0. By lemma 1, σ(ht) ≥ pt. Note that dht lies weakly below dht
at p < pt,

and both curves coincide at p ≥ pt, so σlin(ht) = σ(ht).
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p∞D > p1

Figure 3: Because p2 is the optimal price if demand is dh1 , it is also optimal if

demand is d̂. The true demand curve lies below d̂ for prices below p1, because

D is more inelastic everywhere, by Assumption 1. Therefore, p∞ > p1.

lemma 1. The only reachable histories where dht
is not concave on [pt,∞) is

when p1 is sufficiently below p0, as shown in the left panel of Figure 3.5.2. As

argued there, the myopically optimal price is still unique in this case.

3.5.4 Intuition for Proposition 4

Consider the history h1 in Figure 3.5.4 where p2 = σlin(h1) > p1, i.e., p2 is

the optimal price under demand curve dh1 . Clearly, p2 is also optimal for the

linear demand curve d̂ that has slope τ and passing through (p1, q1). Note,

D(p) < d̂(p) if and only if p < p1. So if a price below p1 is not optimal when

demand is d̂, it is not optimal when demand is D. Next, at h2, the linear

pricing strategy would set a strictly higher price than p2. The same logic

would show p∗D ≥ p2, and so on. Therefore, p∞D ≤ p∗D.

The proof in Appendix A addresses the case where prices never change.
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3.5.5 Remark: from kinked to linear demand curves

Figure 3.5.4 shows that if the price strictly increases in the second period, dht

can thereafter be replaced by the line of slope τ through (pt, qt) in the algorithm

for computing σlin. So, after the first period, the sequentially optimal strategy

can be described as selecting the monopoly price as if demand were the flattest

line passing through the previous period’s price and quantity.3

3.5.6 Intuition for Proposition 5

From the description in Section 3.5.5, it follows that if prices ever strictly

increase on path under σlin, then p∞D is the monopoly price for the demand

curve of slope τ that passes through (p∞D , D(p∞D )). By Proposition 4, this long-

run price is below any informed monopoly price. This gap is maximized when

D is maximally inelastic above the long-run price, i.e., D(p) = τ(p − p∞D ) +

D(p∞D ) for all p ≥ p∞D . For such a D, the ratio of revenue at p∞D to p∗D is 4·τ ·τ
(τ+τ)2

.

If D is such that prices never change on path, the proof in Appendix A

shows that the fraction of informed monopoly profits captured only goes up.

3.6 Extensions

There are several ways of generalizing the baseline model. For example, it is

natural to consider experimentation when demand varies over time or the firm

chooses quantities rather than prices (see Appendix B). Section 4 considers a

generalization that is closer to our focus. It considers more general state spaces

to capture different kinds of knowledge firms may have about the shape of their

demand curves prior to experimentation.

3This characterization may be reminiscent of Carroll (2015), who finds linear contracts

are robustly optimal in a principal-agent problem with moral hazard.
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4 Generalizing what the firm may know

In the baseline model, the firm only knows that demand cannot change too

quickly and is bounded below at a focal price. Here, we consider firms that

that know other things about demand prior to experimentation, e.g., demand

at several prices, curvature of demand, the size of the market, etc. Section

4.1 shows by example that the sequentially optimal strategy need not be my-

opic in general. Section 4.2 characterizes when a myopic pricing strategy is

sequentially optimal.

4.1 Myopic strategies are not always optimal

Suppose there are only two possibilities for what the true demand curve might

be. In particular, let d1(p) = q0 + τ(p − p0) and d2(p) = q0 + τ(p − p0), and

suppose Ω = {d1, d2}. Let R1 = maxp p · d1(p) and R2 = maxp p · d2(p). Let

pm ≡ argmaxp p ·min{d1(p), d2(p)}. See Figure 4.1.

If pm > p0, then an optimal strategy sets price p1 in the first period. This

is because the informed monopoly price is above p0 in either state of the world,

and in the worst-case, d1 is the true demand curve. In the second period, the

firm learns the true demand curve and sets the informed monopoly price then

onward. The case where pm < p0 is analogous.

If pm = p0, the myopic strategy sets a price of p0 forever, but we argue this

is not generally optimal. Suppose R1 > R2. Let p̄ = argmaxp p · d2(p).

Result. An optimal strategy at h0 sets a price of

min

{
1

2
·

(
p0 +

√
p20 + 4

δ

1− δ

R1 −R2

τ − τ

)
, p̄

}
.

In particular, a myopic firm (δ = 0) sets an initial price of p0, while suffi-

ciently patient firms set a price of p̄ > p0. More generally, the result implies

18



Binary state example

that more patient firms experiment farther from the myopically optimal price.

When R1 > R2, the informed monopoly price is below p0 if D = d1 and

above p0 if D = d2. Intuitively, the firm hedges by searching closer to the

optimal price for the demand curve d2 that yields the lower informed payoff.

If indeed d2 is the true demand curve, then the firm is better off in the first

period for having set a higher price than the myopically optimal p0. On the

other hand, if d1 happens to be the true demand curve, the firm learns about

it and corrects course, whereas the true demand curve is not identified at price

p0. We formalize this argument.

Proof. First, we show that an optimal strategy sets a price p ∈ [p0, p̄] at h0.

Let p1 < p0. Let σ′ and σ′′ be the strategies that set a price of p1

or p0+p1
2

, respectively, at h0 and subsequently set the informed monopoly

price. Π(σ′, d2, h0) < Π(σ′, d1, h0) and Π(σ′′, d2, h0) < Π(σ′′, d1, h0). However,

Π(σ′, d2, h0) < Π(σ′′, d2, h0), so

min
d∈Ω

Π(σ′, d, h0) < min
d∈Ω

Π(σ′′, d, h0).

Therefore, no optimal strategy never sets a price strictly below p0 at h0. Next,

a strategy that sets an initial price above p̄ does worse in any state than a
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strategy that sets a price of p̄.

Now, at any initial price p ∈ (p0, p̄], the firm immediately learns the true

demand curve and sets the informed monopoly price in subsequent periods.

Therefore, the profit guarantee to such a strategy is

min{p · d1(p) +
δ

1− δ
·R1, p · d2(p) +

δ

1− δ
·R2}.

Maximizing this objective gives the result.

A rough intuition for why the myopic strategy is not optimal in the binary

state example is that experimentation is much more informative. If the firm

instead faces a sufficiently rich set of possibilities for demand, it cannot easily

discern its shape from the points it discovers. This diminishes incentives to

learn about demand, so the firm turns to maximizing guaranteed profits today.

Section 4.2 gives a more complete intuition.

4.2 Environments where myopic strategies are optimal

In the baseline model, there is a worst-case demand curve that is independent

of where the firm experiments, namely, the lower envelope of Ωht . But, in the

example in Section 4.1, the worst-case demand curve depends on the firm’s

strategy, as the lower envelope of Ω is not itself a consistent demand curve.

Using this observation, we characterize state spaces for which myopic strategies

are sequentially optimal.

Formally, a set of strictly downward-sloping demand functions Ω ⊂ C(R+)

is a state space if

1. Ω is closed under under the supremum norm, and
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2. Ω and the inverse demand functions Ω−1 are uniformly equicontinuous.4

Equicontinuity is the requirement that there are limits to elasticity at any

price, whatever the demand curve may be. The assumption that Ω−1 is uni-

formly equicontinuous implies that for any d ∈ Ω, the set of prices where

demand is strictly positive is bounded, so maxp p · d(p) exists. Assumption 1

satisfies this definition of a state space.

For any state space Ω, we again use dht
to denote the lower envelope of Ωht

at history ht and σ to denote a myopic pricing strategy (see Section 3.5.1).

A state space Ω is downward-closed if dht
∈ Ωht for any reachable history

ht under σ. A state space Ω is effectively downward-closed if for some p∗ ∈

argmaxp p · dht
(p), there is a d ∈ Ωht such that p∗ ∈ argmax p · d(p), for

any reachable history ht under σ. A downward-closed Ω is also effectively

downward-closed but the converse need not hold.

Theorem 1. If the state space Ω is effectively downward-closed, then some

myopic pricing strategy is sequentially optimal, and profits always rise under

this strategy. Conversely, if Ω is not effectively downward-closed and the firm

is sufficiently patient, i.e., δ is sufficiently close to 1, then the myopic strategy

is not sequentially optimal.

The first part of the statement follows the same steps as in the proofs of

Proposition 1 and Proposition 3.

If Ω is not effectively downward-closed, the Arzelà-Ascoli theorem implies

that there is a history ht, reachable under σ, where

max
p

dht
(p) < inf{max

p
p · d(p)|d ∈ Ωht} ≡ m.

4A set of functions Ω is uniformly equicontinuous if for all ϵ > 0, there exists a δ > 0

such that if p, p′ ∈ R+ and |p− p′| < δ, then for any d ∈ Ω, |d(p)− d(p′)| < ϵ.
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By searching a fine enough grid of prices at ht, the firm can find a price where

flow profit is close to m. If the firm is sufficiently patient, embarking on this

grid search at ht is a profitable deviation from myopic strategy.

4.3 Applications of Theorem 1

Theorem 1 can be used to derive optimal pricing strategies in many cases.

4.3.1 Variants of baseline model

Any Ω that satisfies Assumption 1 is a downward-closed state space. Any set

of demand curves that satisfies a variant of Assumption 1 where the bounds

on slope can vary with price5 is also a downward-closed state space.

Assumption 1 considers state spaces where a lower bound is known at a

focal price. One can alternatively consider a state space where several points

on the demand curve are known a priori.

By Theorem 1, myopic strategies are sequentially optimal in such spaces.

4.3.2 Concave demand

Suppose that the firm knew that the demand curve was concave:

Assumption 2. Let p0, q0 > 0 and τ < τ < 0. Ω is the set of all concave

demand curves d such that d(p0) ≥ q0, and d(x)−d(y)
x−y

∈ [τ , τ ] if x ̸= y and

d(x), d(y) > 0.

Note that at any history ht, the set of demand curves Ωht is downward

closed because the lower envelope of concave functions is also concave. There-

fore, by Theorem 1, a myopic strategy is optimal for this state space.

5That is, there exist τ , τ : R+ → R+ such that for all d ∈ Ω, d′ exists a.e. and

τ(p) ≤ d′(p) ≤ τ(p) < 0.
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We solve for the sequentially optimal pricing strategy when the firm knows

that demand is concave. Analogues of all the results in the baseline case hold.

The strategy is again memoryless, though at some histories, the firm updates

the slope of the artificial demand curve used to compute the next price.

At the empty history, h0, or at any history ht = {(pi, qi)}ti=1 where qt +

τ(p0 − pt) > q0, let

dht(p) ≡ qt +min{τ(p− pt), τ(p− pt)},

and at any other history ht = {(pi, qi)}ti=1, let τ = p0−pt
q0−qt

and

dht(p) ≡ qt +min{τ(p− pt), τ(p− pt)}.

Let

σccv(ht) ≡ argmax
p

p · dht(p).

Let p∞d denote the long-run price under σcvx when demand is given by d.

Proposition 6. Under assumption 2:

1. σccv is a sequentially optimal strategy.

2. The sequentially optimal strategy is essentially unique.

3. Prices and profits always rise under a sequentially optimal strategy.

4. If σccv(h0) > p0 or σccv(h1) > σccv(h0), then p∞D ≤ p∗D. Conversely, if

σccv(h0) ≤ p0, there is a d ∈ Ω such that p∞d ≥ p∗d.

5. For any d ∈ Ω,
p∞d · d(p∞d )

p∗d · d(p∗d)
≥ 4 · τ · τ

(τ + τ)2
,

and this bound is tight.
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A Ω satisfying Assumption 3 is effectively downward closed

Figure 4: The dashed curve is the lower envelope of some Ω satisfying As-

sumption 3 at some history. It is not convex, so it is not in Ω. The solid curve

satisfies Assumption 3 and is consistent at this history. Revenue on the solid

and dashed demand curves are maximized at the same price, p1.

4.3.3 Convex demand

Suppose instead that the firm knew the demand curve was convex.

Assumption 3. Let p0, q0 > 0 and τ < τ < 0. Ω is the set of all convex

demand curves d such that d(p0) ≥ q0, and d(x)−d(y)
x−y

∈ [τ , τ ] if x ̸= y and

d(x), d(y) > 0.

The lower envelope of convex functions is not convex, so any Ω satisfying

Assumption 3 is not downward closed. But it is effectively downward closed;

see Figure 4.3.3. So by Theorem 1, a myopic strategy is sequentially optimal.

We solve for the sequentially optimal pricing strategy when the firm knows

that the demand curve in convex. The strategy has one period memory. The

slope of the line between the last two points discovered on the demand curve

is a lower bound on the slope of the demand curve at higher prices.

At the empty history, h0, or at history h1 = {(pi, qi)}, or at a history
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ht = {(pi, qi)}ti=1 where pt = pt−1, let

dht(p) ≡ qt +min{τ(p− pt), τ(p− pt)},

and at any other history ht = {(pi, qi)}ti=1, let τ = pt−pt−1

qt−qt−1
and

dht(p) ≡ qt + τ(p− pt).

Let

σcvx(ht) ≡ argmax
p

p · dht(p).

Let p∞d denote the long-run price under σcvx when demand is given by d.

Proposition 7. Under assumption 3:

1. σcvx is a sequentially optimal strategy.

2. The sequentially optimal strategy is essentially unique.

3. Prices and profits always rise under a sequentially optimal strategy.

4. If σcvx(h0) > p0 or σcvx(h1) > σcvx(h0), then p∞D ≤ p∗D. Conversely, if

σcvx(h0) ≤ p0, there is a d ∈ Ω such that p∞d ≥ p∗d.

5. For any d ∈ Ω,
p∞d · d(p∞d )

p∗d · d(p∗d)
≥ 4 · τ · τ

(τ + τ)2
,

and this bound is tight.

5 Related literature

This paper contributes to a literature on rational price experimentation with

uncertain demand. The standard approach considers a firm that maximizes

expected discounted flow profits for some distribution over demand curves.
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Here, we consider a firm that maximizes guaranteed discounted flow profits

instead. Such a firm’s prices and profits rise over time.

Sequential price experimentation is a bandit problem with correlated arms,

so deriving optimal strategies for a long-lived firm is typically intractable. We

describe how others tackled this problem and how our approach compares.

One approach derives conditions on state spaces and beliefs under which

optimal experimentation converges to the price or profit of an informed mo-

nopolist (Rothschild, 1974; McLennan, 1984; Easley and Kiefer, 1988; Aghion

et al., 1991). Easley and Kiefer (1988) consider noisy learning, i.e., a stochastic

demand curve. Aghion et al. (1991) focus on deterministic learning, and we

follow their approach. These papers show where optimal strategies converge

without constructing them explicitly. Accordingly, their results do not have

normative implications for experimentation. One may also question the posi-

tive implications about long-run learning: why should a firm be able to solve

for optimal strategies when the analyst cannot?

Another approach studies price experimentation with shorter planning

horizons; see Mirman et al. (1993) and references therein for references on

two period models. Bergemann and Schlag (2011) characterize how an un-

informed monopolist prices to minimize maximum regret in a static model.

Handel and Misra (2015) study a two period version of this problem. They

also ask how new firms set prices and focus on a notion of sequential opti-

mality.6 By contrast, our goal is to characterize both the path and limit of

6Other papers also study sequential optimality in settings with minmax preferences.

Hanany et al. (2020) apply this refinement to games with ambiguity averse agents. Libgober

and Mu (2021) and Li et al. (2022) study pricing for a durable good with robustness to buyer

learning. Malladi (2022) and Banchio and Malladi (2024) study search with learning. We

take this approach to a bandit problem with uncertain flow payoffs and no stopping.
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optimal price experimentation for a long-lived and forward-looking firm.

A different approach partially characterizes optimal policies assuming a

binary state space (Rustichini and Wolinsky, 1995; Keller and Rady, 1999) or

with strong parametric assumptions on demand (e.g., that demand is linear

or log-linear or isoelastic). By contrast, we try to make credible assumptions

about the richness of the space of demand curves a firm may face and the

extent of its uncertainty.7

Finally, there is a literature with roots in operations research that develops

pricing algorithms that are practically useful or perform well in the limit, even

if they do not optimally account for intertemporal incentives in experimen-

tation; see the review by Den Boer (2015). As such, this literature focuses

on approximate solutions to complex dynamic programs (e.g., Lobo and Boyd

(2003)), restricts attention to simple pricing rules (e.g., Cohen et al. (2021);

Cho and Libgober (2022)), or consider criteria like asymptotic regret that place

no restriction on short-run behavior (e.g., Besbes and Zeevi (2009)). By con-

trast, we study a rational firm (i.e., profit maximizing, forward looking, and

sequentially optimal) to understand price experimentation for new products.

7Kang and Vasserman (2022) make similar assumptions to model a policy-maker’s un-

certainty about demand when considering interventions like taxes or subsidies.
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A Proofs

Proof of Lemma 1. Let d ∈ Ω, and let ht = {(p1, d(p1)), . . . (pt, d(pt))} be the

t-truncation of h(σ, d, h0), for t ≥ 1. Similarly, let ht−1 be the t−1 truncation.

Let σ(ht) ≡ pt+1. Finally, let ϵ = d(pt)− dht
(pt).

By construction, ϵ ≥ 0 and dht−1
+ ϵ ≥ dht

, so for p < pt,

pt · dht
(pt) = pt · (dht−1

(pt) + ϵ) > p · (dht−1
(p) + ϵ) ≥ p · dht

(p),

where the first inequality follows from the definition of pt as the lowest price

in argmaxp p · dht−1
. Because the flow profit for demand dht

is not maximized

at a price below pt, we conclude that σ(ht) = pt+1 ≥ pt = σ(ht−1). Therefore,

prices always rise under σ.

Next, note that

pt+1 · d(pt+1) ≥ pt+1 · dht
(pt+1) ≥ pt · dht

(pt) = pt · d(pt),

where the first inequality is by definition of dht
, the second inequality is by

definition of pt+1 = σ(ht). Therefore, profits always rise under σ.

Lemma 3. For any history ht and strategy σ, Π(σ, dht
, ht) ≤ Π(σ, dht

, ht).

Proof of Lemma 3. If D = dht
, then σ sets the same myopically optimal price

p′ in every subsequent period, for a per period flow profit p′dht
(p′). Because

p′ is also the informed monopoly price, no other strategy generates a higher

continuation payoff in this state of the world.

Lemma 4. For any history ht and d ∈ Ωht, Π(σ, dht
) ≤ Π(σ, d).

Proof of Lemma 4. Let p′ ≡ σ(ht). If d(p
′) = dht

(p′), then Π(σ, d) = Π(σ, dht
)

because prices and flow profits remain constant. Otherwise, flow profits rise

monotonically over time by lemma 1.
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Proof of Lemma 2. Take any history ht.

By lemma 3, for any strategy σ ∈ S, Π(σ, dht
, ht) ≥ Π(σ, dht

, ht), i.e.,

Π(σ, dht
, ht) ≥ max

σ∈S
Π(σ, dht

, ht) ≥ max
σ∈S

min
d∈Ωht

Π(σ, d, ht).

By lemma 4, for any demand d ∈ Ωht , Π(σ, dht
, ht) ≤ Π(σ, d, ht), i.e.,

Π(σ, dht
, ht) ≤ min

d∈Ωht

Π(σ, d, ht) ≤ max
σ∈S

min
d∈Ωht

Π(σ, d, ht).

Therefore, Π(σ, dht
, ht) = maxσ∈S mind∈Ωht

Π(σ, d, ht), so σ is optimal.

Proof of Proposition 1. By lemma 2, it suffices to show that on all the reach-

able histories ht of σ, σlin(ht) = σ(ht). Note that this also implies that σlin

and σ share the same reachable histories.

Case 1 : ht = h0. At the empty history,

dh0(p) = q0 +min{τ(p− p0), τ(p− p0)} = dh0
(p).

Therefore, σlin(h0) = σ(h0).

Case 2 : ht, where qt + τ(p0 − pt) ≥ q0. By construction, dht
≥ dht for

p < pt, and dht
= dht for p ≥ pt. Next, by lemma 1, σ(ht) ≥ pt. Therefore,

σlin(ht) = σ(ht).

Case 3 : ht, where qt + τ(p0 − pt) < q0. Again, dht
≥ dht for p < pt, and

σ(ht) ≥ pt. But for p ≥ pt, note that dht
= max{dht , dh0

}.

However, at any p ≥ pt for which dht
(p) = dh0

(p),

p · dht(p) ≤ p · dh0
(p) ≤ p1dh0

(p1) < pt · dht−1
(pt) ≤ pt · dht

(pt),

where the second inequality is by definition of σ, the third inequality is lemma

1, and the fourth is because dhi
is uniformly non-decreasing in i. So, at pt+1 =

σ(ht), we have dht
(pt+1) = dht(pt+1). Therefore, σlin(ht) = σ(ht).
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Proof of Proposition 2. The proof of lemma 3 shows that if at any reachable

history ht for σ, if σ does not solve argmaxp p · dht
(p), then σ is not optimal.

Therefore, it suffices to show that, at any reachable history ht for σ, the set

argmaxp p · dht
(p) is a singleton.

At the empty history, dh0
= dh0 is convex, so maxp p · dh0

(p) has a unique

solution.

Suppose that at reachable history ht, price pt is the unique solution to

maxp p · dht
(p). Let ht+1 be a history where price pt was set at ht and the

corresponding demand was realized.

By lemma 1, if p ∈ argmaxp p · dht+1
(p), then p ≥ pt, and the proof of

lemma 1 shows that the solution is unique on this range of prices.

Proof of Proposition 3. This follows immediately from lemma 1, lemma 2 and

Proposition 2.

Proof of Proposition 4. Let σlin(h0) ≡ p1 > p0. This means for any p ≥ 0,

p1 · (q0 + τ(p1 − p0)) ≥ p · (q0 + τ(p− p0)). (3)

Next, note that

D(p1)− τp1 − q0 + τp0 ≥ q0 + τ(p1 − p0)− τp1 − q0 + τp0 = 0.

Therefore, for p < p1,

p1 · (D(p1)− τp1 − q0 + τp0) ≥ p · (D(p1)− τp1 − q0 + τp0). (4)

Adding inequalities 3 and 4, we conclude that for any p < p1

p1 ·D(p1) = p1 · (D(p1) + τ(p1 − p1)) > p · (D(p1) + τ(p− p1)) ≥ p ·D(p).

In other words, p1 ≤ p∗D.
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Now suppose σlin(ht) ≡ pt ≤ p∗D, where ht is the t-truncation of h(σ,D, h0)

for t ≥ 1. If σlin(ht+1) ≡ pt+1 = pt, then pt+1 ≤ p∗D by assumption. If pt+1 > pt,

the proof follows by analogous steps to the base case, so p∞D ≤ p∗D. The case

where p1 < p0 but p2 > p1 also follows the same steps as in the base case.

On the other hand, if p1 ≤ p0, let d(p) = dh0(p) for p ≥ p1 and let

d(p) = dh0(p1) + τ(p− p1) for p < p1. If D = d, then p∞D = p1 while p∗D ≤ p1.

Proof of Proposition 5. For any d ∈ Ω, let

Rd ≡
p∞d · d(p∞d )

p∗d · d(p∗d)
.

Let p1 ≡ σlin(h0). There are two cases to consider.

Case 1: D is such that p∞D > p1 or p1 > p0.

In this case, p∞D = argmaxp p · (D(p∞D ) + τ(p − p∞D )). That is, for some

b > 0, p∞D = argmaxp p · (τ · p + b). In other words, p∞D = −b
2τ

for some b > 0,

and (−b
2τ
, b
2
) is a point on D. Let

d(p) = τ(p+
b

2τ
) +

b

2
.

Note that D(p) ≤ d(p) for all p ≥ p∞D , and p∗D ≥ p∞D by Proposition 4.

Therefore,

RD ≥ p∞D ·D(p∞D )

maxp p · d(p)
.

Now, argmaxp p · d(p) = −b
4τ
(1 + τ

τ
). Therefore,

max
p

p · d(p) = −b

4τ
(1 +

τ

τ
) · (τ(−b

4τ
(1 +

τ

τ
) +

b

2τ
) +

b

2
)

=
−b2

4τ
(1 +

τ

τ
) · (−1

4
(1 +

τ

τ
) +

τ

2τ
) +

1

2
)

=
−b2

16τ
(1 +

τ

τ
)2
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Therefore,

RD ≥ p∞D ·D(p∞D )

maxp p · d(p)
=

4 · τ · τ
(τ + τ)2

.

Case 2: D is such that p∞D = p1 and p1 ≤ p0. We break this case into two

sub-cases. Let dt(p) = q0 + τ(p − p0). Next, let db(p) = dt(p1) + τ(p − p1).

Finally, let d = max{dt, db}.

Sub-case 1: D(p1) = dt(p1). In this case, p1 = argmaxp p·(D(p1)+τ(p−p1)).

By arguments symmetric to those in Case 1, the same conclusion follows.

Sub-case 2: D(p1) > dt(p1). In this case, let δ > 0 be such argmaxp p ·

(db(p) + δ) = p1. Let x ≡ D(p1)− dt(p1), and let

R(x) ≡ p1 · (d(p1) + x)

maxp p · (d(p) + x)
.

It cannot be the case that x > δ, as p∞D > p1 in that case.

If x = δ, then p∞D = argmaxp p · (D(p∞D ) + τ(p− p∞D )), so just as in Case 1

or Sub-case 1, RD ≥ R(δ) = 4·τ ·τ
(τ+τ)2

.

Finally, suppose that x ∈ (0, δ).There is an x′ > 0 such that,

argmax
p

p · (d(p) + x) =

argmaxp p · (db(p) + x) if x ≤ x′

argmaxp p · (dt(p) + x) if x ≥ x′

If x ≤ x′, let p∗b(x) = argmaxp p · (db(p) + x). Note that if x ≤ x′, then

p∗b(x) ≤ p1, so

max
p

p · (db(p) + x)−max
p

p · db(p) < p∗b(x) · (db(p∗b(x)) + x)− p∗b(x) · db(p∗b(x))

= p∗b(x) ∗ x

≤ p1 · (db(p1) + x)− p1 · db(p1).
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Therefore, if x ≤ x′, then R(x) ≥ R(0) = 4·τ ·τ
(τ+τ)2

, where the equality is from

Sub-case 1.

Next for x ≥ x′,

max
p

p · (d(p) + x) = max
p

p · (dt(p) + x) =
−(q0 − τp0 + x)2

4τ
,

so

R(x) = (4τp1) ·
(q0 + τ(p1 − p0) + x)

−(q0 − τp0 + x)2

= −4 · [ (τp1)
2

(q0 − τp0 + x)2
+

τp1
(q0 − τp0 + x)

].

This implies that,

R′(x) = −4 · [2 τp1
q0 − τp0 + x

+ 1] · −τp1
(q0 − τp0 + x)2

,

so R′(x) crosses 0 at most once from above as x increases. Therefore, R(x) ≥

R(0) on x ∈ [0, δ], as R(0) = R(δ), and R(x) ≥ R(0) on [0, x′].

Proof of Theorem 1. If Ω is effectively downward-closed, the proof that some

myopic strategy is sequentially optimal is the same as in the proof of Propo-

sition 1. The proof that profits always rise under this strategy is the same as

in the proof of Proposition 3.

Suppose Ω is not effectively downward-closed. Let ht be a reachable history

under σ where for any p∗ ∈ argmaxp p · dht
(p) and d ∈ Ωht ,

p∗ · dht
(p∗) < max

p
p · d(p). (5)

Let m ≡ infd∈Ω maxp p · d(p).

We first show that p∗ · dht
(p∗) < m. Take a sequence of demand curves

dn ∈ Ω so that m − maxp p · dn(p) < 1
n
. This sequence of demand curves is

(1) uniformly bounded, as Ω−1 is uniformly equicontinuous, and (2) uniformly
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equicontinuous, as it is a subset of Ω. Therefore, by the Arzelà-Ascoli theorem,

there is a uniformly convergent subsequence of {dn}n∈N. This subsequence

converges uniformly to some demand curve d ∈ Ω, because Ω is closed under

the supremum norm, and maxp p · d(p) = m. Therefore, by inequality 5,

p∗ · dht
(p∗) < m.

Finally, because Ω uniformly equicontinuous, there is a fine enough parti-

tion of prices such that if the firm experiments with all those prices, it discovers

a price where flow revenue is greater than m +
m−p∗·dht (p

∗)

2
. A sufficiently pa-

tient would prefer experimenting to discover such a price over using the myopic

strategy.

Lemma 5. Prices and profits always rise under σcvx.

Proof. Let d ∈ Ω, and let ht = {(p1, d(p1)), . . . (pt, d(pt))} be the t-truncation

of h(σ, d, h0), for t ≥ 1. Similarly, let ht−1 be the t − 1 truncation. Let

σ(ht) ≡ pt+1.

At a history h1 = {(p1, q1)}, σcvx = σlin, so by Proposition 1 and Proposi-

tion 3, σcvx(h1) ≥ p1 and σcvx(h1) · d(σcvx(h1)) ≥ p1 · d(p1).

Otherwise, suppose ht is such that pt = pt−1. Then σcvx(ht) = pt, so flow

profit also remains constant.

Finally, suppose that ht is such that pt > pt−1 > . . . > p1 for t ≥ 2. It

follows from induction that dht−1 lies weakly below the lower envelope of all

convex demand curves in Ω on p ∈ [pt−1,∞). Then, τ ≥ dht−1
(pt)−dht−1

(pt−1)

pt−pt−1
, so

marginal revenue (with respect to price) at pt when demand is given by dht−1

is weakly lower than marginal revenue when demand is dht . This implies that

pt+1 ≥ pt. Moreover,

pt · d(pt) = pt · dht(pt) ≤ pt+1 · dht(pt+1) ≤ pt+1 · d(pt+1),
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where the first inequality is by definition of σcvx and the second inequality is

because dht lies weakly below the lower envelope of Ω on p ∈ [pt,∞).

Proof of Proposition 7. Parts 2 and 4 follow the same arguments as the base-

line case. Part 3 follows from part 2 and lemma 5. We prove part 1 fo histories

where the proofs are not redundant.

Case 1: empty history. Suppose σcvx(h0) > 0. Let f(p) ≡ q0 + τ(p − p0).

Because f is the lower envelope of Ω for p ≥ p0, by lemma 5, Π(σcvx, f, h0) ≤

Π(σcvx, d, h0) for any d ∈ Ω. Moreover, Π(σcvx, f, h0) ≥ Π(σ, f, h0) for any

strategy σ by construction.

The case where σcvx(h0) < p0 is identically proven, with the worst-case

state being g(p) ≡ q0 + τ(p− p0).

Finally, suppose σcvx(h0) = p0. This implies that argmaxp p · f(p) ≤ p0 ≤

argmaxp p · g(p). The mapping τ → argmaxp q0 + τ(p − p0) is singleton-

valued and continuous by Berge’s theorem. By the intermediate value theorem,

there is a τ ′ ∈ [τ , τ ] such that p0 = argmaxp p(q0 + τ ′(p − p0)). Let l(p) ≡

q0+ τ ′(p−p0). Because q0 is a lower bound on demand at p0 and again lemma

5, Π(σcvx, l, h0) ≤ Π(σcvx, d, h0) for any d ∈ Ω. Therefore, (σcvx, l) is a saddle

point of Π(·, ·, h0).

Therefore, σcvx is ex-ante optimal.

Case 2: h1 = {(p1, q1)}, where p1 < p0. Suppose σcvx(h1) ≡ p2 > p1. Let

f(p) ≡ max{q0+ τ(p−p0), q1+ τ(p−p1)}, and let [p1, b] be the range of prices

p where f(p) = q1 + τ(p− p1). Now, for any p ≥ b, f(p) = q0 + τ(p− p0), so

p · f(p) < p1 · (q0 + τ(p1 − p0)) ≤ p1 · q1 = p1f(p1),

which implies that p2 ∈ (p1, b) and p2 = argmaxp p ·f(p). Because f is convex,
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we conclude that Π(σcvx, f, h1) ≥ Π(σ, f, h1) for any strategy σ. Moreover, f is

the lower envelope of Ω on [p1, p0], so by lemma 5, Π(σcvx, f, h1) ≤ Π(σcvx, d, h1)

for any d ∈ Ω.

If, instead, p2 = p1, let τ
′ ∈ [τ , τ ] be such that p2 = argmaxp p(q1 + τ ′(p−

p1)). Let f(p) ≡ {q0 + τ(p− p0), q1 + τ ′(p− p1)}. Now the proof proceeds just

as in the previous subcase.

B Quantity experimentation

The baseline model studies a firm that sets prices and discovers sales. In set-

tings where firms are capacity constrained or have an inflexible production

process, firms may be better thought of as choosing quantity and letting mar-

ket forces determine prices. Here we consider how quantity experimentation

compares to price experimentation.

By symmetry, it is immediate that the form of the sequentially optimal

quantity experimentation is identical, after a change of variables. Under this

strategy, profits would always rise and the guaranteed ratio of long-run flow

profits to informed monopoly flow profits is the same as in the baseline case.

However, there are two key economic differences. First, prices always fall

over time, contrary to the direction of prices in Proposition 3. Second, if prices

ever strictly fall, then the long-run price under the sequentially optimal quan-

tity experimentation strategy would be greater than any informed monopoly

price, contrary to the under-pricing in Proposition 4.

The reason for this difference is easy to see. Under sequentially optimal

experimentation of either variety, the firm makes the same initial conservative

estimate of demand and chooses quantity or price accordingly. If the firm
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chooses a price p1, it would typically learn that actual demand, D(p1), exceeds

estimated demand, dh0(p1), at that price. This creates an incentive to raise

the price. If the firm instead chooses a quantity x1 = dh0(p1), it would learn

that its product actually fetches a greater price, D−1(x1) than the price it

had anticipated d−1
h0
(x1). This creates an incentive to raise its quantity, which

corresponds to some lower price, as demand curves are downward sloping.

This result on the path of sequentially optimal quantity experimentation

squares with the intuition that, say, capacity constrained firms should start

small and expand over time if their product sells well.

40


	Math Center_Discussion Paper 1613.pdf
	monopoly_learning.pdf
	Introduction
	Model
	Discussion
	Absence of strategic considerations
	Alternative assumptions about what the firm knows
	Sequential Optimality


	Optimal experimentation
	The sequentially optimal strategy
	Price and profit path
	Long-run price
	Long-run profit
	Explanations and remarks
	The myopic pricing strategy
	Intuition for Propositions 1 and 3
	Intuition for Proposition 2
	Intuition for Proposition 4
	Remark: from kinked to linear demand curves
	Intuition for Proposition 5

	Extensions

	Generalizing what the firm may know
	Myopic strategies are not always optimal
	Environments where myopic strategies are optimal
	Applications of Theorem 1
	Variants of baseline model
	Concave demand
	Convex demand


	Related literature
	Proofs
	Quantity experimentation


