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Abstract

A searcher knows little about how items’ observable attributes map

to qualities but wants to avoid missing good discoveries. Knowing

only that similar items have similar qualities, she sequentially chooses

where to look next or stops to take her best discovery. We characterize

forward-looking strategies that maximize her payoff guarantee. Relative

to a myopic searcher, she typically searches closer to past discoveries

but is more willing to explore items with extreme attributes. She stops

if the remaining unexplored items are too similar to what she has dis-

covered. She also stops from choice overload if many unexplored items

are too dissimilar. JEL: D83, C72
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1 Introduction

Any process of new discovery involves search and learning. An inventor tries

out different prototypes before settling on a design. A pharmaceutical com-

pany experiments with different drug dosages to find the best one. An amateur

tennis player demos rackets to learn her preferences over various features.

We model this discovery process and characterize optimal search. The

model captures two key features of “exploring unknown territory”.

First, the searcher chooses when to stop and what to search next, and this

choice is informed by earlier discoveries. An inventor tinkers with a prototype

if it is promising but overhauls the design if fails. If a drug causes bad side

effects, a pharmaceutical company runs trials with a much lower dosage.

Second, the searcher knows little about which attributes she likes or what is

discoverable a priori. She searches so as not to miss out on good discoveries, if

they exist. A firm developing a new invention may search the space of designs

carefully to avoid being outdone by competitors. A pharmaceutical company

may run clinical trials to minimize maximum regret, i.e., to guarantee that the

dosage level eventually chosen is as close to the ideal level (Manski, 2023).

The model considers a searcher who searches items in a compact, one-

dimensional attribute space. The searcher does not know the true mapping

from attributes to quality, i.e., the quality index. She knows only that similar

items have similar qualities (i.e., the quality index is Lipschitz continuous), and

perhaps that there is a “sweet spot” in attribute space (i.e., the quality index

is quasiconcave). The Lipschitz constant is a measure of search complexity: it

is a cap on how quickly she thinks quality can vary with attributes.

The searcher sequentially searches different items to learn their quality, and

in the process, narrows down the set of quality indices that are consistent with
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her discoveries. After each search, she decides whether to continue exploring

or stop to take the best item she had discovered so far.

Her payoff increases in the quality of her best discovery, decreases in the

quality of the best attainable item, and decreases with costly search. She

is forward-looking and evaluates any strategy by its worst-case payoff upon

eventually stopping. The worst-case outcome is searching hard but missing

out on good discoveries. A sequentially optimal strategy always maximizes

the searcher’s worst-case continuation payoff to avoid such wild goose chases.

We show that all sequentially optimal strategies are iterative simultaneous

search strategies: every period, the searcher acts as if she must irrevocably

decide the set of items to explore before making a choice and then searches

one of those items. Relative to our forward-looking searcher, a myopic searcher

would stop sooner and typically search deeper into unknown territory.

The model can tie out why search effort may increase at first with search

complexity (Griffin and Broniarczyk, 2010) but eventually collapse due to ‘in-

formation/choice overload’ (Scheibehenne et al., 2010). It can also reproduce

funnel-like search dynamics observed in online shopping data (Bronnenberg et

al., 2016; Blake et al., 2016), where searchers initially explore broadly in at-

tribute space but narrowly over time. Finally, sequentially optimal strategies

reflect Weitzman’s intuition about directed search with learning:

It appears plausible that other things being equal it would be better

to open a box whose reward is highly correlated with other rewards

because this adds a positive informational externality. But trans-

lating such an effect into a simple search rule seems difficult except

in the most elementary cases. (Weitzman, 1979)

When exploring unknown territory, the searcher plans her searches to minimize
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a measure of distance between the anticipated set of explored and ‘relevant’

unexplored items at the conclusion of search. And roughly speaking, proximity

in search space corresponds to correlation in a Bayesian model.

1.1 Related literature

A broad literature on search with learning considers settings where search order

is either irrelevant or exogenous. Rothschild (1974) considers an agent who

draws independent samples from an unknown distribution, learns its shape and

decides when to stop; Bikhchandani and Sharma (1996) generalize this to allow

for recall and different distributions. Schlag and Zapechelnyuk (2021) find

stopping policies that achieve a large fraction of achievable surplus regardless

of the true distribution. In addition to optimal stopping, Urgun and Yariv

(2021) and Wong (2021) study how agents choose the speed of exploration.

Far less is known about optimal search with learning when agents can

choose search order. Weitzman (1979) studies directed search without learning:

items have independent payoffs, so learning about one is uninformative about

another. Introducing correlations generally makes the model intractable, but

Adam (2001) solves a special case: items have independent and unknown

payoff distributions, but items in the same observable group have identical

distributions. In a richer setting, Callander (2011) characterizes where a se-

quence of short-lived agents (or a long-lived, myopic agent) search when the

mapping from choices to payoffs is a Brownian motion path. Garfagnini and

Strulovici (2016) study a similar framework in which agents live two periods.

We study a fully forward-looking agent, as in Adam (2001), but where the

qualities of items are flexibly interrelated, as in Callander (2011).

As Hörner and Skrzypacz (2017) note, understanding how dynamics change
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in “Callander’s model for patient agents is an important open problem.” Our

model is close enough to shed some light. Relative to a patient agent, a myopic

agent searches farther from past discoveries but avoids extreme attributes.

We follow a growing body of work in economics that considers maxmin or

minmax regret objectives; see reviews by Carroll (2019) and Banerjee et al.

(2017). Few papers in this literature consider dynamics, especially without

commitment. Libgober and Mu (2022) is a recent exception. They also con-

sider a sequential maxmin framework in the durable goods monopoly problem

and find that their agent behaves in a dynamically consistent fashion.

Some dynamics in Bayesian spatial search models, like funneling in Callan-

der (2011) and Hodgson and Lewis (2020), arise here for similar reasons. Unlike

these models, ours rationalizes choice overload, as regret aversion makes find-

ing good outcomes in complex sets seem like ‘finding a needle in a haystack’.

Our approach is related to the literature on adversarial multi-arm bandits

and optimization (see reviews by Lattimore and Szepesvári (2020) and Hansen,

Jaumard and Lu (1992), resp.). Unlike bandits, search does not involve uncer-

tain flow utility. Unlike optimization, search entails optimal stopping. While

this literature studies algorithms with good asymptotic properties (e.g., speed

of convergence or regret), we study how rational agents optimally search.

2 The model

There is a searcher, and S ≡ [0, 1] is the search space, i.e., the set of items to

be explored. Let Ω ⊂ [0, 1]S be the set of states or quality indices—mappings

from the search space to quality. There is a true quality index q ∈ Ω, and each

item x ∈ S has a quality q(x) ∈ [0, 1].

The searcher does not know the true quality index. She can learn the
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quality of any item x ∈ S through costly search. Each item-quality pair is

a point on the true quality index. Search narrows down the set of plausible

states to those that pass through all the points discovered.

2.1 Timing and strategies

In each period, t = 0, 1, 2, . . ., the searcher takes one of two kinds of actions.

She either searches an item xt ∈ S to learn its quality, q(xt). Or she stops

search, denoted by xt = ∅, to take her best discovery to date.

Let ht = {(xi, zi)}ti=1 be a time t history where search has not yet stopped,

with zi = q(xi). Let Xht ≡ {x1, . . . , xt} be the set of items searched at

ht. Let X∗
ht

≡ argmaxxi∈Xht
q(xi) be the set of best discoveries at ht, with

corresponding quality denoted by z∗ht
. The empty history is h0, and z∗h0

= 0.

The searcher discovers good news at ht if q(xt) > z∗ht−1
, bad news if q(xt) <

z∗ht−1
, and no news if q(xt) = z∗ht−1

.

Let Ωh ⊂ Ω be the set of quality indices that are consistent with what the

searcher observes at history h. That is, Ωh is the set of quality indices q̃ ∈ Ω

such that q̃(xi) = zi for all (xi, zi) ∈ h.

Let H denote the set of all histories h where Ωh is nonempty. A strategy

σ : H → S ∪{∅} is a deterministic map from histories to actions. From h ∈ H

and for q̃ ∈ Ωh, a strategy σ reaches a terminal history h(σ, q̃) ∈ H if this is the

first on-path history such that σ(h(σ, q̃)) = ∅. Let Σ be the set of strategies

that reach a terminal history, starting from any h ∈ H and for any q̃ ∈ Ωh.

2.2 Searching in the dark

Let QL denote the set of all L-Lipschitz continuous mappings S → [0, 1].

Let QQC
L ⊂ QL denote the set of all quasiconcave and L-Lipschitz continuous
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mappings S → [0, 1]. We assume the following throughout:

Assumption 1. Either Ω = QL or Ω = QQC
L .

The searcher knows little about the true quality index, a priori.

First, she knows there are limits to quality, as 0 ≤ q ≤ 1.

Next, she knows that proximate items in S cannot be too different in qual-

ity. If an item’s location in S is interpreted as an index of its observable

attributes (e.g., drug dosage), then observably similar items have similar qual-

ities. The Lipschitz constant L, or search complexity, is a cap on how quickly

quality can vary with observable attributes; it is known to the searcher. If L

is low, knowing a couple points on q reveals a lot about its shape. If L is high,

finding a good outcome may be like finding a needle in a haystack.

Finally, if Ω = QQC
L , the searcher also knows that there is an ideal range

(or “sweet spot”) in S, and that items further from this range are of lower

quality. For example, there may be an ideal drug dosage level (‘therapeutic

window’) below which efficacy drops and above which risks increasingly out-

weigh benefits. Alternatively, a buyer may be aware that she has single-peaked

preferences over ski boot sizes, motorcycle horse power, racket string tension,

etc., even before she demos different products to discover what she likes.

2.3 Payoffs

The ex post payoff to choosing item x when q is the true quality index is

U(q(x),max
y∈S

q(y)),

where U : [0, 1] → R+. The payoff to stopping at h0 is U(0,maxy∈S q(y)).

Assumption 2. First, U is differentiable almost everywhere and continuous.

Next, U is increasing in the first argument (i.e., quality of the chosen item)
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and decreasing in the second argument (i.e., the quality of the best item in S).

Finally, U1+U2 ≥ 0 almost everywhere (i.e., translating the true quality index

q upward leaves the searcher better off).

An example of payoffs satisfying Assumption 2 is linear regret:

U(q(x),max
y∈S

q(y)) = −(max
y∈S

q(y)− q(x)).

The searcher pays c > 0 for each search. Her payoff net of search costs to

stopping at ht is:

p(ht, q) = U(z∗ht
,max

x∈S
q(x))− c · t. (1)

Restricting to strategies that always reach a terminal node is without loss of

generality, as the payoff to searching indefinitely is formally set to −∞.

At any h ∈ H, the searcher evaluates a strategy σ by its worst-case con-

tinuation payoff or payoff guarantee:

inf
q̃∈Ωh

p(h(σ, q̃), q̃).

We describe payoff guarantees in examples where U is linear regret and L = 1.

Example 1 : A strategy σ that stops at h0 has a payoff p(h0, q) = −maxy∈S q(y).

Therefore, its payoff guarantee is inf q̃∈Ω(−maxy∈S q̃) = −1.

Example 2 : Consider a strategy σ where σ(h0) = 0, and σ(h1) = 1 if q(0) <

ϵ ≈ 0, and σ(h1) = ∅ otherwise. The payoff guarantee to σ depends on c.

Searching more reduces worst-case regret but is not worth it if costs are high.

If c = 0.75, then in the worst case, q(y) = 0.5 − |0.5 − y|: the searcher

searches twice and face a regret of 0.5, leading to a payoff guarantee of −2.

If c = ϵ, then in the worst case, q(y) = min{y+ ϵ, 1}: the searcher searches

only once and face regret of 1− ϵ, leading to a payoff guarantee of 1− 2ϵ.
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2.3.1 Interpretation of payoffs

The searcher’s payoff, for example, can capture a firm whose future prof-

its depend not only on the quality of its chosen technology but also on the

technology chosen by a strong competitor who conducts extensive R&D. The

second argument of U is the quality of the competitor’s technology.

The model can also capture settings where the searcher never learns her

payoff but imagines the worst case. For example, a shopper may feel buyer’s

remorse for potentially missing out on a better purchase, whether or not one

exists. She would worry less if she searched extensively before buying, as this

reduces the scope for missing a much better product.

2.4 The searcher’s problem

A strategy σ∗ ∈ Σ is (ex ante) optimal if it maximizes the payoff guarantee at

the empty history h0:

σ∗ ∈ argmax
σ∈Σ

{
inf
q̃∈Ω

p(h0(σ, q̃), q̃)
}
. (2)

As the searcher discovers more points on the true quality index, the set

of consistent quality indices shrinks, so the worst-case outcome to different

strategies may change. A strategy is sequentially optimal if it remains optimal

in every contingency. Formally, a strategy σ∗ ∈ Σ is sequentially optimal if at

every history h ∈ H,

σ∗ ∈ argmax
σ∈Σ

{
inf
q̃∈Ωh

p(h(σ, q̃), q̃)
}
. (3)

A sequentially optimal strategy is also ex ante optimal, because it satisfies

eq. (3) at the empty history, which is precisely eq. (2). A searcher following

a sequentially optimal strategy would never want to deviate from it at any

history. To capture learning, we characterize sequentially optimal strategies.
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3 Optimal search

In section 3.1, we define simultaneous search strategies. This is useful for

characterizing sequentially optimal strategies in Section 3.2 and Section 3.3.

Section 3.4 discusses the intuition for the results and the role of the assump-

tions. Section 3.5 gives an algorithm for computing optimal search strategies.

3.1 Simultaneous search

Simultaneous search refers to static models where an agent commits to the set

of items she will explore (Stigler, 1961; Chade and Smith, 2006). We capture

simultaneous search by restricting to strategies that are independent of what

is learned along the way. “Search x1 = 0.3, then x = 0.9, then stop,” is

a simultaneous search strategy. “Search x1 = 0.3, then search x = 0.9 if

q(x1) ≤ 0.5 but stop if q(x1) > 0.5,” is not a simultaneous search strategy.

Formally, σ is a simultaneous search strategy at history h ∈ H if it is

measurable with respect to the calendar date at histories after h. Let Γh ⊂ Σ

denote the set of all simultaneous search strategies at h. A strategy σ∗
s ∈ Γh

is an optimal simultaneous search strategy at h ∈ H if

σ∗
s ∈ argmax

σ∈Γh

{
inf
q̃∈Ωh

p(h(σ, q̃), q̃)
}
. (4)

Next, we say σ ∈ Σ follows optimal simultaneous search strategies if at

every h ∈ H, there exists an optimal simultaneous search strategy σ∗
s,h ∈ Γh

such that σ(h) = σ∗
s.h(h). Such a strategy σ need not be a simultaneous

search strategy itself: it uses the quality of the latest discovery to recompute

an optimal simultaneous search strategy, whereas the search path under a

simultaneous search strategy would be independent of the qualities discovered.
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Figure 1: On the left is the true quality index. At h5, the searcher has only

observed qualities at x1, x2, x3, x4 and x5. In the middle is the upper envelope

of consistent quality indices when Ω = QL. The search window is highlighted.

On the right is the ‘no news’ quality index.

3.2 Sequentially optimal search strategies

Theorem 1. Sequentially optimal search strategies exist. A search strategy

σ is sequentially optimal if and only if it follows optimal simultaneous search

strategies.

Appendix C.1 and Appendix C.2 prove Theorem 1 in the cases where Ω =

QL and Ω = QQC
L , respectively.

Theorem 1 says that optimal sequential search is iterative, optimal simulta-

neous search. The searcher solves for an optimal simultaneous search strategy

each period, but only executes one step of that plan. If the realized quality

from that search is not what she anticipated, she computes a new plan.

3.3 Optimal simultaneous search

Theorem 1 evokes the question: what are optimal simultaneous search strate-

gies? We characterize such strategies here.

Let q̂h be the upper envelope of Ωh, i.e., q̂h(x) = maxq̃∈Ωh
q̃(x) for all x ∈ S.
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The search window, Sh ⊂ S, is the set of items x for which q̂h(x) > z∗h; good

news is only possible inside the search window. Let q̄h(·) ≡ min{q̂h(·), z∗h} be

the quality index where the searcher always finds no news in Sh; see Figure 1.

Starting from any h ∈ H, a strategy σ ∈ Γh that only explores items in the

search window Sh reaches terminal history h′ ≡ h(σ, q̄h) if every subsequent

discovery yields no news. Let qσh ≡ q̂h′ be the the quality index which also

delivers no news on path but good news everywhere else in the search window.

Proposition 1. At any h ∈ H, optimal simultaneous search strategies exist,

and σ∗
s ∈ Γh is an optimal simultaneous search strategy if and only if:

σ∗
s ∈ argmax

σ∈Γh

{
p(h(σ, qσh), q

σ
h)
}
.

Proposition 1 says that optimal simultaneous search strategies are those

that hedge against the risk that each new discovery is only as good as the

previous best, but what is left unexplored is as high quality as possible.

3.4 Discussion

We give intuitions for the results and highlight the role of the assumptions.

3.4.1 Intuition for Proposition 1: fear of missing out

A simultaneous strategy at some history h realizes a low payoff if it discovers

only low quality items (the direct force). The realized payoff would be lower

still if some undiscovered items have high quality (the indirect force).

The direct force is maximal if all future discoveries are of quality below z∗h,

the searcher’s outside option upon stopping. Whether these discoveries yield

bad news or no news does not affect the quality of the item eventually chosen.
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The indirect force is greatest when the quality of the best unexplored item

is as large as possible. If the searcher’s future discoveries are far worse than z∗h,

then continuity of q ensures that unexplored items cannot be so much better.

The perfect storm is that all future discoveries yield no news (maximizing

the direct force), and the best unexplored item is as large as possible condi-

tional on this. The indirect force would be even stronger if the searcher ever

discovers good news, but she is better off in such scenarios, as U1 + U2 ≥ 0.

Preparing for this perfect storm yields an optimal simultaneous search

strategy. The proof shows that the converse also holds.

3.4.2 Intuition for Theorem 1: wild goose chases

In sequential search, strategies can be conditioned on the qualities of discov-

eries made along the way. Here, a third source of low payoffs is failing to learn

where or how good the best undiscovered items are and searching too much.

Upon discovering a low-quality item, the searcher learns that items with

similar attributes are also low quality. She would thereafter redirect her at-

tention to a more promising area of the search space or stop search early.

Similarly, a good discovery may alert the searcher to try similar items. A

discovery yielding no news is least informative as to where to search next.

So at any history, the worst-case scenario when conducting simultaneous

search is still the worst-case for sequential search. The worst-case scenario

changes if good or bad news arises but stays the same under no news, so

following optimal simultaneous strategies is sequentially optimal.

Sequentially optimal strategies do not always exist in decision problems

with max-min objectives. Appendix A clarifies why they exist here.
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Figure 2: r, b, and g attain maxima at xr, xb, and xg respectively.

3.4.3 The role of searcher’s knowledge

The assumption that Ω = QL or Ω = QQC
L is crucial, and Theorem 1 may not

hold when the searcher knows more a priori about the quality index’s shape.

For example, let Ω = {r, b, g} as pictured in Figure 2. Consider history

h1 = {(x1, z1)} where only the quality of x1 is known. Because r(x1) = b(x1) =

g(x1) = z1, all three quality indices are consistent at h1.

If c is small and U1 > 0, an optimal simultaneous strategy searches xr, xb

and xg and stops. One of these is guaranteed to be of quality z∗. Exploring

other items is clearly wasteful. Less search gives a lower payoff in the worst

case. For example, searching only xb and xg yields a low payoff if q = r.

However, no optimal (sequential) strategy starts by searching xr, xb or xg.

Suppose, for contradiction, the searcher first explores xr and learns that q ̸= r.

Because b(xr) = g(xr), both b and g remain consistent. Suppose she next

explores xb, and learns that q ̸= b. She deduces that q = g and searches xg:

following optimal simultaneous strategies takes up to three searches. Instead,
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if the searcher were to first explore x2, she would immediately identify q, as

r(x2) ̸= b(x2) ̸= g(x2). She would next search the highest quality item. This

strategy guarantees z∗ with just two searches.

In this example, the potentially high-quality items are not the most in-

formative. Optimal simultaneous strategies only explore the former while se-

quentially optimal strategies start with the latter.

Note that Theorem 1 holds for Ω = Q, where Q ⊂ QL (or Q ⊂ QQC
L ) and

Q contains every piecewise-linear q̃ ∈ QL (q̃ ∈ QQC
L ). For such a Ω, the worst

quality index upon stopping is the same as when Assumption 1 holds.

3.4.4 The role of deterministic strategies

Whether the restriction to deterministic strategies is with loss of generality

depends on how the searcher would evaluate mixed strategies. Here, we adapt

the discussions in Saito (2015) and Ke and Zhang (2020) who make this point

generally for maxmin expected utility models.

If the searcher evaluates a mixed strategy σ ∈ ∆(Σ) by the expected worst-

case payoffs to each pure strategy in its support, randomizing would not help:

max
σ∈Σ

{
inf
q̃∈Ω

p(h0(σ, q̃), q̃)
}
= max

σ∈∆(Σ)

{
E[inf

q̃∈Ω
p(h0(σ, q̃), q̃)]

}
.

This can capture a searcher who uses a randomization device (e.g., a coin flip)

to pick a strategy but cannot commit to the result of the randomization (e.g.,

flips again if the selected strategy had a lower worst-case payoff than another).

If the searcher instead evaluates σ ∈ ∆(Σ) by its worst-case expected

payoff, she is weakly better off randomizing, because

max
σ∈Σ

{
inf
q̃∈Ω

p(h0(σ, q̃), q̃)
}
≤ max

σ∈∆(Σ)

{
inf
q̃∈Ω

E[p(h0(σ, q̃), q̃)]
}
.
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Appendix B shows an example where this inequality is strict. Even under this

interpretation, the model can be applied to settings where randomization is

simply infeasible, e.g., due to organizational constraints to how firms search.

3.5 Computing optimal strategies

We describe how to compute an optimal action at any history, h ∈ H.

1. Fix a k̄h ∈ N such that the cost of searching k̄h + 1 or more times

outweighs any possible marginal benefit.

2. For each of k = 0, 1, 2, . . . , k̄h, find a k-center, i.e., a set of k items in

Sh such that no undiscovered item in the Sh is too far from the nearest

of these k items.1 For example, Sh0 = [0, 1], so {1/2} is a 1-center,

{1/4, 3/4} is a 2-center, etc.

3. For each k, consider a strategy σ ∈ Γh that searches items in the k-center

in any order and stops. Compute the payoff when q = qσh .

4. For k∗ corresponding to the highest payoff: stop search if k∗ = 0, and

otherwise search any item in the k∗-center.

Each period, the searcher plans to eventually have every unexplored item

in the search window be close to some explored item. This procedure reflects

Weitzman’s intuition (quoted in Section 1) that ordered search with correlated

rewards favors exploring items most correlated to unexplored options. Here,

proximity is roughly the analogue of correlation. Searching an item x ∈ S re-

veals its quality, q(x), but also constrains the maximum and minimum possible

1Among all subsets of size k in Sh, a k-center minimizes the Hausdorff distance between

(1) Sh and (2) the union of these k items and the boundary points of Sh in S \ Sh.
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values q can take elsewhere in S. These bounds are tighter for items closer to

x, so the searcher learns more about the quality of proximate items.

4 Forward-looking versus myopic search

We compare sequentially optimal strategies to myopic strategies.

For any h ∈ H, let ΣM
h ⊂ Σ be the set of strategies that stop at h or search

once and stop immediately thereafter. A strategy σM is myopic at h if:

σM ∈ argmax
σ∈ΣM

h

{
inf
q̃∈Ωh

p(h(σ, q̃), q̃)
}
.

4.1 Propensity to Search

Myopic searchers stop sooner than forward-looking searchers. Formally, if

h ∈ H is a terminal node for some sequentially optimal search strategy σ,

then there is a myopic strategy σM such that σM(h) = ∅.

To see why, suppose all myopic strategies search at h. Then continuing

search at h for one period and stopping afterward can be strictly better than

stopping immediately, so any sequentially optimal strategy would also search.

4.2 Search Location

If there is a unique longest interval I ⊂ Sh, we refer to it as the most promising

area at h and denote it by Ph; see Figure 3.

Proposition 2. Let h ∈ H. For any myopic strategy at h, σM , either

σM(h) = ∅, or σM(h) is in most promising area at h.

Searching exclusively outside of Ph would not teach the searcher anything

about how good the best unexplored alternative could be. A forward-looking
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Figure 3: The most promising area at h5 supports the tallest peak of q̂h5 .

searcher may search outside of Ph in anticipation of searching there later, as

she is indifferent to search order, but a myopic searcher would not.

4.2.1 Embracing uncertainty versus avoiding extreme attributes

Amyopic searcher often ventures deeper into unknown territory while a forward-

looking searcher explores closer to previous discoveries. Quality at x ∈ Sh is

more uncertain than the quality at y ∈ Sh if q̂h(x) ≥ q̂h(y), i.e., if x is farther

away from discovered items or the boundary of the search window. If some

myopic strategy at h does not stop immediately and if the item x′ of most

uncertain quality is in the interior of S, searching x′ and stopping is a myopic

strategy at h (by the definition of a 1-center in Section 3.5). A myopic searcher

explores more uncertain items to make the most of one search.

There is a countervailing force if the item of most uncertain quality is at

the boundary of S . If, say, q̂h(x) is maximized at x = 0, no myopic strategy

searches at 0 (searching slightly to the right of 0 reduces the distance to the

best unexplored alternative in the worst case). And if uncertainty outside

of Ph is sufficiently low, some sequentially optimal strategy searches weakly

closer to 0 (i.e., an item of more uncertain quality) than any myopic strategy.
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Intuitively, a patient searcher is open to trying items with extreme attributes

(e.g., the heaviest golf club), because she will search again if need be.

5 Complexity and stopping

Search complexity, L, measures the ex ante difficulty of finding good outcomes.

For example, the safety or efficacy of some compounds may be known to be

very sensitive to dosage (high L), while others are more stable (low L).

We characterize how search complexity affects the amount of search. In

light of Proposition 1, a history ht ∈ H is on-path if it is nonempty and

q(x1) = . . . = q(xt). We focus on such histories, as they can arise for any L.

5.1 Choice overload

The first result is that search effort is non-monotonic in complexity: the

searcher stops if complexity is sufficiently low or high.

Proposition 3. At any on-path h ∈ H, there exist L,L ∈ R++ such that if

L < L or L > L, any sequentially optimal strategy stops search.

When L is small, the quality index is fairly flat. Undiscovered items are

similar to past discoveries, so the searcher stops.

If L is large, the searcher anticipates that even after considerable search,

she may be nowhere near the peak outcome. Making a worthwhile discovery

is like finding a needle in a haystack, so she stops due to “choice overload.”

Scheibehenne et al. (2010) review the empirical literature on choice over-

load, suggesting that when the “precondition [of] lack of familiarity with, or

prior preferences for, the items in [a] choice assortment” is met, large and

complex assortments cause agents to avoid search in favor of known or default
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options. In a meta-analysis of choice overload experiments, Chernev et al.

(2015) conclude that “regret, as an operationalization of individuals’ decision

goal, was a particularly strong driver of choice overload.”

Our model explains choice overload on these exact lines. Section 5.1.2 and

Section 5.1.1 discuss the role of regret and large assortments in Proposition 3.

5.1.1 The role of min-max regret

By Assumption 2, U is increasing in the quality of the best discovery and

decreasing in the quality of the best available item, maxy∈S q(y). The searcher’s

objective is a generalization of min-max linear regret.

If U depends only on its first argument, the unique sequentially optimal

strategy is to stop at any h ∈ H. In the worst case, the continuation payoff to

any amount of search would be negative due to the possibility that searching

is never worth the cost (e.g., if q ≤ z∗h + c everywhere). Therefore, regret-like

objectives generate search and deter it only when complexity is very high.

5.1.2 The role of large S

Suppose S were finite. For the same reason as in Proposition 3, search stops

immediately if complexity is sufficiently low. On the other hand, if S is small,

search might not stop even when complexity is very high.

When S is finite, the searcher can eliminate regret by exploring every item.

So if complexity is sufficiently high, the optimal strategy is either “leave no

stone unturned”—search items in any order until a sufficiently high-quality

discovery is made or all of S is explored—or to stop immediately. If search costs

are sufficiently low (or if S is sufficiently small), “leaving no stone unturned”

is optimal. High search complexity shuts down search only if there are too
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Figure 4: Search intensity correspondence at some on-path history.

many items left to explore.

5.2 Search intensity

We give a converse to Proposition 3 and describe search intensity when there

are decreasing returns to search, i.e., when U22 < 0. Let Ih(L) be the set of

k ∈ N such that, when search complexity is L, there is an optimal simultaneous

search strategy at h that searches k more times in the worst case. Ih(L)

measures the number of intended searches and approximates realized search

effort if the true quality index is relatively flat in most places.

Proposition 4. Let h ∈ H be on-path and suppose there are decreasing re-

turns to search. Then there exist L,L ∈ R++ such that

1. if L < L or L > L, every sequentially optimal strategy stops,

2. if L ∈ (L,L), no sequentially optimal strategy stops,

3. every selection from Ih(·) is non-decreasing on (L,L).

Proposition 4 implies that search intensity is ‘cliff-shaped’ in complexity

(see Figure 4). When complexity is low, there is no search. As complexity

rises, search intensity initially ramps up but eventually drops back to zero.
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Near the tipping point, small differences in the perceived complexity de-

termine whether the searcher exerts maximal effort or gives up exploration

entirely. Therefore, there may be large effects to subsidizing costs if agents are

paralyzed by the perceived difficulty of making good discoveries.

These comparative statics also reflect empirically observed patterns of di-

rected search in unfamiliar territories. For example, Griffin and Broniarczyk

(2010) study “consumer search in categories in which people have limited

knowledge” and find that making the set of available options harder to com-

pare (i.e., more complex) increases search effort. Proposition 4 rationalizes

increasing effort and choice overload at different levels of complexity.

6 News and search location

The searcher explores as if she expects no news. But generically, good or bad

news arises, and we study how this affects where she looks.

Previous sections showed results that were less tractable or absent in Bayesian

spatial search models. Here, we instead highlight parallels to such models.

6.1 Search step size

The next proposition says that after sufficiently bad news, an optimal strategy

either stops or jumps past the nearest discovery to another part of S.

Proposition 5. Let σ be a sequentially optimal strategy and consider any

nonempty history ht ∈ H at which σ(ht) = xt+1 ∈ S and minq̃∈Ωht
q̃(xt+1) > 0.

Let x be the closest item to xt+1 in Xht. Then, there exists z < z∗ht
such that:

1. Ωh′ is non-empty, where h′ ≡ {(x1, zt), . . . , (xt, zt), (xt+1, z)}.
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Figure 5: At the same history, q̂h and Sh can vary with Ω.

2. If zt+1 ≤ z, then either σ(ht+1) = ∅ or |σ(ht+1)− σ(ht)| > |σ(ht)− x|.

Proposition 5 matches the empirical finding in Hodgson and Lewis (2020)

that “when consumers view products with “surprisingly low utility” . . . they

jump further away in attribute space.” Note that when L is smaller (i.e., items

are more similar), the step size following such bad news is larger.

6.2 Funnel shaped search

The path of optimal search varies depending on whether Ω = QL or Ω = QQC
L ,

because q̂h varies with Ω; see Figure 5. News has a more dramatic effect on

search location when the quality index is known to be quasiconcave.

Proposition 6. Let Ω = QQC
L , and let ht ∈ H be such that σ(ht) ≡ xt+1 ∈ S.

1. Suppose the searcher finds good news at ht+1: zt+1 > z∗ht
.

(a) If xt+1 > xt, then Sht+1 ⊂ [xt +
1
L
(zt+1 − z∗ht

), 1].

(b) If xt+1 < xt, then Sht+1 ⊂ [0, xt − 1
L
(zt+1 − z∗ht

)].

2. Suppose the searcher finds bad news at ht+1: zt+1 < z∗ht
. Let x∗

ht
∈ X∗

ht
.
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(a) If xt+1 > x∗
ht
, then Sht+1 ⊂ [0, xt+1 − 1

L
(z∗ht

− zt+1)].

(b) If xt+1 < x∗
ht
, then Sht+1 ⊂ [xt+1 +

1
L
(z∗ht

− zt+1), 1].

Good and bad news events cause the search window to close in when the

searcher knows there is a ‘sweet-spot’. Because optimal strategies only explore

inside this window, search unfolds in a ‘funnel shape’. This pattern of first

searching broadly in attribute space and then narrowing in on a particular

region was observed, for example, by Bronnenberg et al. (2016) and Hodgson

and Lewis (2020) in ordered-search data from online shoppers.

Callander (2011) finds a similar “triangulating” pattern in a myopic strat-

egy to find a zero of a Brownian motion path. There, too, funneling arises

from knowing that there is a sweet spot (i.e., a zero) and learning that one had

undershot or overshot it (from seeing a positive or negative draw). These dy-

namics can, therefore, arise whether the searcher is myopic or forward looking,

Bayesian or ambiguity averse, or faces a bandit or optimal stopping problem.

7 Extensions

We highlight some dimensions along which the model and results generalize.

7.1 History-dependent costs

At any history, the searcher is indifferent to the order in which she explores the

k∗-center. But in some applications, searching farther from previous discover-

ies is costlier (e.g., overhauling versus tinkering with a prototype’s design).

The model can be extended to let the cost of searching an item x depend on

the history h. Suppose the search cost is C(x, h), where (1) C : S×H → R++ is

continuous and bounded away from 0, and (2) C may depend on the sequence
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of items {xi}ti=1 explored to date but not their qualities {zi}ti=1. The statement

and proof of Theorem 1 hold for this more general model. However, the

algorithms for computing optimal strategies vary with C.

7.2 Topology, cardinality and dimension of S

The assumption that S = [0, 1] fits settings where there is a continuum of

choices along a one-dimensional attribute space (e.g., dosage of a drug). All

results would also hold if attributes lie in a ‘Salop’ circle (e.g., product color).

In motivating applications like consumer search, the sercher faces a finite

set of products (e.g., different tennis rackets), each with many attributes (e.g.,

weight, head size and stiffness). Both Theorem 1 and its proof hold under

the assumption that S ⊂ Rn
+ is any compact set. The algorithm can also

be adapted, but generally, finding the k∗-center of a multidimensional search

space is tractable only when S is finite and sufficiently small.

7.3 Discontinuous quality indices

In some settings, quality may not vary continuously in observable attributes.

For example, two tennis rackets with similar frames may feel different due to

factors that become apparent only after using them.

We can capture the idea that observably similar have similar qualities with-

out imposing continuity. Let ϵ, δ > 0. Let Qϵ,δ be the set of all quality indices

q : S → [0, 1] satisfying uniform local boundedness : if x, y ∈ S and |x− y| ≤ δ,

then |q(x)− q(y)| ≤ ϵ. This is a superset of QL for L = ϵ
δ
that allows for jump

discontinuities. Theorem 1 would generalize when Ω = Qϵ,δ; see Figure 6.
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Figure 6: On the left is the true quality index. On the right is a worst-case

quality index for a strategy that stops at h2: it maximizes the quality of the

best unexplored alternative under the uniform local boundedness constraint.

8 Conclusion

We study how forward-looking agents explore an unfamiliar set of items. They

know little about how item qualities vary with observable attributes but use

what they learn about this relationship to guide future searches. We charac-

terize optimal search and rationalize choice overload.

Directed search with learning is a ubiquitous but intractable problem.

Economists have proposed studying heuristics, arguing that the complexity

of search and bandit problems with learning raises doubts about the positive

content of rational theories (Radner, 1975; Francetich and Kreps, 2020).

Here, we insist on optimality, but we change the model to reflect the un-

structured environments in which people often search. People may not know

how exactly the qualities of various items are jointly correlated. Yet, they may

still guess that similar items have similar qualities. In such settings, strategies

that maximize guaranteed payoffs are tractable and make intuitive predictions

about search. A similar approach may be useful in other complex learning

problems as an alternative to Bayesian or boundedly rational models.
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A Preferences and dynamic consistency

Section 2 describes the searcher’s preferences over strategies at any history. A

strategy σ ∈ Σ and a history h ∈ H determine the terminal payoff p(h(σ, q), q)

that the searcher gets upon stopping, for any q ∈ Ωh.

We extend the searcher’s preferences {≿h}h∈H to the set of all acts f :

Ω → ∆sR from states to simple lotteries. For any f, g ∈ A and history h ∈ H,

f ≿h g ⇐⇒ inf
q∈Ωh

E[f(q)] ≥ inf
q∈Ωh

E[g(q)],

with ≻h and ∼h denoting the asymmetric and symmetric parts of ≿h. The set

of inconsistent states Ω \ Ωh is ≿h-null in that f ∼h g if f(·) = g(·) on Ωh.

Preferences {≿h}h∈H satisfy a weak form of dynamic consistency. Let

h+(x, z) ∈ H be the history where x ∈ S is searched at h ∈ H and has

quality z ∈ [0, 1]. Let Zx = {z ∈ [0, 1]|h+ (x, z) ∈ H}.

Proposition 7 (W-DC). Let h ∈ H and x ∈ S \Xh. If f ≿h+(x,z) g for all

z such that h+(x, z) ∈ H, then f ≿h g.

Proof. By assumption,

inf
q∈Ωh+(x,z)

E[f(q)] ≥ inf
q∈Ωh+(x,z)

E[g(q)],

for each z ∈ Zx, and

Ωh =
⋃
z∈Zx

Ωh+(x,z),

so,

inf
q∈Ωh

E[f(q)] ≥ inf
q∈Ωh

E[g(q)].
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There are differences between our framework and that of Epstein and

Schneider (2003), but preferences here satisfy W-DC for the reason they iden-

tify. The searcher can be interpreted as having a “rectangular” set of priors

that she updates prior-by-prior. For brevity, we highlight the connection with-

out defining a probability space and filtration. The set of priors at h ∈ H is

Ch = {δq|q ∈ Ωh},

where δq is the Dirac delta measure on Ω concentrated at q ∈ Ωh. The set of

posteriors at h+ (x, z) for z ∈ Zx is

Ch+(x,z) = {δq|q ∈ Ωh+(x,z)}.

If q ∈ Ωh+(x,z), then the prior δq at h is also the posterior at h+(x, z), by Bayes

rule. If q /∈ Ωh+(x,z), it is dropped from Ch+(x,z). Therefore, Ch is rectangular :

Ch =

{∫
z∈Zx

δq(Ωh+(x,z))δqz : q ∈ Ch, qz ∈ Ch+(x,z)

}
In Epstein and Schneider (2003), rectangularity and prior-by-prior updat-

ing implies full dynamic consistency: in addition to W-DC, if f ≻h+(x,z) g for

some z ∈ Z, then f ≻h g. This does not hold in our model. The discrepancy

is because Epstein and Schneider (2003) assume that priors have full support.

Rectangularity then implies that some worst-case belief guides the searcher’s

choices. Here, the priors are Dirac measures, so choices are driven by the same

worst-case belief until it is shown to be inconsistent at some h ∈ H. Then,

a new worst-case belief takes over. But because h is a zero-probability event

under the previous worst-case belief, any plan following h can be part of an

optimal strategy at earlier histories. Therefore, sequentially optimal strategies

exist, though not every ex ante optimal strategy is sequentially optimal.
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B When randomizing helps the searcher

Consider the extension where the searcher can use mixed strategies and solves:

max
σ∈∆(Σ)

{
inf
q̃∈Ω

E[p(h0(σ, q̃), q̃)]
}
.

We show by example that, sometimes, an optimal strategy must be mixed.

Suppose the search space consists of two items, S = {0, 1}. Let L = 0.5

and Ω = [0, 1]S. Let c = 0.3 and let payoffs be given by linear regret:

U(q(x),max
q∈Ω

q(y)) = q(x)−max
q∈Ω

q(y).

A strategy σ that stops at h0 can incur a regret of up to 1 (e.g., if q(0) =

q(1) = 1) but incurs no search costs. The worst-case net payoff of σ is -1.

The strategy σ that searches at h0 and stops at any subsequent history can

incur a regret of up to 0.5 (e.g., if σ(h0) = 0 and q(0) = 0 while q(1) = 0.5)

and a search cost of 0.3. The worst-case net payoff of σ is -0.8.

A σ ∈ Σ that searches twice for some q ∈ Ω has no regret and 0.6 in search

costs if the state is q. The worst-case net payoff for such a σ is at most -0.6.

Therefore, the strategy σ that searches at h0 and searches at every h1 is ex

ante optimal in Σ, but there are mixed strategies that do better.

Consider a random strategy σ that searches once at h0 and stops after-

wards, so it incurs a search cost of 0.3. At h0, σ(h0) = 0 or σ(h0) = 1, each

with probability 0.5. If q(0) = q(1), then σ has zero regret. If q(0) ̸= q(1),

then σ has a regret of 0 or a regret of up to 0.5, each with probability 0.5 (e.g,

if q(0) = 0 and q(1) = 0.5). Therefore, the worst-case net payoff of σ is −0.55.
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C Proofs

C.1 Proposition 1 and Theorem 1 when Ω = QL

In this section, we maintain the assumption that Ω = QL.

Let ht = {(xi, zi)}ti=1 ∈ H. For each xi ∈ Xht and y ∈ S, let

fht,xi
(y) = L||y − xi||+ zi.

For each y ∈ S, let

fht(y) = min
x∈Xht

fht,x(y).

Lemma 1. For any ht ∈ H, q̂ht ∈ Ωht. Moreover, q̂ht(x) = min{fht(x), 1} for

all x ∈ S.

Proof of Lemma 1. Let g(x) ≡ min{fht(x), 1} for all x ∈ S. We proceed by

proving three claims.

Claim 1 : g is L-Lipschitz.

Let x, y ∈ S. Then there exists some xi, xj ∈ Xht such that |fht(x) −

fht(y)| = |fht,xi
(x)−fht,xj

(y)|. Suppose without loss of generality that fht,xi
(x) ≥

fht,xj
(y). Then

|fht(x)− fht(y)| = fht,xi
(x)− fht,xj

(y)

≤ fht,xj
(x)− fht,xj

(y)

= L||x− xj||+ zj − L||y − xj|| − zj

= L||x− xj|| − L||y − xj||

≤ L||x− y||,

where the first inequality follows from the definition of fht . Therefore, fht , and

so g, is L-Lipschitz.
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Claim 2 : Every quality index in Ωht is bounded above pointwise by g.

Let ht = {(xi, zi)}t−1
i=0 ∈ H, and let q̃ ∈ Ωht . For any xi ∈ T and y ∈

S, |q̃(y) − q̃(xi)| ≤ L||y − xi||; Moreover, note that |fht,xi
(y) − fht,xi

(xi)| =

fht,xi
(y) − q̃(xi) = L||y − xi||. Together, this implies that q̃(y) ≤ fht,xi

(y) for

all xi ∈ T . Therefore, q̃(y) ≤ min{fht(y), 1} for all q̃ ∈ Ωht .

Claim 3: g is consistent at ht.

For any xi ∈ Xht and q̃ ∈ Ωht , zi = q̃(xi) ≤ fht(xi) ≤ fht,xi
(xi) = zi, where

the first inequality follows from Claim 2, and the second is by the definition of

fht . Therefore fht(xi) = min{fht(xi), 1} = zi for all xi ∈ Xht , so g is consistent.

The first and third claims imply that g ∈ Ωht . So by the second claim,

q̂ht = g.

Lemma 2. Let histories h′
t = {(xi, z

′
i)}ti=1 and h′′

t = {(xi, z
′′
i )}ti=1 be such that

z′i ≥ z′′i for all i. Then

max
x∈S

q̂h′
t
(x) ≥ max

x∈S
q̂h′′

t
(x).

Proof of Lemma 2. Let T ≡ Xh′
t
= Xh′′

t
be the set of searched items in h′

t =

{(xi, z
′
i)}t−1

i=0 and h′′
t = {(xi, z

′′
i )}t−1

i=0. By Lemma 1, it suffices to show that

fh′
t,xi

(y) = L||y − xi|| + z′i ≥ L||y − xi|| + z′′i = fh′′
t ,xi

for every xi ∈ T and

y ∈ S. This follows immediately from the assumption that z′i ≥ z′′i for all

i.

Lemma 3. For any h ∈ H,

inf
q̃∈Ωh

p(h, q̃) = p(h, q̂h).
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Proof.

inf
q̃∈Ωh

p(h, q̃) = inf
q̃∈Ωh

U(z∗h,max
x∈S

q̃(x))− c · t

= U(z∗h, max
x∈S,q̃∈Ωh

q̃(x))− c · t

= U(z∗h,max
x∈S

q̂h(x))− c · t

= p(h, q̂h),

where the second equality is because U is decreasing in its second argument,

and the third equality is by Lemma 1.

Lemma 4. Suppose that Ω = QL. Fix some history h′
t = {(xi, z

′
i)}t−1

i=0 ∈ H

and let x be a best discovery at h′
t. Let T ≡ X∗

h′
t
\ {x} be the remaining

best discoveries. For each xi ∈ T , let ϵi ∈ R. Consider an alternate history

h′′
t = {(xi, z

′′
i )}t−1

i=0 ∈ H where z′′i = z′i + ϵi for xi ∈ T and z′′i = z′i otherwise.

Suppose moreover that Ωh′
t
and Ωh′′

t
are nonempty. Then,

inf
q̃∈Ωh′′t

p(h′′
t , q̃) ≥ inf

q̃∈Ωh′t

p(h′
t, q̃).

Proof of Lemma 4. If T = ∅, the statement is trivially true. Suppose T ̸= ∅.

Case 1: If ϵi ≤ 0 for each xi ∈ T , then x is a best discovery at h′′
t and h′

t, so

z∗h′′
t
= z∗h′

t
,

and by Lemma 2,

max
x∈S

q̂h′
t
(x) ≥ max

x∈S
q̂h′′

t
(x).

Then, by Assumption 2,

p(h′′
t , q̂h′′) ≥ p(h′

t, q̂h′).
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Therefore, by Lemma 3,

inf
q̃∈Ωh′′t

p(h′′
t , q̃) ≥ inf

q̃∈Ωh′t

p(h′
t, q̃).

Case 2: Suppose there exists some xi ∈ T such that ϵi > 0. Let ϵ denote

the largest ϵi among all i such that xi ∈ T . Consider a third history h′′′
t =

{(xi, z
′
i+ ϵ)}t−1

i=0 where the quality of all items searched in h′′′
t is higher than in

h′
t by ϵ. Then,

max
x∈S

q̂h′′′
t
(x) ≤ max

x∈S
q̂h′

t
(x) + ϵ.

By Assumption 2, U(a+ ϵ, b+ ϵ) ≥ U(a, b) for any a, b ∈ R+, so

p(h′′′
t , q̂h′′) ≥ p(h′

t, q̂h′).

Now, by construction,

z∗h′′
t
= z∗h′′′

t
.

So by Lemma 2 and Assumption 2 again,

p(h′′
t , q̂h′′

t
) ≥ p(h′′′

t , q̂,q̂h′′′t
).

Therefore, p(h′′
t , q̂h′′) ≥ p(h′

t, q̂h′), so by Lemma 3,

inf
q̃∈Ωh′′t

p(h′′
t , q̃) ≥ inf

q̃∈Ωh′t

p(h′
t, q̃).

Proof of Proposition 1. Let σ ∈ Γh, let h′ ≡ h(σ, q̄h), and let h′′ ≡ h(σ, q)

for some q ∈ Ωh. Note that Xh′ = Xh′′ , because σ is a simultaneous search

strategy. Therefore, by Lemma 4,

inf
q̃∈Ωh′′

p(h′′, q̃) ≥ inf
q̃∈Ωh′

p(h′, q̃).
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By Lemma 3,

inf
q̃∈Ωh′

p(h′, q̃) = p(h′, q̂h′).

Recall that qσh ≡ q̂h′ , so

p(h′, q̂h′) = p(h(σ, qσh), q
σ
h).

Combining the previous steps,

inf
q̃∈Ωh

p(h(σ, q̃), q̃) ≥ p(h(σ, qσh), q
σ
h)

By Lemma 1, qσh is consistent at h ∈ H, so

inf
q̃∈Ωh

p(h(σ, q̃), q̃) = p(h(σ, qσh), q
σ
h).

It only remains to be shown that an optimal simultaneous search strategy

exists. Let k̄h ∈ N be such that (k̄h + 1) · c > 1 − z∗h. Let Γ′
h ⊂ Γh be

the strategies σs that search no more than k̄h times after h, i.e., the set of

simultaneous strategies at h where |Xh(σs,·)|−|Xh| ≤ k̄h. Then by construction,

max
σs∈Γh

p(h(σs, q̃), q̃) = max
σs∈Γ′

h

p(h(σs, q̃), q̃).

Note that Γ′
h is compact, as each strategy in Γ′

h can be identified with an

element in
∏k̄x

i=1 S. Next, p is continuous in both its arguments (under, say,

the topology induced by the sup norm metric on the space of quality indices).

Therefore, optimal simultaneous search strategies exist at any h ∈ H.

Lemma 5. If σ∗
s ∈ Γh is an optimal simultaneous search strategy at h ∈ H,

then

σ∗
s ∈ argmax

σ∈Σ

{
inf
q̃∈Ωh

p(h(σ, q̃), q̃)
}
.
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Proof. Because Γh ⊂ Σ,

max
σ′∈Γh

inf
q̃∈Ωh

p(h(σ′, q̃), q̃) ≤ sup
σ′∈Σ

inf
q̃∈Ωh

p(h(σ′, q̃), q̃),

so it only remains to show the reverse inequality.

Let σ ∈ Σ be any strategy. Let σs ∈ Γh be such that h(σ, qσh) = h(σs, q
σ
h);

such a simultaneous search strategy can be constructed by searching the same

items as σ on path, starting from h when q = qσh . Then

p(h(σ, qσh), q
σ
h) = p(h(σs, q

σ
h), q

σ
h) = inf

q̃∈Ωh

p(h(σs, q̃), q̃) ≤ max
σ′∈Γh

inf
q̃∈Ωh

p(h(σ′, q̃), q̃),

where the second equality is by Proposition 1. Therefore,

inf
q̃∈Ωh

p(h(σ, q̃), q̃) ≤ max
σ′∈Γh

inf
q̃∈Ωh

p(h(σ′, q̃), q̃).

Because σ is an arbitrary strategy in Σ,

sup
σ′∈Σ

inf
q̃∈Ωh

p(h(σ′, q̃), q̃) ≤ max
σ′∈Γh

inf
q̃∈Ωh

p(h(σ′, q̃), q̃),

from which the result follows.

Lemma 6. If σ ∈ Σ is sequentially optimal, then σ follows optimal simultane-

ous search strategies.

Proof. Suppose σ does not follow optimal simultaneous search strategies, i.e.,

there is a h ∈ H such that σ(h) ̸= σ∗
s(h) for any optimal σ∗

s ∈ Γh.

Let σs ∈ Γh be such that h(σ, qσh) = h(σs, q
σ
h); such a simultaneous search

strategy can be constructed by searching the same items as σ on path, starting

from h when q = qσh . Then

p(h(σ, qσh), q
σ
h) = p(h(σs, q

σ
h), q

σ
h) < max

σ′∈Γh

inf
q̃∈Ωh

p(h(σ′, q̃), q̃).

Therefore, an optimal simultaneous strategy obtains a strictly larger worst-

case payoff at h than σ. Such a strategy exists by Proposition 1, contradicting

the assumption that σ is sequentially optimal.
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Lemma 7. If σ ∈ Σ follows optimal simultaneous search strategies, then σ is

sequentially optimal.

Proof. Let h ∈ H and q ∈ Ωh. If h is a terminal history, let ĥ ≡ h. If h is a

non-terminal history under σ, let ĥ be the history following h where σ(h) is

searched and has quality q(σ(h)). Let A = {σ′ ∈ Γh|σ′(h) = σ(h)}. Then,

max
σ′∈Σ

inf
q̃∈Ωh

p(h(σ′, q̃), q̃) = max
σ′∈Γh

inf
q̃∈Ωh

p(h(σ′, q̃), q̃)

= max
σ′∈A

inf
q̃∈Ωh

p(h(σ′, q̃), q̃)

≤ max
σ′∈Γĥ

inf
q̃∈Ωĥ

p(ĥ(σ′, q̃), q̃)

≤ max
σ′∈Σ

inf
q̃∈Ωĥ

p(ĥ(σ′, q̃), q̃),

where the first equality is by Lemma 5, the second equality is by the definition

of following optimal simultaneous strategies, the first inequality is because

Ωĥ ⊂ Ωh, and the second second inequality is because Γĥ ⊂ Σ. Therefore, the

worst-case payoff to σ is weakly increasing on path, for any h ∈ H and q ∈ Ωh.

Suppose that for some h ∈ H and q ∈ Ωh, σ does not reach a terminal

history. Then the worst-case payoff must decrease at some history on path

when following σ, because payoff tends to −∞ if the searcher never stops, a

contradiction. Therefore, σ terminates, so σ ∈ Σ.

We conclude that,

σ ∈ argmax
σ′∈Σ

inf
q̃∈Ωh

p(h(σ′, q̃), q̃).

Because this holds for any h ∈ H, σ is sequentially optimal.

Proof of Theorem 1. Lemma 6 and Lemma 7 together imply that σ ∈ Σ is se-

quentially optimal if and only if it follows optimal simultaneous search strate-

gies. Proposition 1 implies that optimal simultaneous search strategies exist
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at any h ∈ H. Therefore, there also exist strategies that follow optimal simul-

taneous search strategies.

C.2 Theorem 1 in the Ω = QQC
L case

In this section, we maintain the assumption that Ω = QQC
L . The analogues of

Lemma 1 and Lemma 2 no longer hold in this case.

To see this, consider the following counter-example: Let S = [0, 4] and

L = 1. Denote by h3 the history where technologies {0, 2, 3, 4} have been

searched and all have quality equal to 0, i.e., h3 = {(0, 0), (2, 0), (3, 0), (4, 0)}.

First, note that the upper envelope of Ωh3 is a saw-tooth shaped function

and therefore not quasiconcave.

Next, note that the highest possible quality for some technology under

some q ∈ Ωh3 is equal to 1. This is uniquely achieved at:

q(x) =


x 0 ≤ x < 1

2− x 1 ≤ x < 2

0 2 ≤ x ≤ 4.

Now consider the history h′
3 = {(0, 0), (2, 0), (3, 0.5), (4, 0)}, which dominates

h3 in quality. Since every quality index in Ωh′
3
is quasiconcave, it must now

be the case that q′(1) = 0 for every q′ ∈ Ωh3 . The highest possible quality for

some technology under some q′ ∈ Ωh′
3
is equal to 0.75. This is achieved at:

q′(x) =



0 0 ≤ x < 2

x− 2 2 ≤ x < 2.75

3.5− x 2.75 ≤ x < 3.5

0 3.5 ≤ x ≤ 4.
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However, weaker forms of Lemma 1 and Lemma 2 hold and suffice for the

proof of Theorem 1 when Ω = QQC
L . Recall that q̄ht ≡ min{q̂ht , z

∗
ht
}.

Lemma 8. For all ht ∈ H, q̄ht ∈ Ωht.

Proof. The argument that q̄ht is L-Lipschitz and consistent at ht is exactly as

in the proof of Lemma 1. It only remains to be shown that q̄ht is quasiconcave.

If q̃ ∈ Ωht , then min{q̃, z∗ht
} is non-decreasing on [0,minX∗

ht
) and non-

increasing on (maxX∗
ht
, 1], and equals z∗ht

on [minX∗
ht
,maxX∗

ht
]. Therefore,

the same is true for q̄ht , so it is quasiconcave.

Lemma 9. Suppose histories h′
t = {(xi, z

′
i)}t−1

i=0 and h′′
t = {(xi, z

′′
i )}t−1

i=0 are such

that z′i ≥ z′′i for all i and z∗h′
t
= z∗h′′

t
. Then

max
x∈S

q̂h′
t
(x) ≥ max

x∈S
q̂h′′

t
(x).

Proof of Lemma 9. First, note that X∗
h′′
t
⊂ X∗

h′
t
. For x ∈ [minX∗

h′
t
,maxX∗

h′
t
],

then, q̄h′
t
(x) = z∗h′

t
= z∗h′′

t
≥ q̄h′′

t
(x). Next, it follows from Lemma 8 that q̄h′

t

and q̄h′′
t
are non-decreasing on [0,minX∗

h′
t
) and non-increasing on (maxX∗

h′
t
, 0].

Therefore, max{q̄h′
t
, q̄h′′

t
} ∈ Ωh′

t
, which implies that q̄h′

t
= max{q̄h′

t
, q̄h′′

t
} ≥ q̄h′′

t
.

For any q̃ ∈ Ωh′′
t
,

{x ∈ [0, 1]|̃(q)(x) ≥ z∗h′
t
} ⊂ {x ∈ [0, 1]|q̄h′′

t
(x) = z∗h′′

t
}

⊂ {x ∈ [0, 1]|q̄h′
t
(x) = z∗h′

t
},

because q̄h′
t
≥ q̄h′′

t
. Moreover, these sets are intervals by Lemma 8. Therefore,

q ≡ max{q̃, q̄h′
t
} is quasiconcave, and q ∈ Ωh′

t
. Therefore, q̃ ≤ q pointwise,

which proves the result.
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Proof of Proposition 1. Let σ ∈ Γh. The only difference with the proof in

the case where Ω QL is that qσh is not consistent at h ∈ H, because it is not

necessarily quasiconcave. Therefore, Lemma 1 cannot be invoked.

However, h(qσh , σ) = h(q̄h, σ), so Ωh(qσh ,σ)
is nonempty. Let q ∈ Ωh(qσh ,σ)

be a quality index with maxx∈S q(x) = maxx∈S q
σ
h(x). Then p(h(σ, qσh), q

σ
h) =

p(h(σ, qσh), q). Therefore, the worst-case payoff to any simultaneous search

strategy is p(h(σ, qσh), q
σ
h).

Proof of Theorem 1 in the Ω = QQC
L case. The proofs of the analogous lem-

mas to those in Appendix C.1 are identical, with Lemma 9 in place of Lemma 2

whenever the latter is referenced.

C.3 Proofs for Section 4

Proof of Proposition 2. Search outside of Sh is wasteful. Suppose that search-

ing at x′ ∈ Sh \ Ph reveals that q(x′) = z∗h. At this history, h
′,

max
x∈S

q̂h′(x) = max
x∈S

q̂h′(x),

so the payoff to stopping at h is better than the worst-case payoff to stopping

after searching once in S \ Ph.

C.4 Proofs for Section 5

Proof of Proposition 3. If U2 = 0, search stops immediately for any level of

search complexity, so for the remainder of the proof, assume U2 < 0.

First we construct L. If L = 0 and Ωh is nonempty, then clearly there is

no value in search, as Ωh is a singleton containing only a constant function.

Let ϵ > 0 be small enough so that U(z∗h, z
∗
h)− U(z∗h, z

∗
h + ϵ) < c. Because S is

compact, there exists L > 0 small enough so that q̂h < z∗h+ ϵ when L ≤ L. Let
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L ≤ L and let σ ∈ Σ be any strategy such that σ(h) ̸= ∅. Then by Theorem 1

and by Proposition 1,

inf
q̃∈Ωh

p(h(σ, q̃), q̃) = p(h(σ, q̄h), q
σ
h)

≤ U(z∗h, z
∗
h)− c

< U(z∗h, z
∗
h + ϵ)

< p(h,max
x∈S

q̂h(x)).

Therefore, concluding search is optimal at h if L ≤ L.

Next we construct L. Let δ = U(1, 1) − U(z∗h, 1). Let n = ⌈ δ
c
⌉. Consider

any strategy σ ∈ Σ for which there is a q ∈ Ωh such that |Xh(σ, q)|− |Xh| ≥ n.

Then

inf
q̃∈Ωh

p(h(σ, q̃), qσh) ≤ p(h(σ, q), q)

≤ U(1, 1)− n · c

< U(z∗h, 1).

Therefore, any strategy which searcher n or more times for some q ∈ Ωh

cannot be optimal at h. Let L be such that if L ≥ L, for any σ ∈ Σ such that

|Xh(σ, h(σ, q
σ
h))| − |Xh| < n,

max
x∈S

q̂h(σ,qσh)(x) = 1.

For such L, the searcher is better off stopping immediately.

When considering comparative statics with respect to different levels of

search complexity, say L′ and L′′, we subscript variables to indicate the level.

Lemma 10. Let 0 < L′ < L′′. Let h = {(xi, z)}ti=0 ∈ H be an on-path history,

and maxx∈S q̂h,L′′(x) < 1. Let y ∈ S/Xh, and let h′ = h ∪ {(y, z)} be the
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on-path history at which y is searched. Then,

max
x∈S

q̂h,L′(x)−max
x∈S

q̂h′,L′(x) ≤ max
x∈S

q̂h,L′′(x)−max
x∈S

q̂h′,L′′(x).

If maxx∈S q̂h,L′(x)−maxx∈S q̂h′,L′(x) > 0, the preceding inequality is strict.

Proof. Because Ωh′ ⊂ Ωh, maxx∈S q̂h,L′′(x) − maxx∈S q̂h′,L′′(x) ≥ 0. So, the

result holds when maxx∈S q̂h,L′(x)−maxx∈S q̂h′,L′(x) = 0.

Suppose that maxx∈S q
u
h,L′(x)−maxx∈S q

u
h′,L′(x) > 0.

Let x, x ∈ Xh be the closest previously searched items to the left and right

of y (and minS or maxS, respectively, if there are no such items). Define

xs, xs
′ ∈ Xh similarly as the endpoints in Xh ∪ {minS,maxS} of the sub-

interval containing the second largest peak of quh.

Let f(L) ≡ maxx∈[x,x] q̂h,L(x). Similarly, let g(L) ≡ maxx∈[xs,xs] q̂h,L(x).

It is readily verified (for example, by Lemma 1 and an analogous result

for the Ω = QQC
L case) that f(L) = z + D(x,x

2
) · L, where D(a, b) ≡ b−a

2
if

a, b ∈ Xh, and D(a, b) ≡ b−a otherwise. Similarly, let g(L) = z+D(
xs,xs

2
) ·L.

For the remainder of the proof, we consider only the case where x, x, xs, xs ∈

Xh. We obtain the same conclusion when one or more of x, x, xs, xs are not in

Xh. There are three cases to consider.

Case 1 : At history h′, maxx∈S q̂h′,L′(x) = g(L′) and maxx∈S q̂h′,L′′(x) = g(L′′).

Now f(L) − g(L) = L · x−x−xs+xs

2
> 0 is linear in L with a positive slope,

which implies f(L)−g(L) is strictly increasing in L. Therefore f(L′)−g(L′) ≤

f(L′′)− g(L′′), which is the desired result.

Case 2 : At history h′,

max
x∈S

q̂h′,L′(x) = max
x∈S∩[x,y]

q̂h′,L′(x),

and

max
x∈S

q̂h′,L′′(x) = max
x∈S∩[x,y]

q̂h′,L′′(x).
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Let α = y−x
x−x

. Then by the property of similar triangles,

max
x∈S

q̂h′,L′(x) = αmax
x∈S

q̂h,L′(x),

and

max
x∈S

q̂h′,L′′(x) = αmax
x∈S

q̂h,L′′(x).

Since (1− α)maxx∈S q̂h′,L′(x) < (1− α)maxx∈S q̂h′,L′′(x), the result follows.

Case 3 : At history h′,

max
x∈S

q̂h′,L′(x) = max
x∈S∩[y,x]

q̂h′,L′(x),

and

max
x∈S

q̂h′,L′′(x) = max
x∈S∩[y,x]

q̂h′,L′′(x).

The proof in this case is identical to case 2.

Lemma 11. Suppose there are decreasing returns to search. Let 0 < L′ < L′′,

h ∈ H be on-path, and q̂h,L′′ < 1. If search stops at h under some optimal

strategy at h when search complexity is L′′, then search stops at h under any

optimal strategy at h when search complexity is L′.

Proof of Lemma 11. Suppose for contradiction that there is an optimal strat-

egy at h, say σ, that does not stop at h when complexity is L′. Let h′ ≡

h(σ, qσh).

Now, maxx∈S q̂h,L′(x) − maxx∈S q̂h′,L′(x) > 0, or else stopping at h would

have been a strict improvement. But then by Lemma 10 and induction on the

number of searches,

max
x∈S

q̂h,L′(x)−max
x∈S

q̂h′,L′(x) < max
x∈S

q̂h,L′′(x)−max
x∈S

q̂h′,L′′(x). (5)

Next, it is obvious that

max
x∈S

q̂h,L′′(x) ≥ max
x∈S

q̂h,L′(x). (6)
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Finally, because both histories are on path,

z∗h = z∗h′ . (7)

Putting eq. (5), eq. (6) and eq. (7) together, using that U2 ≤ 0 and U22 < 0,

U(z∗h′ ,max
x∈S

q̂h′,L′(x))− U(z∗h,max
x∈S

q̂h,L′(x))

< U(z∗h′ ,max
x∈S

q̂h′,L′′(x))− U(z∗h,max
x∈S

q̂h,L′′(x)).

So at search complexity L′′, no optimal strategy at h stops at h, contradiction.

Therefore, continuing search is not a part of any optimal strategy when

complexity is L′.

Lemma 12. Let 0 < L′ < L′′, h ∈ H, and q̂h,L′ = 1. If search stops at h under

some optimal strategy at h when search complexity is L′, then search stops at

h under any optimal strategy at h when search complexity is L′′.2

Proof of Lemma 12. Suppose for contradiction that there is an optimal strat-

egy at h, say σ, that does not stop at h when complexity is L′′. Let h′ ≡

h(σ, qσh).

Now, 1 − maxx∈S q̂h′,L′′(x) > 0, otherwise concluding search at h would

have been a strict improvement. But then

max
x∈S

q̂h′,L′′(x) > max
x∈S

q̂h′,L′(x)

Along with the facts that U2 ≤ 0, and z∗h = z∗h′ , we have

U(z∗h′ ,max
x∈S

q̂h′,L′(x))− U(z∗h, 1) > U(z∗h′ ,max
x∈S

q̂h′,L′′(x))− U(z∗h, 1).

So when search complexity is L′, no optimal sequential search procedure stops

at h. This is a contradiction.

2We need not assume h is on path or that there are decreasing returns to search.
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Proof of Proposition 4, parts 1 and 2. Let h be some on-path history.

If search stops at h for any L (e.g., if z∗ = 1 at h), then the result holds

for any L = L ∈ R++.

Suppose there is an L at which search does not stop immediately in some

equilibrium. Define Lτ such that when L < Lτ , maxx∈S q̂h,L(x)) < 1 and when

L > Lτ , maxx∈S q̂h,L(x)) = 1.

Let L be the set of complexity levels L such that, in some equilibrium,

search does not stop when complexity is L.

Let L = inf L. By Proposition 3, L > 0. Moreover, by Lemma 12, L ≤ Lτ .

Finally, by Lemma 11, if L < Lτ , then search continues in all any equilibrium

for L ∈ (L,Lτ ].

Similarly, let L = supL. By Lemma 11, L ≥ Lτ . By Lemma 12, if L > Lτ ,

then search continues in all any equilibrium for L ∈ [Lτ , L).

Proof of Proposition 4, part 3. Let L′ < L′′, and let σ′ and σ′′ be optimal

search strategies at h at complexity levels L′ and L′′, respectively. Let h′ ≡

h(σ′, qσ
′

h ) and h′′ ≡ qσ
′′

h . Let |Xh′,L′ |− |Xh,L′ | = k′, and |Xh′′,L′′ |− |Xh,L′′ | = k′′.

For contradiction, suppose that k′ > k′′ > 0.

Note first that maxx∈S q̂h′′,L′′(x) < 1 (and, therefore, maxx∈S q̂h′′,L′(x) < 1);

otherwise, the searcher would have been better off concluding search at h.

Next, under the constraint of searching exactly k more times, an optimal

strategy at h when complexity is L′′ is also optimal when complexity is L′.

This is easy to see, for example, from the description of an optimal search

algorithm in Section 3.5.

By an argument analogous to that in the proof of Lemma 11,

0 < max
x∈S

q̂h′′,L′(x)−max
x∈S

q̂h′,L′(x) < max
x∈S

q̂h′′,L′′(x)−max
x∈S

q̂h′,L′′(x),
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where the first inequality is by the optimality of concluding at h′ over searching

fewer times and concluding at h′′.3 This implies that the marginal benefit of

concluding at history h′ rather than history h′′ is higher when complexity is

L′′ than when complexity is L′. Since the benefits net of costs of searching

the additional k′ − k′′ times are non-negative when complexity is L′, they are

strictly positive when complexity is L′′. This contradicts the assumption that

at h, the searcher optimally plans to stop at h′′ when complexity is L′′.

C.5 Proofs for Section 6

Proof of Proposition 5. We prove this result by constructing a candidate z′.

Let qlht
be the lower envelope of Ωht and let z′ ≡ qlht

(σ(ht)). Note that by defi-

nition, Ωh′
t+1

is nonempty, and zt+1 ≥ z′. By construction and the assumption

that minq̃∈Ωht
,y∈S q̃(y) > 0,

q̂ht+1(y) = L|σ(ht)− y|+ z′ ≤ q̂ht(y),

for all y ∈ [x−d, x+d], where d = |x−σ(ht)|. By Proposition 1, any search in

[x− d, x+ d] could not be a part of an optimal search strategy at ht, proving

the result.

Proof of Proposition 6. If the searcher learns good news at σ(ht) and σ(ht) >

xt, then q(x) ≤ zt for any q ∈ Ωht+1 . Otherwise, q is not quasiconcave.

Moreover, q̂ht(x) ≤ zt + L(x − xt) for any x ∈ S, by Lemma 1 and the fact

that QQC
L ⊂ QL. Therefore, if x < xt +

1
L
(zt+1 − zt), then q̂ht(x) < zt+1. By

Proposition 1, any any search in [minS, xt +
1
L
(zt+1 − zt)] cannot be a part of

a sequentially optimal strategy.

The proof of the remaining cases follow identical arguments.

3Unlike in Lemma 11, h′ need not follow h′′, but this does not change the argument.
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