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CONTAGIOUS STRATEGIES IMPLEMENT CONFESSION
IN PRISONER�S DILEMMA GAMES

EHUD KALAI

Abstract. A contagious strategy determines the most resilient equilibrium
of the game in which it is played. As in dominant strategies, strong incentives
motivate players to play a contagious strategy. This is observed in markets,
auctions, and political interactions.

In generalized prisoner�s dilemma games confession is a contagious strategy.
We illustrate how this can be exploited to implement confession, even when
confession is not a dominant strategy. Our illustration is based on an actual
recent prosecution of a RICO trial in the US.

1. Introduction

Prisoner�s dilemma (PD) games are designed by strategically-minded prosecu-
tors, to induce confessions prior to the start of multi-defendent trials. RICO trials
are excellent examples.1 In the classical illustration of PD games, guilty defendants
confess because the confession strategy is dominant. However, a more careful ex-
amination reveals that confession strategies are contagious and satisfy a condition
weaker than dominance, they are the most resilient. In a sense similar to dom-
inant strategy equilibrium, the most resilient equilibria also induces confessions.
Moreover, the most resilient equilibria exist in a broader class of PD games, in-
cluding ones in which dominant strategies equilibria do not. Prosecutors of RICO
trials successfully design games in which confession strategies are the most resilient
and induce confession, even when they cannot design games in which confession
strategies are dominant.
Section 2 of this paper formalizes the notion of a contagious strategy and studies

properties of the associated contagious equilibria. The main property of a conta-
gious strategy is that its play by one player creates strong incentives to play it for
the others. Moreover, a theorem in this section illustrates that contagious equi-
libria are distinctly the most resilient equilibria in their games. We point to the
applicability of contagious equilibria in politics, markets, and auctions, see Kalai
and Kalai (2002) for additional examples. However, the main application studied in
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Sections 3-5 is to confession strategies that are contagious and are the most resilient
in PD games.
Section 3 reviews the classical presentation of PD games and the role of dominant

strategies in their analysis. Section 4 presents a generalized PD game as one with n-
defendants who have a contagious confession strategy. The main example presented
in this section is a RICO trial with ten defendants. In the pre-trial game, the
confession strategy is contagious and thus the most resilient. This example serves
two purposes. First, it applies the theorem about resilience of contagious strategies
of Section 2 to argue that defendants would confess. Conversely, as discussed
in Section 5, the PD application illustrates and elaborates on the various notions
of stability that may support or contradict the rationale for confession. It also
discusses the fragility of the competing equilibrium, in which all the defendants
deny the charges against them. Section 6 discusses types of interactions in which
individual incentives lead to other fragile equilibria, ones with undesirable social
outcomes.
Section 7 points to earlier papers that dealt with the issue of resilience. In

particular, Eliaz (2002) and Abraham et al (2006) who show that high resilience
enables robust implementation of problems in economics and computer science. In
addition, this section suggests needed further research on of the notion of resilience
and its possible applications.

2. Contagious strategies and equilibria

De�nition 1. An individual strategy c in an n-person game � (n � 2) is called
contagious if two conditions hold: (1) c is a common strategy,i.e., it is in the set
of individual strategies of each of the n players, (2) c is pairwise contagious, i.e.,
for any two di¤erent players i and j, c is the strict best response of player i to any
(strategy) pro�le � in which �j = c.
A pro�le of strategies � is called contagious if for some contagious strategy c,

�i = c for every player i, i.e., � = bc � the pro�le in which every player plays the
strategy c.

It is easy to see that any contagious pro�le is a Nash equilibrium. In the
rest of this section we discuss the applicability, stability, uniqueness and focality of
contagious equilibria.
Despite their highly restrictive de�nition, contagious strategies and equilibria

are of interest in a variety of di¤erent areas. In price competition for example,
the lowest pro�table price p charged for a good sold by n symmetric sellers, is a
contagious strategy. In auction theory, the highest bid b that each of n symmetric
bidders is willing to pay for a common-valued item being auctioned, is a contagious
strategy. Our lead example in this paper is a prisoner�s dilemma game, studied
in greater detail in Section 4. Such a game is constructed by a prosecutor to
incentivize defendants who are guilty of a joint crime, to adopt and play a confession
strategy, y, that is contagious.
Whether the players will play a contagious strategy c depends on its stability,

resilience and focality properties that are discussed in the theorem below. But
before we state the Theorem and its proof, it is useful to review the resilience
hierarchy of strategy pro�les presented in Kalai and Kalai (2022).
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As summarized in the table below, any pro�le � in an n-person game � may
be classi�ed and described according to its resilience level, �(�); or equivalently
according to its dual level of critical mass �(�), �(�) = n� �(�).

�(�) = �1 �(�) = 0 �(�) = 1; 2; :::; n� 3 �(�) = n� 2 �(�) = n� 1
�(�) = n+ 1 �(�) = n �(�) = n� 1; :::; 4; 3 �(�) = 2 �(�) = 1
� is not � is a fragile Nash eq�a � arranged � is nearly � is dom�t
Nash eqm Nash eqm in increasing resilience dom�t eqm stgy eqm

The number �(�) speci�es the maximal number of �-defectors, i.e., players i
who choose a strategy di¤erent from �i, who "cannot disrupt the best response
property of �" in two equivalent formal senses: (R1) �(�) is the largest integer
d = 0; 1; :::n� 1, such that in any pro�le � with d or fewer �-defectors �i is a best
response of every �-loyalist, i.e., player i with �i = �i. Equivalently, (R2) �(�) is
the largest integer d such that at any pro�le � with d or fewer �-defectors �i is a
best response of every player i.
The number �(�) speci�es the minimal number of �-loyalists l needed to justify

the play of � as equilibrium in two equivalent senses: (K1) �(�) is the smallest
integer l such that at any pro�le � with l or more �-loyalists, �i is a best response
of every �-loyalist. Equivalently, (K2) �(�) is the smallest integer l such that at
any pro�le � with l or more �-loyalists, �i is a best response of every player i.
The resilience of � may also be interpreted as the strict lower bound on a number

of players x, i.e., �(�) < x, that a malicious agent needs to control ex-ante in order
to create a pro�le � at which �i is not optimal for some player i. In other words, to
assure the ability to induce a defection from �, a malicious agent needs to control
the strategy choices of x � �(�) + 1 players.
It is easy to see that �(�) � 0 (or �(�) � n) i¤ � is a Nash equilibrium. The

reference to �s with �(�) = 0 as fragile equilibria, captures the property that a
single defector from such a � can incentivize the defection of other(s). It is also
easy to see that if �(�) = n � 1 then �i of every player i is a dominant strategy.
The term nearly dominant when �(�) = n � 2 captures the property that "the
play �j by any single player j is enough to makes �i a dominant strategy for every
player i 6= j," that is, at every pro�le � with �j = �j , �i is a best response of player
i. Trivially, a pro�les � is not a Nash equilibrium i¤ �(�) = �1, or equivalently
�(�) = n+ 1.
When the conditions of resilience are applied to contagious equilibrium bc, bc

becomes the most prominent resilient equilibrium in the sense described in the
following theorem.

Theorem 1. The Resilience Focality of Contagious Equilibrium.2 Consider
any n-person game with a contagious strategy c: (1) the contagious pro�le bc is of
resilience �(bc) � n� 2; moreover (2) any pro�le � 6= bc has resilience �(�) � 0.
Proof. (1) follows from the de�nitions of � and the contagiousness condition, �rst
�(bc) � 2, and thus �(bc) � n� 2.
To prove (2), we assume that � is a pro�le of resilience �(�) � 1 and show that

� = bc. It su¢ ces to show that for every player i, �i = c.
2The author thanks Julien Manili for suggesting the generalized version of the theorem and its

proof.
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Construct any pro�le �0 that coincides with � for all players, except for some
player j 6= i (recall that n � 2) de�ne �0j � c. Since �0 is obtained from � by at
most 1 defection, ��s best response properties are sustained at �0.
(1) � is a Nash equilibrium, because �(�) � 1,
(2) �0i = �i is a best response of player i at �; and
(3) �0i is a best response to �

0, because �(�) � 1, and
(4) �0i = c, by the strict best response property of the contagious strategy c.

Thus,
�i = �

0
i = c. �

Therefore, we can summarize the possible resilience levels of all pure or mixed
strategy pro�les in a game with a contagious strategy as follows:

Resilience of pro�les � 6= bc in an n-person game with a contagious
strategy c:

�(�) = �1 or 0 �(�) = 1; 2:::; n� 3 �(�) = n� 2 or n� 1
�(�) = n+ 1 or n �(�) = n� 1; :::; 4; 3 �(�) = 2 or 1

� 6= bc ? bc
fragile or not Nash no �s dom�t or nearly dom�t

Remark 1. The theorem leads to the following conclusions.
A. From the �rst part of the theorem, a contagious equilibrium bc of a game is the

most resilient pro�le: �(bc) must be either n � 1 or n � 2. In other words bc must
be the unique dominant strategy equilibrium if one exists; or a nearly-dominant
strategy equilibrium, if dominant strategy equilibrium does not exist.
B. Every pro�le � 6= bc must be a fragile Nash equilibrium or not a Nash equilib-

rium.
C. For n > 2, bc must be the unique most resilient pro�le of the game in two

strong senses: it is the unique dominant strategy equilibrium if one exists, and it
is the unique nearly-dominant-strategy equilibrium otherwise. Moreover, c is the
only contagious strategy in the game.
D. If n = 2, the game may have a multiplicity of most-resilient equilibria.

3. prisoner�s dilemma games

II
x y

x 0,0 -6,0
I
y 0,-6 -5,-5

A traditional PD game is described by the payo¤ table above that speci�es
possible jail sentences to two suspects in a joint crime, I and II. While each of
the two suspects has no incentive to confess, a clever prosecutor can construct a
prisoner�s dilemma game in which rational sel�sh play by two guilty criminals leads
to confessions.

Example 1. Classical PD. Simultaneously, prior to their trial, the prosecutor
o¤ers each accused criminal two choices: y, confess and present convincing evidence
that the joint crime was committed; or x, deny the occurrence of the crime; It is
assumed that if they committed the crime, each one can play x or y; but if they
did not commit the crime, each can only play x. The judge agrees to impose the
jail sentences speci�ed in the table. Thus if both partners deny the crime, they
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will obtain the payo¤s u(x;x) = [u1(x;x); u2(x;x)] = [0; 0]. Similarly u(y;y) =
[�5;�5], and u(x;y) = [�6; 0].

The classical PD argument is that if they did not commit the crime, they can
only play (x;x) and be released. However, if they did commit the crime they will
play the (y;y) strategies and each would end up with a 5 year jail sentence. Why
would the guilty criminals choose (y;y)?
The game has two pure strategy equilibria: both players deny, bx = (x;x), and

both confess, by = (y;y). It is easy to see that the strategy y (weakly) dominates
the strategy x. Equivalently, expressed in terms of resilience, by is more resilient
than bx, �(by) = 1 > �(bx) = 0. Thus, even though bx is Pareto superior in payo¤s, it
is the less viable play of the game.

4. A Dilemma of more than two prisoners

The next example shows that resilience superiority goes further than just ruling
out weakly dominated strategies. It enables the imposition of jail sentences on guilty
parties in RICO trials with more than two conspirators, even when confession is not
a dominant strategy. In the example, M is a mastermind who might have recruited
ten conspirators, i = 1; 2; :::; 10, to commit a crime. The prosecutor�s objective is
to impose a 5 year jail sentence on M if the crime was committed, but to let M go
free otherwise. It is assumed that the judge will not impose jail sentence on any
person without evidence of the committed crime.

Example 2. Ten defendant RICO Trial: Prior to the start of the trial, simul-
taneously and privately the prosecutor o¤ers each of the ten accused conspirators
the options y or x as above. The judge agrees to follow the following punishment
scheme:
Case 1: complete denial: If all accused conspirators deny the crime, bx, then

no jail sentence will be imposed on anyone including M . Moreover the accused
conspirators will be declared innocent, with payo¤s ui(bx) = 1 for i = 1; 2; :::; 10. (
ui(bx) > 0 indicates that for these accused conspirators being declared innocent has
added value beyond the 0 jail time.)
Case 2: some confessions: If some of the conspirators i = 1; 2; :::; 10 confess,

then: every confessor among i = 1; :::; 10 is let go with no jail time, i.e., ui = 0;
and every denier among i = 1; :::; 10 is sentenced to 5 years, i.e., ui = �5. The
mastermind M is also sentenced to 5 years.

Remark 2. In the current example it is assumed that ui(bx) = 1, as opposed to
ui(bx) = 0 that was assumed in the classical two-defendant example. This serves
to illustrate the point that under the more nuanced resilience analysis, player will
play the strategy y, even when it does not dominate x.

How would the game above be played by the ten conspirators?
First, if the crime was not committed, they can only play the pro�le bx, and

everybody will be released. However, if the crime was committed the conspirators
game is more interesting.
The reader can verify that the game played by the ten guilty conspirators has

two pure strategy Nash equilibria: everybody confesses, by, and everybody denies,bx. As discussed informally below, it is easy to see that resilience explains why by is
signi�cantly more robust than bx:
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Any defection from bx to y, even by a single opponent, is a strong motivation for
any denier to also defect from bx to y. Adopting the terminology in the resilience
scale of Kalai and Kalai (2022), we refer to bx as fragile equilibrium.
On the other hand, only a defection by to x by all nine opponents can motivate

a confessor to also defect from by to x. Put di¤erently, "conditional on the choice
of y by one conspirator" it is a dominant strategy for any other conspirator to also
choose y. Adopting the terminology in Kalai and Kalai (2022), we refer to such aby as a nearly dominant strategy equilibrium.
As discussed formally in the next section, the near dominance property of by

versus the fragility of bx, serves as a focal point that incentivize conspirators to
confess. Indeed, it is not surprising that prosecutors prefer a larger number of
conspirators (e.g., greater than ten in the example above), as this increases the
signi�cance of both: (1) the fragility of bx and (2) the near-dominance property ofby.

5. Stability and resilience in pd games

The fragility of bx discussed above is in stark contrast to strong stability argu-
ments of traditional game theory that favor of bx: bx is a strict Nash equilibrium
that strictly Pareto dominates by, bx is strong in the sense of Aumann (1957), it
is coalition proof in the sense of Bernheim, Whinston, and Peleg (1987), and it is
trembling hand perfect in the sense of Selten (1975).
It is easy to see the rationale for the re�nements that are based on Pareto

superiority. First, when playing bx every conspirator�s payo¤ is 1. Moreover,
any other play of this game yields every conspirator a payo¤ of 0 or �5. Thus
any alternative play, chosen individually or even coordinated by a group, would
result in a strict loss to every participant. In this sense bx is the uniquely strict
Pareto superior pro�le in this game. This is a strong justi�cation for individual
and coalitional rationale for the play of bx.
However, a player who fears defections may ask the additional question: If some

opponent defects from bx and plays y, is it still optimal for me to play x? The
negative answer to this question may lead to an equilibrium "mutiny," in which the
equilibrium play of by becomes more plausible than that of bx. Thus, it is not clear
which of the two equilibria by or bx is more viable.
To assess the viability of the two, we compare the resilience of the two. It is

easy to check that the confession strategy y is contagious. Thus we may substitute
y for c in the resilience scale of contagious strategies from section 2 , to obtain the
resilience scale below for the confession equilibrium by, and for any pro�le � 6= by.
Resilience of pro�les � in an n-defendant prisoner�s dilemma game with

a contagious confession strategy y:
�(�) = �1 or 0 �(�) = 1; 2:::; n� 3 �(�) = n� 2 or n� 1
�(�) = n+ 1 or n �(�) = n� 1; :::; 4; 3 �(�) = 2 or 1
every � 6= by. ? only by.

not Nash or fragile Nash no �s dom�t or nearly dom�t

One can easily compare the resilience of the two equilibria in our 10 defendants
RICO game to see that �(by) = 8 defectors and �(bx) = 0 defectors. Equivalently
from the dual index of critical mass, it is rational for any �(by) = 2 (= 10 � 8) or
more players to play y, whereas the play of any other pro�le � is rational only if all
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�(�) = 10 (= 10�0) players play it. In other words, the play of by relies on having a
minimum of two confessors and it can withstand up to eight defectors, whereas the
play of bx relies on the participation of all ten deniers and it cannot withstand any
defectors. Notice that at n = 3, this viability advantage of by over any alternative
pro�les is strictly positive and increases with n.
The zero resilience of bx is also in direct contrast with Selten�s view, who considersbx as a trembling hand perfect equilibrium. The con�ict is due to the di¤erent notion

of robustness that underlies the de�nitions in Kalai and Kalai (2022) and the ones
in Selten (1975).
Selten�s view of robustness requires x to be a best response to pro�les ex in which

every player has an in�nitesimal probability of deviating from the choice of x. Kalai
and Kalai�s view on the other hand, is that x should be a best response to pro�lesex in which all players play x, except for a random small group of unrestricted
deviators. It is easy to see that x is an optimal strategy when all the opponents
are in�nitesimal deviators; but x is not optimal, even if only one opponent is an
unrestricted deviator.
In support of the reasoning above it is natural to assume that in the recent

publicized RICO trial, conspirators who chose to confess were motivated by fear of
unrestricted defectors, ones who may defect from x to y with signi�cant probability.
The substantial legal experience of the confessors in this trial suggests that their
fears were rational.

6. Fear-of-defection in related applications

In general terms, if fear-of-defection to a contagious strategy motivates players
to defect, then fear-of-defection can become a self-ful�lling equilibrium. But while
such equilibrium plays a positive role on the outcomes of prisoner�s dilemma games,
fear-of-defection often gives rise to negative social outcomes. This phenomenon was
cleverly addressed in the famous "The Only Thing We Have to Fear is Fear Itself"
speech, the inaugural presidential address in which F.D. Roosevelt tried to undo
an equilibrium of fear. Similarly, in many markets, fear of price drops motivates
further selling that leads to additional price drops. Fear of in�ation may lead to
excessive buying that accelerates the in�ation and higher levels of excessive buying.
Government insurance of bank deposits is an example of a mechanism to combat
bad outcomes that may result from equilibrium of fears.
Furthermore, beyond equilibrium explanations, fear of defection is directly jus-

ti�ed in games that are not fully speci�ed. In an example of centralized production
game discussed in Kalai and Kalai (2022), a single producer of chips, e.g., Taiwan,
chooses the type of chips to produce, and n users of chips, e.g., car manufactur-
ers, choose to produce items that use the type of chips the producer makes. The
equilibrium in which all players focus on the same type of chips is fragile, because
the chip users fear a switch by the producer to another type of chips (ones that
cannot be used in their products). Their fear may be based on concrete physical
or political issues that are not modeled in the game. For example, raw material
needed for the production of the equilibrium type of chips is depleted, or a foreign
entity takes control of the production facilities. A more complete description of
the game that takes all physical and political concerns into account is most-often
intractable.
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7. conclusion, past and future research

Mechanism designers and social planners can learn from prosecutors, and use
the more nuanced equilibrium considerations in their designs. In our example
of a RICO trial, the prosecutor constructs a punishment scheme that results in
two possible equilibrium play of guilty conspirators: a higher resilience equilibrium
in which they all confess, by, versus lower resilience ones in which they deny the
charges. The prosecutor�s goals are accomplished under the assumption that the
conspirators would choose to play the one of higher resilience.
A small number of theoretical mechanism-design papers applied and studied ap-

plications similar to the approach of the prosecutor above. One early application is
in the design of distributed computing systems that should work properly despite
the possibility of a bounded number of faulty components, see for example Goldre-
ich et al (1998). Eliaz (2002) showed that a mechanism designer who uses a resilient
game theoretic equilibrium can perform "fault tolerant implementation," i.e., imple-
ment social economic goals even in the presence of a bounded number of irrational
or poorly informed economic agents. Abraham et al (2006) were �rst to coin the
term resilient to mean the ability to withstand opponent defections. Similar to
Eliaz, they showed that resilient equilibria implement computer science tasks, even
in the presence of a bounded number of agents who may be faulty. Schelling (1973)
studied cardinal computations of resilience in an n-prisoner�s dilemma game. Kalai
and Kalai (2022) introduced and studied the measure of resilience for the strate-
gic equilibria of general n-person games, together with its dual measure of critical
mass.
Prosecutors who prosecute RICO trials deal with practical and theoretical issues

that go well beyond our analysis. The colloquial saying that "the �rst to squeal
gets the best deal" captures the fact that confessions in such trials are decided at
critical points in continuous time. Moreover, the games are subject to unfolding
incomplete information on the part of the prosecutor and all the participants. For
example, based on earlier confession/denial decisions and information provided in
earlier confessions, the prosecutor must decide at any point in time on: (1) to
whom, if at all, she should o¤er the next deal, and (2) what should be the terms of
the deals to follow.
As known from earlier papers on PD games, dynamic play with random moves

and incomplete information may have drastic e¤ect on the incentives of conspirators
to confess, see for example Kalai (1981) and Nishihara (1997). The resilience index,
used in the analysis of this paper was restricted to one-shot simultaneous-move
games of complete information. A straightforward extension of the same analysis
to general dynamic pre-trial games, would requires a generalization of the Kalai
and Kalai (2022) resilience/critical mass indices to dynamic games.
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