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1 Extended proofs and derivations

Proof of Proposition 1. As explained in the main text, when the traders submit affine demand

schedules with parameters (a, b̂, ĉ), the equilibrium price is equal to

p =
α+ βb̂

1 + βĉ
+

βa

1 + βĉ
z (1)

where

z ≡ θ + ω, (2)

with ω ≡ f(y)η − u/(βa). The information about θ contained in the equilibrium price is thus the

same as the one contained in a public signal whose noise ω has precision1

τω(a) ≡ β2a2yτuτη
β2a2τu + yτη

. (3)

In turn, this implies that the equilibrium trades xi = asi + b̂− ĉp are affine functions of the traders’

exogenous private information si and the endogenous public information z contained in the price.

That is, when the endogenous public information contained in the price is equivalent to z, a trader

with private signal si purchases an amount of the asset equal to

xi = asi + b+ cz

where

b = b̂− ĉα+ βb̂

1 + βĉ
(4)

and

c = − βaĉ

1 + βĉ
. (5)

For each vector (a, b̂, ĉ) describing the traders’ demand schedules, there exists a unique vector (a, b, c)

describing the traders’ equilibrium trades as a function of their (exogenous) private information, si,

and the (endogenous) public information, z, and vice versa. Hereafter, we find it more convenient

to characterize the equilibrium use of information in terms of the vector (a, b, c) describing the

equilibrium trades. When the individual trades are given by xi = asi + b + cz, the aggregate trade

is equal to

x̃ =

∫
xidi = a(θ + f(y)η) + b+ cz.

Using the fact that z ≡ θ + f(y)η − u/(βa), we thus have that

x̃ = a(z +
u

βa
) + b+ cz = (a+ c)z +

u

β
+ b.

Using the expression for the inverse aggregate supply function p = α − u + βx̃, we then have that

the equilibrium price can be expressed as follows:

p = α+ βb+ β(a+ c)z. (6)

1To derive τω(a) we use the fact that f(y) = 1/
√
y.
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Next, observe that

E[θ|Ii, p] = E[θ|si, z] =
[
Cov(θ, si) Cov(θ, z)

] [ V ar(si) Cov(si, z)

Cov(si, z) V ar(z)

]−1 [
si − E[si]

z − E[z]

]

=
[
σ2
θ σ2

θ

] [ σ2
θ + σ2

ε σ2
θ + f(y)2σ2

η

σ2
θ + f(y)2σ2

η σ2
θ + σ2

ω(a)

]−1 [
si − E[si]

z − E[z]

]
,

where σ2
θ ≡ τ−1

θ , σ2
ω(a) ≡ τω(a)−1, σ2

η ≡ τ−1
η , and σ2

ε ≡ τ−1
ε . Substituting for the inverse of the

variance-covariance matrix, we have that

E[θ|si, z] =
1

(σ2
θ + σ2

ε )(σ
2
θ + σ2

ω(a))− (σ2
θ + f(y)2σ2

η)
2
×

[
σ2
θ σ2

θ

] [ σ2
θ + σ2

ω(a) −(σ2
θ + f(y)2σ2

η)

−(σ2
θ + f(y)2σ2

η) σ2
θ + σ2

ε

][
si − E[si]

z − E[z]

]
.

Expanding the quadratic form, we have that

E[θ|si, z] =
σ2
θ

(
σ2
ω(a)− f(y)2σ2

η

)
(σ2
θ + σ2

ε )(σ
2
θ + σ2

ω(a))− (σ2
θ + f(y)2σ2

η)
2
(si − E[si])

+
σ2
θ

(
σ2
ε − f(y)2σ2

η

)
(σ2
θ + σ2

ε )(σ
2
θ + σ2

ω(a))− (σ2
θ + f(y)2σ2

η)
2
(z − E[z]).

Using the fact that E[si] = E[z] = 0, and replacing σ2
θ with τ−1

θ , σ2
ω(a) with τω(a)−1, σ2

η with τ−1
η ,

σ2
ε with τ−1

ε , and f(y) = 1/
√
y, we have that

E[θ|si, z] = γ1(τω(a))si + γ2(τω(a))z

where, for any τω,

γ1(τω) ≡ τεyτη (yτη − τω)

y2τ2
η (τω + τε + τθ)− τωτε (τθ + 2yτη)

(7)

and

γ2(τω) ≡
τω
(
y2τ2

η − τεyτη
)

y2τ2
η (τω + τε + τθ)− τωτε (τθ + 2yτη)

=

(
1− γ1(τω)

τθ + yτη
yτη

)
τω

τω + τθ
. (8)

Now recall that optimality requires that the equilibrium trades satisfy

xi =
1

λ
(E[θ|si, z]− p) .

Using the fact that p = α+βb+β(a+ c)z, and the characterization of E[θ|si, z] above, we thus have

that

xi =
1

λ
[γ1(τω(a))si − (α+ βb) + (γ2(τω(a))− β(a+ c)) z] .

The sensitivity of the equilibrium trades to private information must thus satisfy

a =
γ1(τω(a))

λ
. (9)

The sensitivity of the equilibrium trades to the endogenous public signal contained in the equilibrium
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price must satisfy

c =
1

λ
(γ2(τω(a))− β(a+ c)) .

The constant b in the equilibrium trades must satisfy

b = −α+ βb

λ
. (10)

Replacing the expression for γ1(τω(a)) in (7) into (9), we thus conclude that the sensitivity a∗ of the

equilibrium demand schedules to the traders’ private information must solve the following equation

a∗ =
1

λ

K(τω(a∗))

Λ(τω(a∗))
, (11)

where, for any τω,

K(τω) ≡ τεyτη (yτη − τω) (12)

and

Λ(τω) ≡ y2τ2
η (τω + τε + τθ)− τωτε (τθ + 2yτη) . (13)

Using (8), along with the fact that γ1(τω(a)) = λa, we have that the sensitivity of the equilibrium

trades to the endogenous public signal must satisfy

c =
1

β + λ

[(
1− λaτθ + yτη

yτη

)
τω(a)

τω(a) + τθ
− βa

]
. (14)

Using (10), in turn we have that the constant b in the equilibrium trades is given by

b = − α

β + λ
. (15)

Finally, inverting the relationship between b and b̂ and c and ĉ using (4) and (5), and using the

expression for γ2(τω(a∗)), we have that, given a∗, the values of ĉ∗ and b̂∗ satisfy ĉ∗ = Ĉ(a∗) and

b̂∗ = B̂(a∗), where, for any a, the functions Ĉ and B̂ are given by

Ĉ(a) ≡ −τω(a)yτη(1− λa− βa)− λaτθτω(a)− βayτητθ
λβayτη (τω(a) + τθ − τθτω(a)) + βτω(a)yτη

, (16)

and

B̂(a) ≡ α

β + λ

(
λĈ(a)− 1

)
. (17)

To complete the proof, it thus suffices to show that equation (11) admits a unique solution and that

such a solution satisfies 0 < a∗ < 1/λ. To see this, use the fact that

τω(a) =
β2a2yτητu
β2a2τu + yτη

along with the fact that γ1(τω(a)) is given by the function in (7) to rewrite equation (11) as follows:

a =
1

λ

τεy
2τ2
η (β2a2τu + yτη)− β2a2yτuτητεyτη

y2τ2
η (β2a2yτuτη + (τε + τθ) (β2a2τu + yτη))− β2a2yτuτητε (τθ + 2yτη)

. (18)

We thus have that a∗ must solve the following cubic equation

0 = λβ2τua
3
[
y3τ3

η + y2τ2
η (τε + τθ)− yτητε (τθ + 2yτη)

]
+ λay3τ3

η (τε + τθ)− τεy3τ3
η . (19)
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Note that, in a cubic equation of the form Ax3 +Bx2 + Cx+D = 0, if

∆ ≡ 18ABCD − 4B3D +B2C2 − 4AC − 27A2D2 < 0,

then the equation has a unique real root. In our case, B = 0 and C > 0 and, as a result, ∆ =

−4AC − 27A2D2. Furthermore, using the fact that τε ≡ yτeτη/(τe + τη), we have that

A = λβ2τu
(
y3τ3

η + y2τ2
η (τε + τθ)− yτητε (τθ + 2yτη)

)
∝ yτη

(
y2τ2

η + yτητθ − τετθ − τεyτη
)

∝ (τθ + yτη)(yτη − τε) ∝ yτη −
yτeτη
τe + τη

∝ τη
τe + τη

> 0.

Therefore ∆ < 0, and hence the above cubic equation has a unique real root. Furthermore, because

D is negative, the unique real root is positive. Replacing a = 1/λ into the cubic equation, we have

that

β2τu
1

λ2

(
y3τ3

η + y2τ2
η (τε + τθ)− yτητε (τθ + 2yτη)

)
+ y3τ3

η (τε + τθ)− τεy3τ3
η

=β2τu
yτη
λ2

(
y2τ2

η + yτητθ − τετθ − τεyτη
)

+ y3τ3
η τθ > 0.

This implies that 0 < a∗ < 1/λ. Q.E.D.

Derivation of welfare under FB allocation. Because
∫ 1

0

(
x2
i

)
di >

(∫ 1
0 xidi

)2
, we have that W

is maximal when xi = xo for all i, with

xo ≡ θ − α+ u

β + λ
.

Q.E.D.

Derivation of welfare losses. Ex-post welfare is equal to

W o = θxo − λ

2
(xo)2 −

(
α− u+ β

xo

2

)
xo =

β + λ

2
(xo)2.

It follows that

WL =
β + λ

2
E
[
(xo)2

]
− E

[
(θ − α+ u) x̃− β x̃

2

2
− λ

2

∫ 1

0
x2
i di

]
.

Replacing xo = θ−α+u
β+λ into the above expression and using the fact that E

[∫ 1
0 x

2
i di
]

= E
[
E[x2

i |x̃]
]
,

we have that

WL =
β + λ

2
E
[
(xo)2

]
− 1

2
E
[
2 (β + λ) x̃xo − βx̃2 − λ

∫ 1

0
x2
i di

]
=

β + λ

2
E
[
(xo)2

]
+

1

2
E
[
(β + λ)x̃2 − 2xox̃(β + λ)− λx̃2 + λE[x2

i |x̃]
]

=
β + λ

2
E[(x̃− xo)2] +

λ

2
E[(xi − x̃)2].

Q.E.D.

Proof of Lemma 1. The same arguments as in the proof of Proposition 1 imply that, when

the traders submit demand schedules of the form xi = asi + b̂ − ĉp, for some (a, b̂, ĉ), the trades
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induced by market clearing can be expressed as a function of the endogenous public information z

generated by the market-clearing price by letting xi = asi + b+ cz where z ≡ θ + f(y)η − u/(βa) is

the endogenous information about θ contained in the equilibrium price, and where the noise in the

endogenous signal has precision τω(a) =
(
β2a2yτuτη

)
/
(
β2a2τu + yτη

)
.

Furthermore, the values of b and c are given by (4) and (5). Using the above representation, we

have that the aggregate volume of trade when the demand schedules are given by (a, b̂, ĉ) is given by

x̃ = a(θ + f(y)η) + b+ cz and hence ex-ante welfare is given by

E[W ] = E
[
(θ − α+ u) (a(θ + f(y)η) + b+ cz)− β (a(θ+f(y)η)+b+cz)2

2 −
∫ 1

0
λ
2 (asi + b+ cz)2 di

]
.

Note that
∂E[W ]

∂b
= E [(θ − α+ u)− β (a(θ + f(y)η) + b+ cz)− λ (as+ b+ cz)] = −α− (β + λ)b,

∂2E[W ]

∂b2
= −(β + λ) < 0,

∂E[W ]

∂c
= E [z (θ − α+ u)− β (a(θ + f(y)η) + b+ cz) z − λz (as+ b+ cz)] ,

∂2E[W ]

∂c2
= E

[
−βz2 − λz2

]
< 0,

and ∂2E[W ]/∂c∂b = 0. Hence E[W ] is concave in b and c . For any a, the optimal values of b and c are

thus given by the FOCs ∂E[W ]/∂b = 0 and ∂E[W ]/∂c = 0 from which we obtain that b = −α/(β+λ)

and

E
[
z (θ + u)− β (a(θ + f(y)η)) z − βcz2 − λazs− λcz2

]
= 0.

The last condition can be rewritten as

Cov [(θ + u− βa(θ + f(y)η)) , z]− (β + λ) cV ar(z)− λaCov(z, s) = 0

from which we obtain that

c =
Cov [(θ + u− βa(θ + f(y)η)) , z]

(β + λ)V ar(z)
− λaCov(z, s)

(β + λ)V ar(z)
.

Using the fact that z ≡ θ + f(y)η − u
βa and s = θ + 1√

y (η + e), we have that

V ar(z) =
1

τθ
+

1

τω(a)
= σ2

θ + σ2
ω(a),

where σ2
θ = 1/τθ and σ2

ω(a) = 1/τω(a). Furthermore,

Cov [(θ + u− βa(θ + f(y)η)) , z] = Cov
[
(θ + u− βa(θ + f(y)η)) , θ + f(y)η − u

βa

]
= Cov [θ(1− βa), θ] + Cov

[
u,− u

βa

]
− Cov [βaf(y)η, f(y)η]

= (1− βa)σ2
θ −

σ2
u
βa − βaf(y)2σ2

η,
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and Cov [z, s] = σ2
θ + f(y)2σ2

η. Hence,

c =
(1− βa)σ2

θ −
σ2
u
βa − βaf(y)2σ2

η

(β + λ) (σ2
θ + σ2

ω(a))
−

λa(σ2
θ + f(y)2σ2

η)

(β + λ) (σ2
θ + σ2

ω(a))

=
1

β + λ

[(
1− λa− λa τθ

yτη

)
τω(a)

τω(a) + τθ
− βa

]
.

We conclude that, given a, the optimal values for c and b are given by the same functions in (14)

and (15) that characterize the parameters c and b as a function of a under the equilibrium usage of

information. To go from the optimal trades to the demand schedules that implement them, it then

suffices to use the functions defined by (4) and (5). We thus conclude that, for any choice of aT , the

optimal values of ĉT and b̂T are given by the functions (16) and (17), as claimed. Q.E.D.

Derivation of formula for welfare losses. As shown above, the welfare losses can be expressed

as

WL =
β + λ

2
E[(x̃− xo)2] +

λ

2
E[(xi − x̃)2],

where x0 is given by

xo ≡ θ + u− α
β + λ

. (20)

We have also shown above that, for any vector (a, b̂, ĉ) describing the demand schedules, there exists

a unique vector (a, b, c) describing the induced trades xi = asi + b+ cz at the market-clearing price,

and vice versa, where z ≡ θ + f(y)η − u
βa is the endogenous signal contained in the market-clearing

price. This also means, when the traders submit the demand schedules corresponding to the vector

(a, b̂, ĉ), the aggregate volume of trade at the market-clearing price can be expressed as a function of

(θ, η, z) as follows: x̃ = a(θ + f(y)η) + b+ cz. Therefore, the dispersion of individual trades around

the aggregate trade can be expressed as

E[(xi − x̃)2] = E[a2f(y)2e2
i ] =

a2

yτe
.

Next, use the fact that, for any a, the optimal values of c and b are given by (14) and (15),

along with the fact that z ≡ θ + f(y)η − u
βa , and the fact that f(y) = 1/

√
y, to obtain that

x̃ = a(θ + f(y)η) + b+ cz =
λa(θ + f(y)η) + u− α+

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
z

β + λ
.

Combining the expression for x̃ derived above with the expression for x0 in (20), we have that

E[(x̃− xo)2] = E


λa(θ + f(y)η) + u− α+

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
z

β + λ
− θ − α+ u

β + λ

2
 .

Simplifying, we have that

E[(x̃− xo)2] = E

(λaf(y)η
β+λ +

(
1−λa−λa τθ

yτη

)
τω(a)

τω(a)+τθ
(z−θ)

β+λ −
[
1−λa−

(
1−λa−λa τθ

yτη

)
τω(a)

τω(a)+τθ

]
θ

β+λ

)2
 .
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Using the fact that f(y) = 1/
√
y, and that E[ωθ] = E[ηθ] = 0, we then have that

E[(x̃− xo)2] =

((
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

)2

(β + λ)2 τω(a)
+
λ2a2 + 2λa

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

(β + λ)2 yτη

+

(
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

)2

(β + λ)2 τθ
.

Replacing the expressions for E[(xi − x̃)2] and E[(x̃ − xo)2] derived above into the formula for the

welfare losses, we then have that, for any a, when b̂ and ĉ are set optimally, the welfare losses can

be expressed as

WL(a, τω(a)) =

[(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

]2

2 (β + λ) τω(a)
+
λ2a2 + 2λa

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

2 (β + λ) yτη

+

[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

]2

2 (β + λ) τθ
+
λa2

2yτe
. (21)

as claimed in the main text. Q.E.D.

Proof of Proposition 2. As shown above, once b and c are set optimally as a function of a to

minimize the welfare losses, the latter can be expressed as a function of a and τω(a), with the formula

for WL(a, τω(a)) given by (21), with τω(a)=(β2a2τuτηy)/(β2a2τu + yτη). The socially optimal level

of a is thus the one that minimizes WL(a, τω(a)) and is given by the FOC

dWL(a, τω(a))

da
=

∂WL(a, τω(a))

∂a
+
∂WL(a, τω(a))

∂τω(a)

∂τω(a)

∂a
= 0.

Note that

∂WL(a, τω(a))

∂a
= −

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

(
λ
yτη+τθ
yτη

τω(a)
τω(a)+τθ

)
(β + λ) τω(a)

+
λ2a+ λ

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
− λ2a

yτη+τθ
yτη

τω(a)
τω(a)+τθ

(β + λ) yτη

+

[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

] (
−λ+ λ

(
yτη+τθ
yτη

)
τω(a)

τω(a)+τθ

)
(β + λ) τθ

+
λa

yτe
,
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and that

∂WL(a, τω(a))

∂τω(a)
=

(
1− λa− λa τθ

yτη

)2

2 (β + λ)

τθ − τω(a)

(τω(a) + τθ)
3 +

λa
(

1− λa− λa τθ
yτη

)
(β + λ) yτη

τθ

(τω(a) + τθ)
2

−

[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

]
(β + λ) τθ

(
1− λa− λa τθ

yτη

)
τθ

(τω(a) + τθ)
2 .

Also note that

∂τω(a)

∂a
=

2β2ay2τ2
η τu

(β2a2τu + yτη)2
.

Using the expressions above, we obtain that

dWL(a, τω(a))

da
= −

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

(
λ
yτη+τθ
yτη

τω(a)
τω(a)+τθ

)
(β + λ) τω(a)

+
λa

yτe
+ L(a)

+
λ2a+ λ

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
− λ2a

yτη+τθ
yτη

τω(a)
τω(a)+τθ

(β + λ) yτη

+

[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

] (
−λ+ λ

(
yτη+τθ
yτη

)
τω(a)

τω(a)+τθ

)
(β + λ) τθ

where

L(a) ≡
β2ay2τ2

η τu

(β2a2τu + yτη)2


(

1− λa− λa τθ
yτη

)2

(β + λ)

τθ − τω(a)

(τω(a) + τθ)
3 +

2λa
(

1− λa− λa τθ
yτη

)
(β + λ) yτη

τθ

(τω(a) + τθ)
2

−
2
[
1− λa−

(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ

]
(β + λ) τθ

(
1− λa− λa τθ

yτη

)
τθ

(τω(a) + τθ)
2

 .

Hence, the first-order-condition dWL(a, τω(a))/da = 0 is equivalent to

0 = λaτε

(
(yτη + τθ)

2 τω(a)

τω(a) + τθ

)
+ λayτητε (τω(a) + τθ)− 2λaτε (yτη + τθ) τω(a)

+λaτε
(τω(a) + τθ)

τθ

(
yτη − (yτη + τθ)

τω(a)

τω(a) + τθ

)2

+ λayτητε
yτη (τω(a) + τθ) (β + λ)

λyτe

+yτητε
(β + λ) (τω(a) + τθ) yτηL(a)

λ
− yτητε (yτη − τω(a)) ,

from which we obtain that

yτητε (yτη − τω(a)) = λa
{
y2τ2

η τε − τω(a)τε (τθ + 2yτη) + (τω(a) + τθ) y
2τ2
η

+yτητε
yτη (τω(a) + τθ)β

λyτe
+ yτητε

(β + λ) (τω(a) + τθ) yτηL(a)

λ2a

}
.

Using the definitions of the K(·), Λ(·), ∆(·), and Ξ(·) functions in the main text, we then have that
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that aT must solve

aT =
1

λ

K(τω(a))

Λ(τω(a)) + Ξ(a) + ∆(a)
.

It is straightforward to verify that

dWL(a, τω(a))

da

∣∣∣∣
a= 1

λ

=
λτθ

(β + λ) yτη(τω(a) + τθ)

yτη
β2a2τu + yτη(

1− β2a2τu
(β2a2τu + yτη)

× τθ
(τω(a) + τθ)

)
+
λa

yτe
> 0,

and that

dWL(a, τω(a))

da

∣∣∣∣
a=0

=

τω(a)
τω(a)+τθ

(
−λyτη+τθ

yτη

τω(a)
τω(a)+τθ

)
(β + λ) τω(a)

+
λ
(

τω(a)
τω(a)+τθ

)
(β + λ) yτη

+

(
1− τω(a)

τω(a)+τθ

)(
−λ+ λ

(
yτη+τθ
yτη

)
τω(a)

τω(a)+τθ

)
(β + λ) τθ

∝ τω(a)

yτη
−1 = − yτη

β2a2τu + yτη
< 0,

which implies that 0 < aT < 1/λ, as claimed in the proposition. Q.E.D.

Optimal sensitivity to private information when agents do not learn from prices. In

the cursed economy, each trader receives a private signal si = θ+ f(y)η + f(y)ei︸ ︷︷ ︸
≡εi

and a public signal

z = θ+f(y)η + χ︸ ︷︷ ︸
≡ζ

, and believes p to be orthogonal to
(
θ, η, (ei)

i=1
i=0

)
. Following steps similar to those

leading to Proposition 1 in the main text, we have that E[θ|si, z] = γ1si + γ2z,

where

γ1 ≡
τεyτη (yτη − τζ)

y2τ2
η (τζ + τε + τθ)− τζτε(τθ + 2yτη)

and

γ2 ≡
yτητζ (yτη − τε)

y2τ2
η (τζ + τε + τθ)− τετζ(τθ + 2yτη)

=

(
1− γ1

τθ + yτη
yτη

)
τζ

τζ + τθ
.

Observe that the cursed-equilibrium demand schedules must satisfy

xi =
1

λ
(E[θ|si, z]− p) . (22)

Now let xi = a∗exosi + b̂∗exo + ĉ∗exoz − d̂∗exop denote the cursed-equilibrium demand schedules. From

the derivations above, we have that a∗exo = γ1/λ, b̂∗exo = 0, ĉ∗exo = γ2/λ, and d̂∗exo = 1/λ. Using the

formula for γ1 above we have that the formula for a∗exo is equivalent to

a∗exo =
1

λ

K(τζ)

Λ(τζ)
, (23)

as claimed in the main text.

Now suppose that, given a, the planner is constrained to choose (b̂, ĉ, d̂) to maintain the same
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relationship between a and (b̂, ĉ, d̂) as between a∗exo and (b̂∗exo, ĉ
∗
exo, d̂

∗
exo) in the cursed equilibrium.

Using the fact that

γ2 =

(
1− γ1

τθ + yτη
yτη

)
τζ

τζ + τθ
,

and the fact that γ1 = a∗exoλ, we have that, in the cursed equilibrium, the relationship between a∗exo

and (b̂∗exo, ĉ
∗
exo, d̂

∗
exo) is given by b̂∗exo = 0,

ĉ∗exo =
1

λ

(
1− λa∗exo

τθ + yτη
yτη

)
τζ

τζ + τθ
,

and d̂∗exo = 1/λ. The above properties imply that, in the cursed economy, for any choice of a, the

planner is constrained to select demand schedules of the form

xi =
1

λ

(
λasi +

(
1− λa (τθ + yτη)

yτη

)
τζ

τζ + τθ
z − p

)
. (24)

The planner then chooses a to minimize the welfare losses

WL =
(β + λ)

2
E[(x̃− xo)2] +

λ

2
E[(xi − x̃)2]

under the the above demand schedules, taking into account the market-clearing condition.

Following steps similar to those in the baseline economy, and using the market-clearing condition,

we have that, when the traders’ demand schedules are given by (24),

(β + λ)

2
E[(x̃− xo)2] =

((
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

)2

(β + λ)2 τζ
+
λ2a2 + 2λa

(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

(β + λ)2 yτη

+

(
1− λa−

(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

)2

(β + λ)2 τθ
and

λE[(xi − x̃)2]

2
=

λa2

2yτe
.

This means that, for any a, the welfare losses are equal to

WL =

[(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

]2

2 (β + λ) τζ
+
λ2a2 + 2λa

(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

2 (β + λ) yτη

+

[
1− λa−

(
1− λa(yτη+τθ)

yτη

)
τζ

τζ+τθ

]2

2 (β + λ) τθ
+
λa2

2yτe
.

Following steps similar to those in the proof of Proposition 2, and letting

Λ(τζ) ≡ y2τ2
η (τζ + τε + τθ)− τζτε (τθ + 2yτη) ,

we then have that the value of a that minimizes the above welfare losses is equal to
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aTexo =
1

λ

K(τζ)

Λ(τζ) +
τεyτ2η(τζ+τθ)β

λτe

as claimed in the main text. Q.E.D. Proof of claim that c∗ = 0 if and only if ∆(a∗)+Ξ(a∗) = 0.

Recall that c∗ is given by

c∗ =
1

β + λ

((
1− λa∗ − λa∗ τθ

yτη

)
τω(a∗)

τθ + τω(a∗)
− βa∗

)
=

1

β + λ
(γ2(a∗)− βa∗) ,

whereas the externalities are given by

∆(a) ≡ −
τεβ2ay4τ4η τu

(
1−λa−λa τθ

yτη

)2
λ2a(β2a2τu+yτη)2(τω(a)+τθ)

and Ξ(a) ≡ τεyτ2η (τω(a)+τθ)β

λτe
.

We prove the lemma in two steps. First we show that, if c∗ = 0, then Ξ(a∗)+∆(a∗) = 0. To see this,

use the formula for c∗ above to verify that, when c∗ = 0, then βa∗ = γ2(a∗). Using the fact that

a∗ =
1

λ

τεyτη (yτη − τω(a∗))

y2τ2
η (τω(a∗) + τε + τθ)− τω(a∗)τε (τθ + 2yτη)

,

γ2(a∗) =
τω(a∗)

(
y2τ2

η − τεyτη
)

y2τ2
η (τω(a∗) + τε + τθ)− τω(a∗)τε (τθ + 2yτη)

,

τε =
yτeτη
τe + τη

,

τω(a∗) =
β2a∗2yτητu
β2a∗2τu + yτη

,

we then have that, when c∗ = 0,

β =
γ2(a∗)

a∗
= λ

τω(a∗)
(
y2τ2

η − τεyτη
)

τεyτη (yτη − τω(a∗))
= λ

τω(a∗)
(
yτη − yτeτη

τe+τη

)
yτeτη
τe+τη

(yτη − τω(a∗))
.

Using the formula for τω(a∗) we then have that

β = λ

β2a∗2yτητu
β2a∗2τu+yτη

(
yτ2η
τe+τη

)
yτeτη
τe+τη

(
yτη − β2a∗2yτητu

β2a∗2τu+yτη

) = λ
β2a∗2yτητuτη

τe
(
y2τ2

η

) = λ
β2a∗2τu
τey

from which we obtain that

β =
yτe

λa∗2τu
. (25)

Furthermore, using the expression for c∗ above, we have that, when c∗ = 0 ,(
1− λa∗ − λa∗ τθ

yτη

)
τω(a∗)

τθ + τω(a∗)
= βa∗.

Replacing the above expression into the formula for the two externalities, we thus have that
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∆(a∗) + Ξ(a∗) =
τεyτ

2
η (τω(a∗) + τθ)β

λτe
− τε

y2τ2
η

λ2a∗
(τθ + τω(a∗))

a∗τu
.

Using (25), we then have that

∆(a∗) + Ξ(a∗) =
τεyτ

2
η (τω(a∗) + τθ)

yτe
λa2τu

λτe
−
τεy

2τ2
η

λ2a∗
(τθ + τω(a∗))

a∗τu

=
τεy

2τ2
η

λ2a∗

(
(τω(a∗) + τθ)

a∗τu
− (τθ + τω(a∗))

a∗τu

)
= 0.

Next, we prove the converse. We show that, if ∆(a∗) + Ξ(a∗) = 0, then c∗ = 0. To see this note that,

when the sum of the two externalities is zero, then

∆(a∗) + Ξ(a∗) =
τεyτ

2
η (τω(a∗) + τθ)β

λτe
−
τεy

4τ4
ηβ

2a∗τu

(
1− λa∗ − λa∗ τθyτη

)2

λ2a∗(β2a∗2τu + yτη)2 (τω(a∗) + τθ)
= 0.

Using the various expressions above we then have that

(τω(a∗) + τθ)β

yτe
− 1

λa∗
τω(a∗)2

β2a∗3τu

(
1− λa∗ − λa∗ τθyτη

)2

τω(a∗) + τθ
= 0

or, equivalently,
βa∗

yτe
− 1

γ1(a∗)

γ2(a∗)2

β2a∗2τu
= 0,

from which we obtain that

βa∗ =
τω(a∗) (yτη − τε)
τε (yτη − τω(a∗))

yτe
β2a∗2τu

γ2(a∗) =
β2a∗2τu
τey

yτe
β2a∗2τu

γ2(a∗) = γ2(a∗).

Hence, if ∆(a∗) + Ξ(a∗) = 0, it must be that βa∗ = γ2(a∗). This means that c∗ = 0. Q.E.D.

Proof of Proposition 3. Under the proposed policy, each trader’s demand schedule must satisfy

the optimality condition

Xi(p; Ii) =
1

λ+ δ
(E[θ|Ii, p]− (1 + tp)p+ t0) .

For any vector (a, b̂, ĉ), when all traders submit affine demand schedules xi = asi + b̂ − ĉp, the

equilibrium price then continues to satisfy the same representation as in (1) but with (a∗, b̂∗, ĉ∗)

replaced by (a, b̂, ĉ). This also means that the equilibrium trades can be expressed as a function of the

endogenous public signal z, as in the laissez-faire equilibrium with no policy. Letting xi = asi+b+cz

denote the trades generated by the demand schedules xi = asi + b̂ − ĉp (with z representing the

endogenous public signal contained in the market-clearing price), we then have that the functions

that map the coefficients ĉ and b̂ in the demand schedules into the coefficients c and b in the induced

trades continue to be given by (5) and (4). Using the fact that E[θ|si, z] = γ1(τω(a))si + γ2(τω(a))z,

with the functions γ1(·) and γ2(·) as defined in (7) and (8), along with the fact that the market-

clearing price satisfies p = α + βb + β(a + c)z as shown in (6), we then have that the equilibrium
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trades must satisfy

xi =
1

λ+ δ
[γ1(τω(a))si + γ2(τω(a))z − (1 + tp)α− (1 + tp)βb− (1 + tp)β(a+ c)z + t0]

=
1

λ+ δ
{γ1(τω(a))si − (1 + tp) (α+ βb) + [γ2(τω(a))− (1 + tp)β(a+ c)] z + t0} .

The sensitivity of the equilibrium trades to private information si under the proposed policy thus

satisfies a = γ1(τω(a))/(λ + γ). Using the formula for γ1 in (7), we then have that the equilibrium

value of a under the proposed policy is the unique solution to the following equation:

a =
1

λ+ δ

τεy
2τ2
η − τω(a)τεyτη

y2τ2
η (τω(a) + τε + τθ)− τω(a)τε (τθ + 2yτη)

.

The equilibrium value of b is given by the unique solution to

b =
−(1 + tp) (α+ βb) + t0

λ+ δ
which is equal to

b =
t0 − (1 + tp)α

λ+ δ + (1 + tp)β
.

The equilibrium value of c, instead, is given by the unique solution to

c =
1

λ+ δ
[γ2(τω(a))− (1 + tp)β(a+ c)]

which is equal to

c =
γ2(τω(a))− (1 + tp)βa

λ+ δ + (1 + tp)β
.

Now recall that the sensitivity aT of the efficient trades to private information is given by the unique

solution to

a =
1

λ

τεyτη(yτη − τω(a))

y2τ2
η (τε + τθ + τω(a))− τω(a)τε (τθ + 2yτη) + Ξ(a) + ∆(a)

.

Therefore, the equilibrium value a under the proposed policy coincides with the efficient level aT if

and only if δ satisfies

(λ+ δ)
[
y2τ2

η

(
τω(aT ) + τε + τθ

)
− τω(aT )τε (τθ + 2yτη)

]
= λ

[
y2τ2

η

(
τε + τθ + τω(aT )

)
− τω(aT )τε (τθ + 2yτη) + Ξ(aT ) + ∆(aT )

]
,

from which we obtain that

δ =
λ
(
Ξ(aT ) + ∆(aT )

)
y2τ2

η (τω(aT ) + τε + τθ)− τω(aT )τε (τθ + 2yτη)
.

Now recall that, given aT , the other two coefficients cT and bT describing the efficient trades are

given by the functions in (14) and (15), implying that

cT =
1

β + λ

((
1− λaT − λaT τθ

yτη

)
τω(aT )

τω(aT ) + τθ
− βaT

)
and bT = −α/(β + λ). Hence, for the equilibrium levels of c and b under the proposed policy to
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coincide with the efficient levels it must be that
γ2(τω(aT ))− (1 + tp)βa

T

λ+ δ + (1 + tp)β
=

1

β + λ

((
1− λaT − λaT τθ

yτη

)
τω(aT )

τω(aT ) + τθ
− βaT

)
and

t0 − (1 + tp)α

λ+ δ + (1 + tp)β
= − α

β + λ

It is easy to see that the above two equations are satisfied when

tp =
γ2(τω(aT ))− λ+δ+β

β+λ

[(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
− βa

]
− βaT

β
{

1
β+λ

[(
1− λa− λa τθ

yτη

)
τω(a)

τω(a)+τθ
− βa

]
+ aT

}
and

t0 = (1 + tp)α−
α [λ+ δ + (1 + tp)β]

β + λ
.

Q.E.D.

Proof of Proposition 4. Given Ii = (yi, si), trader i’s demand schedule maximizes, for each price

p, the trader’s expected payoff

E
[
(θ − (1 + tp)p)xi − λ

x2
i

2
|Ii, p

]
The solution to this problem is the demand schedule given by

X(p; Ii) =
1

λ
(E[θ|Ii, p]− (1 + tp)p) (26)

where, as in the laissez-faire equilibrium, E[θ|Ii, p] denotes the trader’s expectation of θ given Ii and

p.

In any symmetric equilibrium in which the price is an affine function of (θ, u, η), the equilibrium

trades continue to be given by

xi = asi + b+ cz (27)

for some scalars (a, b, c) that may depend on the level of the tax tp and on the quality yi = y of the

agents’ information.

When the individual trades are given by (27), the aggregate trade is equal to

x̃ = (a+ c)z +
u

β
+ b,

where we used the fact that z + u/(βa) = θ+ f(y)η. Replacing x̃ into the expression for the inverse

aggregate supply function, we then have that the equilibrium price

p = α+ βb+ β(a+ c)z (28)

can be expressed as a function of (a, b, c) and the endogenous public signal z, as in the laissez-fare

equilibrium. As in the baseline model, we thus have that

E[θ|Ii, p] = γ1(τω(a))si + γ2(τω(a))z, (29)

with γ1(·) and γ2(·) given by (7) and (8), respectively. Combining (26) with (28) and (29), we thus
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have that the equilibrium trades satisfy

xi =
1

λ
[γ1(τω(a))si − (1 + tp) (α+ βb) + (γ2(τω(a))− (1 + tp)β(a+ c)) z] . (30)

We conclude that the sensitivity of the equilibrium trades to private information must satisfy

a =
γ1(τω(a))

λ
. (31)

That is, no matter the value of tp, the equilibrium level of a is given by a∗, as in the laissez-fare

economy in which tp = 0. Furthermore, combining (30) with (31) and using (8), we have that the

equilibrium sensitivity of the trades to the endogenous public signal is given by

c =
1

β(1 + tp) + λ

[(
1− λaτθ + yτη

yτη

)
τω(a)

τω(a) + τθ
− (1 + tp)βa

]
(32)

whereas the constant b in the equilibrium trades is given by

b = −(1 + tp)
α

(1 + tp)β + λ
. (33)

Hence, any ad-valorem tax tp 6= 0 induces the same sensitivity a∗ of the equilibrium trades to private

information as in the laissez-faire equilibrium in which tp = 0 but different values of b and c. Because,

given a∗, the values of b and c (equivalently, of b̂ and ĉ) in the laissez-fare economy maximize welfare,

as shown in Lemma 1, we conclude that any policy tp 6= 0 results in strictly lower welfare than tp = 0.

Q.E.D.

Proof of Proposition 5. Let yT denote the socially optimal quality of private information and

(aT , b̂T , ĉT ) the coefficients describing the efficient demand schedules when the precision of private

information is yT . Next, for any ȳ, let E[W T ; ȳ] denote ex-ante gross welfare when all traders acquire

information of quality ȳ but then submit the efficient demand schedules for information of quality

yT (that is, the schedules corresponding to the coefficients (aT , b̂T , ĉT )). Such a welfare function is

gross of the costs of information acquisition. Finally, for any (yi, ȳ), let E[πTi ; yi, ȳ] denote the ex-ante

gross profit of a trader acquiring information of quality yi when all other traders acquire information

of quality ȳ, and all traders, including i, submit the efficient demand schedules for information of

quality yT (that is, the schedules corresponding to the coefficients (aT , b̂T , ĉT ) mentioned above). The

payoff is again gross of the cost of information acquisition. We start by establishing the following

result:

Lemma 2. Let yT denote the socially optimal quality of private information and suppose

that all traders submit the efficient demand schedules for information of quality yT (parametrized

by (aT , b̂T , ĉT )). When ĉT > 0 (i.e., when the pecuniary externality dominates over the information

externality so that the efficient demand schedules are downward sloping), for any ȳ,

∂

∂yi
E[πTi ; yi, ȳ]

∣∣∣∣
yi=ȳ

>
d

dȳ
E[W T ; ȳ]

whereas the opposite inequality holds when ĉT < 0 (i.e., when the information externality dominates

over the pecuniary externality and, as a result, the efficient demand schedules are upward sloping).

Proof of Lemma 2 . When all traders other than i acquire information of quality ȳ and then submit
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the demand schedules corresponding to (aT , b̂T , ĉT ), irrespectively of the information acquired by

trader i and of the demand schedule submitted by the latter, the equilibrium price is given by

p(θ, u, η; ȳ) = α+ βbT + β(aT + cT )z(θ, u, η; ȳ)

where bT and cT are the coefficients obtained from (aT , b̂T , ĉT ) using the functions (4) and (5), and

where z(θ, u, η; ȳ) ≡ θ + f(ȳ)η − u/βaT .2 Furthermore, the aggregate level of trade is equal

X̃(θ, u, η; ȳ) = aT [θ + f(ȳ)η] + bT + cT z(θ, u, η; ȳ)

whereas the level of trade for agent i when he acquires information of quality yi and then submits

the demand schedule corresponding to the coefficients (aT , b̂T , ĉT ) is equal to

Xi(θ, u, η, ei; ȳ, yi) = aT [θ + f(yi)ei + f(yi)η]︸ ︷︷ ︸
si

+bT + cT z(θ, u, η; ȳ).

It follows that, when all traders other than i acquire information of quality ȳ, trader i acquires infor-

mation of quality yi and all traders, including trader i, submit the demand schedules corresponding

to (aT , b̂T , ĉT ), trader i’s ex-ante gross payoff is equal to

E[πTi ; ȳ, yi] = E
[
(θ − p(θ, u, η; ȳ))Xi(θ, u, η, ei; ȳ, yi)−

λ

2
X2
i (θ, u, η, ei; ȳ, yi)

]
.

Using the fact that the market-clearing price must also be consistent with the inverse-supply function

and hence satisfy p = α− u+ βX̃(θ, u, η; ȳ), we then have that

E[πTi ; ȳ, yi] = Eθ,u,η
[(
θ − α+ u− βX̃(θ, u, η; ȳ)

)
E[xi|θ, u, η; ȳ, yi]−

λ

2
E
[
x2
i |θ, u, η; ȳ, yi

]]
or, equivalently,

E[πTi ; ȳ, yi] = Eθ,u,η
[ (
θ − α+ u− βX̃(θ, u, η; ȳ)

)
E[xi|θ, u, η; ȳ, yi]− λ

2V ar[xi|θ, η, u; ȳ, yi]

−λ
2 (E[xi|θ, η, u; ȳ, yi])

2
]
,

where

E[xi|θ, u, η; ȳ, yi] ≡ E[Xi(θ, u, η, ei; ȳ, yi)|θ, u, η; ȳ, yi],

E[x2
i |θ, u, η; ȳ, yi] ≡ E

[
(Xi(θ, u, η, ei; ȳ, yi))

2 |θ, u, η; ȳ, yi

]
,

and

V ar[xi|θ, η, u; ȳ, yi] ≡ E[x2
i |θ, u, η; ȳ, yi]− (E[xi|θ, u, η; ȳ, yi])

2 .

Using the fact that

E[xi|θ, u, η; ȳ, yi] = aT [θ + f(yi)η] + bT + cT z(θ, u, η; ȳ)

and

V ar[xi|θ, η, u; ȳ, yi] =
(
aT f(yi)

)2
/τe,

2Observe that the functions (4) and (5) do not depend on y and hence cT and bT do not depend on y.
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we have that

∂

∂yi
E[πTi ; ȳ, yi] = Eθ,η,u

[(
θ − α+ u− βX̃(θ, u, η; ȳ)

)
aT f ′(yi)η

]
− λ

(
aT
)2

τe
f(yi)f

′(yi)

−λEθ,η,u
[(
aT [θ + f(yi)η] + bT + cT z(θ, u, η; ȳ)

)
aT f ′(yi)η

]
= −aTβEθ,η,u

[
X̃(θ, u, η; ȳ)η

]
f ′(yi)− λ

(
aT
)2

τe
f(yi)f

′(yi)

−λ
(
aT
)2
f(yi)f

′(yi)
1

τη
− λaT cTEθ,η,u [z(θ, u, η; ȳ)η] f ′(yi).

Using the fact that

Eθ,η,u
[
X̃(θ, u, η; ȳ)η

]
=
aT f(ȳ)

τn
+ cTEθ,η,u [z(θ, u, η; ȳ)η]

and

Eθ,η,u [z(θ, u, η; ȳ)η] =
f(ȳ)

τn
,

we then have that

∂

∂yi
E[πTi ; ȳ, yi] = −aTβ

[
aT f(ȳ)

1

τn
+ cT f(ȳ)

1

τn

]
f ′(yi)− λ

(
aT
)2

τe
f(yi)f

′(yi)

−λ
(
aT
)2
f(yi)f

′(yi)
1

τη
− λaT cT f(ȳ)

1

τn
f ′(yi). (34)

We conclude that

∂

∂yi
E[πTi ; ȳ, yi]

∣∣∣∣
yi=ȳ

= −aTβ
[
aT f(ȳ)

1

τn
+ cT f(ȳ)

1

τn

]
f ′(ȳ)− λ

(
aT
)2

τe
f(ȳ)f ′(ȳ)

−λ
(
aT
)2
f(ȳ)f ′(ȳ)

1

τη
− λaT cT f(ȳ)

1

τn
f ′(ȳ)

= −f(ȳ)f ′(ȳ)aT
[
λ
aT

τe
+ (β + λ)(aT + cT )

1

τη

]
. (35)

Next, observe that, when trader i also acquires information of quality ȳ and all traders submit the

demand schedules corresponding to (aT , b̂T , ĉT ),

E[πTi ; ȳ, ȳ] = Eθ,u,η

[(
θ − α+ u− βX̃(θ, u, η; ȳ)

)
X̃(θ, u, η; ȳ)− λ

2

(
aT f(ȳ)

)2
τe

− λ

2

(
X̃(θ, u, η; ȳ)

)2
]
.

Now observe that, when all traders acquire information of quality ȳ and submit the demand schedules

corresponding to (aT , b̂T , ĉT ), the ex-ante payoff of the representative liquidity supplier (which the

planner accounts for in the computation of welfare) is equal to

E[Π; ȳ] = Eθ,u,η
[
(p(θ, u, η; ȳ)− α+ u) X̃(θ, u, η; ȳ)− β

2

(
X̃(θ, u, η; ȳ)

)2
]

=
β

2
Eθ,u,η

[(
X̃(θ, u, η; ȳ)

)2
]
,

where we used the fact that p(θ, u, η; ȳ) = α−u+βX̃(θ, u, η; ȳ). We thus have that, when all traders

acquire information of quality ȳ and submit the demand schedules corresponding to (aT , b̂T , ĉT ),
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ex-ante welfare is equal to

E[W T ; ȳ] = E[πTi ; ȳ, ȳ] + E[Π; ȳ]

= Eθ,u,η

[
(θ − α+ u) X̃(θ, u, η; ȳ)− λ

2

(
aT f(ȳ)

)2
τe

− λ+ β

2

(
X̃(θ, u, η; ȳ)

)2
]
.

Hence,

d

dȳ
E[W T ; ȳ] = Eθ,η,u

 (θ − α+ u)∂X̃(θ,u,η;ȳ)
∂ȳ − λ(aT )

2
f(ȳ)f ′(ȳ)

τe

−(λ+ β)X̃(θ, u, η; ȳ)∂X̃(θ,u,η;ȳ)
∂ȳ

 ,
where

∂

∂ȳ
X̃(θ, u, η; ȳ) = (aT + cT )f ′(ȳ)η.

It follows that

d

dȳ
E[W T ; ȳ] = −

λ
(
aT
)2
f(ȳ)f ′(ȳ)

τe
− (λ+ β)(aT + cT )f ′(ȳ)Eθ,η,u

[
X̃(θ, u, η; ȳ)η

]
.

Using the fact that

Eθ,η,u
[
X̃(θ, u, η; ȳ)η

]
= (aT + cT )f(ȳ)

1

τn
,

we thus have that

d

dȳ
E[W T ; ȳ] = −

λ
(
aT
)2
f(ȳ)f ′(ȳ)

τe
− (λ+ β)

(
aT + cT

)2
f ′(ȳ)f(ȳ)

1

τn
. (36)

Comparing (35) with (36), we thus have that, when cT < 0,

∂

∂yi
E[πTi ; ȳ, yi]

∣∣∣∣
yi=ȳ

>
d

dȳ
E[W T ; ȳ],

whereas the opposite inequality holds when cT > 0. Finally, use Condition (5) to observe that

ĉT = − cT

β(aT+cT )
and Condition (14), along with the formula for τω(a), to observe that aT + cT > 0.

Jointly, the last two conditions imply that sgn(ĉT ) = −sgn(cT ) thus completing the proof of the

lemma.

We now show that the result in Lemma 2 implies the result in the proposition. We start by estab-

lishing the (global) concavity of E[πTi ; ȳ, yi] and E[W T ; ȳ] in yi and ȳ, respectively. Recall that the

coefficients defining the equilibrium trades as a function of the private signals si and the endogenous

public signal z are kept constant in both cases at (aT , bT , cT ), where (aT , bT , cT ) is the vector defining

the efficient trades when the quality of private information is yT . Using (34), we have that

∂2

∂y2
i

E[πTi ; ȳ, yi] = −aTβf(ȳ)
1

τη

(
aT + cT

)
f ′′(yi)− λ

(
aT
)2 [ 1

τe
+

1

τη

]
∂

∂yi

(
f(yi)f

′(yi)
)

−λaT cT f(ȳ)
1

τη
f ′′(yi)

= −aT f(ȳ)
1

τη

[
β
(
aT + cT

)
+ λcT

]
f ′′(yi)− λ

(
aT
)2 [ 1

τe
+

1

τη

]
∂

∂yi

(
f(yi)f

′(yi)
)
.

Now observe that f ′′(yi) = 3
√
yi/4y

3
i > 0 and ∂

∂yi
(f(yi)f

′(yi)) = 1/y3
i > 0. Hence,
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∂2

∂y2
i

E[πTi ; ȳ, yi] = − aT

y3
i τη

[
3
√
yi

4
√
ȳ

(
βaT + (β + λ) cT

)
+ λaT

τη + τe
τe

]
.

Recall that, irrespective of the sign of cT , aT > 0 and aT + cT > 0, where the last inequality is

established in the proof of Lemma 2. Hence, when cT ≥ 0, for any (ȳ, yi), ∂
2E[πTi ; ȳ, yi]/∂y

2
i < 0. To

see that the same inequality holds when cT < 0, recall that

cT =
1

β + λ

[(
1− λaT − λaT τθ

yT τη

)
τω(aT )

τω(aT ) + τθ
− βaT

]
.

Hence,

βaT + (β + λ) cT =

(
1− λaT − λaT τθ

yT τη

)
τω(aT )

τω(aT ) + τθ
.

Using

τω(aT ) =
β2
(
aT
)2
yT τητu

β2 (aT )2 τu + yT τη
,

we can rewrite the last condition as

βaT + (β + λ) cT =
[(

1− λaT
)
yT τη − λaT τθ

] β2
(
aT
)2
τu

β2 (aT )2 τu (yT τη + τθ) + yT τητθ
.

Hence,

βaT + (β + λ) cT
sgn
=
(
1− λaT

)
yT τη − λaT τθ.

Now recall that aT solves

aT =
1

λ

τεy
T τη(y

T τη − τω(aT ))

(yT )2 τ2
η (τε + τθ + τω(aT ))− τω(aT )τε (τθ + 2yT τη) + Ξ(aT ) + ∆(aT )

(37)

with τε =
(
yT τeτη

)
/ (τe + τη) and observe that the numerator in (37) is positive. Because aT > 0,

as shown above, this means that the denominator in (37) is also positive. Using the fact that(
1− λaT

)
yT τη − λaT τθ =

yT τηQ

(yT )2 τ2
η (τε + τθ + τω(aT ))− τω(aT )τε (τθ + 2yT τη) + Ξ(aT ) + ∆(aT )

where

Q ≡ yT τη
(
yT τη − τε

) (
τθ + τω(aT )

)
+ Ξ(aT ) + ∆(aT ),

we thus have that

sgn
((

1− λaT
)
yT τη − λaT τθ

)
= sgn (Q) .

Now, using the fact that τε = (yτeτη) / (τe + τη), we have that Q can be rewritten as

Q =
(
yT τη

)2 τη
τe + τη

(
τθ + τω(aT )

)
+ Ξ(aT ) + ∆(aT )

and hence sgn (Q) > 0 if Ξ(aT ) + ∆(aT ) > 0. The latter property holds because, as explained in

the main text, when cT < 0, then ĉT > 0 in which case Ξ(aT ) + ∆(aT ) > 0. We conclude that, no

matter the sign of cT , for any ȳ, E[πTi ; ȳ, yi] is strictly concave in yi.

Next, consider the concavity of E[W T ; ȳ] in ȳ. Using (36), we have that
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d2

dȳ2
E[W T ; ȳ] = −

[
λ
(
aT
)2

τe
+ (λ+ β)

(
aT + cT

)2 1

τn

]
∂

∂ȳ

(
f(ȳ)f ′(ȳ)

)
< 0,

where again the inequality follows from the fact that ∂
∂ȳ (f(ȳ)f ′(ȳ)) > 0. Hence E[W T ; ȳ] is strictly

concave in ȳ.

Because E[πTi ; ȳ, yi] is strictly concave in yi, in equilibrium, all traders acquire information of quality

y∗ such that
∂

∂yi
E[πTi ; ȳ, yi]

∣∣∣∣
yi=ȳ=y∗

= C′(y∗).

Now recall that the socially-optimal quality of information satisfies

d

dȳ
E[W T ; ȳ]

∣∣∣∣
ȳ=yT

= C′(yT ).

Because E[W T ; ȳ] is strictly concave in ȳ, the result in Lemma 2 then implies that, when ĉT < 0,

yT > y∗, whereas, when ĉT > 0, yT < y∗. Q.E.D.

Proof of Proposition 6. Under the proposed policy, each trader i’s ex-ante gross expected payoff

when all traders other than i collect information of quality ȳ, trader i collects information of quality

yi, and all traders (including i) submit the efficient demand schedules (parametrized by (aT , b̂T , ĉT ))

is equal to

E[πTi (ȳ, yi); t̂p] = E
[
θxi − (1 + t̂p)pxi −

λ

2
x2
i

]
= E

[
θxi − (1 + t̂p) (α− u+ βx̃)xi −

λ

2
x2
i

]
with

xi = Xi(θ, u, η, ei; ȳ, yi) = aT [θ + f(yi)ei + f(yi)η]︸ ︷︷ ︸
si

+bT + cT
(
θ + f(ȳ)η − u

βaT

)
,

p = P (θ, u, η; ȳ) = α− u+ βX(θ, u, η; ȳ),

and

x̃ = X(θ, u, η; ȳ) = aT (θ + f(ȳ)η) + bT + cT
(
θ + f(ȳ)η − u

βaT

)
,

and where bT and cT are the coefficients describing the equilibrium trades obtained from b̂T and ĉT

using (4) and (5). Hence,

E[πTi (ȳ, yi); t̂p] = N − β(aT + cT )aT
1 + t̂p√
ȳ
√
yiτη

− λcTaT√
ȳ
√
yiτη

− λ

2

(
aT
)2

yiτη
− λ

2

(
aT
)2

yiτe

where N is a function of all variables that do not interact with yi. It follows that

∂

∂yi
E[πTi (ȳ, yi); t̂p] =

β(1 + t̂p)(a
T + cT )aT

2τηyi
√
ȳyi

+
λaT

2τηyi
√
yi

(
aT
√
yi

+
cT√
ȳ

)
+
λ
(
aT
)2

2y2
i τe

.

Because E[πTi (ȳ, yi); t̂p] − C(yi) is concave in yi, for yi = ȳ = yT to be sustained in equilibrium it is
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both necessary and sufficient that

∂

∂yi
E[πTi (yT , yT ); t̂p] = C′(yT )

which is equivalent to[
β(1 + t̂p) + λ

]
(aT + cT )aT

2τη
+
λ
(
aT
)2

2τe
= C′(yT )

(
yT
)2
.

Using the fact that yT satisfies

(β + λ)(aT + cT )2

2τη
+
λ
(
aT
)2

2τe
= C′(yT )

(
yT
)2
,

we have that the proposed policy implements the efficient acquisition of private information when

t̂p =
(β + λ)cT

βaT
.

Using the fact that

cT =
1

β + λ

(
γ2

(
τω(aT )

)
− βaT

)
we then have that the optimal t̂p is equal to

t̂p =
γ2

(
τω(aT )

)
− βaT

βaT

where γ2 is the function defined in the proof of Proposition 1. Q.E.D.

Proof of Proposition 7. Assume that all traders other than i acquire information of quality

yT and then submit the efficient demand schedules (that is, those corresponding to the coefficients

(aT , b̂T , ĉT )). Given any policy T (xi, p), the expected net payoff for trader i when he chooses infor-

mation of quality yi and then selects his demand schedule optimally is equal to

V (yT , yi) ≡ supg(·)
{
E[π̃i(y

T , yi); g(·)]− C(yi)
}

where g : R2 → R is a generic function specifying the amount of shares xi = g(si, z) that the trader

purchases as a function of si and z, and where

E[π̃i(y
T , yi); g(·)] ≡ E

[
θg(si, z)− (α− u+ βx̃)g(si, z)− λ

2 (g(si, z))
2
]

−E [T (g(si, z), α− u+ βx̃)] .

Note that the definition of E[π̃i(y
T , yi); g(·)] uses the fact that the market-clearing price is given by

p = α−u+βx̃ with x̃ = aT (θ+f(yT )η)+bT +cT z, where bT and cT are the coefficients describing the

equilibrium trades obtained from b̂T and ĉT using (4) and (5), and where z ≡ θ+ f(yT )η− u/(βaT ).

It also uses the fact that, when all other traders submit the efficient demand schedules, any demand

schedule for trader i (that is, any mapping from (si, p) into xi) can be expressed as a function g(si, z)

of (si, z).
3

For the policy T (xi, p) to implement the efficient acquisition and usage of information, it must

be that, when yi = yT , the function g(·) that maximizes the trader’s payoff is equal to g(si, z) =

3It suffices to use (6) to observe that p = α+ βbT + β(aT + cT )z.
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aT si+b
T+cT z. Using the fact that the equilibrium price can be expressed as p = α+βbT+β(aT+cT )z,

and the fact that E [θ|si, z] = γ1(τω(aT ))si + γ2(τω(aT ))z, we thus have that, for the policy T to

implement the efficient trades, it must be that T is differentiable in xi and satisfies

γ1(τω(aT ))si + γ2(τω(aT ))z −
[
α+ βbT + β(aT + cT )z

]
− λ

(
aT si + bT + cT z

)
− ∂
∂xT

(
aT si + bT + cT z, α+ βbT + β(aT + cT )z

)
= 0

for all (si, z). Next, observe that, when trader i trades efficiently, the quantity that he purchases is

given by xi = aT si + bT + cT z. Expressing si as a function of xi using the last expression, and using

the relationship p = α+ βbT + β(aT + cT )z to express z as a function of p, we have that

γ1(τω(aT ))si + γ2(τω(aT ))z −
[
α+ βbT + β(aT + cT )z

]
− λ

(
aT si + bT + cT z

)
=
[
γ1(τω(aT ))− λaT

]
xi−bT−cT z

aT
+
[
γ2(τω(aT ))− β(aT + cT )− λcT

] p−α−βbT
β(aT+cT )

−
(
α+ βbT + λbT

)
=
[
γ1(τω(aT ))− λaT

]
x−bT
aT

+
[
γ2(τω(aT ))− β(aT + cT )− λcT −

(
γ1(τω(aT ))− λaT

)
cT

aT

]
p−α−βbT
β(aT+cT )

−
(
α+ βbT + λbT

)
.

Note that the term above is the discrepancy between the trader’s marginal benefit and marginal cost

of expanding his demand evaluated at the efficient trade. But this means that, for the policy T (xi, p)

to implement the efficient use of information, it must be that T (xi, p) is a polynomial of second order

of the form

T (xi, p) =
δ

2
x2
i + (tpp− t0)xi +K(p), (38)

for some vector (δ, tp, t0) and some function K(p) which plays no role for incentives and which

therefore we can disregard. In the proof of Proposition 3, we showed that there exists a unique

vector (δ, tp, t0) that induces the traders to submit the efficient demand schedules when the precision

of their private information is yT (the vector in Proposition 3 applied to y = yT ). Thus, if a policy

T induces efficiency in both information acquisition and information usage, it must be of the form in

(38) with (δ, tp, t0) as in Proposition 3 applied to y = yT . When the policy takes this form, for any

yi, the optimal choice of g(·) is affine and hence can be written as g(si, z) = asi + b + cz, for some

(a, b, c), implying that

E[π̃i(y
T , yi); g(·)] = E

[
(θ + t0) (asi + b+ cz)− λ+δ

2 (asi + b+ cz)2

−(1 + tp)
(
α− u+ β

[
aT (θ + f(yT )η) + bT + cT z

])
(asi + b+ cz)

]
.

Letting M be a function of all variables that do not interact with yi, we then have that, when

g(si, z) = asi + b+ cz, for some (a, b, c),

E[π̃i(y
T , yi); g(·)] = M − β(1 + tp)(a

T + cT )a 1√
yT
√
yiτη

+ (λ+δ)ca√
yT
√
yiτη
− λ+δ

2
a2

yiτη
− λ+δ

2
a2

yiτe
.

Using the envelope theorem, we then have that
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∂

∂yi
V (yT , yi)

∣∣∣∣
yi=yT

=
[β(1 + tp) + λ+ δ] (aT + cT )aT

2τη (yT )2 +
(λ+ δ)

(
aT
)2

2τe (yT )2 − C′(yT ).

Note that, in writing the above derivative, we used the fact that, when yi = yT , the optimal demand

schedule for trader i induces the efficient trades aT si + bT + cT z. Recall that the efficient yT is given

by the solution to the following equation

(β + λ)(aT + cT )2

2τη (yT )2 +
λ
(
aT
)2

2τe (yT )2 = C′(yT ).

Hence, for the policy of Proposition 3 (applied to ȳ = yT ) to implement the efficient acquisition of

private information, it must be that

(β + λ)(aT + cT )2

τη
+
λ
(
aT
)2

τe
=

[β(1 + tp) + λ+ δ] (aT + cT )aT

τη
+

(λ+ δ)
(
aT
)2

τe

or, equivalently, (aT + cT )τe
[
(β + λ)cT − (βtp + δ)aT

]
= δ

(
aT
)2
τη. One can verify that the values

of δ and tp from Proposition 3 do not solve the above equation except for a non-generic set of

parameters. Q.E.D.

Proof of Proposition 8. Paralleling the derivations in the proof of Proposition 7, we have that,

when the policy takes the proposed form and all traders other than i acquire information of quality

yT and then submit the efficient demand schedules (that is, the affine orders corresponding to the

coefficients (aT , b̂T , ĉT ) for quality of information yT ), the expected net payoff for trader i when

he chooses information of quality yi is maximized by submitting an affine demand schedule xi =

asi+b̂−ĉp which induces trades xi = asi+b+cz that are affine in (si, z), where z = θ+f(yT )η−u/βaT

is the endogenous signal contained in the market-clearing price.

Using this result, let

V̂ (yT , yi) ≡ sup
a,b,c

{
E[π̃i(y

T , yi); a, b, c]− C(yi) +Ayi
}

denote the maximal payoff that trader i can obtain by acquiring information of precision yi when all

other traders acquire information of precision yT and then submit the efficient demand schedules for

information of quality yT . As shown in the proof of Proposition 7, the expected gross payoff that

trader i obtains by inducing the affine trades xi = asi+b+cz when he chooses information of quality

yi is equal to

E[π̃i(y
T , yi); a, b, c] = M − β(1 + tp)(a+ c)a

1√
yT
√
yiτη

− (λ+ δ)ca√
yT
√
yiτη

− λ+ δ

2

a2

yiτη
− λ+ δ

2

a2

yiτe
,

where M is a term collecting all variables that do not interact with yi. Using the envelope theorem,
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we have that

∂

∂yi
V̂ (yT , yi)

∣∣∣∣
yi=yT

=
[β(1 + tp) + λ+ δ] (aT + cT )aT

2τη (yT )2 +
(λ+ δ)

(
aT
)2

2τe (yT )2 − C′(yT ) +A.

Again, in writing the above derivative we used the fact that, when yi = yT , the optimal demand

schedule for trader i induces trades equal to aT si + bT + cT z. Using the fact that yT satisfies

(β + λ)(aT + cT )2

2τη (yT )2 +
λ
(
aT
)2

2τe (yT )2 = C′(yT ),

we thus have that the proposed policy induces the efficient acquisition of private information only if

the following condition holds

(β + λ)(aT + cT )2

2τη
+
λ
(
aT
)2

2τe
=

(β(1 + tp) + λ+ δ) (aT + cT )aT

2τη
+

(λ+ δ)
(
aT
)2

2τe
+A

(
yT
)2

from which we obtain that

A =
aT + cT

2τη (yT )2

[
(β + λ)cT − (βtp + δ)aT

]
−

δ
(
aT
)2

2τe (yT )2 .

Next, use Condition (5) to express cT as a function of ĉT and rewrite A as follows

A = −
(
aT
)2

2τη (yT )2

[
β(β + λ)ĉT

(1 + βĉT )2 +
βtp + δ

1 + βĉT

]
−

δ
(
aT
)2

2τe (yT )2 .

Finally, one can verify numerically that the function V̂ (yT , yi) is globally quasi-concave in yi. We

thus conclude that the proposed policy implements the efficient acquisition and usage of information.

Q.E.D.

Proof of Proposition 9. As in the proof of the last two propositions, assume that all traders

other than i acquire information of quality yT and then submit the efficient demand schedules (that

is, those corresponding to the coefficients (aT , b̂T , ĉT )). Given any policy T (xi, x̃, p), the expected net

payoff for trader i when he chooses information of quality yi and then selects his demand schedule

optimally is equal to

Ṽ (yT , yi) ≡ supg(·)
{
E[π̃i(y

T , yi); g(·)]− C(yi)
}

where g : R2 → R is a generic function specifying the amount of shares xi = g(si, z) that the trader

purchases as a function of si and z, with z ≡ θ + f(yT )η − u/(βaT ), and

E[π̃i(y
T , yi); g(·)] ≡ E

[
θg(si, z)− (α− u+ βx̃)g(si, z)− λ

2 (g(si, z))
2
]

−E [T (g(si, z), x̃, α− u+ βx̃)] .

Note that, in writing E[π̃i(y
T , yi); g(·)], we use the fact that the market-clearing price is given by

p = α− u+ βx̃ with x̃ = aT (θ+ f(yT )η) + bT + cT z, where bT and cT are the coefficients describing
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the equilibrium trades obtained from b̂T and ĉT using (4) and (5). We also use the fact that, when

all other traders submit the efficient demand schedules, any demand schedule for trader i (that is,

any mapping from (si, p) into xi) can be expressed as a function g(si, z) of (si, z) by using (6) to

express p = α+ βbT + β(aT + cT )z as an affine transformation of z.

For the policy T (xi, x̃, p) to implement efficiency in both information acquisition and usage,

it must be that, when yi = yT , the function g(·) that maximizes the trader’s payoff is equal to

g(si, z) = aT si + bT + cT z. Using the expression for the equilibrium price p = α+ βbT + β(aT + cT )z

and the fact that

E
[
θ|si, z; yi, yT

]∣∣
yi=yT

= γ1(τω(aT ))si + γ2(τω(aT ))z,

we thus have that, for the policy T to implement the efficient trades, it must be that T is differentiable

in xi and, for all (si, z), satisfy

γ1(τω(aT ))si + γ2(τω(aT ))z −
[
α+ βbT + β(aT + cT )z

]
− λ

(
aT si + bT + cT z

)
− ∂

∂xi
E
[
T
(
aT si + bT + cT z, x̃, α− u+ βx̃

)
|si, z; yi, yT

]∣∣∣
yi=yT

= 0,

where x̃ = aT (θ + f(yT )η) + bT + cT z, with z ≡ θ + f(yT )η − u/(βaT ).

Next recall from the proof of Proposition 7 that, when the individual trades efficiently,

γ1(τω(aT ))si + γ2(τω(aT ))z −
[
α+ βbT + β(aT + cT )z

]
− λ

(
aT si + bT + cT z

)
=
[
γ1(τω(aT ))− λaT

]
x−bT
aT

+
[
γ2(τω(aT ))− β(aT + cT )− λcT −

(
γ1(τω(aT ))− λaT

)
cT

aT

]
p−α−βbT
β(aT+cT )

−
(
α+ βbT + λbT

)
.

This means that, for the policy T to implement the efficient use of information, it must be that

T (xi, x̃, p) is a polynomial of second order of the form

T (xi, x̃, p) =
δ′

2
x2
i +

(
pt′p − t′0 + tx̃x̃

)
xi +K ′(x̃, p), (39)

for some vector (δ′, t′p, t
′
0, tx̃), where K ′(x̃, p) is a function that does not depend on xi, plays no role

for incentives, and hence can be disregarded. Furthermore, under any such a policy,

∂
∂xi

E
[
T (xi, x̃, p) |si, p; yi, yT

]
= δ′xi + pt′p − t′0 + tx̃E

[
x̃|si, p; yi, yT

]
= δ′xi + pt′p − t′0 + tx̃E

[
p−α+u

β |si, p; yi, yT
]

= δ′xi + pt′p − t′0 + tx̃
β (p− α) + tx̃

β E
[
u|si, p; yi, yT

]
= δ′xi + pt′p − t′0 + tx̃

β (p− α) + tx̃
β A

#(yi, y
T )si + tx̃

β B
#(yi, y

T )p+ tx̃
β C

#(yi, y
T ),

where we used the fact that p = α− u+ βx̃ and the fact that

E
[
u|si, p; yi, yT

]
= A#(yi, y

T )si +B#(yi, y
T )p+ C#(yi, y

T )

where A#(yi, y
T ), B#(yi, y

T ), and C#(yi, y
T ) are the coefficients of the projection of u on (si, p)

when all agents other than i acquire information of quality yT (and trade efficiently) whereas trader

i acquires information of quality yi.

When trader i too acquires information of quality yi = yT and trades efficiently, xi = aT si +

bT + cT z, with z =
(
p− α− βbT

)
/
(
β(aT + cT )

)
. Using the last two conditions to express si as a
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function of xi and p, we then have that

E
[
u|si, p; yi, yT

]
= A#(yT , yT )

xi−bT−cT
(
p−α−βbT

β(aT+cT )

)
aT

+B#(yT , yT )p+ C#(yT , yT )

= A#(yT ,yT )
aT

xi +
[
B#(yT , yT )− A#(yT ,yT )cT

aT β(aT+cT )

]
p+ C#(yT , yT )− A#(yT ,yT )bT

aT
+ A#(yT ,yT )cT (α+βbT )

aT β(aT+cT )
.

Then let

Â# ≡ A#(yT , yT )

aT
,

B̂# ≡
[
B#(yT , yT )− A#(yT , yT )cT

aTβ(aT + cT )

]
,

and

Ĉ# ≡ C#(yT , yT )− A#(yT , yT )bT

aT
+
A#(yT , yT )cT (α+ βbT )

aTβ(aT + cT )
.

We thus have that, when trader i acquires information of quality yi = yT and trades efficiently,

∂

∂xi
E
[
T (xi, x̃, p) |si, p; yT , yT

]
= δxi + tpp− t0

where

δ = δ′ +
tx̃
β
Â#, (40)

tp = t′p + tx̃
1 + B̂#

β
, (41)

and

t0 = t′0 + tx̃
α

β
− tx̃
β
Ĉ#. (42)

In the proof of Proposition 3, we showed that, when agents acquire information of quality yT , for

them to trade efficiently, the values of (δ, tp, t0) must coincide with those in Proposition 3 (applied

to y = yT ). Thus, for the above policy to induce efficiency in both information acquisition and

information usage, it must be that that the vector (δ′, t′p, t
′
0, tx̃) satisfies Conditions (40)-(42) with

(δ, tp, t0) given by the values determined in Proposition 3 applied to y = yT . Note that, for any

tx̃, there exists unique values of (δ′, t′p, t
′
0) that solve the above three conditions. Abusing notation,

denote these values by (δ′(tx̃), t′p(tx̃), t′0(tx̃)).

Next, note that, when the policy takes the form in (39), for any yi, the optimal choice of g(·) is

affine and hence can be written as g(si, z) = asi + b+ cz, for some (a, b, c). This implies that

E[π̃i(y
T , yi); g(·)] = E

[
(θ + t′0(tx̃)− tx̃x̃) (asi + b+ cz)− λ+δ

2 (asi + b+ cz)2

−(1 + t′p(tx̃))
(
α− u+ β

[
aT (θ + f(yT )η) + bT + cT z

])
(asi + b+ cz)

]
.

Letting M be a function of all variables that do not interact with yi, we then have that, when

g(si, z) = asi + b+ cz, for some (a, b, c),

26



E[π̃i(y
T , yi); g(·)] = M −

[
tx̃ + β(1 + t′p(tx̃))

] a(aT+cT )√
yT
√
yiτη
− (λ+δ)ca√

yT
√
yiτη
− λ+δ

2
a2

yiτη
− λ+δ

2
a2

yiτe
.

Using the envelope theorem, we then have that

∂

∂yi
Ṽ (yT , yi)

∣∣∣∣
yi=yT

=

[
tx̃ + β(1 + t′p(tx̃)) + λ+ δ

]
(aT + cT )aT

2τη (yT )2 +
(λ+ δ)

(
aT
)2

2τe (yT )2 − C′(yT ).

Once again, in writing the above derivative, we used the fact that, when yi = yT , the optimal demand

schedule for trader i induces trades equal to the efficient trades aT si + bT + cT z. Finally, recall that

the efficient yT is given by the solution to the following equation

(β + λ)(aT + cT )2

2τη (yT )2 +
λ
(
aT
)2

2τe (yT )2 = C′(yT ).

Hence, for the above policy to induce efficiency in information acquisition, it must be that

(β+λ)(aT+cT )2

τη
+

λ(aT )
2

τe
=

[tx̃+β(1+t′p(tx̃))+λ+δ](aT+cT )aT

τη
+

(λ+δ)(aT )
2

τe
. (43)

Using (41), we have that

t′p(tx̃) = tp − tx̃
1 + B̂#

β

with tp given by the unique value determined in Proposition 3 applied to y = yT . Because the

function H : R → R given by H(tx̃) ≡ tx̃ + βt′p(tx̃) = βtp − tx̃B̂# is linear, there exists a (unique)

value of tx̃ that solves (43).

We conclude that the policy in (39) with tx̃ given by the unique solution to (43) and with (δ′, t′p, t
′
0)

given by the unique solution (δ′(tx̃), t′p(tx̃), t′0(tx̃)) to Conditions (40)-(42) induces efficiency in both

information acquisition and information usage. Q.E.D.

Proof of Proposition 10. We establish the result by showing that the precision of private

information y∗ acquired in equilibrium is invariant in tp. Once this property is established, the

proposition follows from what established in the proof of Proposition 4. Any tp 6= 0 results in an

equilibrium in which the precision of private information y∗ and the sensitivity of the trades to the

private signals a∗ are as in the laissez-faire economy in which tp = 0 but where the sensitivity c of the

trades to the endogenous public signal z and the constant b in the equilibrium trades are different

from the corresponding levels in the laissez-faire economy. Because, given y∗ and a∗, the sensitivity

c∗ of the equilibrium trades to the endogenous public signal z and the constant b∗ in the equilibrium

trades in the laissez-faire economy are welfare maximizing (by virtue of Lemma 1), we thus have

that any tp 6= 0 results in strictly lower welfare than tp = 0, as in the case of exogenous private

information (Proposition 4).

Hence, based on the arguments above, it suffices to show that any such a policy fails to change the

quality of information acquired in equilibrium. To see this, fix tp, and denote by y and (a, b, c) the
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precision of private information acquired in equilibrium and the parameters defining the equilibrium

trades in the economy with ad-valorem tax equal to tp.

For any yi, let

V #(yi) ≡ sup
g(·)

{
E[π#

i (yi; g(·))]− C(yi)
}

denote the maximal payoff that trader i can obtain by selecting private information of quality yi when

all other traders acquire information of quality y and then submit the limit orders corresponding

to the parameters (a, b, c), where g : R2 → R is a generic function specifying the amount of shares

xi = g(si, z) the trader purchases as a function of si and the endogenous public signal z contained

in the equilibrium price, with4

E[π#
i (yi; g(·))] ≡ E

[
θg(si, z)− (1 + tp) (α+ βb+ β(a+ c)z) g(si, z)− λ

2 (g(si, z))
2 |yi

]
denoting the trader’s expected payoff, gross of the information cost, when following the rule g(·)
after acquiring information of quality yi. Note that, in writing E[π#

i (yi; g(·)], we used the fact that

the equilibrium price is given by p = α+ βb+ β(a+ c)z with z = θ + f(y)η − u/(βa).

By the definition of equilibrium, if agent i acquires information of quality yi = y, the limit

order that maximizes his payoff must be the equilibrium ones (that is, the one corresponding to the

coefficients (a, b, c)). The envelope theorem then implies that

dV #(yi)

dyi

∣∣∣∣
yi=y

=
β(1 + tp)(a+ c)a

2τηy2
+
λa(a+ c)

2τηy2
+
λ (a)2

2y2τe
− C′(y). (44)

Hence, the equilibrium value of y must satisfy dV #(y)/dyi = 0. Let M#(tp, a, c, y) denote the

function defined by the right-hand-side of (44). Next, use the derivations in the proof of Proposition

4 to observe that, given (tp, y), the equilibrium values of (a, b, c) are given by (31), (32), and (33).

From the implicit function theorem, we then have that

dy

dtp
= −

∂M#(tp,a,c,y)
∂tp

+
∂M#(tp,a,c,y)

∂c
∂c
∂tp

∂M#(tp,a,c,y)
∂y +

∂M#(tp,a,c,y)
∂a

∂a
∂y +

∂M#(tp,a,c,y)
∂c

∂c
∂y

,

where we used the fact that, given y, the equilibrium level of a is invariant in tp. Note that ∂c/∂tp

is the derivative of the equilibrium level of c with respect to tp, holding y constant, whereas ∂a/∂y

and ∂c/∂y are the derivatives of the equilibrium levels of a and c with respect to y, holding tp fixed.

Because
∂

∂tp
M#(tp, a, c, y) =

β(a+ c)a

2τηy2
,

∂

∂c
M#(tp, a, c, y) =

[β(1 + tp) + λ] a

2τηy2
,

and
∂c

∂tp
=

−β(a+ c)

β(1 + tp) + λ
,

4As above, given (a, b, c), the sensitivity of the equilibrium limit orders ĉ to the price and the constant b̂ in the
equilibrium limit orders are obtained from (a, b, c) using (4) and (5).
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we conclude that dy/dtp = 0, as claimed. Q.E.D.

2 Cournot case (traders submitting market orders)

In this section, we show that, in a Cournot equilibrium, there is no inefficiency in either the collection

or usage of information. The environment is the same as in the baseline model except for the fact that

traders are restricted to submitting market orders instead of a collection of limit orders (equivalently,

a demand schedule).

2.0.1 Efficiency in usage

Suppose that yi = y for all i. In any symmetric equilibrium in which the price is affine in (θ, u, η),

each trader’s market order is an affine function of her private signal. That is,

xi = asi + b

for some scalars (a, b) that depend on the exogenous parameters of the model. Aggregate demand is

then equal to

x̃ =

∫
xidi = a(θ + f(y)η) + b.

Combining the above expression with the inverse aggregate supply function p = α−u+βx̃, we then

have that the equilibrium price must satisfy

p = α− u+ βb+ βa(θ + f(y)η). (45)

For each si, the equilibrium market order xi = asi + b must maximize trader i’s expected profits

Πi = E
[
(θ − p)xi − λ

x2
i

2
|si
]
− C(yi),

where xi = aisi + b.

Following steps similar to those in the baseline model, we have that, for any si, the derivative of Πi

with respect to xi, evaluated at xi = aisi + b, must be equal to zero, which yields5

E [θ|si]− α− βb− βaE [θ + f(y)η|si] = λ(asi + b).

We conclude that the equilibrium value of b, which we denote by b∗, is equal to b∗ = −α/(β + λ).

To obtain the equilibrium value of a, which we denote by a∗ we replace E [θ|si] = τε
τε+τθ

si and

E [η|si]
f(y) 1

τη
τθτε

τε + τθ
si

into the above FOC from which we obtain that

a∗ =
τε

λ (τε + τθ) + βτε + β τθτεyτη

.

5Note that E [u|si] = 0.
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Next, we can derive the expression for the welfare losses. When the market orders are affine with

coefficients a and b,

xi − x̃ = a(si − θ − f(y)η)

from which we obtain that

E[(xi − x̃)2] = E[a2f(y)2e2
i ] =

a2

yτe
,

as in the baseline model. Recall that the first-best action is xo = θ−α+u
β+λ . One can then show that,

for any (a, b), the welfare losses are equal to

WL = (β+λ)E[(x̃−xo)2]+λE[(xi−x̃)2]
2 =

1
2(β+λ)2

(
(βa+λa−1)2

τθ
+ (β+λ)2a2

yτη
+ 1

τu
+ b2(β + λ)2 + α2 + 2αb(β + λ)

)
.

For any a, the value of b that minimizes the welfare losses is thus given by the FOC

∂WL

∂b
= b+

α

β + λ
= 0.

We conclude that the optimal value of b is the equilibrium one: bT = b∗ = −α/(β+λ). Replacing the

above value of bT into the expression for the welfare losses, we have that the latter can be expressed

as a function of a as follows

WL(a; y) =
1

2

(
(βa+ λa− 1)2

(β + λ)τθ
+

(β + λ)a2

yτη
+

1

(β + λ)τu
+
λa2

yτe

)
.

Differentiating WL(a; y) with respect to a and setting the derivative equal to zero, we have that the

socially-optimal value of a, which we denote by aT , must satisfy

∂

∂a
WL(aT ; y) =

(βaT + λaA − 1)

τθ
+

(β + λ)aT

yτη
+
λaT

yτe
= 0

from which we obtain that

aT =
τε

λτε + βτε + λτθ + βτετθ
yτη

= a∗.

We thus conclude that there is no inefficiency in the usage of information in the Cournot game.

2.0.2 Efficiency in acquisition

We first characterize the equilibrium acquisition of private information. When each trader j 6= i

chooses yj = y and then submits the equilibrium affine market order xj = asj + b for quality of

information y, and trader i instead acquires information of quality yi and then, after observing si,

submits the market order xi, his expected payoff is equal to
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Πi = E
[
(θ − p)xi − λ

x2
i

2
|si, yi

]
− C(yi)

where p = α− u+ βx̃, with x̃ = a(y)(θ + f(y)η) + b, with

a = a(y) =
τε

λ (τε + τθ) + βτε + β τθτεyτη

and b = −α/(β + λ), as shown above. For any (si, yi), the optimal market order for trader i is given

by the FOC with respect to xi which yields xi = aisi + b with

ai = ai(y, yi) =
yiτeτη(1− βa(y))− βa(y)

√
yi√
y τθτe

λ (yiτeτη + τθ(τe + τη))

and b = −α/(β+λ). That is, for any (y, yi), trader i’s expected profits when all other traders acquire

information of quality y and then submit the equilibrium market orders for quality of information

y, and trader i instead acquires information of quality yi and then submits the market order that

maximizes his payoff (the one described above) is given by

Πi(y, yi) = E

[
(θ − α+ u− β (aθ + af(y)η + b)) (aisi + b)− λ(aisi + b)2

2
; y, yi

]
− C(yi)

=
ai − βaai

τθ
− βaai√

y
√
yiτη

− λa2
i

2

(
1

τθ
+

1

yiτη
+

1

yiτe

)
− C(yi)− αb+ (1− β)b2

where we used the shortcuts a = a(y) and ai = ai(y, yi) and the fact that si = θ + f(yi)(η + ei).

Replacing ai with ai(y, yi) and a with a(y), and using the Envelope Theorem, we then have that

∂

∂yi
Πi(y, yi) =

1

2

βa(y)ai(y, yi)

yi
√
y
√
yiτη

− λ (ai(y, yi))
2

2

(
− 1

y2
i τη
− 1

y2
i τe

)
− C′(yi).

When y is equal to the equilibrium level, which we denote by y∗, it must be that

∂

∂yi
Πi(y

∗, y∗) = 0

which, using the fact ai(y
∗, y∗) = a(y∗), yields

C′(y∗) =
1

2

(
(β + λ) (a(y∗))2

(y∗)2τη
+
λ (a(y∗))2

(y∗)2τe

)
.

Next, we characterize the socially-optimal value of y. Because for any y, the socially-optimal

usage of information coincides with the equilibrium, as shown above, using the Envelope Theorem,

we have that the optimal value of y, which we denote by yT is given by the condition

∂

∂y
WL(a(yT ); yT ) =

1

2

(
−

(β + λ)
(
a(yT )

)2
(yT )2 τη

−
λ
(
a(yT )

)2
(yT )2 τe

)
+ C′(yT ) = 0.

We conclude that the optimal value of y, which we denote by yT , is given by the solution to the

following condition
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C′(yT ) =
1

2

(
(β + λ)

(
a(yT )

)2
(yT )2 τη

+
λ
(
a(yT )

)2
(yT )2 τe

)
.

It is immediate to see that yT = y∗, implying that the equilibrium acquisition of information is also

efficient. Q.E.D.
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