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1 Extended proofs and derivations

Proof of Proposition 1. As explained in the main text, when the traders submit affine demand
schedules with parameters (a, I;, ¢), the equilibrium price is equal to

o+ b Ba
p= -+ N
1+p5¢ 14 6¢

(1)
where
z=0+4w, (2)

with w = f(y)n — u/(Ba). The information about # contained in the equilibrium price is thus the
same as the one contained in a public signal whose noise w has precision'

B2a297u7—n
B202+ Lo (3)
B2acTy +ymy,

In turn, this implies that the equilibrium trades z; = as; + b— ¢p are affine functions of the traders’

Tu(a)

exogenous private information s; and the endogenous public information z contained in the price.
That is, when the endogenous public information contained in the price is equivalent to z, a trader

with private signal s; purchases an amount of the asset equal to

r; =as; + b+ cz

where A
- o+ b
=b— 4
b= s )
and
B Baé
T 1t 5)

For each vector (a, b, ¢) describing the traders’ demand schedules, there exists a unique vector (a, b, ¢)
describing the traders’ equilibrium trades as a function of their (exogenous) private information, s;,
and the (endogenous) public information, z, and vice versa. Hereafter, we find it more convenient
to characterize the equilibrium use of information in terms of the vector (a,b,c) describing the
equilibrium trades. When the individual trades are given by x; = as; + b + cz, the aggregate trade

is equal to

= /l’idi =a(@+ f(y)n) + b+ cz.
Using the fact that z =60 + f(y)n — u/(Ba), we thus have that
u u
—)+b+cz=(a+c)z+ - +b.
i) (@t s+

Using the expression for the inverse aggregate supply function p = o — u + 8%, we then have that

Z=a(z+

the equilibrium price can be expressed as follows:

p=a+ b+ B(a+c)z. (6)

'To derive 7., (a) we use the fact that f(y) = 1/,/%.



Next, observe that

-1
Var(s;) Cov(si,z) si — E[s]
E[0|I;,p]| = E|f]s;, z] = ov(0, s; ov(0, z
Olfs] = Bblsisz] = [ Con@,s) Cov@2) | 0 O ] [Z_EM]
- [U 02} o3+ 02 Jg—i—f(y)2a,27 - si — E[s]
P G iwel of o) 2~ Bl |’

where 02 = 7,71, 02(a) = 1u(a)7}, @ = 7, 1. Substituting for the inverse of the

variance-covariance matrix, we have that

1
(7F + o2)(0F + 02 (@) = (7F + FWPoR)
(o3 o] [ oh+ole)  —(of+ ) o) ] [ st~ Elsi]
—(0 + f(y)?o7) o + ot z—E[2]
Expanding the quadratic form, we have that
oj (0%(a) — f(y)*o7)

(0§ +02)(0f + 03(a)) — (07 + f(y)?07)?
+ % (00— I)oy) (z - E[2]).

(0f + 02)(05 + 02(a)) — (0F + f(y)?07)?
Using the fact that E[s;] = E[2] = 0, and replacing o with 7,7, 02(a) with 7,(a)~}, o with 7,71,
o2 with 771, and f(y) = 1/,/y, we have that

E[G!si,z]

E[0]s;, z] (si — Elsi])

E[flsi, 2] = m(rw(a))si +72(ru(a))z

where, for any 7,
TeYTy (YT — Tw)

Tw) = 7
71( W) y27-7? (Tw + 7+ 7_9) — TwTe (7_9 + 2yT7l) ( )
and
2.9
T (y Ty~ Teyrn) < o + y7n> T
Tw) = =(1- T . 8
(7)) yQTg (Tw + Te + T9) — TwTe (To + 2yTy) 7(7) YTy T + T (8)

Now recall that optimality requires that the equilibrium trades satisfy
1
Ti = X\ (E[f]si, 2] — p)-

Using the fact that p = a+ b+ B(a+ ¢)z, and the characterization of E[f|s;, z] above, we thus have
that

1
zi = 5 [nrw(a)si — (a+Bb) + (2(rw(a)) — Bla+c)) 2]
The sensitivity of the equilibrium trades to private information must thus satisfy
o= W 9)

The sensitivity of the equilibrium trades to the endogenous public signal contained in the equilibrium



price must satisfy

¢ =+ (ma(r(a)) — Bla+c)).

A
The constant b in the equilibrium trades must satisfy
b
h=-2 tﬂ . (10)

Replacing the expression for 71 (7,(a)) in (7) into (9), we thus conclude that the sensitivity a* of the

equilibrium demand schedules to the traders’ private information must solve the following equation
. _ LK(74(a%))

X A(r(ar))’ ()
where, for any 7,
K(1) = meymy (ym — 70) (12)
and
A(ry,) = yQTg (Tw + Te + 79) — TwTe (1o + 2yTy) (13)

Using (8), along with the fact that v1(7,(a)) = Aa, we have that the sensitivity of the equilibrium

trades to the endogenous public signal must satisfy

1 To + YTy Tw(a)
=——1(1=-A — . 14
C B+ A [( “ YTy )Tw(a)+T9 fa (14)
Using (10), in turn we have that the constant b in the equilibrium trades is given by
o
b=— . 15
B+ A (1)

Finally, inverting the relationship between b and b and ¢ and ¢ using (4) and (5), and using the
expression for yo(7,(a*)), we have that, given a*, the values of ¢* and b* satisfy & = C(a*) and
b* = B (a*), where, for any a, the functions C and B are given by

C(a) Tw(a)ymy (1 — Xa — Ba) — Aatp7,(a) — Payt,g

¥=" Mayty (1w(a) + 19 — 1970 (a)) + Brw(a)ym, 10

and
N o

B(a)zﬂ_'_)\

To complete the proof, it thus suffices to show that equation (11) admits a unique solution and that

(Aé(a) - 1) : (17)

such a solution satisfies 0 < a* < 1/A. To see this, use the fact that
B2y,
Tw( ) — 2.2 Lo
B2a*T, + yty,
along with the fact that (7, (a)) is given by the function in (7) to rewrite equation (11) as follows:
L1 ey’ (B%aP T + ymy) — BRa’yruyTeyTy
A yzrg (B2a?yryTy + (Te + 19) (B2a%Ty + y1y)) — BPayTumyTe (To + 2yTy)

We thus have that a* must solve the following cubic equation

(18)

0 = \3%*r.a? [y?’rf;’ + yQTg (Te + 79) — ymy7e (10 + 2y7y)] + )xayng;’ (Te + 79) — Tey37'g. (19)



Note that, in a cubic equation of the form Az + Bz? + Cxz + D =0, if
A =18ABCD — 4B°D + B*C? — 4AC - 271A*D? < 0,

then the equation has a unique real root. In our case, B = 0 and C > 0 and, as a result, A =
—4AC — 27A%D?. Furthermore, using the fact that 7, = YTeTy/(Te + ), we have that

A = N?r, (ySTS) + y27',3 (Te +79) — Y17 (19 + 2y7’n)) X YTy (yQT,? + YTyTo — TeTp — TeyTn)
YTeTn o Tn > 0.

Te + Ty Te + Ty

Therefore A < 0, and hence the above cubic equation has a unique real root. Furthermore, because

o< (19 4+ y7y) (YT — Te) X YTy —

D is negative, the unique real root is positive. Replacing a = 1/X into the cubic equation, we have
that

1
527, 5V] (y 7' + 32 g (7'E +79) — yyTe (To + 2y7'77)) + yng;’ (Te + 79) — Tgy37'3
K
—ﬂQTu /\271 (y Tn +yTyTo — TeTp — TeyTn) + y?’TsTg > 0.

This implies that 0 < a* < 1/\. Q.E.D.

Derivation of welfare under FB allocation. Because fol (27) di > ( fol xidi)Q, we have that W
is maximal when x; = x° for all 7, with
0—a+u

B+ A

o

Q.E.D.

Derivation of welfare losses. Ex-post welfare is equal to

we = 60z°— %(1'0)2 - (a —u+ ﬁx;) x° = b+ /\(IL‘O)Q.

It follows that

WL = 5;%[( )}—E[(@—a+u)§;—5f—;/olx$dz’].

Replacing z° = agf‘j“ into the above expression and using the fact that E [ fol :cfdz} =K [E[m?\:ﬂ],

we have that

B+ A 1 2ai
WIL = TE 2E[2 B4\ Ex° — B — /szzdz]
_ ?E[ }+%E[ﬁ+)\x —22°%(B + A) — AZ® + AE[27|7]]
- ?E[(z —2%)?) + %E[(m - &)%.

Q.E.D.

Proof of Lemma 1. The same arguments as in the proof of Proposition 1 imply that, when

the traders submit demand schedules of the form z; = as; + b — ¢ép, for some (a, b, ¢), the trades



induced by market clearing can be expressed as a function of the endogenous public information z
generated by the market-clearing price by letting x; = as; + b+ cz where z = 0 + f(y)n — u/(Ba) is
the endogenous information about 6 contained in the equilibrium price, and where the noise in the
endogenous signal has precision 7, (a) = (52a2y7‘uﬂ7) / (BQaQTu + yTn).

Furthermore, the values of b and ¢ are given by (4) and (5). Using the above representation, we
have that the aggregate volume of trade when the demand schedules are given by (a, l;, ¢) is given by

Z=a(0@+ f(y)n) + b+ cz and hence ex-ante welfare is given by
2
EW] =E | (0 — a+u) (a(0 + f(y)n) + b+ cz) — gL WIS (2 (g5, 1+ b+ c2)? di .

Note that
8IE6[ZV] =E[0 —a+u)—Ba@+ fly)n) +b+cz) —Aas+b+cz)] = —a — (B+ \)b,
O*E[W
3(,[2]——(5+A) <0,
aEa[ZV] =E[z(0 —a+u)—B(a@+ fy)n) +b+cz) z— Xz (as + b+ c2)],
8256[2‘4/} =K [—5?:2 —)\2’2] <0,

and 0?E[W]/0cob = 0. Hence E[W] is concave in b and ¢ . For any a, the optimal values of b and c are
thus given by the FOCs 9E[W]/db = 0 and OE[W]/0c = 0 from which we obtain that b = —a//(5+\)
and
E [z (04 u) — B(a(@ + f(y)n)) z — Bez® — Aazs — Aez®] = 0.
The last condition can be rewritten as
Covl|(@+u—pal@+ f(y)n)),z] — (B+ A cVar(z) — AaCov(z,s) =0

from which we obtain that

Cov[(0 +u—Ba(l+ fy)n),z]  AaCov(z,s)

C =

(B+A) Var(z) (B+A) Var(z)
Using the fact that z =60 + f(y)n — 5; and s = 6 + f(n + e), we have that
_ 1 L 9, 9
Var(z) = = + @) oy +o5(a),

where 03 = 1/75 and 02 (a) = 1/7,(a). Furthermore,
Cov[(6+u — Ba(® + f(y)m) 2] = Cov [ (6 +u—Bal®+ f(y)n) 6+ Fly)n— 4
= Cov[6(1 — Ba), 6] + Cov [u, ——} Cov [ﬂaf( i £ ()]
= (1 - Ba)o} — % — faf(y)%o



and Cov [z,s] = 0§ + f(y)?o;. Hence,

2

(1 - Ba)og — 3t — Baf(y)?on  Xa(oF + f(y)%02)

T BN (2 +02@) (BN (02 +02(a)
S S T O 0 .1 CO B
_6+A[<1 A Ayﬂ;)%(a)JrTe faj .

We conclude that, given a, the optimal values for ¢ and b are given by the same functions in (14)
and (15) that characterize the parameters ¢ and b as a function of a under the equilibrium usage of
information. To go from the optimal trades to the demand schedules that implement them, it then
suffices to use the functions defined by (4) and (5). We thus conclude that, for any choice of a”, the

optimal values of 7 and b7 are given by the functions (16) and (17), as claimed. Q.E.D.

Derivation of formula for welfare losses. As shown above, the welfare losses can be expressed

as

A

= ME[(@ —2°)?] + §E[($i - )7,

L
W 2

where 20 is given by
o_ 0t+u—«a

B+ A

T

(20)

We have also shown above that, for any vector (a, I;, ¢) describing the demand schedules, there exists
a unique vector (a, b, c) describing the induced trades z; = as; + b+ cz at the market-clearing price,
and vice versa, where z = 0 + f(y)n — % is the endogenous signal contained in the market-clearing
price. This also means, when the traders submit the demand schedules corresponding to the vector
(a, 13, ¢), the aggregate volume of trade at the market-clearing price can be expressed as a function of
(0,1, z) as follows: = a(0 + f(y)n) + b+ cz. Therefore, the dispersion of individual trades around
the aggregate trade can be expressed as

2

- a
E[(x; — )% = Ela®f(y)*e}] = —.

YTe

Next, use the fact that, for any a, the optimal values of ¢ and b are given by (14) and (15),

along with the fact that z =6 + f(y)n — 4, and the fact that f(y) =1/,/y, to obtain that

Xa(0+ f(y)n) +u—a+ (1—)@—)«1%) %z
B+ A

Combining the expression for Z derived above with the expression for 2 in (20), we have that

7 ) _tela) ?
oy Aa(0+ f(y)n) +u—a+ <1—/\a—/\aﬁ> w0 —a+u
E(@-2%7] = E B+ A T B

T = al@+ fly)n)+b+cz=

Simplifying, we have that

2
T Tw(a) T Tw(a)
E[(i‘ _ xo)Q] = E (Aaf(y)n + (l—)\a—)\ayfn) Tw(a)+Tg (z—@) _ [1_/\(1_ (1—/\a—)\ayfn> TW(G)+TG]9>

B+ B+A BHA



Using the fact that f(y) = 1/\/y, and that E[wf] = E[nf] = 0, we then have that

((1 ~Na-— AaLe) ru(a) )2 A2a2 4 2)\a (1 Ca— Aa%) ru(a)

E[(z —2°)?% = ¥ ) Tele)tTo : Fola) 1o
(B+A)"1w(a) (B+ M)y
)\ _rwl@ )?
X (1-2a= (1-2a- a2 ) i)
(B+A) 7 |

Replacing the expressions for E[(x; — 7)?] and E[(Z — 2°)?] derived above into the formula for the
welfare losses, we then have that, for any a, when b and ¢ are set optimally, the welfare losses can

be expressed as

YTn ) Tw (a) +T7o

WL(a,1,(a)) = [(1 ~Ha- Aa%) TwT(lelgCQTe] 2 Na® +2)a (1 —Aa — Aal> 7w (a)

2(B+ ) 1(a) 2(84+ N ym
T Tw(a) 2
. 1-da- (1-2a-2a) e |" o
2(B+ )19 2yt

as claimed in the main text. Q.E.D.

Proof of Proposition 2. As shown above, once b and ¢ are set optimally as a function of a to
minimize the welfare losses, the latter can be expressed as a function of a and 7,,(a), with the formula
for W L(a, 7,(a)) given by (21), with 7,(a)=(8%a*1,7,y)/(8%a*Ty + y7;). The socially optimal level
of a is thus the one that minimizes W L(a, 7,(a)) and is given by the FOC

dWL(a,7,(a))  OWL(a,7u(a)) N oW L(a,7,(a)) 01,(a) 0
da B da 07,(a) da
Note that
7 Tw(a) YTnt79 _Tw(a)
WL mfa) _(17da= o) S (ViR )
da (B+A)Tw(a)
2 T Tw(a) 2 ym+T19  Tw(a)
+)‘ a+A <1 —Aa — )\Gﬁ) Tw(@)+19 Aa ynTn ’ Tw(a)+Tg
(B+A) YTy
19\ _Tw(a) _ ymm+7e | _ Tw(a)
+ 1= a— (1= degn) S0 | (A4 (M) 2559 LN
(,B + A) To yTe’



and that

2
OW L(a, 1,(a)) B (1—)\(1—)\(1;7‘97]) 79 — 7(a) . a (1—/\a—)\ay%l) o
O70(a) a 23+ (ru(a) +79)° B+Nym  (u(a) + 1)
_[1—)\a— (1—)\a—/\ay7fn> Tw?;gi)m] <1_)\a_)\a7_9) T
(B+A)7 ) (r(a) +19)*
Also note that
oru(a) 2520@27}?%
Oa  (B2alTy, +ymy)?

Using the expressions above, we obtain that

T Tw(a) y+710  Tw(a)
Wiar@) _ _(17da- o) Sl (VW) + 2% 4 L)
da - (B+A) u(a) yr.
Na+ A (1 —Aa — )\aﬁ> Told) N2, ¥TntTo_Tw(a)
n YTy ) Tw(a)+7e Yy Tw(a)+7e
(B+A) YTy
T Tw(a) YTn+T Tw(a)
n |:1 —Aa — (1 —Aa— )‘aﬁ) Tw(a)+-rg] (_)\ + A ( g;’frn 9) Tw(a)JrTe)
(B+A) 7
where
2
by i, (1-ra=ra)” ) | P (1-ra=2az)
a) =
(B2a*7 + y7y)? (B+2) (rw(a) +79)° B+Nym  (rula) + )
g — (1= g — \gTe ) _Tw(@
2 [1-2a = (1= 2a—rage) el | (1 o MTG> .
B+ YT/ (1w(a) + 1)

Hence, the first-order-condition dW L(a, 7,,(a))/da = 0 is equivalent to

0 = Mar <(y7-,7 + 7-9)2 - Tg) + Aaym, e (Tw(a) + 79) — 2XaTe (ym; + 79) Tw(a)

Tw(a)

Tu(a) + 79

y1y (1w(a) +79) (B + A)
AYTe

D) (4 gy + 0
70

(6 +A) (1w(a) + 79) ymy L(a)
A

2
+at ) + AayTyTe

+YTyTe — YTnTe (yTn — Tw(a)),
from which we obtain that

yTyTe (Y1 — Tw(a)) = Aa {yQTgTe — 1(a) e (19 + 2y7;) + (Tw(a) + 79) yQTg

+y7_777—e

O BN ) )]

AYTe A2q
Using the definitions of the K(-), A(-), A(+), and =(-) functions in the main text, we then have that



that a7 must solve

It is straightforward to verify that

dW L(a, 1,(a))
da

B ATy YTy
a=1 BRCESY) YTy (1w (a) + 19) B2a’T, + ymy

B2a’t, To > Aa
1-— X + — >0,
< (B2t +ymy)  (1w(a) + 7o)

and that

W)  mois (Nt aois) M)
da w—o (B4 ) 1w(a) (B+ ) ymy
(1- 28 ) (—r+ () ete)
(B+ A9
Tw(a) 1= YTy
YTy B2a’r, +ymy
which implies that 0 < a” < 1/, as claimed in the proposition. Q.E.D.

_l’_

<0,

Optimal sensitivity to private information when agents do not learn from prices. In
the cursed economy, each trader receives a private signal s; = 6 + f(y)n + f(y)e; and a public signal
—
z =0+ f(y)n + x, and believes p to be orthogonal to (0, n, (eﬁié) Following steps similar to those
—

=(
leading to Proposition 1 in the main text, we have that E[f|s;, z] = y15; + 122,

where
= Ty (Y — 7¢)
 YPTR2(Te A Te + To) — TeTe(To + 2yTy)
and
y = Y1y (Y1) — Te) _ oy To + YTy ¢
o yQTg(TC + Te + 79) — Ter (10 + 2yTH)) YTy T+ 79
Observe that the cursed-equilibrium demand schedules must satisfy
1
zi = 5 (Elflsi e - p). (22)

Now let z; = a*,,s; + b*,, + & ,,2 — d*,,p denote the cursed-equilibrium demand schedules. From
= 1/A. Using the

the derivations above, we have that a*,, = y1/A, b%,, = 0, &,, = 72/, and d*,,

2o 1S equivalent to
' 1 K(7¢)

Qezo — XA(Tc)v

formula for v; above we have that the formula for a

(23)

as claimed in the main text.

Now suppose that, given a, the planner is constrained to choose (13, ¢, cf) to maintain the same



~

and (b%,,, ¢, d*,.) in the cursed equilibrium.

relationship between a and (b, ¢,d) as between a, r 20> Cozos ozo

Using the fact that

(o]

Ty + y7'77> ¢
T+ 19

and the fact that v; = a},, A\, we have that, in the cursed equilibrium, the relationship between a},,

and (b, ¢ d*..) is given by b, =0,

exro’ “exo’ 'exo EXO

é :1<1—)\a* T‘)“””) X

EXO0 A EXTO yTn Tg _"_ 7_67

and cfzm = 1/A. The above properties imply that, in the cursed economy, for any choice of a, the

planner is constrained to select demand schedules of the form

v = % ()\asi + (1 _ Jalm +yT’7)) © —p> . (24)

z
YTn Tc+ 7o
The planner then chooses a to minimize the welfare losses

wr = PV pop)y 2aj -2y

under the the above demand schedules, taking into account the market-clearing condition.
Following steps similar to those in the baseline economy, and using the market-clearing condition,

we have that, when the traders’ demand schedules are given by (24),

_ Aa(ymy+Te) us 2 2 9 _ Aa(yty+Te) us
(ﬁ + )\)E[(i' _ xO)Q] _ ((1 y:'r] ) T<+T0) n Aa® + 2Xa (1 y:n ) o
2 B+ 7 (B+N)?ym,
Aa(yTn+To) T 2
(1m0 o) )
(B+A) 7

and

ME[(z; — 2)%]  Aa?
2 T

This means that, for any a, the welfare losses are equal to

[(1 _ )\a(yTnJrTe)) s ]2 2242 + 2)\a (1 _ )‘a(yTTIJ”T&)) 7

WL — YTy T¢+To n YTy T¢+To
28+ ) 1¢ 2(B8+ X))y,
2
n {1 — Aa — (1 - )‘a(y;::‘m)) TCET@} a2
2(B+ )Ty 2yTe

Following steps similar to those in the proof of Proposition 2, and letting
A(re) = y27'3 (1¢ 4+ Te + 19) — T¢Te (T0 + 2yTy)

we then have that the value of a that minimizes the above welfare losses is equal to

10



J -1 K(r¢)
exro 2
A A(re) + Trierm)?

as claimed in the main text. Q.E.D. Proof of claim that ¢* = 0 if and only if A(a*)+Z(a*) = 0.

Recall that ¢* is given by

x 1 * x 10 Tw(a*) *\ 1 ¥\ o
= (o) S ) e e )

whereas the externalities are given by
2
BRayitiT, 17)\a7)\a‘r79
M) = - rinle )
Aa(B2a?Tu+ymy)? (1w (a)+70)
We prove the lemma in two steps. First we show that, if ¢* = 0, then Z(a*) + A(a*) = 0. To see this,

and Z(a) = —TﬁyT’Q’(T;\’S)HG)B .

use the formula for ¢* above to verify that, when ¢* = 0, then fa* = v2(a*). Using the fact that

of = l Ty (Y7 — Tw(a®))
A y27'73 (Tw(a*) + 7e + 1) — Tw(a*)7e (19 + 2yT)’
72(a*) _ Tw(a*) (szg - TeyTn)
yQTg (Tw(a*) + 7e + 19) — Tw(a*)7e (19 + 2yTy)’
_ YTeTy
T€ - T
Te + Ty
- (CL*) . /82a*2yTnTu
. -

ﬁza*QTu + yTn’
we then have that, when ¢* = 0,

YTeT;
| ) e ) o) (e £2)
“ reymy (Y7 — (@) 7 Ty — ml0))

Using the formula for 7,(a*) we then have that

B2a*2yTyTu yT2
,B BQa*27u+yT77 Te+Tn - )\62a*2y7-777_u7'7] _ )\5201*2Tu
YTeTn _ BrayryTa | 7 (272 - Tey
Te+Ty (yTn B2a*2Ty+ymy, ¢ (y 77)

from which we obtain that
YTe
Aa*2T,

8=

(25)

Furthermore, using the expression for ¢* above, we have that, when ¢* =0

(1 —Xa* — )\a*TG> 7@(61 ) = fa”.

yty ) 19 + Tw(a¥)
Replacing the above expression into the formula for the two externalities, we thus have that

11



TeyTy (Tu(a®) +70) B P71 (19 + T(a*))

Al(a*)+ E(a") = -
(a7) + E(a”) ATe T \2gr a*T,
Using (25), we then have that
Al(a*)+ E(a") = TeyTg (@) + ) /\Z;(;u _ 7_63/27_3 (79 + 7w(a”))
- N ATe A2q* a*Ty,
_ Tdﬁﬂ? (Tw(a*> + 7—9) . (7—9 + Tw(a*)) -0
A2a* a*Ty a*7y '

Next, we prove the converse. We show that, if A(a*)+Z(a*) = 0, then ¢* = 0. To see this note that,

when the sum of the two externalities is zero, then

2
TeyTg (rw(a®) + 79) B Tey4rf7*ﬂ2a*7'u (1 — Aa* — )\a*%)
ATe X2a*(B2a*?T, + ym)? (Tw(a*) + 79)
Using the various expressions above we then have that

A(a*) +E(a”) = —0.

2
(Tw(a*) +7'9)B - 1 Tw(a*)Q (1 —Xa* — \a ﬁ) 0
YTe Aa* B2a*3T, Tw(a*) + 719 -

or, equivalently,
ﬁ a* 1 Yo ( a*)2

yre  mla*) f2ar?ry

from which we obtain that

Tw(a®) (ymy — ) yTe (@) = 8227, yr,
T (ymy) — Tw(a*)) B2a*?T, 2 Ty  B%a*’T,
(a*) = 0, it must be that Sa* = y2(a*). This means that ¢* = 0. Q.E.D.

Ba” =
Hence, if A(a*) +

2(a%) = 72(a”).

[1]

Proof of Proposition 3. Under the proposed policy, each trader’s demand schedule must satisfy
the optimality condition

Xi(p; I;) (E[0]1;,p] — (1 +tp)p +to) -

A+
For any vector (a,l;, ¢), when all traders submit affine demand schedules x; = as; + b— ¢p, the
equilibrium price then continues to satisfy the same representation as in (1) but with (a*,b*, &)
replaced by (a, b, ¢). This also means that the equilibrium trades can be expressed as a function of the
endogenous public signal z, as in the laissez-faire equilibrium with no policy. Letting x; = as; +b+cz
denote the trades generated by the demand schedules z; = as; + b— ¢p (with z representing the
endogenous public signal contained in the market-clearing price), we then have that the functions
that map the coefficients ¢ and b in the demand schedules into the coefficients ¢ and b in the induced
trades continue to be given by (5) and (4). Using the fact that E[f]s;, 2] = 71(7w(a))s; + v2(1w(a))z,
with the functions 1 (-) and 72(-) as defined in (7) and (8), along with the fact that the market-
clearing price satisfies p = a + b + [(a + ¢)z as shown in (6), we then have that the equilibrium

12



trades must satisfy

T, = %—M 1 (1w(a))si +12(1w(a))z — (1 +tp)a — (1 +t,)B8b — (1 + tp)B(a + ¢)z + to]
- /\i(s {(n(7u(a))si — (1+1t,) (a+ Bb) + [y2(w(a)) — (1 +t,)B(a+¢)] z + to} .

The sensitivity of the equilibrium trades to private information s; under the proposed policy thus
satisfies a = v1(7(a))/(A + ). Using the formula for v, in (7), we then have that the equilibrium
value of ¢ under the proposed policy is the unique solution to the following equation:
1 TeyQTg — Tw(a)Teym,
A+ 0 Y212 (1 (a) + Te + 79) — Tw(a)Te (To + 2yTy;)

The equilibrium value of b is given by the unique solution to
—(1+ tp) (a4 Bb) + to
A+

b=
which is equal to
_ o=+
A0+ (1+1t,)8

The equilibrium value of ¢, instead, is given by the unique solution to

¢ = 1= 2(1(a) = (1 +1p)5(a + )]

which is equal to
_ a(ru(0) — (1 +1,)8a
Ao+ (1+t,)8

Now recall that the sensitivity a’ of the efficient trades to private information is given by the unique

solution to
1 7Yy (YT — Tw(a))
Ay272 (1 + 79 + Tw(a)) — Tw(a)Te (19 + 2y7)) + E(a) + A(a)

Therefore, the equilibrium value a under the proposed policy coincides with the efficient level a” if

a =

and only if ¢ satisfies
(A+9) [yQTg (Tw(aT) + 7+ 7'9) — 7'“,(aT)7'6 (1o + 2?/7'77)]
=\ [yQTg (TE 4 19 + Tw(aT)) — 1, (aT) e (19 + 2yT,) + Z(a”) + A(aT)] ,
from which we obtain that
A (E(aT) + A(aT))

o6 = .
y%-%(rw(aT) + Te + 79) — Tw(aT) e (19 + 2yTy)

Now recall that, given a’, the other two coefficients ¢! and b” describing the efficient trades are
given by the functions in (14) and (15), implying that
1 T
=L ((1-nat aa? ) T
B+ A yty ) Tw(a®) + 19
and b = —a/(B + \). Hence, for the equilibrium levels of ¢ and b under the proposed policy to

13



coincide with the efficient levels it must be that
Y2(rw(a”)) = (1 + tp)ﬁaT _ 1 ((1 2l — )\aTT@) (a") _ ﬂaT>
)‘+5+(1+tp)ﬁ B+ A YTy Tw(aT)+TO

and
to—(1+t)a  «
A6+ (1+1)8  B+A
It is easy to see that the above two equations are satisfied when

Ta(rua?)) = 252 [(1 - da - Aagt ) el — Ba| - Ba”

t, =
1 T Tw(a)
{5 [(1-2a—ra) 20— ga] + a7}
and
_ oz[)\+(5+(1+tp),3]
to—(1+tp)a ﬂ—i—)\
Q.E.D.

Proof of Proposition 4. Given I; = (y;, s;), trader i’s demand schedule maximizes, for each price

p, the trader’s expected payoff
2
xs
E (0 — (1 + tp)p) xXr; — )\é‘[j,p

The solution to this problem is the demand schedule given by

X(p: 1) = { (BIOIT:,p] — (1+ ,)p) (26)

where, as in the laissez-faire equilibrium, E[0|];, p] denotes the trader’s expectation of § given I; and
p.

In any symmetric equilibrium in which the price is an affine function of (6,u,n), the equilibrium
trades continue to be given by

T, =as;+b+cz (27)

for some scalars (a, b, c) that may depend on the level of the tax ¢, and on the quality y; = y of the
agents’ information.

When the individual trades are given by (27), the aggregate trade is equal to

:E:(a+c)z+%—|—b,

where we used the fact that z +u/(Ba) = 6 + f(y)n. Replacing & into the expression for the inverse

aggregate supply function, we then have that the equilibrium price
p=a+pBb+ pla+c)z (28)

can be expressed as a function of (a,b,c) and the endogenous public signal z, as in the laissez-fare

equilibrium. As in the baseline model, we thus have that
E[0]1i, p] = 1 (1w(a))si +12(1w(a))z, (29)

with v1(+) and ~2(+) given by (7) and (8), respectively. Combining (26) with (28) and (29), we thus
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have that the equilibrium trades satisfy

1
zi = 1 nw(@)si = (1+1p) (@ +Bb) + (12(7w(a)) — (L +)B(a+c)) 2] (30)
We conclude that the sensitivity of the equilibrium trades to private information must satisfy
_ n(7w(a))
a= 3 .
That is, no matter the value of t,, the equilibrium level of a is given by a*, as in the laissez-fare

(31)

economy in which ¢, = 0. Furthermore, combining (30) with (31) and using (8), we have that the

equilibrium sensitivity of the trades to the endogenous public signal is given by

1 To + y7n> Tw(a)
=———|(1-=-A — (14t 32
‘ B(1+1tp) + A [( ¢ YTy Tw(a) + 79 ( p)Ba (32)
whereas the constant b in the equilibrium trades is given by
o
b=—-(14+t,)—————. 33

Hence, any ad-valorem tax ¢, # 0 induces the same sensitivity a* of the equilibrium trades to private
information as in the laissez-faire equilibrium in which ¢, = 0 but different values of b and c. Because,
given a*, the values of b and ¢ (equivalently, of b and ¢) in the laissez-fare economy maximize welfare,
as shown in Lemma 1, we conclude that any policy ¢, # 0 results in strictly lower welfare than ¢, = 0.
Q.E.D.

Proof of Proposition 5. Let y” denote the socially optimal quality of private information and
(a”, BT,éT) the coeflicients describing the efficient demand schedules when the precision of private
information is y?. Next, for any ¢, let E[W7; ] denote ex-ante gross welfare when all traders acquire
information of quality ¢ but then submit the efficient demand schedules for information of quality
yT (that is, the schedules corresponding to the coefficients (a, b7, éT)). Such a welfare function is
gross of the costs of information acquisition. Finally, for any (y;, ), let E[7]; y;, 4] denote the ex-ante
gross profit of a trader acquiring information of quality y; when all other traders acquire information
of quality 7, and all traders, including i, submit the efficient demand schedules for information of
quality T (that is, the schedules corresponding to the coefficients (a’, b, ¢7) mentioned above). The
payoff is again gross of the cost of information acquisition. We start by establishing the following

result:

Lemma 2. Let yT' denote the socially optimal quality of private information and suppose
that all traders submit the efficient demand schedules for information of quality y (parametrized
by (a”, b, ¢)). When ¢ > 0 (i.e., when the pecuniary externality dominates over the information

externality so that the efficient demand schedules are downward sloping), for any g,

d
EW?;g]

0
Eﬂfvyzag > —
By Wl > g

Yi=
whereas the opposite inequality holds when ¢T < 0 (i.e., when the information externality dominates

over the pecuniary externality and, as a result, the efficient demand schedules are upward sloping).

Proof of Lemma 2. When all traders other than i acquire information of quality y and then submit
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the demand schedules corresponding to (CLT, ET,ET), irrespectively of the information acquired by

trader ¢ and of the demand schedule submitted by the latter, the equilibrium price is given by
p(0,u,m;9) =+ Bb" + Bla” +c)2(0,u, m; 7)

where b and ¢T are the coefficients obtained from (a5, ¢7) using the functions (4) and (5), and

where z(0,u,n;7) = 0 + f(§)n — u/Ba’.? Furthermore, the aggregate level of trade is equal
X(0,u,m:9) = a0+ f(G)n] + 0" + T 2(0,u,m:9)

whereas the level of trade for agent ¢ when he acquires information of quality y; and then submits

the demand schedule corresponding to the coefficients (a”, b7, ¢l is equal to

Xi(0,u,m, €539, y:) = a’ [0+ f(yi)ei + fyi)n] +b" + T 2(0,u,m;9).

Si

It follows that, when all traders other than ¢ acquire information of quality ¥, trader ¢ acquires infor-
mation of quality y; and all traders, including trader 7, submit the demand schedules corresponding

to (a”, l;T, ¢, trader i’s ex-ante gross payoff is equal to

_ _ _ A _
E[ﬂ-zTayayl] =E |:(0 —p(97u>777y))Xz(97U7777€myvyz) - §X12(97u7 m, €1>y7y2):| .

Using the fact that the market-clearing price must also be consistent with the inverse-supply function

and hence satisfy p =a —u + BX(G, u,n;Y), we then have that

_ > _ _ A _
Elrl9,v:] = Eouy [(9 —a+u—BX(0,u,mn; y)) E[x;]0,w,n; 9, ys] — SE (2710, u, m; 9, yz-]]

or, equivalently,
E[W;T7 g? yl] - Ee,u,n |: (9 —at+u— ,BX(Q, u, 1, g)) ]E[LUAH, u, 1); g? yl] - %V&T[.’Ei‘e, 7, u; ga y’b]
=3 Blwil0,n, w5, 1) |,
where
E[l‘2|97 U, 15 ga yl] = E[Xz(ev U, 1, €4; ga yl) ‘97 u, 1, ga yZ]?
E[%Q‘Q? u, 1); gv yz] =K (Xz(ev U, 1, €4; ga yz))2 |9> u, 15 y? Yi|
and
Varlzi|0,m,w; 7, vi] = B[220, w,n; 9, yi] — (Elz:|0,w,m;7, )
Using the fact that
E[w:|0, u,m; 9, 9] = a” [0+ f(ys)n] + b + ¢ 2(0,u,m;7)
and
_ 2
Var[z|0,n,w; g, y] = (an(yi)) /Te,

2Observe that the functions (4) and (5) do not depend on y and hence ¢* and b do not depend on .
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we have that

T\ 2
311@[7??;33,%} = Ee,n,u [(9 —a+u-— 5X(9,u,77;g)> an/(yi)n} —A (a e) f(yz)f/(yz)

—MEq,.0 [(a”[0+ f(yi)n] + 0" + ¢ 2(0,u,m;9)) a” £ (yi)n)]

; (a")°
= —a"BBaa [X(O,um 90| /() = A F ) £ (30)

e

2 1 _
—A(a”) f(yi)f'(yi); — Aa" ¢ By s [2(0, w3 )] £ (i)-
n
Using the fact that

~ T 1/
o [X0, 0] = L2 4 T8 200, i
and ~
o [20,. 7)) = T2
we then have that
O i T, - Tol Tendt | 11| o (“T)2 /
o Eirtimu] = '8 |5 L+ )] ) A s
(@) ) ) = = AT @) ) (31)
n n
We conclude that
R I O E R U 7o) - s r0)
AL )y 9| @ e O RC
A (@) T @)~ 2T ()7 (9)
n n
N ot T a T T\ 1
= IEIE N BN ] (35)
e n

Next, observe that, when trader i also acquires information of quality 7 and all traders submit the

demand schedules corresponding to (a’, b7 el

Y

2
o . N s oA @F@)T A )2
E[n}:5,5) = Egup !(9 —atu-— 5X(9,u7n;y)> X(0,u,m;9) — 2(7) —3 (X(G,u,n;y)) :
e
Now observe that, when all traders acquire information of quality ¢ and submit the demand schedules
corresponding to (CLT, ET, éT), the ex-ante payoff of the representative liquidity supplier (which the

planner accounts for in the computation of welfare) is equal to

BITg] = Eouy |(00,0.050) — 0+ 0 X0, ws055) — 5 (X0 u:)) |

= gEG,u,n [(X(&u,n;y)ﬂ :

where we used the fact that p(6,u,n;9) = a— u+ﬁX(0, u,n;y). We thus have that, when all traders

acquire information of quality ¢ and submit the demand schedules corresponding to (aT,l;T,éT),
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ex-ante welfare is equal to

EWT:g] = El[r:3.9]+E[Lg]
AF@)’ A+B o ,

= Eoup | (0 —a+u) X(0,u,m7) - 2( T e 2 (X(G,u,n;??)) .

Hence,
X o a2 F(a) £ (3
= ;9] = Eopu |

“ ~(A+B)X (euny)w

where

9 -
ang(&u,n;ﬂ) = (a" + ) f (g

It follows that

2 L, _
v _ A f@f®)
EW gl =
Yy Te
Using the fact that

— (A +B)(a” + ) F (9)Eopu | X (0, u,m;9)0] -

B | X (0,0, m:9)0] = (@ + )1 (5)

Tn

we thus have that

d ] A a)’ F@)f @) 2 o L
EWTg = - ) —(A+8) (a" + ") @) (G) (36)
Y Te Tn
Comparing (35) with (36), we thus have that, when ¢!’ < 0,
0 d
Elrl; 9, i) > —E[W7;q,
9y Yi=y dy
whereas the opposite inequality holds when ¢! > 0. Finally, use Condition (5) to observe that
= _,B(a’ﬁiicT) and Condition (14), along with the formula for 7,,(a), to observe that a’ + ¢! > 0.

Jointly, the last two conditions imply that sgn(¢’) = —sgn(c!) thus completing the proof of the
lemma.

We now show that the result in Lemma 2 implies the result in the proposition. We start by estab-
lishing the (global) concavity of E[x};¥,y;] and E[WT;¢] in y; and @, respectively. Recall that the
coefficients defining the equilibrium trades as a function of the private signals s; and the endogenous
public signal z are kept constant in both cases at (a”, b7, c), where (a”,b”, cT) is the vector defining

the efficient trades when the quality of private information is y”. Using (34), we have that

2
gygE[mT;y,yi] = —d"Bf(y ) (a + ) () = A (aT)? [:4‘ 1] 8?; (f(i) f (i)
X ch@)T—nf”(yi)
= ) [+ )+ ) = A [ ] S (10 ).
Tn Te Yi

Now observe that f”(y;) = 3,/y;/4y} > 0 and 8%1_ (f(yi)f'(yi)) = 1/y3 > 0. Hence,
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0’ REN ™+ T
—EWiT;’,i = —[ = (Ba + (B+N) T —i—)\aTne}
gl ] =~ |5 (BT + (54 N ) -

Recall that, irrespective of the sign of ¢!, a” > 0 and a” + ¢ > 0, where the last inequality is
established in the proof of Lemma 2. Hence, when ¢’ > 0, for any (¥, v;), 0*E[r]; 4, v:]/9y? < 0. To
see that the same inequality holds when ¢! < 0, recall that

e’ 1 [(1 —xa” = Na” 70 > s(a’) — ﬁaT] .
Tw

R 7y ) mo(a”) + 7
Hence,
T T T T 76 Tw(aT)
A =(1-Xa" — A .
fa” +(B+A) e ( ¢ ¢ yTTn) Tw(al) + 79
Using
2
Tw(aT) _ 62 (aT) yTTnTu

— 5 7
/62 (aT) Tu + yTTn

we can rewrite the last condition as

52 (aT)2 Tu

BaT + B+ N =[(1=XaT)yTr, — AaT1y .
[( ) ! ] 2 (QT)Q Tu (YT 1+ 19) + YT 770

Hence,
BaT + (B+N) L (1= xa") y''m, — Aa' 7.

Now recall that a® solves
of 1 TeyTTn(yTTn — Tw (CLT)) (37)

A YT)? 72 (e + 79 + Tw(aT)) — Tw(aT)7e (19 + 2y77y) + E(aT) + A(a?)

with 7e = (y"7em;) / (Te + ) and observe that the numerator in (37) is positive. Because a’ > 0,

as shown above, this means that the denominator in (37) is also positive. Using the fact that
yTTnQ
(7)? 72 (1e + 79 + Tw(aT)) — Tw(aT)7e (19 + 2y77) + Z(aT) + A(aT)

(1 - )\aT) yTﬂ7 — )\aTTg =
where

Q=y"r (yTT,7 — 1) (10 + Tw(CLT)) +Z(a’) + A(al),
we thus have that
Ty, T T\ _
sgn ((1 —Xa )y Ty — Aa 7‘9) = sgn (Q) .
Now, using the fact that 7. = (y7.7,) / (7e + 7), we have that @) can be rewritten as

Q= (yTTn)2 (7'9 + Tw(CLT)) + E(aT) + A(aT)

and hence sgn (Q) > 0 if Z(a’) + A(a”) > 0. The latter property holds because, as explained in
the main text, when ¢! < 0, then ¢7' > 0 in which case Z(a’) + A(a’) > 0. We conclude that, no

Te + Ty

matter the sign of ¢!, for any g, E[rl; 7, y:] is strictly concave in y;.

Next, consider the concavity of E[W7; 7] in 3. Using (36), we have that
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d? A (aT)2 21| 0
Sl o) WT. = - _ A T T I
LAt — o TOHB () o
< 0,
where again the inequality follows from the fact that a% (f(@)f'(y)) > 0. Hence E[WT; 7] is strictly
concave in .

Because E[WiT; ¥, y;] is strictly concave in y;, in equilibrium, all traders acquire information of quality
y* such that

0 _ *
5 Bl 5, v] =C'(y").
Yi Yi=y=y"
Now recall that the socially-optimal quality of information satisfies
d
—“EWT. g — (D).
7 W 9] (v")

g=yT

Because E[W7T; 7] is strictly concave in ¢, the result in Lemma 2 then implies that, when ¢ < 0,

y? > y*, whereas, when ¢ > 0, y7 < y*. Q.E.D.
Proof of Proposition 6. Under the proposed policy, each trader ¢’s ex-ante gross expected payoff

when all traders other than 7 collect information of quality g, trader ¢ collects information of quality

y;, and all traders (including ) submit the efficient demand schedules (parametrized by (a”, b7, éT))

is equal to
i (o] = B |0~ (14 f)pms — 57
= E [0:(:1» —(1+1) (0 —u+ BE)x; — ;\x?]
with

i = Xiw’u,n’ e Zj,yi) — 47 [9 + flyi)e: + f(yl)n] 4ol 4 T <9 + f(37)77 - ,BZT> )

p:P(e,U,’I’],g) :a_u+BX(97uanag)a

and
T=X(0,u,my) =a’ 0+ f@m) +b" +c' <9 + f(@)n - ﬁZT) :

and where b7 and ¢! are the coefficients describing the equilibrium trades obtained from b7 and &7
using (4) and (5). Hence,
s 1+i,  ATa” a(@h)? A (d)?
VIVYiTy - VYT 2 YiTn 2 YiTe
where N is a function of all variables that do not interact with y;. It follows that
B(1 +1t,)(al + cT)aT N Aa” < a” cT> A (aT)2
2T0YiNUYi 2TYiYi \VYi VI

Because E[n] (4,:);t,] — C(y;) is concave in y;, for y; = § = y? to be sustained in equilibrium it is

Elr] (7, v:):t)) = N—pBla” +c")a

2yi27'e '
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both necessary and sufficient that

0
8%15{7?? "y )it =C'(y")

which is equivalent to
(81 +1,) + 2] (T + ¢T)a” A (aT)?
27, 27

Using the fact that y” satisfies
(B4 M@+ A (aT)’

27, 27T,
we have that the proposed policy implements the efficient acquisition of private information when
P — BGT .

Using the fact that

= 541')\ (72 (Tw(aT)) — BaT)

we then have that the optimal fp is equal to

f - Y2 (Tw(aT)) - /BQT
P — BGT
where 2 is the function defined in the proof of Proposition 1. Q.E.D.

Proof of Proposition 7. Assume that all traders other than ¢ acquire information of quality
y” and then submit the efficient demand schedules (that is, those corresponding to the coefficients
(aT, b7, ¢l)). Given any policy T'(z;, p), the expected net payoff for trader i when he chooses infor-

mation of quality y; and then selects his demand schedule optimally is equal to

V(y", i) = sup,y {E[Fi(y", v:);9()] — C(wi) }
where g : R? — R is a generic function specifying the amount of shares x; = g(s;, z) that the trader
purchases as a function of s; and z, and where
Elmi(y", vi);9()] = E [99(&-, 2) = (@ —u+ BE)g(si, 2) — 5 (9(si, Z))ﬂ
—E[T (g(si,2), ¢ — u+ BT)].

Note that the definition of E[7;(y”,v:); g(+)] uses the fact that the market-clearing price is given by
p=a—u+pE with & = a” (0+ f(y")n)+b" +cT 2, where b” and ¢’ are the coefficients describing the
equilibrium trades obtained from b7 and ¢T using (4) and (5), and where z = 0 + f(yT)n —u/(BaT).
It also uses the fact that, when all other traders submit the efficient demand schedules, any demand
schedule for trader ¢ (that is, any mapping from (s;, p) into x;) can be expressed as a function g(s;, z)
of (s;,2).%

For the policy T'(x;,p) to implement the efficient acquisition and usage of information, it must

be that, when y; = 37, the function g(-) that maximizes the trader’s payoff is equal to g(s;,2) =

3Tt suffices to use (6) to observe that p = a4+ b7 + B(a” 4 c7)z.
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al's;+bT+cT 2. Using the fact that the equilibrium price can be expressed as p = a+pbT+3 (aT+cT)z,
and the fact that E [0]s;, 2] = y1(7(a”))s; + 72(7w(a’))z, we thus have that, for the policy T to

implement the efficient trades, it must be that 7" is differentiable in x; and satisfies

Y1 (1w(a®))si + y2(1w(ah))z — [a+ BbT + B(a’ + c1)z] — A (al'si + b7 + cT'2)

_a%T (aTsi + b7 + ez a + BbT + Bla® + cT)Z) =0
for all (s;,2). Next, observe that, when trader i trades efficiently, the quantity that he purchases is
given by x; = a’'s; + bT + ¢! 2. Expressing s; as a function of x; using the last expression, and using
the relationship p = o + 8bY + B(a” + ')z to express z as a function of p, we have that
Y1 (1w(a?))s; + y2(rw(al))z — [a+ BbT + Bla® + cT)z] — A (al's; + b7 + ¢T2)
= [n(ru(a?)) = AaT] B2 4 [95(my(aT)) — BlaT + ) — AT o=
— (a + BbT + )\bT) = [71 (1(a™)) — )\aT] ’”;—}’T
+ [ra(ru(@™) = B(a” +¢7) = AT = (n(ru(a™) = AaT) p] B2 — (o + BBT + 0T
Note that the term above is the discrepancy between the trader’s marginal benefit and marginal cost
of expanding his demand evaluated at the efficient trade. But this means that, for the policy T'(z;, p)
to implement the efficient use of information, it must be that 7'(x;, p) is a polynomial of second order
of the form
T(2i,p) = 50 + (tpp — to) i + K (p), (3%)
for some vector (9,tp,,t9) and some function K(p) which plays no role for incentives and which
therefore we can disregard. In the proof of Proposition 3, we showed that there exists a unique
vector (6, 1p,tp) that induces the traders to submit the efficient demand schedules when the precision
of their private information is y” (the vector in Proposition 3 applied to y = y*). Thus, if a policy
T induces efficiency in both information acquisition and information usage, it must be of the form in
(38) with (8,t,,t0) as in Proposition 3 applied to y = y*. When the policy takes this form, for any
Yi, the optimal choice of g(-) is affine and hence can be written as g(s;, z) = as; + b + cz, for some

(a,b, c), implying that

E[fri(yT, ¥i);9()] =E|[(0+to) (as; + b+ cz) — )‘Tﬂs (as;i +b+ 02)2

—(1+tp) (e —u+ B a0+ fly")n) + 0T +cT2]) (as; +b+cz) |.

Letting M be a function of all variables that do not interact with y;, we then have that, when
9(8i, 2) = as; + b+ cz, for some (a,b,c),
Elfi(y",1:):9()) = M — B(1 +t,)(a” +c)a
(Afd)ea A48 _a? _ A4S _a®

NN 2 yimy 2 yiTe”
Using the envelope theorem, we then have that

1
V yT VYiTn
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T CBA+t) A+ @ el A+ 0) (o) L
ayiV(y ) yi=yT - 2m (yT)2 i 27¢ (?JT)2 e

Note that, in writing the above derivative, we used the fact that, when y; = 3, the optimal demand

T>'

schedule for trader i induces the efficient trades a’'s; + b’ + ¢’ 2. Recall that the efficient y7 is given

by the solution to the following equation

(B+ N +¢1)? | A(a")’
T2 + T2

27y (y") 27 (y")
Hence, for the policy of Proposition 3 (applied to 4 = y”) to implement the efficient acquisition of

= C'(y").

private information, it must be that

(B+N)(a" +7) | A (a7)” _ [B(L+1tp) + A+ 0] (¥ +cT)a” L 0+9) (aT)?

or, equivalently, (a” + ¢¥)7 [(8+ X! — (Bt + 0)a’] =6 (aT)2 Ty. One can verify that the values
of 0 and t, from Proposition 3 do not solve the above equation except for a non-generic set of

parameters. Q.E.D.

Proof of Proposition 8. Paralleling the derivations in the proof of Proposition 7, we have that,
when the policy takes the proposed form and all traders other than i acquire information of quality
y? and then submit the efficient demand schedules (that is, the affine orders corresponding to the
coefficients (aT,I;T,éT) for quality of information y”), the expected net payoff for trader i when
he chooses information of quality y; is maximized by submitting an affine demand schedule z; =
as;+b—¢ép which induces trades z; = as;+b+cz that are affine in (s;, z), where z = 04 f (y7)n—u/Ba”
is the endogenous signal contained in the market-clearing price.

Using this result, let

V" y) = sup {E[F:i(y",9:);a,b, ] — C(yi) + Ay; }
denote the maximal payoff that trader ¢ can obtain by acquiring information of precision y; when all
other traders acquire information of precision y” and then submit the efficient demand schedules for
information of quality y”. As shown in the proof of Proposition 7, the expected gross payoff that
trader i obtains by inducing the affine trades x; = as; +b-+ cz when he chooses information of quality
y; is equal to

1 A+d8)ca  A+6 a2 A+6§ d?
)GW@TW B VT Vyim 2 oyim 2 o

where M is a term collecting all variables that do not interact with ;. Using the envelope theorem,

E[ﬁl(yT7yz)a aaba C] =M — 6(1 + tp)(a +c
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we have that

0
yi

CLT CT CLT CLT 2
V(" ) = P+ 1) z/\ J{yi])(g tela (A; (?y(T)g) - N+ A
yi=y Tn Te

Again, in writing the above derivative we used the fact that, when vy; = y”, the optimal demand

schedule for trader i induces trades equal to a’'s; + b" + ¢’ z. Using the fact that y” satisfies

2
B+ A (" +cM)?  A(d")
27, (y7)? 27, (y7)?
we thus have that the proposed policy induces the efficient acquisition of private information only if

= C'(y")

Y

the following condition holds

T T2 aT)? T I, T aT)?
(ﬂ+)\)éa +ch) +)\(2 ) (ﬁ(l—i—tp)—l—)\z—l—é)(a +ca +(A+g)( ) AT
Ty Te Tn Te

from which we obtain that

— M[(5+A)T—(6t +6) T}_W
T, 1) T e )

T

Next, use Condition (5) to express ¢! as a function of ¢/ and rewrite A as follows

(a")* [BB+NE | Bty+3] _ o(a")’
2r, (yT)? | (1 + BeT)? 1+ BET | o7, (yT)

Finally, one can verify numerically that the function V(yT, y;) is globally quasi-concave in y;. We
thus conclude that the proposed policy implements the efficient acquisition and usage of information.
Q.E.D.

Proof of Proposition 9. As in the proof of the last two propositions, assume that all traders
other than i acquire information of quality 47 and then submit the efficient demand schedules (that
is, those corresponding to the coefficients (a” b ¢). Given any policy T'(x;, Z,p), the expected net
payoff for trader ¢ when he chooses information of quality y; and then selects his demand schedule
optimally is equal to

V", yi) = supyy {BIF: (YT, 9:); 9()] — Clwi) }

where g : R? — R is a generic function specifying the amount of shares x; = g(s;, z) that the trader

purchases as a function of s; and z, with z = 0 + f(y")n — u/(Ba”), and

Elfi(y”,9:); 9()) = E [0g(s:2) = (@ = u+ Bi)g(si,2) — 3 (g(s1,2))]
Note that, in writing E[7;(y”,%;); g(-)], we use the fact that the market-clearing price is given by
p=a—u+ BT with ¥ =al (0 + f(y")n) + bT + cT'z, where b and ¢! are the coefficients describing
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the equilibrium trades obtained from b7 and ¢* using (4) and (5). We also use the fact that, when
all other traders submit the efficient demand schedules, any demand schedule for trader i (that is,
any mapping from (s;,p) into z;) can be expressed as a function g¢(s;, z) of (s;,2) by using (6) to
express p = a + b + B(a’ + ¢'')z as an affine transformation of z.

For the policy T'(z;,Z,p) to implement efficiency in both information acquisition and usage,
it must be that, when y; = y”, the function g(-) that maximizes the trader’s payoff is equal to
g(si,2) = a’'s; + b + ' z. Using the expression for the equilibrium price p = a + b7 + B(a” +cT)z
and the fact that
r =m(m(a")si +12(n(ah))z,

E [0lsi, 299" ]|, _,

we thus have that, for the policy T" to implement the efficient trades, it must be that 7" is differentiable
in x; and, for all (s;, z), satisfy
Y1 (1w(a?))s; + y2(rw(al))z — [a+ BbT + Bla® + cT)z] — A (al's; + b7 + ¢T2)
— (%ZE [T (aTsZ- +0ol + 2 5 a0 —u+ B:i) Isi, 2; yi7yT] L= 0,

Yi=Y
where & = a® (0 + f(yT)n) + b7 + L'z, with 2 = 0 + f(y')n — u/(BaT).
Next recall from the proof of Proposition 7 that, when the individual trades efficiently,

Y1 (1w(a?))s; + y2(rw(al))z — [a+ BbT + Bla® + cT)z] = A (al's; + b7 + ¢T2)
= [n(ra(a®) = Aa"] 28 4 [ra(ruaT)) = B(aT + €)= AT — (m(7(a)) — AaT) £ ] oot
— (a+ BT + XbT) .
This means that, for the policy T" to implement the efficient use of information, it must be that

T(z;,Z,p) is a polynomial of second order of the form

- y N -
T(zi, %, p) = 5:1312 + (pt, — to + tai) x; + K'(Z,p), (39)
for some vector (&', 1, y,tz), where K'(Z, p) is a function that does not depend on z;, plays no role

for incentives, and hence can be disregarded. Furthermore, under any such a policy,
iE [T (xu x p) |Szap’yz7 ] =o'z +pt/ - t() + tzE [i\si,p; yiayT]
= 0'z; + pt), — t’ + tzE {p 50,03 Yi Y ] = &'z + pty, — to + % (p — a) + BE [ulsi, p; yi, y" ]
= &'z + pty, — ty + F(p — @) + FA* (yi,y")si + 5 BF (yi,y" ) + FCF (yi y"),
where we used the fact that p = o — v + ST and the fact that
E [ulsi, p; i,y | = A% (yi,y")si + B (yi, y" )p + CF (i, y")

where A% (y;,y"), B#(y;,y’), and C%(y;,y") are the coefficients of the projection of u on (s;,p)

when all agents other than i acquire information of quality 4”7 (and trade efficiently) whereas trader
i acquires information of quality ;.

When trader i too acquires information of quality y; = y” and trades efficiently, z; = a’'s; +
bl + Tz, with z = (p —a— ﬂbT) / (B(aT + cT)). Using the last two conditions to express s; as a
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function of x; and p, we then have that

T T T mi—bT—cT(Z@%;iqu;) T T
[U|Szap yla A#(y 7y ) aT +B#( )p+c#(y 7y )
A# (4T A# (yT yT)eT A# A# (yT yT)eT b7
= AR, 4 [ BT, yT) - Sty | p+ CRT ) - A AL G ),
Then let
e ATWyT)
= T ,
- ATy
B* = |B*(y",y") - S
and

A#(y T A (YT yT)e! (a + BbT)
aT aB(a” 4 cT)

C# = c*(y",y") -

We thus have that, when trader i acquires information of quality y; = y” and trades efficiently,

0 3
5 B [T (@i, p) [si, 0",y | = 0mi 4 typ — to
where
B
1+ B#
tpzt;+ti,+7, (41)
B
and
to=th+ 1,0 — Ee# "
0T T (42)

In the proof of Proposition 3, we showed that, when agents acquire information of quality y*, for
them to trade efficiently, the values of (d,t,,%p) must coincide with those in Proposition 3 (applied
to y = y'). Thus, for the above policy to induce efficiency in both information acquisition and
information usage, it must be that that the vector (¢',1,,t,,tz) satisfies Conditions (40)-(42) with
(8,tp,t0) given by the values determined in Proposition 3 applied to y = y’. Note that, for any
tz, there exists unique values of (¢, t;, t;) that solve the above three conditions. Abusing notation,
denote these values by (8'(tz),,(tz), to(tz))-

Next, note that, when the policy takes the form in (39), for any y;, the optimal choice of g(-) is

affine and hence can be written as g(s;, z) = as; + b + ¢z, for some (a, b, ¢). This implies that

El#(y7,v:); 9()] = E| (0 + th(tz) — tzd) (as; + b+ cz) — 258 (as; + b+ c2)”

—(1+t(tz) (a —u+ B [a?(0+ f(y")n) + b7 4+ cT'2]) (asi + b+ cz)

Letting M be a function of all variables that do not interact with y;, we then have that, when

9(8i, 2) = as; + b+ cz, for some (a,b,c),
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B (7 90 00)] = M — [t + B(L+ty(t))] GEro) — Jaahen _Mdan Agbor
1in vin

Using the envelope theorem, we then have that

9, 1 [+ B8O+ ) + A+ (@ + D" (A+0) (7)o
ay"V(y v yi=yT B 2my (yT)2 - 27, (yT)2 cw)

Once again, in writing the above derivative, we used the fact that, when y; = y”, the optimal demand

schedule for trader i induces trades equal to the efficient trades a”'s; + b7 + ¢’ z. Finally, recall that

the efficient y” is given by the solution to the following equation

BN+ Aa")’
27, (y7)° 27, (y7)’
Hence, for the above policy to induce efficiency in information acquisition, it must be that

= C'(y").

2 , 2
(IB+)\)(?-:+CT)2 N ,\((;T) _ [t5+,8(1+tp(ti)):7>\+5](aT+CT)aT n (A+5)T§aT) . (43)

Using (41), we have that

1+ B#
B e
with ¢, given by the unique value determined in Proposition 3 applied to y = y’. Because the
function H : R — R given by H(tz) = tz + Bt (tz) = Btp — t3B# is linear, there exists a (unique)
value of ¢z that solves (43).

We conclude that the policy in (39) with ¢z given by the unique solution to (43) and with (&', 1;,, ;)

given by the unique solution (&'(tz),t,(tz), t5(tz)) to Conditions (40)-(42) induces efficiency in both
information acquisition and information usage. Q.E.D.

Proof of Proposition 10. We establish the result by showing that the precision of private

information y* acquired in equilibrium is invariant in t,. Once this property is established, the
proposition follows from what established in the proof of Proposition 4. Any ¢, # 0 results in an
equilibrium in which the precision of private information y* and the sensitivity of the trades to the
private signals a* are as in the laissez-faire economy in which ¢, = 0 but where the sensitivity c of the
trades to the endogenous public signal z and the constant b in the equilibrium trades are different
from the corresponding levels in the laissez-faire economy. Because, given y* and a*, the sensitivity
c* of the equilibrium trades to the endogenous public signal z and the constant * in the equilibrium
trades in the laissez-faire economy are welfare maximizing (by virtue of Lemma 1), we thus have
that any t, # 0 results in strictly lower welfare than ¢, = 0, as in the case of exogenous private
information (Proposition 4).

Hence, based on the arguments above, it suffices to show that any such a policy fails to change the

quality of information acquired in equilibrium. To see this, fix ¢,, and denote by y and (a,b,c) the
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precision of private information acquired in equilibrium and the parameters defining the equilibrium
trades in the economy with ad-valorem tax equal to .

For any y;, let

V#(0) = sup (Bl (s ()] = ) }

denote the maximal payoff that trader ¢ can obtain by selecting private information of quality y; when
all other traders acquire information of quality y and then submit the limit orders corresponding
to the parameters (a,b,c), where g : R?> — R is a generic function specifying the amount of shares
x; = g(si, z) the trader purchases as a function of s; and the endogenous public signal z contained

in the equilibrium price, with*

Elrf (i;9(-)] = E|0g(si,2) = (1+1ty) (a+ Bb+ Bla+c)z) g(si,2) — 5 (9(s1,2))* |wi
denoting the trader’s expected payoff, gross of the information cost, when following the rule g(-)
after acquiring information of quality y;. Note that, in writing E[?TZ# (yi;9(+)], we used the fact that
the equilibrium price is given by p = a+ b+ f(a + ¢)z with z = 6 + f(y)n — u/(Ba).

By the definition of equilibrium, if agent ¢ acquires information of quality y; = vy, the limit
order that maximizes his payoff must be the equilibrium ones (that is, the one corresponding to the
coefficients (a, b, c)). The envelope theorem then implies that

dV#(y;) Bl+t)(a+c)a  Mala+e¢)  A(a)?

EAAUATI7A B n n am 44
Ay ymy 27,y 27,y 29%7, () (44)

Hence, the equilibrium value of y must satisfy dV#(y)/dy; = 0. Let M#(t,,a,c,y) denote the
function defined by the right-hand-side of (44). Next, use the derivations in the proof of Proposition
4 to observe that, given (¢p,y), the equilibrium values of (a,b,c) are given by (31), (32), and (33).

From the implicit function theorem, we then have that
M (tp,a,c,y) GM#(tp,a,c,y)@

dy ot + de o1,
dtp o aM#(tp,a,c,y) _|_ aM#(tPaazcvy) @ _|_ BM#(tPaazcvy) @ ’
Oy da dy Oc dy

where we used the fact that, given y, the equilibrium level of a is invariant in ¢,. Note that dc/0t,
is the derivative of the equilibrium level of ¢ with respect to ¢,, holding y constant, whereas da/dy

and Oc/0y are the derivatives of the equilibrium levels of a and ¢ with respect to y, holding ¢, fixed.

Because 5 5 )
+c)a
— M# — plaTc)a
8tp (tpa a, c, y) QTnyQ )
0 [B(1+t,)+ A a
Z M _ P
8CM (tlh a,c, y) 27_77y2 }
and
g —Bla+o)
oty  Bl+ty) + N

1As above, given (a,b,c), the sensitivity of the equilibrium limit orders ¢ to the price and the constant b in the
equilibrium limit orders are obtained from (a, b, ¢) using (4) and (5).
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we conclude that dy/dt, = 0, as claimed. Q.E.D.

2 Cournot case (traders submitting market orders)

In this section, we show that, in a Cournot equilibrium, there is no inefficiency in either the collection
or usage of information. The environment is the same as in the baseline model except for the fact that
traders are restricted to submitting market orders instead of a collection of limit orders (equivalently,

a demand schedule).

2.0.1 Efficiency in usage
Suppose that y; = y for all <. In any symmetric equilibrium in which the price is affine in (6, u,7n),
each trader’s market order is an affine function of her private signal. That is,

r; =as;+b

for some scalars (a,b) that depend on the exogenous parameters of the model. Aggregate demand is

then equal to

T = /midi =a(f@+ f(y)n) +0.

Combining the above expression with the inverse aggregate supply function p = o — u + 52, we then

have that the equilibrium price must satisfy

p=oa—u+pBb+ a0+ f(y)n). (45)

For each s;, the equilibrium market order x; = as; + b must maximize trader ¢’s expected profits

22
I, = E (H—p)a:i—)\?zb’i —C(¥i),

where x; = a;s; + b.
Following steps similar to those in the baseline model, we have that, for any s;, the derivative of II;

with respect to x;, evaluated at z; = a;s; + b, must be equal to zero, which yields®
E[0|s;] —a— Bb— Bak [0+ f(y)n|si] = M as; +b).
We conclude that the equilibrium value of b, which we denote by b*, is equal to b* = —a/(8 + A).

Te
Te+To

To obtain the equilibrium value of a, which we denote by a* we replace E [0]s;] = s; and

f(y) %T9T€
E . n .
[77’31] T + 75 Si

into the above FOC from which we obtain that

* Te

)\(T6+Tg)+,87}+5%.

®Note that E [uls;] = 0.
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Next, we can derive the expression for the welfare losses. When the market orders are affine with

coefficients a and b,

=& = a(si—0— f(y)n)

from which we obtain that )
E[(z; — )?] = E[a? 2,21 _ 4

(s — %) = Ela®f (4)%}] = -

0—a+u

as in the baseline model. Recall that the first-best action is 2° = T

. One can then show that,

for any (a,b), the welfare losses are equal to
WI = (ﬁ+>\)1E[(9?*r°);]+>\1E[(xi756)2] —

a+Xa—1)>2 \)2a?
sty (el BSR4 1 2(8 4 0)% + 0 + 2ab(B + ) )
For any a, the value of b that minimizes the welfare losses is thus given by the FOC
OWL @
T _py
0b B+ A

We conclude that the optimal value of b is the equilibrium one: b7 = b* = —a/(8+ )). Replacing the

=0.

above value of b7 into the expression for the welfare losses, we have that the latter can be expressed

as a function of a as follows

a a — 2 a2 CL2
Wi(ay) — 1<(ﬁ + Aa —1) +(B+)\) 1 A )

+ + —
2 (B+ Mg YTy B+ N1y yTe
Differentiating W L(a;y) with respect to a and setting the derivative equal to zero, we have that the

socially-optimal value of a, which we denote by a”, must satisfy

T A _ T T
QWL(CLT;y) _ (Ba' + Aa 1)+(ﬁ+>\)a +)\a

=0
da 0 YTy YTe

from which we obtain that
a’ Te a*

ATe + B7e + A1 + Brery ;;;9

We thus conclude that there is no inefficiency in the usage of information in the Cournot game.

2.0.2 Efficiency in acquisition

We first characterize the equilibrium acquisition of private information. When each trader j # i
chooses y; = y and then submits the equilibrium affine market order x; = as; + b for quality of
information y, and trader ¢ instead acquires information of quality y; and then, after observing s;,

submits the market order x;, his expected payoff is equal to
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2
T4

where p = a — u + Bz, with Z = a(y)(0 + f(y)n) + b, with

(v) -

a=a =

VT NGt m) + Bre+

and b = —a/(8+ \), as shown above. For any (s;,y;), the optimal market order for trader i is given

by the FOC with respect to z; which yields x; = a;s; + b with

yitey(1 = Baly)) — Baly) 7
A (itemy + To(7e + 7))
and b = —a/(B+ ). That is, for any (y, y;), trader i’s expected profits when all other traders acquire

a; = a;(y,yi) =

information of quality y and then submit the equilibrium market orders for quality of information
y, and trader ¢ instead acquires information of quality y; and then submits the market order that

maximizes his payoff (the one described above) is given by

(ais; + b)2

Li(y,ys) = E (0 —a+u—F(ad+af(y)n+Db)(aisi +b) - A—

2y, yi] —C(yi)

- - == + —C(y;) — ab + (1 — B)b?
i 2\ uiny yr) () (1=5)

where we used the shortcuts a = a(y) and a; = a;(y, y;) and the fact that s; = 0 + f(y;)(n + €;).

a; — Baa; Baa; \a? < 1 N 1 1

Replacing a; with a;(y,y;) and a with a(y), and using the Envelope Theorem, we then have that

9 1 Ba(y)ai(y,yi) X (ai(y, y:)” 1 1
i) = - Q (‘ ) Alai(y, i) L LY e
y; 2 Yy Yim 2 Yi™m  Y;Te
When y is equal to the equilibrium level, which we denote by y*, it must be that
0
71—‘[71 *’ * — 0
0 (V" y")
which, using the fact a;(y*,y*) = a(y*), yields

o) - L ((5 ) (), A(a(y*»?) |

2 (y*)*m (y*)?7e
Next, we characterize the socially-optimal value of y. Because for any y, the socially-optimal
usage of information coincides with the equilibrium, as shown above, using the Envelope Theorem,

we have that the optimal value of y, which we denote by y” is given by the condition

2 2
9 L (B+X(ay")”  A(ay") T
—WL(a(y");y") = = |- — +C'(y") =0.
We conclude that the optimal value of y, which we denote by y”, is given by the solution to the

following condition
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2 2
oty = L ((ﬂ ) (ey™)” | Alaly") )
2\ @)’ W) 7.
It is immediate to see that y” = y*, implying that the equilibrium acquisition of information is also

efficient. Q.E.D.
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