
 
 

CMS-EMS 
Center for Mathematical Studies in 

Economics and Management Sciences 
 
 

Discussion Paper #1594 
 
 

“Adversarial Coordination  
and Public Information Design” 

Online Appendix 
 

Nicolas Inostroza 
University of Toronto 

Alessandro Pavan 
Northwestern University 

 
 

June 23, 2023 
 



Adversarial Coordination

and Public Information Design

Online Appendix

Nicolas Inostroza Alessandro Pavan

June 23, 2023

Abstract

This document contains expanded proofs (with additional algebraic derivations) for

some of the results in the manuscript “Adversarial Coordination and Public Information

Design.” All numbered items contain the prefix “S.” Any numbered reference without

the prefix “S” refers to an item in the main text. Section S1 contains the expanded proof

of Theorem 3 in the main text, accommodating for (a) a richer family of economies in

which payoffs depend on the size of the aggregate pledge even after conditioning on the

regime outcome and (b) the possibility that the prior, as well as the distribution from

which the agents’ private signals are drawn, have bounded support. Section S2 contains

the expanded proof of Example 2 in the main text, whereas Section S3 the expanded

proof of Example 3. Finally, Section S4 discusses how the results in the baseline model

extend to economies with richer payoff specifications and in which the regime outcome

also depends on variables not directly observable by the policy maker.
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Section S1: Extended Proof of Theorem 3

Here we show that Theorem 3 in the main body extends to a richer family of economies in

which payoffs depend on the size of the aggregate pledge A beyond the effect through the

determination of the regime outcome. That is,

u(θ, A) ≡ g(θ, A)1 {R(θ, A) > 0}+ b(θ, A)1 {R(θ, A) ≤ 0} ,

with g(θ, A) > 0 > b(θ, A) for all (θ, A). The proof also accommodates for the possibility that

the prior, as well as the distribution from which the agents’ private signals are drawn, have

bounded support.

Condition M-generalized. The following properties hold :

1. inf Θ(x̄G) ≤ 0;

2. (2’) |u(θ, 1− P (x|θ))| is log-supermodular over 1

{(θ, x) ∈ [0, 1]× R : u(θ, 1− P (x|θ)) ≤ 0} ,

and, (2”) for any θ0, θ1 ∈ [0, 1], with θ0 < θ1, and x ≤ x̄G such that (a) u(θ1, 1 −
P (x|θ1)) ≤ 0 and (b) x ∈ %θ0,

UP (θ1, 1)− UP (θ1, 0)

UP (θ0, 1)− UP (θ0, 0)
>
p (x|θ1)u (θ1, 1− P (x|θ1))

p (x|θ0)u (θ0, 1− P (x|θ0))
. (1)

Part (2’) of Property 2 says that the percentage reduction in the investors’ loss from pledg-

ing when default occurs due to higher fundamentals is larger when more investors pledge.

Precisely, for any θ′ < θ′′ and x′ < x′′ such that u(θ′′, 1− P (x′|θ′′)) < 0,

u(θ′, 1− P (x′′|θ′))− u(θ′′, 1− P (x′′|θ′′))
u(θ′, 1− P (x′′|θ′))

≤ u(θ′, 1− P (x′|θ′))− u(θ′′, 1− P (x′|θ′′))
u(θ′, 1− P (x′|θ′))

. (2)

Note that u(θ′′, 1− P (x′|θ′′)) < 0 implies that u(θ′, 1− P (x′|θ′)), u(θ′, 1− P (x′′|θ′)), u(θ′′, 1−
P (x′′|θ′′)) < 0. The left-hand side of (2) is thus the percentage reduction in the loss from

1The log-supermodularity of |u(θ, 1 − P (x|θ))| means that, for any x′, x′′ ∈ R, with x′ < x′′, and any

θ′, θ′′ ∈ Θ, with θ′′ > θ′, such that u(θ′′, 1− P (x′|θ′′)) ≤ 0,

u(θ′′, 1− P (x′′|θ′′))u(θ′, 1− P (x′|θ′)) ≥ u(θ′′, 1− P (x′|θ′′))u(θ′, 1− P (x′′|θ′)).
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pledging under regime change (i.e., default) when fundamentals improve from θ′ to θ′′ and

investors pledge when, and only when, they receive signal x ≥ x′′. The right-hand side of (2),

instead, is the analogous reduction when investors are more lenient and pledge when, and only

when, they receive signals x ≥ x′, with x′ < x′′. Importantly, this property is required to hold

only for fundamentals θ and signal thresholds x for which the investors’ expected payoff from

pledging, u(θ, 1− P (x|θ)), is non-positive. Also note that this property trivially holds in the

baseline model, because payoffs u(θ, A) are invariant in A conditional on the regime outcome.

Part (2”) of Condition M says that the value the policy maker assigns to avoiding regime

change is significantly larger when fundamentals are stronger. It says that the policy maker’s

preferences for saving institutions with stronger fundamentals are sufficiently strong. Specif-

ically, it identifies the critical strength of such a preference necessary to compensate for the

possibility that non-monotone rules may permit the policy maker to spare regime change over

larger measure of fundamentals. The benefit that the policy maker derives from changing

the investors’ behavior (inducing all investors to pledge starting from a situation in which no

investor pledges) must increase with the fundamentals at a sufficiently high rate, with the crit-

ical rate determined by a combination of the investors’ payoffs and beliefs (the right-hand-side

of (1)).

Proof of Theorem 3.

Without loss of generality, assume that the policy Γ = (S, π) (a) is a (possibly stochastic)

“pass/fail”policy (i.e., S = {0, 1}, with π(1|θ) = 1 − π(0|θ) denoting the probability that

signal s = 1 is disclosed when the fundamentals are θ), (b) is such that π(1|θ) = 0 for all

θ ≤ 0 and π(1|θ) = 1 for all θ > 1, and (c) satisfies the perfect-coordination property (PCP).

Theorems 1 and 2 imply that, if Γ does not satisfy these properties, there exists another policy

Γ′ that satisfies these properties and yields the policy maker a payoff weakly higher than Γ.

The proof then follows from applying the arguments below to Γ′ instead of Γ.

Suppose that Γ is such that there exists no θ̂ such that π(1|θ) = 0 for F -almost all θ ≤ θ̂

and π(1|θ) = 1 for F -almost all θ > θ̂.2 We establish the result by showing that there exists a

deterministic monotone policy Γθ̂ = ({0, 1}, πθ̂) satisfying PCP that yields the policy maker

a payoff strictly higher than Γ.

For the policy Γ to satisfy PCP, it must be that, when the policy discloses the signal

s = 1, UΓ(x, 1|x) > 0 for all x such that (x, 1) are mutually consistent, where UΓ(x, 1|x) is the

expected payoff of an investor with signal x who hears that s = 1 and who expects all other

investors to follow a cut-off policy with cut-off x.

2If this not the case, then the deterministic monotone policy Γθ̂ = ({0, 1}, πθ̂) with cut-off θ̂ also satisfies

PCP and yields the policy maker the same payoff as Γ, in which case the result trivially holds.
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Let G denote the set of policies Γ′ = (S, π′) that, in addition to properties (a) and (b)

above, are such that UΓ′(x, 1|x) ≥ 0 for all x such that (x, 1) are mutually consistent. 3

For any Γ ∈ G, let UP [Γ] denote the policy maker’s ex-ante expected payoff when, under Γ,

investors pledge after hearing that s = 1 and refrain from pledging after hearing that s = 0.

Denote by arg maxΓ̃∈G{UP [Γ̃]} the set of policies that maximize the policy maker’s payoff over

G.4

Step 1 below shows that any Γ ∈ arg maxΓ̃∈G{UP [Γ̃]} is such that π(1|θ) = 0 for F -

almost all θ ≤ θ∗ and π(1|θ) = 1 for F -almost all θ > θ∗, with θ∗ as defined in (3) in the

main text. Step 2 then shows that the policy maker’s payoff under the optimal deterministic

monotone policy Γθ
∗

= ({0, 1}, πθ∗) with cut-off θ∗ can be approximated arbitrarily well by a

deterministic monotone policy Γθ̂ = ({0, 1}, πθ̂) ∈ G that satisfies PCP, thus establishing the

theorem.

Step 1. Given any policy Γ, let

XΓ ≡ {x : (x, 1) Γ-mutually consistent and UΓ(x, 1|x) = 0}.

Take any policy Γ′ ∈ G for which there exists no θ̂ such that π′(1|θ) = 0 for F -almost all

θ ≤ θ̂ and π′(1|θ) = 1 for F -almost all θ > θ̂. Clearly, if XΓ′ = ∅, there exists another policy

Γ′′ ∈ G that yields the policy maker a payoff strictly higher than Γ′.5 Thus, assume that

XΓ′ 6= ∅, and let x̄ ≡ supXΓ′ . Claim S1-A below shows that the set {θ ∈ Θ (x̄) : π′ (1|θ) < 1}
has strict positive F -measure. Claim S1-B shows that, given any Γ′ ∈ G for which the

posterior beliefs of the marginal investor with signal x̄ differ from those obtained by Bayes

rule conditioning on the event that fundamentals are above some threshold θ̂, there exists

another policy Γ′′ ∈ G that yields the policy maker a payoff strictly higher than Γ′. Finally,

Claim S1-C shows that, under the properties in Condition M, the only policies Γ′ ∈ G that

generate posterior beliefs for the marginal investors with signal x̄ equal to those obtained from

Bayes rule by conditioning on the event that fundamentals are above some threshold θ̂ are

such that π′(1|θ) = 0 for F -almost all θ ≤ θ∗ and π′(1|θ) = 1 for F -almost all θ > θ∗. Jointly,

the three claims thus establish the result that any policy Γ ∈ arg maxΓ̃∈G{UP [Γ̃]}, is such that

π(1|θ) = 0 for F -almost all θ ≤ θ∗ and π(1|θ) = 1 for F -almost all θ > θ∗.

3As explained in the main text, some policies Γ′ in G need not satisfy PCP, namely those for which there

exists x, with (x, 1) mutually consistent, such that UΓ′
(x, 1|x) = 0.

4That arg maxΓ̃∈G{UP [Γ̃]} 6= ∅ follows from the compactness of G and the upper hemi-continuity of UP .
5In fact, because there exists no θ̂ such that π′(1|θ) = 0 for F -almost all θ ≤ θ̂ and π′(1|θ) = 1 for F -almost

all θ > θ̂, there must exists a set (θ′, θ′′) ⊆ [0, 1] of F -positive measure over which π′(1|θ) < 1. The policy Γ′′

can then be obtained from Γ′ by increasing π′(1|θ) over such a set. Provided the increase is small, Γ′′ ∈ G.

Because UP (θ, 1) > UP (θ, 0) over [0, 1], the policy maker’s payoff under Γ′′ is strictly higher than under Γ′.
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Given any x, let θ0 (x) be the fundamental threshold below which the investors’ ex-

pected payoff differential is negative and above which it is positive, when all investors fol-

low a cut-off strategy with cut-off x.6 For any policy Γ = ({0, 1} , π) ∈ G, let pΓ(x, 1) ≡∫ +∞
−∞ π(1|θ)p(x|θ)dF (θ) denote the joint probability density of the exogenous signal x and the

endogenous signal s = 1.

Claim S1-A. For any Γ′ = ({0, 1} , π′) ∈ G such that XΓ′ 6= ∅, {θ ∈ Θ (x̄) : π′ (1|θ) < 1}
has strict positive F -measure.

Proof of Claim S1-A. Suppose, by contradiction, that π′ (1|θ) = 1 for F -almost all

θ ∈ Θ (x̄). Property 1 in Condition M then implies that x̄ > x̄G, where

x̄G ≡ sup{x ∈ R :

∫
Θ

u (θ, 1− P (x|θ))1(θ ≥ 0)p (x|θ) dF (θ) ≤ 0}. (S1)

In fact, if this was not the case, the monotonicity of Θ (·) would imply that inf Θ (x̄) ≤
inf Θ (x̄G) < 0. That π′ (1|θ) = 1 for F -almost all θ ∈ Θ (x̄) would then imply that π′(1|θ) = 1

for a set of fundamentals θ < 0 of strict positive F -measure, which is inconsistent with the

assumption that Γ′ ∈ G. Thus, necessarily, x̄ > x̄G.

Now suppose that inf Θ (x̄) ≥ 0. That π′ (1|θ) = 1 for F -almost all θ ∈ Θ (x̄) means

that, from the perspective of an investor with signal x̄, the information conveyed by the

announcement that s = 1 under Γ′ is the same as under the monotone deterministic policy

Γ0 = ({0, 1}, π0) with cut-off θ̂ = 0. As a result, UΓ′(x̄, 1|x̄) = UΓ0
(x̄, 1|x̄). Because x̄ > x̄G,

and because, by definition of x̄G, UΓ0
(x, 1|x) > 0 for all x > x̄G, it must be that UΓ′(x̄, 1|x̄) > 0,

which contradicts the assumption that x̄ ∈ XΓ′ . Hence, it must be that inf Θ (x̄) < 0. As

explained above, however, this is inconsistent with the assumption that Γ′ ∈ G. �

Next, for any Γ′ = ({0, 1}, π′) ∈ G, let

θH ≡ sup {θ ∈ Θ : ∃δ > 0 s.t. π′(1|θ′) < 1 forF -almost all θ′ ∈ [θ − δ, θ)} .

The result in Claim S1-A above implies that θH is such that θH > inf Θ (x̄).

Claim S1-B. Take any Γ′ = ({0, 1} , π′) ∈ G such that XΓ′ 6= ∅. Suppose that

{θ ∈ (inf Θ (x̄) , θH) : π′(1|θ) > 0} has strict positive F -measure. (S2)

Then, there exists another policy Γ′′ ∈ G that yields the policy maker a strictly higher payoff.

Proof of Claim S1-B. The proof below distinguishes two cases.

6When the default outcome is a function of A and θ only, as in the baseline model of Section 2 in the main

text, θ0 (x) coincides with the threshold below which default occurs and above which it does not occur, when

agents follow a cut-off strategy with cut-off x.
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Case 1: inf Θ (x̄) < θ0 (x̄) < θH . Consider the policy Γε,δ = ({0, 1}, πε,δ) defined by

πε,δ(1|θ) = π′(1|θ) for all θ ≤ θ0 (x̄+ δ), with δ > 0 small so that θ0 (x̄+ δ) < θH , and

πε,δ(1|θ) = min{π′(1|θ) + ε, 1}) for all θ > θ0 (x̄+ δ), with ε > 0 also small. To see that, when

ε and δ are small, Γε,δ ∈ G, note that, by definition of θ0 (·), for any x, and any θ > θ0 (x),

u (θ, 1− P (x|θ)) > 0. This property, together with the monotonicity of θ0 (·), jointly imply

that, for any x ≤ x̄+ δ,∫ ∞
−∞

u(θ, 1− P (x|θ))
[
π′(1|θ)1 {θ ≤ θ0 (x̄+ δ)}+ min{π′(1|θ) + ε, 1}1 {θ > θ0 (x̄+ δ)}

]
p(x|θ)dF (θ)

≥
∫ ∞
−∞

u(θ, 1− P (x|θ))π′(1|θ)p(x|θ)dF (θ). (S3)

The inequality follows from the fact that, when x ≤ x̄ + δ, u (θ, 1− P (x|θ)) > 0 for any

θ > θ0 (x̄+ δ). Because Γ′ ∈ G, the right-hand side of (S3) is non-negative.7 Hence, for any

x ≤ x̄ + δ such that (x, 1) are mutually consistent under Γε,δ, because the left-hand side of

(S3) is equal to UΓε,δ(x, 1|x)pΓε,δ (x, 1) and because, for such x, pΓε,δ (x, 1) > 0, we have that

UΓε,δ(x, 1|x) ≥ 0. That UΓε,δ(x, 1|x) ≥ 0 also for all x > x̄ + δ such that (x, 1) are mutually

consistent under Γε,δ follows from the fact that, by definition of x̄, for any x ≥ x̄ + δ, the

function J(x) ≡
∫ +∞
−∞ u(θ, 1−P (x|θ))π′(1|θ)p(x|θ)dF (θ) is bounded away from 0, along with the

fact that, for any δ > 0, the function family
(
J ε,δ(·)

)
ε

whose elements J ε,δ(·) are given by

J ε,δ(x) ≡
∫ +∞
−∞ u(θ, 1 − P (x|θ))πε,δ(1|θ)p(x|θ)dF (θ), is continuous in ε in the sup-norm in a

neighborhood of 0.8 Because the new policy Γε,δ ∈ G is such that πε,δ(1|θ) ≥ π′(1|θ) for all θ,

with the inequality strict over a set of fundamentals θ < 1 of F -positive measure, the policy

maker’s payoff under Γε,δ is strictly higher than under Γ′, as claimed.

Case 2 : inf Θ (x̄) < θH ≤ θ0 (x̄). Consider the monotone deterministic policy Γ0 =

{{0, 1} , π0} with cut-off θ̂ = 0. Then, for any x ≥ x̄,∫ +∞

0
u(θ, 1− P (x|θ))π′(1|θ)p(x|θ)dF (θ) ≥

∫ +∞

0
u(θ, 1− P (x|θ))p(x|θ)dF (θ),

where the inequality follows from (i) the fact that, for any x ≥ x̄ and any θ ≤ θ0 (x̄),

u (θ, 1− P (x|θ)) < 0, along with (ii) the fact that π′(1|θ) = 1 for F -almost all θ ≥ θ0(x) ≥
θ0 (x̄) ≥ θH . Furthermore, when x = x̄, the above inequality is strict and, because pΓ0

(x̄, 1) >

pΓ
′
(x̄, 1) > 0, it implies that UΓ0

(x̄, 1|x̄) < UΓ′(x̄, 1|x̄) = 0. By continuity of UΓ0
(x, 1|x) in x,

we thus have that x̄ < x̄G. This property in turn permits us to apply part (2”) of Condition

M to x̄ in the arguments below.

7To see this, note that either (x, 1) are not mutually consistent under Γ′, in which case the right-hand

side of (S3) is zero, or they are mutually consistent, in which case the right-hand side of (S3) is equal to

UΓ′
(x, 1|x)pΓ′

(x, 1), which is non-negative because pΓ′
(x, 1) > 0 and UΓ′

(x, 1|x) ≥ 0.
8That is, ∀z > 0, ∃∆ > 0 so that ∀ 0 < ε < ∆, |Jε,δ(x)− J(x)| ≤ z, ∀x ≥ x̄+ δ.
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Next, let θL ≡ inf{θ ∈ Θ : ∃δ > 0 s.t. π′(1|θ′) > 0, F -almost all θ′ ∈ [θ, θ + δ)}. That θL <

θH follows from the assumption that {θ ∈ (inf Θ (x̄) , θH) : π′(1|θ) > 0} has strict positive F -

measure. Furthermore, u (θL, 1− P (x̄|θL)) < 0.9 Also observe that inf Θ (x̄) < θL. This

follows from the fact that, as shown above, x̄ < x̄G, which, together with Property 1 in

Condition M, implies that inf Θ (x̄) < 0. Because θL ≥ 0, we thus have that inf Θ (x̄) < θL.

For any γ > 0, let θγL ≡ θL + γ and θγH ≡ θH − γ. Pick γ, eL, eH > 0 small such that

(i) π′ (1|θγL) > 0 and π′ (1|θ) > 0 for F−almost θ ∈ (θγL, θ
γ
L + eL), (ii) π′ (1|θγH) < 1 and

π′ (1|θ) < 1 for F−almost all θ ∈ (θγH − eH , θ
γ
H), and (iii) θγL + eL < θγH − eH .10 Next, pick

η ∈ (0, x̄G − x̄) small such that UΓ′(x, 1|x) > η for all x ≥ x̄ + η. Pick ε > 0 also small and

let δ(ε, η) be implicitly defined by∫ θγL+ε

θγL
u(θ, 1− P (x̄+ η|θ))π′(1|θ)p(x̄+ η|θ)dF (θ) =∫ θγH

θγH−δ(ε,η)
u(θ, 1− P (x̄+ η|θ))(1− π′(1|θ))p(x̄+ η|θ)dF (θ).

(S4)

For ε > 0 small, θγL + ε < θγH − δ(ε, η). Consider the policy Γε,γ,η = ({0, 1}, πε,γ,η) defined by

the following properties: (a) πε,γ,η(1|θ) = π′(1|θ) for all θ /∈ {[θγL, θ
γ
L + ε] ∪ [θγH − δ(ε, η), θγH ]};

(b) πε,γ,η(1|θ) = 0 for all θ ∈ [θγL, θ
γ
L + ε]; and (c) πε,γ,η(1|θ) = 1 for all θ ∈ [θγH − δ(ε, η), θγH ].

Note that Condition (S4) implies that UΓε,γ,η(x̄+ η, 1|x̄+ η) = UΓ′(x̄+ η, 1|x̄+ η) > 0.

We now show that UΓε,γ,η(x, 1|x) ≥ 0 for any x with (x, 1) mutually consistent under

Γε,γ,η. Clearly, for any (ε, γ, η), and any x ≤ x∗(θL) such that (x, 1) are mutually consistent

under Γε,γ,η (alternatively, under Γ′) UΓε,γ,η(x, 1|x) > 0 (alternatively, UΓ′(x, 1|x) > 0). This

is because, for any such x, θ0(x) < θL implying that u (θ, 1− P (x|θ)) > 0 for all θ > θL.

The result then follows from the fact that, under both Γ′ and Γε,γ,η,
∫ θL
−∞ π

ε,γ,η (1|θ) dF (θ) =∫ θL
−∞ π

′ (1|θ) dF (θ) = 0, meaning that all agents assign probability one to the event that θ ≥ θL.

Furthermore, the continuity of
∫ +∞
θL

u (θ, 1− P (x|θ)) p (x|θ) π′ (1|θ) dF (θ) in x, along with

the fact that
∫ +∞
θL

u (θ, 1− P (x|θ)) p (x|θ) π′ (1|θ) dF (θ) > η for all x ≥ x̄+η with (x, 1) mutu-

ally consistent under Γ′, imply that there exists ξ > 0 so that, for any x ∈ [x∗(θL), x∗(θL) + ξ]∪
[x̄+ η,+∞), if (x, 1) are mutually consistent under Γ′, then UΓ′(x, 1|x)pΓ′ (x, 1) > ξ.

Let SΓε,γ,η(x) ≡
∫ +∞
θL

u (θ, 1− P (x|θ)) p (x|θ) πε,γ,η (1|θ) dF (θ). For any η, the function

family
(
SΓε,γ,η(·)

)
ε,γ

is continuous in (γ, ε) in the sup-norm, in a neighborhood of (0, 0)11 and

x∗ (θ) is continuous in θ. Hence, there exist γ̄, ε̄ > 0 such that, when γ ≤ γ̄ and ε ≤ ε̄, for any

x /∈ (x∗(θγL + ε), x̄+η) such that (x, 1) are mutually consistent under Γε,γ,η, UΓε,γ,η(x, 1|x) ≥ 0.

9That u (θL, 1− P (x̄|θL)) < 0 follows from the fact that, by definition of x̄ and θL,
∫ +∞
θL

u(θ, 1 −
P (x̄|θ))π′(1|θ)p(x̄|θ)dF (θ) = 0, together with the single-crossing property of u(θ, 1− P (x̄|θ)) in θ.

10If a single γ satisfying properties (i)-(iii) does not exist, let γ = (γL, γH) ∈ R2
++ satisfying properties

(i)-(iii). The arguments below then apply verbatim by letting θγL = θL + γL and θγH = θH + γH .
11This means that, for any z > 0, there exists ∆ > 0 such that, for any (ε, γ) with 0 < ε < ∆ and 0 < γ < ∆,

and all x, |SΓε,γ,η (x)− SΓ0,0,η

(x)| ≤ z, where Γ0,0,η = Γ′.
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Next observe that, for any x ∈ (x∗(θγL + ε), x∗ (θγH − δ (ε, η))],

−
∫ θγL+ε

θγL
u (θ, 1− P (x|θ)) p (x|θ)π′ (1|θ) dF (θ)

+
∫ θγH
θγH−δ(ε,η)

u (θ, 1− P (x|θ)) p (x|θ) (1− π′ (1|θ)) dF (θ) ≥ 0,

where the inequality follows from the fact that the integrand in the first integral is non-positive,

whereas the integrand in the second integral is non-negative. Hence, for any such x, if (x, 1) are

mutually consistent under Γ′, meaning that pΓ′ (x, 1) =
∫ +∞
θL

p (x|θ) π′ (1|θ) dF (θ) > 0, and are

also mutually consistent under Γε,γ,η, meaning that pΓε,γ,η (x, 1) =
∫ +∞
θL

p (x|θ) πε,γ,η (1|θ) dF (θ) >

0, it must be that UΓε,γ,η(x, 1|x) ≥ 0. Indeed, for any such x,

UΓε,γ,η(x, 1|x)pΓε,γ,η (x, 1) = UΓ′(x, 1|x)pΓ′ (x, 1)−
∫ θγL+ε

θγL
u (θ, 1− P (x|θ)) p (x|θ)π′ (1|θ) dF (θ)

+
∫ θγH
θγH−δ(ε,η)

u (θ, 1− P (x|θ)) p (x|θ) (1− π′ (1|θ)) dF (θ)

and UΓ′(x, 1|x)pΓ′ (x, 1) =
∫ +∞
θL

u (θ, 1− P (x|θ)) p (x|θ)π′ (1|θ) dF (θ) ≥ 0. If, instead, for any such

x, (x, 1) are mutually consistent under Γε,γ,η but not under Γ′, then

UΓε,γ,η(x, 1|x)pΓε,γ,η (x, 1) =
∫ +∞
θL

u (θ, 1− P (x|θ)) p (x|θ)πε,γ,η (1|θ) dF (θ)

=
∫ +∞
θL

u (θ, 1− P (x|θ)) p (x|θ)π′ (1|θ) dF (θ)−
∫ θγL+ε

θγL
u (θ, 1− P (x|θ)) p (x|θ)π′ (1|θ) dF (θ)

+
∫ θγH
θγH−δ(ε,η)

u (θ, 1− P (x|θ)) p (x|θ) (1− π′ (1|θ)) dF (θ)

=
∫ θγH
θγH−δ(ε,η)

u (θ, 1− P (x|θ)) p (x|θ) (1− π′ (1|θ)) dF (θ) ≥ 0,

where the first equality follows from the fact pΓε,γ,η (x, 1) > 0 and the definition of UΓε,γ,η(x, 1|x),

the second equality is by construction, the third equality follows from the fact that pΓ′ (x, 1) =

0, and the last inequality follows from the fact that, when x ∈ (x∗(θγL + ε), x∗ (θγH − δ (ε, η))],

the integrand is non-negative. We thus conclude that, for any such x, UΓε,γ,η(x, 1|x) ≥ 0.

Next, consider x ∈ (x∗ (θγH − δ (ε, η)) , x∗(θγH)). For any (x, θ), let

∆S(x) ≡
∫ +∞

θL

u(θ̃, 1− P (x|θ̃))p(x|θ̃)(πε,γ,η(1|θ̃)− π′(1|θ̃))dF (θ̃)
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and q (θ, x) ≡ |u (θ, 1− P (x|θ))| p (x|θ) . Note that, for any x ∈ (x∗ (θγH − δ (ε, η)) , x∗(θγH)),

∆S(x) =

∫ θγH−δ(ε,η)

θγL

−u (θ, 1− P (x|θ)) p (x|θ)
(
π′ (1|θ)− πε,γ,η (1|θ)

)
dF (θ)

+

∫ θ0(x)

θγH−δ(ε,η)
−u (θ, 1− P (x|θ)) p (x|θ)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dF (θ)

+

∫ θγH

θ0(x)
−u (θ, 1− P (x|θ)) p (x|θ)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dF (θ)

≥
∫ θγH−δ(ε,η)

θγL

q (θ, x)

q (θ, x̄+ η)
q (θ, x̄+ η)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dF (θ)

+

∫ θ0(x)

θγH−δ(ε,η)

q (θ, x)

q (θ, x̄+ η)
q (θ, x̄+ η)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dF (θ)

+
q(θγH − δ(ε, η), x)

q(θγH − δ(ε, η), x̄+ η)

∫ θγH

θ0(x)
q (θ, x̄+ η)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dF (θ)

≥
q(θγH − δ(ε, η), x)

q(θγH − δ(ε, η), x̄+ η)

∫ θγH

θγL

q (θ, x̄+ η)
(
π′ (1|θ)− πε,γ,η (1|θ)

)
dF (θ)

=
q(θγH − δ(ε, η), x)

q(θγH − δ(ε, η), x̄+ η)
∆S(x̄+ η) = 0.

The first inequality follows from the fact that (i) for any θ ≤ θ0(x), u (θ, 1− P (x|θ)) < 0,

whereas for any θ > θ0(x), u (θ, 1− P (x|θ)) > 0, and (ii) for θ ∈ [θ0(x), θγH ], π′ (1|θ) ≤
πε,γ,η (1|θ). Together, these properties imply that∫ θγH

θ0(x)
−u (θ, 1− P (x|θ)) p (x|θ)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dF (θ)

≥ 0 ≥
q(θγH − δ(ε, η), x)

q(θγH − δ(ε, η), x̄+ η)

∫ θγH

θ0(x)
q (θ, x̄+ η)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dF (θ) .

The second inequality follows from the fact that, π′ (1|θ) − πε,γ,η (1|θ) turns from positive to

negative at θ = θγH − δ(ε, η) ≤ θ0(x), along with the fact that, for any θ ∈ [θγL, θ0 (x)], the

function q(θ, x)/q(θ, x̄ + η) is non-increasing in θ as implied by the log-supermodularity of

|u (θ, 1− P (x|θ))| p (x|θ) over {(θ, x) ∈ [0, 1]× R : u(θ, 1− P (x|θ)) ≤ 0}, as implied by Prop-

erty (2’) and the assumption that p (x|θ) is log-supermodular. Finally, the last two equalities

follow from the fact that θ0(x̄+η) > θ0(x̄) > θH ≥ θγH , which implies that u(θ, 1−P (x̄+η|θ)) ≤
0 for all θ ≤ θγH , and hence that∫ θγH

θγL

q (θ, x̄+ η)
(
π′ (1|θ)− πε,γ,η (1|θ)

)
dF (θ) = ∆S(x̄+ η)

along with the fact that, by construction of the policy Γε,γ,η, ∆S(x̄ + η) = 0. Hence, for any

x ∈ (x∗ (θγH − δ (ε, η)) , x∗(θγH)), ∆S(x) ≥ 0, which implies that, for any x such that (x, 1) are

mutually consistent under Γε,γ,η, UΓε,γ,η(x, 1|x) ≥ 0.
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Similar arguments imply that, for any x ∈ [x∗(θγH), x+ η],

∆S(x) =
∫ θγH
θγL
−u (θ, 1− P (x|θ)) p (x|θ) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ)

=
∫ θγH
θγL

q(θ,x)
q(θ,x̄+η)

q (θ, x̄+ η) (π′ (1|θ)− πε,γ,η (1|θ)) dF (θ) ≥ q(θγH−δ(ε,η),x)

q(θγH−δ(ε,η),x̄+η)
∆S(x̄+ η) = 0,

implying that, for such x too, if (x, 1) are mutually consistent under Γε,γ,η, then UΓε,γ,η(x, 1|x) ≥
0. Together, the results above thus imply that, when ε, γ, η are small, the new policy Γε,γ,η ∈ G.

We now show that, when property (2”) in Condition M holds, the new policy yields the

policy maker an expected payoff strictly higher than Γ′. To see this, observe that, fixing (γ, η),

for any ε > 0, the policy maker’s payoff under the policy Γε,γ,η is equal to

UP [Γε,γ,η] =

∫ θγL+ε

−∞
UP (θ, 0)dF (θ) +

∫ θγH

θγH−δ(ε,η)
UP (θ, 1)dF (θ)

+

∫
(θγL+ε,θγH−δ(ε,η))∪(θγH ,+∞)

{
π′(1|θ)UP (θ, 1) + (1− π′(1|θ))UP (θ, 0)

}
dF (θ) .

Differentiating UP [Γε,γ,η] with respect to ε, and taking the limit as ε→ 0+, we have that

lim
ε→0+

dUP [Γε,γ,η ]
dε = f(θγH)(1− π′(1|θγH))

[
UP (θγH , 1)− UP (θγH , 0)

]
× lim
ε→0+

∂δ(ε,η)
∂ε

−f(θγL)π′(1|θγL)
[
UP (θγL, 1)− UP (θγL, 0)

]
= f(θγL)π′(1|θγL)

([
UP (θγH , 1)− UP (θγH , 0)

] p(x̄+η|θγL)u(θγL,1−P (x̄+η|θγL))

p(x̄+η|θγH)u(θγH ,1−P (x̄+η|θγH))
−
[
UP (θγL, 1)− UP (θγL, 0)

])
.

Therefore, lim
ε→0+

dUP [Γε,γ,η ]
dε

> 0 if and only if

UP
(
θγH , 1

)
− UP

(
θγH , 0

)
UP

(
θγL, 1

)
− UP

(
θγL, 0

) > p
(
x̄+ η|θγH

)
u
(
θγH , 1− P

(
x̄+ η|θγH

))
p
(
x̄+ η|θγL

)
u
(
θγL, 1− P

(
x̄+ η|θγL

)) .
Property (2”) in Condition M, together with the fact that x̄ ≤ x̄G, guarantee that the last

inequality holds. We conclude that the policy Γε,γ,η ∈ G yields the policy maker a payoff

strictly higher than Γ′. This completes the proof of Claim S1-B. �

Claim S1-C. Suppose that Condition M holds and that Γ′ ∈ G is such that{
θ ∈ (inf Θ (x̄) , θH) : π′(1|θ) > 0

}
has zero F -measure. (S5)

Then, π′(1|θ) = 0 for F -almost all θ ≤ θ∗ and π′(1|θ) = 1 for F -almost all θ > θ∗.

Proof of Claim S1-C. Condition (S5), together with the definition of θH and the fact

that UΓ′ (x̄, 1|x̄) = 0, jointly imply that θH < supΘ (x̄) and that UΓ′ (x̄, 1|x̄) = UΓθH (x̄, 1|x̄),

where ΓθH = ({0, 1} , πθH ) is the monotone deterministic policy with cut-off θH .12 In other

12If θH ≥ supΘ (x̄) then pΓ
′

(x̄, 1) ≡
∫
p(x̄|θ)π′(1|θ)dF (θ) = 0 contradicting the assumption that

UΓ′
(x̄, 1|x̄) = 0 which requires that (x, 1) are mutually consistent under Γ′.
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words, from the perspective of an agent with signal x̄, the information learned under Γ′, by

the announcement that s = 1 is the same as the one learnt under ΓθH .

Suppose that θH > θ∗. For any deterministic monotone policy Γθ̂ = ({0, 1}, πθ̂), any θ̃ ≥ θ̂,

let ϕ(θ̃; θ̂) ≡
∫ supΘ(x∗(θ̃))

θ̂
u(θ, 1− P (x∗(θ̃)|θ))p(x∗(θ̃)|θ)dF (θ) and ϕ̄(θ̂) ≡ inf θ̃≥θ̂ ϕ(θ̃; θ̂). Note

that, for any θ̃ such that (x∗(θ̃), 1) are mutually consistent under the policy Γθ̂, ϕ(θ̃; θ̂) =

UΓθ̂(x∗(θ̃), 1|x∗(θ̃))pΓθ̂(x∗(θ̃), 1). We claim that, for any θ̂ > θ∗, ϕ̄(θ̂) > 0. To see this, consider

first the case where θ̂ ∈ arg minθ̃≥θ̂ ϕ(θ̃; θ̂). Observe that, if each agent follows a threshold

strategy with cut-off x∗(θ̂), then default occurs only for fundamentals weakly below θ̂. Because

u(θ, 1 − P (x∗(θ̂)|θ)) > 0 for all θ > θ̂ and because p(x∗(θ̂)|θ) > 0 in a right-neighborhood of

θ̂, then necessarily ϕ̄(θ̂) = ϕ(θ̂; θ̂) > 0. Next, suppose that θ̂ /∈ arg minθ̃≥θ̂ ϕ(θ̃; θ̂). Then,

observe that, for almost any θ̂ ≥ θ∗, and any θ̃m ∈ arg minθ̃≥θ̂ ϕ(θ̃; θ̂), with θ̃m > θ̂,13

∂ϕ(θ̃m; θ̂)/∂θ̂ = −u(θ̂, 1−P (x∗(θ̃m)|θ̂))p(x∗(θ̃m)|θ̂)f(θ̂) ≥ 0, where the inequality follows from

the fact that u(θ̂, 1 − P (x∗(θ̃m)|θ̂)) < 0 which, in turn, is a consequence of (i) the definition

of x∗ (·) and (ii) the fact that θ̃m > θ̂.

By the definition of θ∗, ϕ̄ (θ∗) = 0, and dϕ̄ (θ∗) /dθ̂ > 0. The above properties thus imply

that, for any θ̂ > θ∗, ϕ̄(θ̂) > 0, as claimed.

By the definition of x̄, UΓ′ (x̄, 1|x̄) = 0. Under Condition (S5), this implies that, when

agents pledge for x > x̄ and refrain from pledging for x < x̄, the default outcome θ0(x̄) must

necessarily satisfy θ0 (x̄) > θH , for, otherwise, an agent with signal x̄ would strictly prefer

pledging to not pledging. Because UΓ′ (x̄, 1|x̄) = UΓθH (x̄, 1|x̄), that θ0 (x̄) > θH > θ∗, along

with the fact that ϕ (θ0 (x̄) ; θH) > 0, however, implies that UΓ′ (x̄, 1|x̄) > 0, a contradiction.

Hence, it must be that θH ≤ θ∗. However, by definition of θ∗, if θH < θ∗, then there exists

θ > θH such that (x∗(θ), 1) are mutually consistent under ΓθH and such that

UΓθH (x∗(θ), 1|x∗(θ))pΓθH (x∗(θ), 1) =

∫ supΘ(x∗(θ))

θH

u(θ̃, 1− P (x∗ (θ) |θ̃))p(x∗ (θ) |θ̃)dF (θ̃) < 0.

Now note that

UΓ′ (x∗(θ), 1|x∗(θ)) pΓ′ (x∗(θ), 1) =

∫ θH

inf Θ(x∗(θ))
u(θ̃, 1− P (x∗ (θ) |θ̃))π′(1|θ̃)p(x∗ (θ) |θ̃)dF (θ̃)

+

∫ supΘ(x∗(θ))

θH

u(θ̃, 1− P (x∗ (θ) |θ̃))p(x∗ (θ) |θ̃)dF (θ̃)

with pΓ′ (x∗(θ), 1) =
∫ θH

inf Θ(x∗(θ))
π′(1|θ̃)p(x∗(θ)|θ̃)dF (θ̃) + pΓθH (x∗(θ), 1) > 0. Because, for

any θ̃ < θH , u(θ̃, 1 − P (x∗ (θ) |θ̃)) < 0, we thus have that UΓ′ (x∗(θ), 1|x∗(θ)) < 0. But

this contradict the assumption that Γ′ ∈ G. We thus conclude that necessarily θH = θ∗.

Furthermore, because {θ ∈ (inf Θ (x̄) , θH) : π′(1|θ) > 0} has 0 F -measure, it must be that

13Note that ϕ(θ̃; θ̂) is absolutely continuous in θ̂, and therefore is differentiable in θ̂ almost everywhere.
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UΓ′ (x̄, 1|x̄) = UΓθ
∗

(x̄, 1|x̄). Furthermore, because θ0(x̄) > θ∗, we also have that UΓ0
(x̄, 1|x̄) ≤

UΓθ
∗

(x̄, 1|x̄) = 0. Hence, x̄ ≤ x̄G, which, by virtue of Property 1 in Condition M, implies that

inf Θ(x̄) ≤ 0. Condition (S5), along with the fact that π′(1|θ) = 0 for all θ ≤ 0 and π′(1|θ) = 1

for F -almost all θ > θH = θ∗, thus imply that Γ
′

is such that π′(1|θ) = 0 for F -almost all

θ ≤ θ∗ and π′(1|θ) = 1 for F -almost all θ > θ∗. This completes the proof of Claim S1-C. �

Step 2. Step 1 implies that arg maxΓ̃∈G{UP [Γ̃]} 6= ∅ and that any Γ ∈ arg maxΓ̃∈G{UP [Γ̃]}
is such that π(1|θ) = 0 for F -almost all θ ≤ θ∗ and π(1|θ) = 1 for F -almost all θ > θ∗. The

result in the theorem then follows from observing that, given any Γ ∈ arg maxΓ̃∈G{UP [Γ̃]},
there exists a nearby deterministic monotone policy Γθ̂ ∈ G with cut-off θ̂ = θ∗ + ε̃, for ε̃ > 0

but small, such that Γθ̂ satisfies PCP (i.e., UΓθ̂(x, 1|x) > 0 all x such that (x, 1) are mutually

consistent under Γθ̂) and yields the policy maker a payoff arbitrarily close to that under Γ.

Q.E.D.

Section S2: Proof of Example 2 in the main text

The proof is in two steps. Step 1 characterizes the threshold θ∗σ defining the optimal determin-

istic monotone rule, whereas Step 2 constructs the non-monotone policy that strictly improves

over the optimal deterministic monotone one.

Step 1. The primitives in this example satisfy the conditions in Theorem 2 in the main

text. This means that, given any signal s disclosed by any policy Γ, MARP is in threshold

strategies, which in turn implies that the default outcome is monotone in θ.

Next recall that, for any default threshold θ ∈ [0, 1], the corresponding signal threshold

x∗σ (θ) is implicitly defined by Pσ (x∗σ (θ) |θ) = θ. Using the fact that, for any θ ∈ [−K, 1 +K]

and x ∈ [θ − σ, θ + σ], Pσ (x|θ) = (x− θ + σ) /2σ, we have that x∗σ (θ) = (1 + 2σ) θ − σ.

For any θ̂ ∈ [0, 1], let Γθ̂ ≡ {{0, 1} , πθ̂} be the deterministic monotone policy with cutoff

θ̂. Next, for any θ ∈ [θ̂/(1 + 2σ), 1], let V Γθ̂

σ (θ) ≡ UΓθ̂

σ (x∗σ (θ) , 1|x∗σ (θ)) be the expected payoff

differential between pledging and not pledging of the marginal agent with signal x∗σ (θ), when

each agent pledges if and only if their signal is above x∗σ (θ) (and hence default occurs if, and

only if, fundamentals are below θ), the quality of the agents’ signal is σ, and the policy Γθ̂

announces that s = 1, thus revealing that θ ≥ θ̂. Note that, for any 0 ≤ θ < θ̂/(1 + 2σ),

x∗σ(θ) + σ < θ̂, which implies that the signal x∗σ(θ) is not consistent with the event that

fundamentals are above θ̂. Equivalently, when θ ≥ θ̂, the lowest possible signal that an

individual may receive is θ̂ − σ. When each agent pledges if and only if x > θ̂ − σ, default

occurs if and only if θ ≤ θ̂/(1+2σ). Hence, the lowest default threshold that is consistent with

the policy Γθ̂ is θ̂/(1 + 2σ). The function V Γθ̂

σ (θ) is thus defined only for θ ∈ [θ̂/(1 + 2σ), 1].
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The cutoff θ∗σ characterizing the optimal deterministic monotone policy is given by

θ∗σ = inf{θ̂ ∈ [0, 1] : V Γθ̂

σ (θ) ≥ 0 for all θ ∈ [θ̂/(1 + 2σ), 1]}. (S6)

Claim S2-1. For any θ̂ ∈ [0, 1], V Γθ̂

σ (·) has a unique minimizer. Letting θmin
σ (θ̂) ≡

arg minθ∈[θ̂/(1+2σ),1]V
Γθ̂

σ (θ), we have that θmin
σ (θ̂) satisfies x∗σ(θmin

σ (θ̂))− σ = θ̂.

Proof of Claim S2-1. Clearly, for any θ ∈ [θ̂/(1 + 2σ), θ̂], V Γθ̂

σ (θ) = g. This is because

when each agent pledges if and only if x > x∗σ (θ) default occurs only for fundamentals below

θ. Hence the announcement that θ > θ̂ reveals to the marginal agent with signal x∗σ (θ) that

default will not occur.

Next, observe that for any θ ∈ (θ̂, (θ̂ + 2σ)/ (1 + 2σ)], x∗σ (θ)− σ < θ̂, implying that14

V Γθ̂

σ (θ) = g − (g + |b|)Pσ{θ̃ ≤ θ|θ̃ ≥ θ̂;x∗σ (θ)} = g − (g + |b|) θ − θ̂
(1 + 2σ) θ − θ̂

,

which is strictly decreasing in θ. Finally, note that, for any θ ∈ ((θ̂ + 2σ)/ (1 + 2σ) , 1],

x∗σ (θ)− σ > θ̂, implying that

V Γθ̂

σ (θ) = g − (g + |b|)Pσ{θ̃ ≤ θ|θ̃ ≥ θ̂;x∗σ (θ)} = g + (g + |b|) (θ − 1) ,

which is strictly increasing in θ. Hence, V Γθ̂

σ (·) has a single minimizer over [θ̂/(1 + 2σ), 1].

The latter is equal to θminσ (θ̂) = (θ̂ + 2σ)/ (1 + 2σ) and is such that x∗σ(θminσ (θ̂))− σ = θ̂. �

Next, let Γθ
∗
σ ≡ ({0, 1} , πθ∗σ) be the optimal deterministic monotone policy (with cut-off

θ̂ = θ∗σ). Using the characterization of θ∗σ in (S6), we thus have that, under Γθ
∗
σ , at the point

θminσ (θ∗σ) at which V Γθ
∗
σ

σ reaches its minimum, V Γθ
∗
σ

σ (θminσ (θ∗σ)) = 0. Using the fact that

V Γθ
∗
σ

σ

(
θminσ (θ∗σ)

)
= g − (g + |b|) θminσ (θ∗σ)− θ∗σ

(1 + 2σ) θminσ (θ∗σ)− θ∗σ
,

we then have that θ∗σ = (1 + 2σ) |b|
g+|b| − 2σ. Next, let Γ∅ be the no-disclosure policy and note

that, for any θ ∈ [0, 1],

V Γ∅
σ (θ) = g − (g + |b|)Pσ{θ̃ ≤ θ|x∗σ (θ)} = g + (g + |b|) (θ − 1) ,

which is increasing in θ and has a unique zero at θ = |b|/ (g + |b|) ≡ θMS.

This means that, in the absence of any disclosure, under the unique rationalizable strategy

profile (and hence under MARP), each agent pledges if and only if x > x∗σ
(
θMS

)
, and default

14The notation Pσ
{
θ̃ ≤ θ|θ̃ ≥ θ̂;x

}
stands for the probability that an agent with signal x assigns to the

event that θ̃ ≤ θ when the quality of his exogenous signal is parametrized by σ and the policy reveals that

θ̃ ≥ θ̂.
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occurs if and only if fundamentals are below θMS. The results above then imply that the

optimal deterministic policy Γθ
∗
σ is defined by a threshold θ∗σ = (1 + 2σ) θMS−2σ = x∗σ

(
θMS

)
−

σ that coincides with the left end-point of the support of the posterior beliefs of each agent

with signal x∗σ
(
θMS

)
. In fact, for any truncation point θ̂ < x∗σ

(
θMS

)
− σ, there exists θ close

to θMS such that V Γθ̂

σ (θ) < 0 implying that refraining from pledging for all x < x∗σ
(
θMS

)
is rationalizable in the continuation game following the announcement that θ ≥ θ̂, implying

that the policy Γθ̂ fails to satisfy PCP. Similarly, for any truncation point θ̂ > x∗σ(θMS) − σ,

V Γθ̂

σ (θ) reaches its minimum at θminσ (θ̂) > θMS and is such that V Γθ̂

σ (θminσ (θ̂)) = V
Γ∅
σ (θminσ (θ̂)) >

V
Γ∅
σ (θMS) = 0, where the inequality follows from the monotonicity of V

Γ∅
σ (·). Hence, θ∗σ =

x∗σ
(
θMS

)
− σ.

Step 2. Having characterized the optimal deterministic monotone policy Γθ
∗
σ , we now show

that, when σ is small, there exists another policy Γ that also satisfies PCP and guarantees no

default for a larger set of fundamentals than Γθ
∗
σ .

Let σ# ≡ θMS

2(1−θMS)
> 0. For any σ ∈ (0, σ#), θ∗σ = (1 + 2σ) θMS−2σ > 0. For any σ, δ, γ >

0 small, let θ′′σ(δ, γ) ≡ x∗σ
(
θMS − δ

)
−σ = (1+2σ)(θMS−δ)−2σ and θ′σ(δ, γ) ≡ θ′′σ(δ, γ)−γ. Note

that, for any σ ∈ (0, σ#), δ > 0 and γ > 0 can be chosen so that 0 < θ′σ(δ, γ) < θ′′σ(δ, γ) < θ∗σ.

Consider the non-monotone deterministic policy Γδ,γ ≡ {{0, 1} , πδ,γ} given by

πδ,γ (1|θ) ≡ 1
{
θ ∈

[
θ′σ(δ, γ), θ′′σ(δ, γ)

]
∪ [θ∗σ,∞)

}
.

We show that, for any σ ∈ (0, σ#), there exit δ, γ > 0 such that (i) 0 ≤ θ′σ(δ, γ) < θ′′σ(δ, γ) < θ∗σ,

and (ii) V
Γδ,γ
σ (θ) ≥ 0 for all θ > θ′σ(δ, γ)/(1 + 2σ), with V

Γδ,γ
σ (θ) = 0 only for θ = θMS.15

First observe that, for any σ ∈ (0, σ#), δ ∈
(
0, θMS − 2σ

1+2σ

)
and

0 < γ ≤ (1 + 2σ)
(
θMS − δ

)
− 2σ ≡ R0

(
δ, θMS , σ

)
guarantee that 0 ≤ θ′σ(δ, γ) < θ′′σ(δ, γ) < θ∗σ.16

Next note that, for any (σ, δ, γ) with σ ∈ (0, σ#), δ ∈
(
0, θMS − 2σ/ (1 + 2σ)

)
and 0 < γ ≤

R0

(
δ, θMS, σ

)
, V

Γδ,γ
σ (θ) = V Γθ

∗
σ

σ (θ) for all θ ∈
[
θMS − δ, 1

]
. Indeed, for any θ ∈

[
θMS − δ, 1

]
,

x∗σ (θ)− σ > θ′′σ(δ, γ) implying that the the posterior beliefs of the marginal agent with signal

x∗σ (θ) under the policy Γδ,γ coincide with those under the policy Γθ
∗
σ .

15Consistently with the notation above, V
Γδ,γ
σ (θ) is the expected payoff of the marginal agent with sig-

nal x∗σ(θ) when the policy Γδ,γ announces that s = 1 and the quality of the agents’ exogenous signals is

parametrized by σ. For any θ < θ′σ(δ, γ)/(1 + 2σ), x∗σ(θ) + σ < θ
′
, which implies that the signal x∗σ(θ) is not

consistent with the event that fundamentals are above θ′σ(δ, γ). Equivalently, because the lowest signal that is

consistent with θ ∈ [θ′σ(δ, γ), θ′′σ(δ, γ)]∪[θ∗σ,∞) is θ′σ(δ, γ)−σ, the lowest default threshold is θ′σ(δ, γ)/(1+2σ).
16Observe that σ ∈ (0, σ#) implies that θMS − 2σ/ (1 + 2σ) > 0. In turn, δ ∈

(
0, θMS − 2σ/ (1 + 2σ)

)
implies that 0 < θ′′σ(δ, γ) < θ∗σ and that R0

(
δ, θMS , σ

)
> 0. Finally, that 0 < γ ≤ R0

(
δ, θMS , σ

)
implies that

0 ≤ θ′σ(δ, γ) < θ′′σ(δ, γ).
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Let θ]σ(δ, γ) be such that x∗σ
(
θ]σ(δ, γ)

)
− σ = θ

′
σ(δ, γ). Dropping the arguments of θ]σ(δ, γ),

θ
′
σ(δ, γ) and θ

′′
σ(δ, γ) to ease the notation, we have that

θ′ = θ′′ − γ = x∗σ
(
θMS − δ

)
− σ − γ = (1 + 2σ)

(
θMS − δ

)
− 2σ − γ.

From the definition of θ̂ we have that x∗σ(θ̂) − σ = (1 + 2σ) θ] − 2σ = θ′. Combining the

above two results we obtain that θ] = θMS − δ − γ/ (1 + 2σ). Fixing σ ∈ (0, σ#), note that,

for δ, γ > 0 small, θ] ≥ θ∗σ. Specifically, for any σ ∈ (0, σ#) and any 0 < δ < 2σ
(
1− θMS

)
,

θ] ≥ θ∗σ if and only if

γ ≤ (1 + 2σ)
(
2σ
(
1− θMS

)
− δ
)
≡ R1

(
δ, θMS , σ

)
.

Next, observe that, for any θ ∈
[
θ], θMS − δ

)
,

V
Γδ,γ
σ (θ) = g − (g + |b|)Pσ{θ̃ ≤ θ|θ̃ ∈ [x∗σ (θ)− σ, θ′′] ∪ [θ∗σ,∞);x∗σ (θ)}

= g − (g + |b|)
(
θ′′ − θ∗σ + 2σ (1− θ)

)
/
(
θ′′ − θ∗σ + 2σ

)
,

which is strictly increasing in θ. Similarly, for any θ ∈
[
θ∗σ, θ

]
)
,

V
Γδ,γ
σ (θ) = g − (g + |b|)Pσ{θ̃ ≤ θ|θ̃ ∈ [θ′, θ′′] ∪ [θ∗σ,∞);x∗σ (θ)}

= g − (g + |b|) θ − θ∗σ + γ

x∗σ (θ) + σ − θ∗σ + γ
= g − (g + |b|) θ − θ∗σ + γ

(1 + 2σ) θ − θ∗σ + γ
,

which is strictly deceasing for any γ ≤ θ∗σ. Note that θ′ ≥ 0 requires that γ ≤ θ∗σ. Next, note

that, for θ ∈ [θ′′, θ∗σ),

V
Γδ,γ
σ (θ) = g − (g + |b|)Pσ{θ̃ ≤ θ|θ̃ ∈ [θ′, θ′′] ∪ [θ∗σ,∞);x∗σ (θ)}

= g − (g + |b|) γ

x∗σ (θ) + σ − θ∗σ + γ
= g − (g + |b|) γ

(1 + 2σ) θ − θ∗σ + γ
,

and, therefore, V
Γδ,γ
σ (·) is increasing over the range [θ′′, θ∗σ). Finally, for θ ∈ [θ′, θ′′), we have

that

V
Γδ,γ
σ (θ) = g − (g + |b|)Pσ{θ̃ ≤ θ|θ̃ ∈ [θ′, θ′′] ∪ [θ∗σ,∞);x∗σ (θ)}

= g − (g + |b|) θ − θ′

x∗σ (θ) + σ − θ∗σ + γ
= g − (g + |b|) θ − θ′

(1 + 2σ) θ − θ∗σ + γ
.

Hence V
Γδ,γ
σ (·) is decreasing over [θ′, θ′′) if (1 + 2σ) θ′ = x∗σ (θ′) + σ > θ∗σ. Using the fact that

θ′ = θ′′ − γ, together with the fact that θ′′ = x∗σ
(
θMS − δ

)
− σ and θ∗σ = (1 + 2σ) θMS − 2σ,

we have that (1 + 2σ) θ′ > θ∗σ if

γ < 2σ
[
(1 + 2σ) θMS − 2σ

]
/ (1 + 2σ)− (1 + 2σ) δ ≡ R2

(
δ, θMS, σ

)
.

Lastly, observe that, for any θ ∈ [θ
′
/(1 + 2σ), θ′], V

Γδ,γ
σ (θ) = g.
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We thus have that the function V
Γδ,γ
σ is such that (1) V

Γδ,γ
σ (θ) ≥ 0 for all θ ≥ θ

′
/(1 + 2σ),

and (2) V
Γδ,γ
σ (θ) = 0 only if θ = θMS, if and only if the following conditions hold: (a)

V
Γδ,γ
σ

(
θ]
)
> 0, and (b) V

Γδ,γ
σ (θ′′) > 0. Requiring that V

Γδ,γ
σ

(
θ]
)
> 0 is equivalent to

g − (g + |b|)
(
θ] − θ∗σ + γ

)
/
(
x∗σ

(
θ]
)

+ σ − θ∗σ + γ
)

> 0⇔ θMS (θ∗σ − γ)−
(
(1 + 2σ) θMS − 2σ

)
θ] > 0.

Recall that θ∗σ = (1 + 2σ) θMS − 2σ. Using the fact that θ] = θMS − δ − γ
1+2σ

, we conclude

that a sufficient condition for V
Γδ,γ
σ

(
θ]
)
> 0 is that(

θMS − δ − γ/ (1 + 2σ)
)
θ∗σ < θMS (θ∗σ − γ)

⇔ γ < δ (1 + 2σ)
(
(1 + 2σ) θMS − 2σ

)
/ (2σ) ≡ R3

(
δ, θMS , σ

)
.

Next, observe that V
Γδ,γ
σ (θ′′) > 0 is equivalent to

γ <
(
1− θMS

) (
(1 + 2σ) θ′′ − θ∗σ + γ

)
⇔ γ <

(
1− θMS

θMS

)(
(1 + 2σ)

[
(1 + 2σ)

(
θMS − δ

)
− 2σ

]
− (1 + 2σ) θMS + 2σ

)
≡ R4

(
δ, θMS , σ

)
.

We conclude that, for any σ ∈ (0, σ#), (i) 0 ≤ θ′σ(δ, γ) < θ′′σ(δ, γ) < θ∗σ, and (ii) V
Γδ,γ
σ (θ) ≥

0 for all θ > θ′σ(δ, γ)/(1 + 2σ), with V
Γδ,γ
σ (θ) = 0 only for θ = θMS, if

0 < δ < min

{
θMS − 2σ

1 + 2σ
, 2σ

(
1− θMS

)
,

2σ
[
(1 + 2σ) θMS − 2σ

]
(1 + 2σ)

2 ,
2σ

1 + 2σ

[
θMS − 2σ

1 + 2σ

]}
≡ ς

(
θMS , σ

)
and 0 < γ < min0≤i≤4Ri

(
δ, θMS, σ

)
. Note that σ < σ# implies that ς

(
θMS, σ

)
> 0, whereas

δ < ς
(
θMS, σ

)
implies that min0≤i≤4Ri

(
δ, θMS, σ

)
> 0. Finally note that, for any σ ∈ (0, σ#),

and any θ ≥ θ′σ(δ, γ), the payoff V
Γδ,γ
σ (θ) is continuous in the threshold θ∗σ. Hence there exists

a policy Γ whose rule π is given by π (1|θ) ≡ 1 {θ ∈ [θ′σ(δ, γ), θ′′σ(δ, γ)] ∪ [θ∗σ + ε,∞)} with

ε > 0 arbitrarily small, such that Γ strictly improves over Γθ
∗
σ and is such that V Γ

σ (θ) > 0 for

all θ > θ′σ(δ, γ)/(1 + 2σ), implying that Γ satisfies PCP. Q.E.D.

Section S3: Proof of Example 3 in Main Text

Preliminaries. For any θ ∈ (0, 1), any σ ∈ R+, note that, in this example x∗σ(θ) ≡ θ +

σΦ−1(θ), where Φ is the cdf of the standard Normal distribution and φ its density. Also let

x∗σ(0) ≡ −∞ and x∗σ(1) ≡ +∞. For any (θ0, θ̂, σ) ∈ (0, 1)×R× R+, let ψ(θ0, θ̂, σ) denote the

payoff from pledging of an investor with private signal x∗σ(θ0), when default occurs if and only if

θ ≤ θ0, the policy reveals that θ ≥ θ̂, and the precision of private information is σ−2. Then let

σ̂ ≡ inf {σ ∈ R+ : ψ (θ0,0,σ) > 0 all θ0 ∈ (0, 1)} if {σ ∈ R+ : ψ (θ0,0,σ) > 0 all θ0 ∈ (0, 1)} 6= ∅

16



and else σ̂ = +∞.17 Then let Ψ (σ) ≡ infθ0∈(0,1) ψ (θ0,0,σ) and note that limσ→0+ Ψ (σ) < 0,

implying that σ̂ > 0. For any σ ∈ R+ for which ψ (θ0,0,σ) > 0 for all θ0 ∈ (0, 1), the policy

maker can avoid default for every θ > 0 by using the monotone rule π (θ) = 1 {θ > 0}. This

case is uninteresting. Hereafter, we thus confine attention to the case in which σ < σ̂.

Let UΓ
σ (x, 1|x) denote the payoff from pledging of an agent with signal x who expects all

other agents to pledge if and only if their signal exceeds x , when the precision of private

information is σ−2, and the policy Γ announces that s = 1. Also let UΓ
σ (x∗σ (0) , 1|x∗σ (0)) ≡

limx→−∞ U
Γ
σ (x, 1|x) and UΓ

σ (x∗σ (1) , 1|x∗σ (1)) ≡ limx→+∞ U
Γ
σ (x, 1|x).

Now let Gσ denote the set of deterministic binary policies Γ = ({0, 1}, π) such that,

π(θ) = 0 for all θ ≤ 0, π(θ) = 1 for all θ > 1 and UΓ
σ (x, 1|x) ≥ 0 for all x ∈ R.18 From

the proofs of Theorems 1 and 2, observe that, given any σ, any deterministic binary policy Γ

satisfying PCP and such that π(θ) = 0 for all θ ≤ 0 and π(θ) = 1 for all θ > 1 belongs in Gσ.

However, Gσ contains also policies that do not satisfy PCP.19

Proof Structure. The proof is in four steps. Step 1 establishes that, when σ is small,

under any policy Γ = ({0, 1}, π) ∈ Gσ, any interval (θ′, θ′′] ⊂
(
0, θMS

]
receiving a pass grade

(i.e., such that π(θ) = 1 for all θ ∈ (θ′, θ′′]) has a sufficiently small Lebesgue measure, with

the measure vanishing as σ → 0+.

Step 2 then considers an auxiliary game Gσ in which the agents play less aggressively than

under MARP. Namely, Gσ is the game in which (i) the policy maker’s choice set is Gσ and (ii)

given any policy Γ ∈ Gσ, all agents pledge after receiving the signal s = 1 and refrain from

pledging after receiving the signal s = 0.20 We show that, when σ is small, given any policy

Γ ∈ Gσ that gives a fail grade to an interval (θ′, θ′′] ⊆ (θ, θMS] of large Lebesgue measure,

there exists another policy Γ# ∈ Gσ that gives a pass grade to a F -positive measure subset of

(θ′, θ′′], has a mesh smaller than Γ, and is such that, when agents play as in Gσ, the probability

of default under Γ# is strictly smaller than under Γ.

Step 3 then combines the results from Steps 1 and 2 to show that, when σ is small, given

17Recall that, when the announcement that s = 1 reveals that θ ≥ 0, the unique rationalizable profile

features all agents pledging, irrespective of x, if and only if ψ (θ0,0,σ) > 0 for all θ0 ∈ (0, 1). This follows

directly from Lemma 1 in the main text.
18Consistently with the notation in the main text, we let π(θ) = 1 (alternatively, π(θ) = 0) denote the

degenerate lottery assigning measure 1 to s = 1 (alternatively, s = 0).
19These are those for which there exists x such that UΓ

σ (x, 1|x) = 0; in the continuation game that starts

after Γ announces s = 1, in addition to the rationalizable profile under which all agents pledge, there also

exists a rationalizable profile under which each agent pledges if and only if his signal exceeds x.
20The agent’s behavior is consistent with MARP only for those Γ ∈ Gσ for which, for all x, UΓ

σ (x, 1|x) > 0.

For those Γ ∈ Gσ for which, instead, there exists x such that UΓ
σ (x, 1|x) = 0, the agents’ behavior is less

aggressive than under MARP.
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any policy Γ ∈ Gσ for which the mesh M (Γ) of (0, θMS] is larger than ε, there exists another

policy Γ′ ∈ Gσ with a mesh M(Γ′) smaller than ε such that, when agents play as in Gσ, the

probability of default is strictly smaller under Γ′ than under Γ. Starting from Γ′ ∈ Gσ one

can then construct a “nearby” policy Γ∗∈ Gσ such that the probability of default under Γ∗ is

arbitrarily close to that under Γ′ (and hence strictly smaller than under the original policy Γ)

and such that UΓ∗
σ (x, 1|x) > 0 for all x. The last property implies that Γ∗ satisfies PCP also

when agents play according to MARP. The policy Γ∗ thus strictly improves upon Γ also in

the original game, as claimed in the main text.

Finally, step 4 closes the proof by showing how to construct the function E relating the

noise σ in the agents’ exogenous private information to the bound E(σ) on the mesh of the

policies.

Step 1. We start with the following result:

Lemma S3-A. For any ε ∈ R++, there exists σ(ε) ∈ R++ such that, for any σ ∈ (0, σ(ε)],

the following is true: for any policy Γ = ({0, 1}, π) ∈ Gσ and any cell (θ′, θ′′] ∈ DΓ with

|θ′′ − θ′| > ε, necessarily π(θ) = 0.21

Proof of Lemma S3-A. We first show (Property S3-A below) that, for any σ > 0,

if the policy maker were to replace Γ with the cutoff policy Γθ
′
, then for any θ ≤ θ′′,

UΓθ
′

σ (x∗σ(θ), 1|x∗σ(θ)) ≥ UΓ
σ (x∗σ(θ), 1|x∗σ(θ)).22 Next, we show (Property S3-B below) that, for

any θ > θ′, as σ goes to zero, UΓθ
′

σ (x∗σ(θ), 1|x∗σ(θ)) converges uniformly to
∫ 1

0
u(θ, A)dA. Be-

cause
∫ 1

0
u(θ, A)dA < 0 for θ < θMS, the above two properties imply that, for σ small,

UΓ
σ (x∗σ(θ), 1|x∗σ(θ) < 0 for some θ ∈ (θ′, θ′′], and hence that Γ /∈ Gσ. The result in the lemma

then follows by contrapositive.

Property S3-A. For any policy Γ = ({0, 1}, π) ∈ Gσ and any cell (θ′, θ′′] ∈ DΓ such that

π(θ) = 1 for all θ ∈ (θ′, θ′′], UΓ
σ (x∗σ(θ), 1|x∗σ(θ)) ≤ UΓθ

′

σ (x∗σ(θ), 1|x∗σ(θ)) for all θ ≤ θ′′.

Proof of Property S3-A. The proof follows from Results S3-A-1 and S3-A-2 below.

Result S3-A-1. Pick any policy Γ = ({0, 1} , π) ∈ Gσ. Given the partition DΓ ≡{
di =

(
θi, θ̄i

]
: i = 1, ..., N

}
of (0, θMS] induced by Γ, take any cell di =

(
θi, θ̄i

]
for which

π (θ) = 1 for all θ ∈ di. Let ΓiL = {{0, 1} , πiL} ∈ Gσ be the policy constructed as follows:

(a) πiL (θ) = 0 for all θ ≤ θi; and (b) πiL (θ) = π (θ) for all θ > θi. Then, for all θ ∈ [0, 1],

U
ΓiL
σ (x∗σ(θ), 1|x∗σ(θ)) ≥ UΓ

σ (x∗σ(θ), 1|x∗σ(θ)).

Proof of Result S3-A-1. Note that, under the new policy, πiL (θ) = π (θ) × 1 {θ > θi}.
The posterior beliefs Λ

ΓiL
σ (·|x, 1) about θ of an agent with exogenous signal x and endogenous

signal s = 1 under the new policy ΓiL thus dominate, in the FOSD sense, the analogous beliefs

21Recall that DΓ is the partition of (0, θMS ] induced by the policy Γ.
22For any θ̂ ∈ [0, 1], Γθ̂ = ({0, 1}, πθ̂) is the deterministic monotone policy with cut-off θ̂.
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ΛΓ
σ (·|x, 1) under the original policy Γ.23 The result then follows from the fact that, given

any default threshold θ, the payoff from pledging when the fundamentals are equal to θ̃ and

default occurs if and only if θ̃ ≤ θ is nondecreasing in θ̃. End of Proof of Result S3-A-1.

Result S3-A-2. Pick any policy Γ = {{0, 1} , π} ∈ Gσ. Given the partition DΓ ≡{
di =

(
θi, θ̄i

]
: i = 1, ..., N

}
of (0, θMS] induced by Γ, take any cell di =

(
θi, θ̄i

]
, i ≥ 2, for

which π (θ) = 1 for all θ ∈ di. Let ΓiR = {{0, 1} , πiR} ∈ Gσ be the policy constructed from Γ

as follows: (a) πiR (θ) = π (θ) for all θ ≤ θi; and (b) πiR (θ) = 1 for all θ > θi. Then, for all

θ ≤ θ̄i, U
ΓiR
σ (x∗σ(θ), 1|x∗σ(θ)) ≥ UΓ

σ (x∗σ(θ), 1|x∗σ(θ)).

Proof of Result S3-A-2. Let Θ1 ≡ {θ ∈ Θ : π (θ) = 1} and Θ0
i ≡ {θ ∈ (θi, 1] : π (θ) = 0}.

For any θ# ≤ θ̄i, and any x,

Λ
ΓiR
σ

(
θ#|x, 1

)
= Pr{θ ≤ θ#|x, θ ∈ (Θ1 ∪Θ0

i )} =
Pr{θ ≤ θ# ∧ θ ∈ (Θ1 ∪Θ0

i )|x}
Pr{θ ∈ (Θ1 ∪Θ0

i )|x}

=
Pr{θ ≤ θ# ∧ θ ∈ Θ1|x}
Pr{θ ∈ (Θ1 ∪Θ0

i )|x}
+
Pr{θ ≤ θ# ∧ θ ∈ Θ0

i |x}
Pr{θ ∈ (Θ1 ∪Θ0

i )|x}
=
Pr{θ ≤ θ# ∧ θ ∈ Θ1|x}
Pr{θ ∈ (Θ1 ∪Θ0

i )|x}
≤ Pr{θ ≤ θ#|x, θ ∈ Θ1} = ΛΓ

σ(θ#|x, 1).

Given the above inequality, and the fact that b < 0 < g, we then have that, for any θ ≤ θ̄i,

UΓ
σ (x∗σ(θ), 1|x∗σ(θ)) = b · ΛΓ

σ (θ|x∗σ(θ), 1) + g ·
(
1− ΛΓ

σ (θ|x∗σ(θ), 1)
)

≤ b · ΛΓiR
σ (θ|x∗σ(θ), 1) + g ·

(
1− Λ

ΓiR
σ (θ|x∗σ(θ), 1)

)
= U

ΓiR
σ (x∗σ(θ), 1|x∗σ(θ)).

End of Proof of Result S3-A-2.

Property S3-A follows from Results S3-A-1 and S3-A-2, by taking the cell di = (θ′, θ′′]. �

Now, fix ε ∈ (0, θMS). For any θ∗ ∈ [0, θMS − ε], let Γθ
∗

be the monotone rule with cut-off

θ∗. For any θ∗ ∈ [0, θMS − ε], any σ ∈ R++, let

Hσ(θ∗; ε) ≡ infθ∈[θ∗,θ∗+ε]U
Γθ
∗

σ (x∗σ(θ), 1|x∗σ(θ)).

Note that UΓθ
∗

σ (x∗σ(θ), 1|x∗σ(θ)) is continuous in (θ∗, θ, σ) over [0, 1]2 × (0, σ̂]. From Berge’s

Maximum Theorem, Hσ(θ∗; ε) is thus continuous in (θ∗, σ) over [0, θMS − ε]× (0, σ̂].

For all θ∗ ∈ [0, θMS − ε], all θ ∈ (θ∗, θ∗ + ε], limσ→0+ U
Γθ
∗

σ (x∗σ(θ), 1|x∗σ(θ)) =
∫ 1

0
u(θ, A)dA.

Because
∫ 1

0
u(θ, A)dA is strictly increasing in θ and equal to zero at θ = θMS, for any

θ∗ ∈ [0, θMS − ε], H0+(θ∗; ε) ≡ limσ→0+ Hσ(θ∗; ε) = limσ→0+ limθ→θ∗+ U
Γθ
∗

σ (x∗σ(θ), 1|x∗σ(θ)) =∫ 1
0 u(θ∗, A)dA. We show next that Hσ(·; ε) converges uniformly to the limit function H0+(·; ε)

over [0, θMS − ε].
23No matter the shape of the beliefs ΛΓ

σ (·|x, 1), the announcement that θ > θi is always “good news” in the

sense of Milgrom (1981) and hence Λ
ΓiL
σ (·|x, 1) �FOSD ΛΓ

σ (·|x, 1).
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Property S3-B. Fix ε ∈ (0, θMS). For any ε < ε, there exists σ′(ε) > 0 such that, for

any σ ≤ σ′(ε), and any θ∗ ∈ [0, θMS − ε], |Hσ (θ∗; ε)−H0+ (θ∗; ε)| < ε.

Proof of Property S3-B. The limit function H0+(·; ε) is uniformly continuous over

[0, θMS − ε]. As a consequence, there exists δ > 0 such that for any θ, θ̃ ∈ [0, θMS − ε], with

|θ̃ − θ| ≤ δ, necessarily |H0+(θ̃; ε) −H0+ (θ; ε) | < ε/2. Next, let Dδ ≡ {(θi, θ̄i] : i = 1, ..., N},
N ∈ N, be any interval partition of (0, θMS−ε] with the property that every cell (θi, θ̄i] ∈ Dδ is

such that |θ̄i−θi| ≤ δ. For any i = 1, ..., N , any σ > 0, let θ̂iσ ≡ sup{arg maxθ∈[θi,θ̄i]
Hσ (θ; ε)}.

That Hσ (θ; ε) is continuous in (σ, θ) implies that the hypothesis of Berge’s Maximum Theorem

hold and, hence, the correspondence arg maxθ∈[θi,θ̄i]
Hσ (θ; ε) is compact-valued and upper

hemi-continuous in σ. As a result, for any σ > 0, θ̂iσ = max{arg maxθ∈[θi,θ̄i]
Hσ (θ; ε)}.

Moreover, limσ→0+ Hσ(θ̂iσ; ε) = H0+(θ̂i0+ ; ε), where θ̂i0+ ≡ limσ→0+ θ̂
i
σ.

For any θ∗ ∈ [0, θMS − ε], let
(
θj, θ̄j

]
∈ Dδ be the partition cell containing θ∗. Then,

Hσ (θ∗; ε)−H0+ (θ∗; ε) ≤ Hσ(θ̂jσ; ε)−H0+ (θ∗; ε)

= Hσ(θ̂jσ; ε)−H0+(θ̂j0+ ; ε) +H0+(θ̂j0+ ; ε)−H0+ (θ∗; ε) < Hσ(θ̂jσ; ε)−H0+(θ̂j0+ ; ε) + ε/2 < ε

for all σ < σ̄j(ε), for some σ̄j(ε) > 0. The first inequality is by definition of θ̂iσ. The second

inequality follows from the fact that |θ̂j0+ − θ
∗| < δ. The last inequality follows from the fact

that limσ→0+ Hσ(θ̂jσ) = H0+(θ̂j0+). Similar arguments imply that Hσ (θ∗; ε)−H0+ (θ∗; ε) > −ε
for all σ < σj(ε), for some σj(ε) > 0.

Now let σ′(ε) ≡ min{min
i∈N
{σ̄i(ε)} ,min

i∈N
{σi(ε)}}. For any σ ≤ σ′(ε), and any θ∗ ∈ [0, θMS−ε],

we thus have that |Hσ (θ∗; ε)−H0+ (θ∗; ε)| < ε, thus proving that Hσ (·; ε) converges uniformly

to H0+ (·; ε) as σ → 0+. This completes the proof of Property S3-B. �

Next, given ε ∈ (0, θMS), pick an arbitrary η ∈ (
∫ 1

0
u(θMS−ε, A)dA, 0). BecauseH0+(θ∗; ε) ≤

η for all θ∗ ∈ [0, θMS − ε], and because Hσ (·; ε) converges uniformly to H0+ (·; ε), there exists

σ(ε) > 0 such that, for any σ < (ε), and any θ∗ ∈ [0, θMS − ε], Hσ(θ∗; ε) ≤ η < 0. Therefore,

for any σ < σ(ε), and any monotone policy Γθ
∗

with cut-off θ∗ ∈ [0, θMS − ε], there exists

θ ∈ [θ∗, θ∗ + ε] such that UΓθ
∗

σ (x∗σ(θ), 1|x∗σ(θ)) ≤ η.

Together, Properties S3-A and S3-B then imply that, for any σ < σ(ε), and any policy

Γ such that π(θ) = 1 for all θ ∈ (θ′, θ′′] for some (θ′, θ′′] ∈ DΓ with |θ′′ − θ′| > ε, necessarily

UΓ
σ (x∗σ (θ) , 1|x∗σ (θ)) < 0 for some θ ∈ (θ′, θ′′]. Hence Γ /∈ Gσ. The claim in Lemma S3-A then

follows by contrapositive. This completes the proof of Lemma S3-A. �

Step 2. Next, we show that, for any policy Γ = ({0, 1}, π) ∈ Gσ that gives a fail grade to

an interval (θ′, θ′′] ⊆ (0, θMS] of large Lebesgue measure, there exists another policy Γ# ∈ Gσ

with a mesh M(Γ#) < M(Γ) such that, when agents play as in Gσ, the probability of default

under Γ# is strictly smaller than under Γ. The result follows from Lemmas S3-B, S3-C and
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S3-D below.

Lemma S3-B. For any Γ = ({0, 1}, π) ∈ Gσ such that infθ∈[0,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) > 0,

there exists another policy Γ̂ = ({0, 1}, π̂) ∈ Gσ, with M(Γ̂) ≤ M(Γ), such that, in the

auxiliary game Gσ, the probability of default under Γ̂ is strictly smaller than under Γ.

Proof of Lemma S3-B. That infθ∈[0,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) > 0 implies that, starting

from Γ = ({0, 1}, π), one can construct another policy Γ̂ = ({0, 1}, π̂) sufficiently close to Γ

(in the L1 norm) and such that π̂(θ) ≥ π(θ) for all θ, with the inequality strict over some

positive F -measure set (θ̃′, θ̃′′) ⊆ (0, 1], and such that (a) π̂(θ) = 0 for all θ ≤ 0, (b) π̂(θ) = 1

for all θ > 1, (c) U Γ̂
σ (x, 1|x) ≥ 0 all x, and (d) M(Γ̂) ≤ M(Γ). By definition of Gσ, Γ̂ ∈ Gσ.

That, in the auxiliary game Gσ, the probability of default under Γ̂ is strictly smaller than

under Γ, then follows from the fact that all agents pledge when they receive the signal s = 1.

This completes the proof of Lemma S3-B. �

For any σ > 0, and any policy Γ = ({0, 1}, π) ∈ Gσ, UΓ
σ (x∗σ (·) , 1|x∗σ (·)) is continuous over

[0, 1]. Hence infθ∈[0,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) = minθ∈[0,1] U

Γ
σ (x∗σ (θ) , 1|x∗σ (θ)).

Lemma S3-C. Let Γ = ({0, 1}, π) ∈ Gσ be such that minθ∈[0,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) = 0.

For any θ]σ ∈ arg minθ∈[0,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)), there exists γΓ

σ > 0 such that π (θ) = 1 for

F−almost all θ ∈
(
θ]σ − γΓ

σ , θ
]
σ

)
.

Proof of Lemma S3-C. The proof is by contraposition. Suppose there exists δ > 0 such

that π (θ) = 0 for F -almost all θ ∈
(
θ]σ − δ, θ]σ

)
. Observe that the sign of

UΓ
σ

(
x∗σ
(
θ]σ − δ

)
, 1|x∗σ

(
θ]σ − δ

))
is the same as the sign of

b

∫ θ]σ−δ

−∞
φ
((
x∗σ
(
θ]σ − δ

)
− θ
)
/σ
)
π (θ) dF (θ) + g

∫ +∞

θ]σ−δ
φ
((
x∗σ
(
θ]σ − δ

)
− θ
)
/σ
)
π (θ) dF (θ).

Next observe that

0 = UΓ
σ

(
x∗σ

(
θ]σ

)
, 1|x∗σ

(
θ]σ

))∫ +∞

−∞
φ
((
x∗σ

(
θ]σ

)
− θ
)
/σ
)
π (θ) dF (θ)

=

∫ ∞
−∞

(
b1
{
θ ≤ θ]σ

}
+ g1

{
θ > θ]σ

})
φ
((
x∗σ

(
θ]σ

)
− θ
)
/σ
)
π (θ) dF (θ)

>

∫ ∞
−∞

(
b1
{
θ ≤ θ]σ

}
+ g1

{
θ > θ]σ

})
φ
((
x∗σ

(
θ]σ − δ

)
− θ
)
/σ
)
π (θ) dF (θ)

=

∫ ∞
−∞

(
b1
{
θ ≤ θ]σ − δ

}
+ g1

{
θ > θ]σ − δ

})
φ
((
x∗σ

(
θ]σ − δ

)
− θ
)
/σ
)
π (θ) dF (θ)

= UΓ
σ

(
x∗σ

(
θ]σ − δ

)
, 1|x∗σ

(
θ]σ − δ

))∫ +∞

−∞
φ
((
x∗σ

(
θ]σ − δ

)
− θ
)
/σ
)
π (θ) dF (θ)

The first equality follows from the assumptions of the lemma. The second equality follows

from the definition of the function UΓ
σ

(
x∗σ
(
θ]σ
)
, 1|x∗σ

(
θ]σ
))

. The inequality follows from the
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monotonicity of x∗σ (·), the fact that φ ((x− θ)/σ) is log-supermodular in (x, θ), and Property

SCB in the proof of Theorem 2 in the main text. The third equality follows from the fact

that π (θ) = 0 for F -almost all θ ∈
(
θ]σ − δ, θ]σ

)
. The last equality follows from the definition

of the function UΓ
σ (x∗σ(θ]σ − δ), 1|x∗σ(θ]σ − δ)). Hence, UΓ

σ (x∗σ(θ]σ − δ), 1|x∗σ(θ]σ − δ)) < 0, thus

contradicting the assumption that Γ ∈ Gσ. This completes the proof of Lemma S3-C. �

Lemma S3-D. For any ε > 0, there exists σ#(ε) ∈ (0, σ̂) such that, for any σ ∈ (0, σ#(ε)],

and any policy Γ = ({0, 1}, π) ∈ Gσ for which there exists (θ′, θ′′] ∈ DΓ such that (a) |θ′′−θ′| >
ε and (b) π(θ) = 0 for all θ ∈ (θ′, θ′′], there exists another policy Γ# =

(
{0, 1}, π#

)
∈ Gσ,

with M(Γ#) ≤M(Γ), such that, in the auxiliary game Gσ, the probability of default under Γ#

is strictly smaller than under Γ.

Proof of Lemma S3-D. For any θ ∈ (0, 1), lim
σ→0+

x∗σ (θ) ≡ x∗0+ (θ) = θ. Furthermore, for

any ε ∈ (0,min{θMS, 1 − θMS}), the function x∗0+ :
[
ε
4
, 1− ε

4

]
→ R is uniformly continuous.

Hence, for any δ < ε/4, there exists σ̃ (δ) > 0 such that, for any σ ∈ (0, σ̃(δ)], and any

θ ∈
[
ε
4
, 1− ε

4

]
, we have that |x∗σ (θ) − θ| ≤ δ.24 In turn, this implies that, for any ε > 0

small, there exists σ#(ε) ∈ (0, σ̂] such that, for any σ ∈ (0, σ#(ε)], and any (θ′, θ′′] ∈ DΓ such

that |θ′′ − θ′| > ε, we have that, for any θ ∈ [θ′′, 1 − ε
4
], |θ − x∗σ (θ)| < |(θ′ + θ′′)/2− x∗σ (θ)| .

Likewise, for any θ ∈ [ε/4, θ′], and any θ̂ ≥ θ′′, we have that |θ − x∗σ (θ)| < |x∗σ (θ) − θ̂| when

σ ∈ (0, σ#(ε)].

Next, pick any policy Γ = ({0, 1}, π) ∈ Gσ for which there exists d ≡ (θ′, θ′′] ∈ DΓ such that

(a) |θ′′ − θ′| > ε and (b) π(θ) = 0 for all θ ∈ (θ′, θ′′]. If minθ∈[0,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) > 0, the

result follows directly from Lemma S3-B. Thus assume that minθ∈[0,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) = 0.

Suppose that minθ∈[θ′′,1] U
Γ
σ (x∗σ (θ) , 0|x∗σ (θ)) > 0. By Lemma S3-C, UΓ

σ (x∗σ (θ) , 1|x∗σ (θ)) >

0 for all θ ∈ (θ′, θ′′]. Hence, minθ∈[θ′,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) > 0.

Below we show that, starting from Γ, we can then construct a policy Γη ∈ Gσ, with

M(Γη) ≤ M(Γ) such that, when agents play as in Gσ, the probability of default under Γη is

strictly smaller than under Γ. Γη is obtained from Γ by giving a pass grade to a positive-

measure interval of types in the middle of (θ′, θ′′]. Formally, take η ∈ (0, (θ′′ − θ′)/2) and

let Γη = ({0, 1}, πη) be the policy whose rule πη is given by (a) πη(θ) = π(θ) for all θ /∈
[(θ′+θ′′)/2, (θ′+θ′′)/2+η], and (b) πη (θ) = 1 for all θ ∈ [(θ′+θ′′)/2, (θ′+θ′′)/2+η]. Below we

show that UΓη (x∗σ (θ) , 1|x∗σ (θ)) ≥ 0 for all θ ∈ [0, 1]. To see this, let Θ1 ≡ {θ ∈ Θ : π (θ) = 1}
be the collection of fundamentals receiving a pass grade under the original policy Γ. For any

24The proof for the existence of a sequence
{
x∗σn(·)

}
n

with domain
[
ε
4 , 1−

ε
4

]
converging uniformly to its

limit function x∗0+(·) follows from the same arguments that establish the uniform convergence of {Hσn(·)}n to

H0+(·) in Step 1.
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θ ∈ [0, θ′], and any x,

ΛΓη

σ (θ|x, 1) = Pr{θ̃ ≤ θ|x, θ̃ ∈ (Θ1 ∪ [(θ′ + θ′′)/2, (θ′ + θ′′)/2 + η])}
= Pr{θ̃≤θ∧θ̃∈Θ1|x}

Pr{θ̃∈(Θ1∪[(θ′+θ′′)/2,(θ′+θ′′)/2+η])|x} ≤ Pr{θ̃ ≤ θ|x, θ̃ ∈ Θ1} = ΛΓ
σ(θ|x, 1).

The first equality follows from the fact that, under Γη, the signal s = 1 carries the same

information as the announcement that θ̃ ∈ (Θ1 ∪ [(θ′ + θ′′)/2, (θ′ + θ′′)/2 + η]). The inequality

follows from the fact that Pr
{
θ̃ ∈ (Θ1 ∪ [(θ′ + θ′′)/2, (θ′ + θ′′)/2 + η]) |x

}
> Pr

{
θ̃ ∈ Θ1|x

}
.

The last equality follows from fact that, under the original policy Γ, the signal s = 1 carries

the same information as the announcement that θ̃ ∈ Θ1.

Given the above inequality, and the fact that, b < 0 < g, we then have that, for any

θ ∈ [0, θ′],

UΓ
σ (x∗σ(θ), 1|x∗σ(θ)) = b · ΛΓ

σ (θ|x∗σ(θ), 1) + g ·
[
1− ΛΓ

σ (θ|x∗σ(θ), 1)
]

≤ b · ΛΓη

σ (θ|x∗σ(θ), 1) + g ·
[
1− ΛΓη

σ (θ|x∗σ(θ), 1)
]

= UΓη

σ (x∗σ(θ), 1|x∗σ(θ)).

Hence UΓη (x∗σ (θ) , 1|x∗σ (θ)) ≥ 0, all θ ≤ θ′. That minθ∈[θ′,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) > 0, along

with the continuity of UΓη

σ (x∗σ (θ) , 1|x∗σ (θ)) in η implies that minθ∈[0,1] U
Γη

σ (x∗σ (θ) , 1|x∗σ (θ)) ≥
0 for η small. Hence Γη ∈ Gσ.

Next, consider the more interesting case in which minθ∈[θ′′,1] U
Γ
σ (x∗σ (θ) , 0|x∗σ (θ)) = 0.

Let θ#
σ ≡ inf

{
θ ≥ θ′′ : UΓ

σ (x∗σ(θ), 1|x∗σ(θ)) = 0
}

. An implication of Lemma S3-C is that that

θ#
σ > θ′′. Also let (θ′′′, θ′′′′] ⊂ [0, 1] be the first interval to the immediate right of (θ′, θ′′] such

that π(θ) = 1 for all θ ∈ (θ′′′, θ′′′′] and let θ̂ = min
{
θ′′′′, θ#

σ

}
.25

Now, pick ξ > 0 small and let δ(ξ) be implicitly defined by

F ((θ′ + θ′′)/2 + ξ)− F ((θ′ + θ′′)/2) = F ((θ′′′ + θ̂)/2 + δ(ξ))− F ((θ′′′ + θ̂)/2). (S7)

Consider the policy Γξ = ({0, 1}, πξ) defined by (a) πξ(θ) = π(θ) for all θ /∈ [(θ′ + θ′′)/2, (θ′ +

θ′′)/2+ξ]∪ [(θ′′′+ θ̂)/2, (θ′′′+ θ̂)/2+δ(ξ)], (b) πξ(θ) = 1 for all θ ∈ [(θ′+θ′′)/2, (θ′+θ′′)/2+ξ],

and (c) πξ(θ) = 0 for all θ ∈ [(θ′′′ + θ̂)/2, (θ′′′ + θ̂)/2 + δ(ξ)]. Below we establish that, when

ξ > 0 is small, such a policy is such that minθ∈[0,1]U
Γξ (x∗σ (θ) , 1|x∗σ (θ)) > 0 and hence Γξ ∈ Gσ.

To see this, for any arbitrary policy Γ̃ = {{0, 1} , π̃}, any θ ∈ [0, 1], let

V Γ̃
σ (θ) ≡ U Γ̃

σ (x∗σ (θ) , 1|x∗σ (θ)) pΓ̃
σ (x∗σ (θ) , 1) ,

where, for any x, pΓ̃
σ(x, 1) ≡

∫
Θ
π̃(θ)pσ(x|θ)dF (θ), with pσ(x|θ) ≡ 1

σ
φ((x− θ)/σ).

25The existence of such an interval follows from the fact that π(θ) = 1 in a left neighborhood of θ#
σ by virtue

of Lemma S3-C. Also observe that, when θ′′ < θMS , such an interval is adjacent to (θ′, θ′′] and hence θ′′′ = θ′′.
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By definition of θ#
σ , we must have that, for all θ, 0 = V Γ

σ

(
θ#
σ

)
≤ V Γ

σ (θ) . Next, for any

ξ > 0, define ϕR (ξ) ≡ minθ∈[θ′′,1]V
Γξ

σ (θ). Let u(θ̃, θ) ≡ g1{θ̃ > θ}+ b1{θ̃ ≤ θ} and note that,

for any θ,

V Γξ

σ (θ) = V Γ
σ (θ) +

∫ (θ′+θ′′)/2+ξ

(θ′+θ′′)/2
u(θ̃, θ)pσ(x∗σ (θ) |θ̃)dF (θ̃)−

∫ (θ′′′+θ̂)/2+δ(ξ)

(θ′′′+θ̂)/2
u(θ̃, θ)pσ(x∗σ (θ) |θ̃)dF (θ̃).

Using the envelope theorem, we have that, for any θξσ ∈ arg minθ∈[θ′′,1]V
Γξ

σ (θ),

ϕ′R (ξ) = f
(
(θ′ + θ′′)/2 + ξ

)
u
(

(θ′ + θ′′)/2 + ξ, θξσ

)
pσ

(
x∗σ(θξσ)|(θ′ + θ′′)/2 + ξ

)
−f
(

(θ′′′ + θ̂)/2 + δ(ξ)
)
u((θ′′′ + θ̂)/2 + δ(ξ), θξσ)pσ(x∗σ(θξσ)|(θ′′′ + θ̂)/2 + δ(ξ))δ′(ξ)

= f
(
(θ′ + θ′′)/2 + ξ

)
[u((θ′ + θ′′)/2 + ξ, θξσ)pσ(x∗σ(θξσ)|(θ′ + θ′′)/2 + ξ)

−u((θ′′′ + θ̂)/2 + δ(ξ), θξσ)pσ(x∗σ(θξσ)|(θ′′′ + θ̂)/2 + δ(ξ))],

where the second equality uses the implicit function theorem applied to (S7) to obtain that

δ′(ξ) = f ((θ′ + θ′′)/2 + ξ) /f((θ′′′ + θ̂)/2 + δ(ξ)). As a consequence,

limξ→0+ ϕ′R (ξ) = f
(
(θ′ + θ′′)/2

)
[u
(

(θ′ + θ′′)/2, θ#
σ

)
pσ

(
x∗σ(θ#

σ )|(θ′ + θ′′)/2
)

(S8)

− u((θ′′′ + θ̂)/2, θ#
σ )pσ(x∗σ(θ#

σ )|(θ′′′ + θ̂)/2)].

That σ < σ#(ε) implies that |x∗σ
(
θ#
σ

)
− (θ′′′+ θ̂)/2| < |x∗σ

(
θ#
σ

)
− (θ′+θ′′)/2|. That pσ(x|θ)

is single-peaked in turn implies that pσ(x∗σ(θ#
σ )|(θ′+θ′′)/2) < pσ(x∗σ(θ#

σ )|(θ′′′+ θ̂)/2) and hence

that

u
(
(θ′ + θ′′)/2, θ#

σ

)
pσ
(
x∗σ
(
θ#
σ

)
|(θ′ + θ′′)/2

)
− u

(
(θ′′′ + θ̂)/2, θ#

σ

)
pσ

(
x∗σ
(
θ#
σ

)
|(θ′′′ + θ̂)/2

)
= b×

(
pσ
(
x∗σ
(
θ#
σ

)
|(θ′ + θ′′)/2

)
− pσ

(
x∗σ
(
θ#
σ

)
|(θ′′′ + θ̂)/2

))
> 0.

Thus, limξ→0+ ϕ′R (ξ) > 0. By continuity of UΓξ

σ (x∗σ (θ) , 1|x∗σ (θ)) in ξ, we then have that,

for ξ > 0 small, minθ∈[θ′′,1] U
Γξ

σ (x∗σ (θ) , 1|x∗σ (θ)) > 0.

Next, we prove that, under the policy Γξ, minθ∈[0,θ′′] U
Γξ

σ (x∗σ (θ) , 1|x∗σ (θ)) > 0. For any

ξ > 0, define ϕL (ξ) ≡ minθ∈[0,θ′]V
Γξ

σ (θ) . Arguments similar to those used above to compute

limξ→0+ ϕ′R (ξ) imply that, for any θ##
σ ∈ arg minθ∈[0,θ′]V

Γ
σ (θ), when σ ≤ σ#(ε),

lim
ξ→0+

ϕ′L (ξ) = f
(
(θ′ + θ′′)/2

)
[u((θ′ + θ′′)/2, θ##

σ )pσ(x∗σ(θ##
σ )|(θ′ + θ′′)/2)

−u((θ′′′ + θ̂)/2, θ##
σ )pσ(x∗σ(θ##

σ )|(θ′′′ + θ̂)/2)]

= f
(
(θ′ + θ′′)/2

)
g
[
pσ(x∗σ(θ##

σ )|(θ′ + θ′′)/2)− pσ(x∗σ(θ##
σ )|(θ′′′ + θ̂)/2))

]
> 0.

The first equality follows from steps analogous to those used to establish (S8). The second

equality follows from the fact that, by assumption θ##
σ ≤ θ′. The inequality is a consequence
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of the fact that, for σ ≤ σ#(ε), |x∗σ
(
θ##
σ

)
− (θ′ + θ′′)/2| < |x∗σ

(
θ##
σ

)
− (θ′′′ + θ̂)/2)|, which,

together with the fact that the noise distribution is single-peaked, implies that

pσ(x∗σ(θ##
σ )|(θ′ + θ′′)/2) > pσ(x∗σ(θ##

σ )|(θ′′′ + θ̂)/2).

Hence, for ξ > 0 small, UΓξ

σ (x∗σ (θ) , 1|x∗σ (θ)) > 0 for all θ ∈ [0, θ′]. Furthermore, by

Lemma S3-C, UΓ
σ (x∗σ (θ) , 1|x∗σ (θ)) > 0 for all θ ∈ (θ′, θ′′]. Hence, provided that ξ is small,

the continuity of UΓξ

σ (x∗σ (θ) , 1|x∗σ (θ)) in ξ implies that UΓξ

σ (x∗σ (θ) , 1|x∗σ (θ)) > 0 also for

θ ∈ (θ′, θ′′]. Combining all the properties above, we thus conclude that, for ξ > 0 small,

minθ∈[0,1] U
Γξ

σ (x∗σ (θ) , 1|x∗σ (θ)) > 0. Hence Γξ ∈ Gσ.

By construction, M(Γξ) < M(Γ). Furthermore, when agents play according to Gσ, the

probability of default under Γξ is the same as under Γ. Lemma S3-B then implies that,

starting from Γξ, one can construct a policy Γ# ∈ Gσ, close to Γξ in the L1 norm, such that

(1) M(Γ#) ≤ M(Γξ) and (2), when agents play according to Gσ, the probability of default

under Γ# is strictly smaller than under Γ. This completes the proof of Lemma S3-D. �

Step 3. Steps 1 and 2 imply that there exists a function σ̄ :
(
0,min{θMS, 1− θMS}

)
→

R++ , with σ̄(ε) ≤ min{σ(ε), σ#(ε)} for all ε ∈
(
0,min{θMS, 1− θMS}

)
and with σ̄(ε) → 0+

as ε → 0+, such that the following is true: For any ε ∈
(
0,min{θMS, 1− θMS}

)
, any σ ∈

(0, σ̄(ε)], and any policy Γ = ({0, 1}, π) ∈ Gσ with M (Γ) > ε, there exists another policy

Γ′ = ({0, 1}, π′) ∈ Gσ with M (Γ′) ≤ ε such that, when the agents play as in the auxiliary

game Gσ, the probability of default under Γ′ is strictly smaller than under Γ.26

Furthermore, the arguments establishing Lemma S3-D reveal that the policy Γ′ can be

constructed so that UΓ
′

σ (x, 1|x) > 0 for all x. The policy Γ
′

thus satisfies PCP also when

agents play according to MARP. The claim in the Example then follows by taking Γ∗ = Γ′

with Γ′ satisfying the above properties.

Step 4. We now complete the proof by showing how to construct the function E in the

example. Let (εn) be a non-increasing sequence satisfying lim
n→∞

εn = 0. For each n ∈ N, then

let σn = σ(εn), with the function σ(·) as defined in Step 3. The results in Steps 1-3 above

imply that, given (εn, σn), there exist strictly decreasing subsequences (ε̃n) and (σ̃n) satisfying

lim
n→∞

ε̃n = lim
n→∞

σ̃n = 0 such that, for any n ∈ N, the conclusions in Step 3 hold for ε = ε̃n and

σ̄(εn) = σ̃n. Then let σ̄ = σ̃0 > 0 and E : (0, σ̄] → R+ be the function defined by E(σ) = εn

for all σ ∈ (σn+1, σn]. The result in the example then follows from Steps 1-3, by letting E(·)
be the function so constructed. Q.E.D.

26Observe that the thresholds σ(ε) and σ#(ε) identified in Steps 1 and 2 above are invariant to the initial

policy Γ. The same arguments used to arrive at a policy Γ# with mesh M(Γ#) < M(Γ) can then be iterated

till one arrives at a policy Γ′ with mesh M(Γ′) ≤ ε.
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Section S4: Extended Model

Enrichments. The fundamentals are given by (θ, z), with θ drawn from Θ according to F ,

and with z drawn from [z, z̄] according to Qθ(z), with the cdf Qθ(z) weakly decreasing in

θ, for any z.27 The variable θ continues to parametrize the maximal information the policy

maker can collect about the fundamentals. Likewise, any information the agents possess about

z is encoded in the signals x they receive about θ.28 The variable z proxies for macroeco-

nomic variables that are only imperfectly correlated with the bank’s fundamentals, and/or

the exogenous supply of funds from sources other than the agents under consideration.

There exists a function R : Θ× [0, 1]× [z, z̄]→ R such that, given (θ, A, z), default occurs

(i.e., r = 0) if, and only if, R(θ, A, z) ≤ 0. The function R is continuous, strictly increasing

in (θ, z, A), and such that R(θ, 1, z) = R(θ̄, 0, z) = 0, for some θ, θ̄ ∈ R, with θ < θ̄. The

thresholds θ and θ̄ define the “critical region” (θ, θ̄] where the fate of the bank depends on the

response of the market. For any (θ, A), the probability the bank avoids default is thus given

by r(θ, A) ≡ Pr {R(θ, A, z) > 0|θ, A}.
The policy maker’s payoff is

ÛP (θ,A, z) = Ŵ (θ,A, z)1{R(θ,A, z) > 0}+ L̂(θ,A, z)1{R(θ,A, z) ≤ 0}.

whereas the agents’ payoff differential between the “friendly” and the “adversarial” action is

û(θ,A, z) = ĝ(θ,A, z)1{R(θ,A, z) > 0}+ ĝ(θ,A, z)1{R(θ,A, z) ≤ 0}

with ĝ(θ, A, z) > 0 > b̂(θ, A, z), for any (θ, A, z). For any (θ, A), then let

g(θ,A) ≡ E{1(R(θ,A, z) > 0)ĝ(θ,A, z)|θ,A}
r(θ,A)

and b(θ,A) ≡ E{1(R(θ,A, z) ≤ 0)b̂(θ,A, z)|θ,A}
1− r(θ,A)

denote the agents’ expected payoff differential, respectively, in case of no default and in case

of default, and, likewise, let

W (θ,A) ≡ E{1(R(θ,A, z) > 0)Ŵ (θ,A, z)|θ,A}
r(θ,A)

and L(θ,A) ≡ E{1(R(θ,A, z) ≤ 0)L̂(θ,A, z)|θ,A}
1− r(θ,A)

denote the policy maker’s expected payoff, again in case of no default and default, respectively.

The agents’ and the policy maker’s expected payoffs can then be conveniently expressed as a

function of θ and A only, by letting

u(θ,A) ≡ r(θ,A)g(θ,A) + (1− r(θ,A))b(θ,A) and UP (θ,A) ≡ r(θ,A)W (θ,A) + (1− r(θ,A))L(θ,A).

27All the results extend to the case where Qθ(z) has unbounded support.
28As in the baseline model, conditional on θ, the private signals (xi)i∈[0,1] are i.i.d. draws from an (absolutely

continuous) cumulative distribution function P (x|θ), with associated density p(x|θ) strictly positive over the

interval %θ ∈ R.
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Hereafter, we assume that both u(θ, A) and UP (θ, A) are non-decreasing in A and that

UP (θ, 1) > UP (θ, 0) for all θ ∈ (θ, θ̄].29

Results. We now identify conditions under which Theorems 1-3 in the main text extend

to these enriched economies.

Condition S4-FB. For any x, u(θ, 1− P (x|θ)) ≥ 0 (alternatively, u(θ, 1− P (x|θ)) ≤ 0)

implies that u(θ′′, 1− P (x|θ′′)) > 0 for all θ′′ > θ (alternatively, u(θ′, 1− P (x|θ′)) < 0 for all

θ′ < θ).

Condition S4-FB requires that, for any x, u(θ, 1 − P (x|θ)) changes sign only once, from

negative to positive. This property clearly holds when u(θ, A), in addition to being non-

decreasing in A as assumed above, is also non-decreasing in θ. It also holds when the default

outcome is a deterministic function of (θ, A), as in the baseline model, because, for any (θ, A),

g(θ, A) > 0 > b(θ, A), and r(θ, A) is non-decreasing in A.

Given any common posterior G ∈ ∆(Θ), for any x such that
∫
p(x|θ)G(dθ) > 0, let

ŪG(x) ≡
(∫

u(θ, 1− P (x|θ))p(x|θ)G(dθ)

)
/

∫
p(x|θ)G(dθ)

denote the expected payoff differential of an agent with signal x who expects all other agents

to pledge if their private signal exceeds x and to not pledge otherwise. Let ξG be the largest

solution to ŪG(x) = 0 if such an equation admits a solution, ξG = +∞ if ŪG(x) < 0 for all x

such that
∫
p(x|θ)G(dθ) > 0, and ξG = −∞ if ŪG(x) > 0 for all x such that

∫
p(x|θ)G(dθ).

Finally, let θG ≡ inf
{
θ : u(θ, 1− P (ξG|θ)) ≥ 0

}
. The interpretation of ξG and θG is the

following. Suppose that the policy maker induces a common posterior G over Θ, p(x|θ) is log-

supermodular, and Condition S4-FB holds. Then, in the continuation game that starts after

the policy Γ induces the common posterior G, MARP is in cut-off strategies and is defined by

the cut-off ξG.30 When agents play according to MARP given the induced posterior G, their

expected payoff differential is non-positive for all θ ≤ θG and non-negative for all θ > θG.

Condition S4-PC. For any distribution Λ ∈ ∆(∆(Θ)) over posterior beliefs consistent

with the common prior F (i.e., such that
∫
GΛ(dG) = F ), the following condition holds:∫ (∫ θG

−∞ U
P (θ, 0)G(dθ) +

∫ +∞
θG UP (θ, 1)G(dθ)

)
Λ(dG) ≥

∫ (∫
UP (θ, 1− P (ξG|θ))G(dθ)

)
Λ(dG).

29That u(θ,A) is monotone in A implies that the continuation game remains supermodular. That UP (θ,A)

is non-decreasing in A implies that, for any Γ, MARP continues to coincide with the “smallest” rationalizable

profile, that is, the one involving the smallest measure of agents pledging. Finally, that, for any θ in the

critical region, the policy maker strictly prefers that all agents pledge to no agent pledging guarantees that,

when the optimal policy has a pass/fail structure, it is obtained by maximizing the probability that a pass

grade is given to banks whose fundamentals are in the critical range.
30The proof follows from arguments similar to those in the proof of Theorem 2 in the main text.
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Condition S4-PC trivially holds when the policy maker faces no aggregate uncertainty (i.e.,

when each distribution Qθ is degenerate), and W and L are invariant in A, as in the baseline

model in Section 2 in the main text. More generally, Condition S4-PC accommodates for

the possibility that both W and L depend on A, possibly non-monotonically, provided that,

on average, the loss to the policy maker from having no agent pledge in states θ ≤ θG

in which the agents’ expected payoff differential (under MARP) is negative is more than

compensated by the benefit from having all agents pledge in states θ > θG in which the

differential is positive. The average is over both the posteriors induced by the policy maker

and the fundamentals. The condition thus requires that the policy maker’s and the agents’

payoffs be not too misaligned.

Theorem S4-1. (a) Given any regular policy Γ, there exists a regular policy Γ∗ satisfying

PCP and such that, when agents play according to MARP, at any θ, their expected payoff

differential under Γ∗ is at least as high as under Γ.31 Furthermore, when, under MARP, θ

perfectly predicts the default outcome, the probability of default under Γ∗ is the same as under

Γ. (b) Suppose that p(x|θ) is log-supermodular and Condition S4-FB holds. The policy Γ∗

from part (a) is a pass/fail policy. (c) If in addition to the conditions in part (b), Condition

S4-PC also holds, then the policy maker’s payoff under Γ∗ is at least as high as under Γ. (d)

Suppose that, in addition to the conditions in part (c), Condition M in the main text also

holds. Then, Γ∗ is a deterministic monotone policy.

Proof of Theorem S4-1. The formal proof follows from arguments similar to those

establishing Theorems 1-3 and is omitted for brevity.32 Here we discuss the novel effects due

to the enrichments introduced above and the role played by the conditions in the theorem.

First, consider part (a). When default depends on variables only imperfectly correlated

with θ, perfect coordination cannot be induced by announcing to the agents the fate of the

regime under MARP, as in the proof of Theorem 1 in the main text. Perfect coordination,

however, can still be induced by announcing, at any θ, the sign of the agents’ expected payoff

differential under the original policy. Arguments similar to those establishing Theorem 1 in

the main text then imply that, when the agents learn that their expected payoff differential

31A policy Γ is regular if MARP under Γ is well defined and the sign of the agents’ expected payoff differential

under MARP is measurable in θ.
32Because, in the generalized model, the default outcome need not be a deterministic function of θ, the

definition of x∗(θ) and θ0(x) in the main text must be amended as follows: x∗(θ) is the critical signal threshold

such that, when agents pledge for x > x∗(θ) and do not pledge for x < x∗(θ), the agents’ expected payoff

differential u(θ̃, 1 − P (x∗(θ)|θ̃)) changes sign at θ̃ = θ; θ0(x) is the critical fundamental threshold such that,

when agents pledge of x̃ > x and do not pledge for x̃ < x, the agents’ expected payoff differential u(θ, 1−P (x|θ))
changes sign at θ = θ0(x). As in the baseline model, we assume that these functions are continuous.
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under the original policy was positive, under the new policy, they all pledge, irrespective

of their signals. Likewise, when they hear their payoff was negative, they all refrain from

pledging. That the new policy makes the agents better off then follows from the fact that

the agents’ payoff differentials are non-decreasing in the size of the aggregate pledge. In the

special case in which θ is a perfect predictor of the default outcome, because the sign of the

agents’ expected payoff differential is determined by the default outcome, perfect coordination

is obtained by informing the agents of the default outcome, as in the baseline model. In this

case, the ability to coordinate perfectly the market while inducing the same default outcome

as under the original policy extends to an even richer class of economies. In particular,

economies in which (i) agents’ prior beliefs need not be consistent with a common prior, nor

be generated by signals drawn independently across agents, conditionally on θ, (ii) the number

of agents is arbitrary (in particular, finitely many agents), (iii) agents’ have a level-K degree

of sophistication, (iv) payoffs may be heterogenous across agents, and (v) the designer may

disclose different information to different agents (see the document “Additional Material” on

the authors’ websites for details).

Next, consider part (b). As explained above, when p(x|θ) is log-supermodular and u(θ, 1−
P (x|θ)) has the single-crossing property of Condition S4-FB, then, under MARP, the agents’

strategies are monotone in their private signals, no matter the structure of the policy Γ and the

shape of the induced common posterior, G. Arguments similar to those establishing Theorem

2 in the main text then imply that the new policy that perfectly coordinates the agents does

not need to reveal anything more than the sign of the agents’ expected payoff differential

under the original policy.

Next, consider part (c). The pass/fail policy described above clearly makes all agents

weakly better off. In general, it need not make the policy maker better off. However, when

Condition S4-PC also holds, possible losses to the policy maker from inducing fewer agents to

pledge in states in which the agents’ expected payoff differential is negative are compensated

by having more agents pledge in those states in which their expected payoff differential is

positive. When this is the case, the new policy leads to a Pareto improvement.

Finally, consider part (d). As discussed in the main text, in general, the optimal pass/fail

policy need not be monotone in θ. However, it is monotone when, in addition to the conditions

in part (c), Condition M in the main text also holds. Q.E.D.
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