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Abstract

We propose a model of cycles of distrust and conflict. Overlapping generations of agents from two groups
sequentially play coordination games under incomplete information about whether the other side consists of
“extremists” who will never take the good/trusting action. Good actions may be mistakenly perceived as
bad/distrusting actions. We also assume that there is limited information about the history of past actions, so
that an agent is unable to ascertain exactly when and how a sequence of bad actions originated. Assuming that
both sides are not extremists, snowballs of distrust and conflict get started as a result of a mistaken perception,
and continue because the other side interprets the bad action as evidence that it is facing extremists. However,
such snowballs of distrust and conflict contain the seeds of their own dissolution: after a while, Bayesian agents
correctly conclude that the probability of a snowball having started by mistake is suffi ciently high, and bad
actions are no longer interpreted as evidence of extremism. At this point, one party experiments with a good
action, and the cycle restarts. We show how this mechanism can be useful in interpreting cycles of ethnic
conflict and international war, and how it also emerges in models of dynamic inter-group trade, communication
and political participation– leading to cycles of breakdown of trade, breakdown of communication, and political
polarization.
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1 Introduction

Mutual benefits from trust, cooperation, and communication not withstanding, inter-group conflict is

pervasive. In his study of the Peloponnesian War, Thucydides (2000) traces the origins of conflict as

much to fear and distrust as to other factors such as greed and honor. He argues that the Peloponnesian

War became inevitable precisely because each side saw war as inevitable and did not want to relinquish

the first mover advantage to the other (see also Kagan, 2004).1 This view of conflict, sometimes also

referred as the Hobbesian view, has a clear dynamic implication: if Group A’s actions look aggressive,

Group B infers that Group A is likely to be aggressive and acts aggressively itself (e.g., Jervis, 1976,

Kydd, 1997). Moreover, unless Group A can fully understand that Group B is acting aggressively in

response to its own actions, it will take this response as evidence that Group B is aggressive. As a

result, conflict snowballs.

The ubiquity of “conflict snowballs”throughout history provides prima facie support for this view.

A leading example is ethnic conflict: Donald L. Horowitz argues that “The fear of ethnic domination

and suppression is a motivating force for the acquisition of power as an end” (Horowitz, 2000, p.

187), and suggests that such fear of ethnic domination was the primary cause of the rise in ethnic

violence following the withdrawal of colonial powers.2 Horowitz also suggests (p. 189, italics in the

original): “The imminence of independence in Uganda aroused ‘fears of future ill-treatment’along

ethnic lines. In Kenya, it was ‘Kikuyu domination’that was feared; in Zambia, ‘Bemba domination’;

and in Mauritius, ... [‘Hindu domination’]... Everywhere the word domination was heard. Everywhere

it was equated with political control.”

More recent examples of such snowballs are provided by conflicts in Northern Ireland, the Balkans,

Lebanon, Iraq, Gaza and the West Bank, and Turkey. For instance, many accounts of the dynamics

of the Serbian-Croatian war emphasize Croatian fears from the aggressive posturing of Milosevic,

which were instrumental in triggering more aggressive Croatian actions, including the adoption as the

national symbol of the sahovnica, associated with the fascist pre-Yugoslavia Ustasha regime, and a

variety of discriminatory policies towards the Serbian minority (e.g., Posen, 1993). These actions then

snowballed into all-out war.3 World War I is also often attributed to such a conflict snowball, or as

1The fear motive for conflict is also referred to as the “Hobbesian trap”or the “security dilemma”(following Schelling,
1960). It is modeled by, among others, Baliga and Sjostrom (2004) and Chassang and Padro i Miquel (2010).

2Horowitz also writes: “In this atmosphere of uncertainty, the greatest group anxiety was to avoid creating an old
colonialism for a new one...” (p. 188), and quotes from James S. Coleman’s (1958) study of ethnic conflict in Nigeria
that “in a self-governing Nigeria the north would in effect be a backward protectorate governed by Southerners... The
threat of sudden domination, fancied or real, was the major stimulant in the northern awakening.”Robert N. Kearney
(1967) describes the intensification of ethnic conflict in Sri Lanka (Ceylon): “The gradual transfer of power from foreign
to Ceylonese hands quickly created concern for the relative political strength of the various communities. The basic
assumption upon which this concern rested was that the share of political power held by members of one community
would be used for the exclusive benefit of that community or to the detriment of other communities.”

3DellaVigna et al. (2011) provide further evidence highly suggestive of a conflict snowball in this context. They
show that Croatians who received nationalistic radio broadcasts from the Serbian side were more nationalistic and more
supportive of anti-Serbian actions. Kaplan et al. (2005) provide evidence consistent with a “cycle of violence” from the
Israeli-Palestinian conflict (but see also Jaeger and Paserman, 2008).
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Morganthau puts it (1967, p. 185), “the First World War had its origins exclusively in the fear of

a disturbance of the European balance of power” (for example, because defensive alliances like the

Triple Alliance were viewed as hostile by those left outside). He continues (p. 186): “It was this fear

that motivated Austria in July 1914 to try to settle its accounts with Serbia once and for all, and

that induced Germany to support Austria unconditionally. It was the same fear that brought Russia

to the support of Serbia, and France to the support of Russia,” (see also Ferguson, 2000). Snowball

effects might account not only for violent conflict between nations and ethnic groups, but also for lack

of trust and communication between groups and within organizations. Guiso, Sapienza and Zingales

(2009) document deep-rooted distrust among some nations, and show that it is associated with lower

international trade and foreign direct investment, and Bottazzi, Da Rin, and Hellmann (2011) show

a similar pattern of international business ventures. Kramer (1999) surveys a large social psychology

literature documenting the emergence and persistence of distrust within organizations. In most cases,

distrust is triggered by suspicion that others are untrustworthy or are pursuing ulterior motives. Some

see the root cause of the increasing polarization in US politics also in this type of snowball effects

which may have made each side segregate into their own “echo-chambers”where they only listen to

like-minded communication (e.g., Sunstein, 2006).4

This classical view of conflict and distrust is incomplete, however, because it only explains how

conflict starts and not how it stops– even though most conflict snowballs come to an end sooner or

later. For example, sectarian conflict in Northern Ireland has ended; the widespread distrust and

conflict between blacks and white in South Africa has largely subsided; Serbia and Croatia now have

peaceful relations; and the historical Franco-German distrust and animosity has made way to vibrant

trade and economic and diplomatic cooperation. The bloody ethnic wars that seemed intractable

after the end of World War II have dramatically abated over the past two decades. Even if political

polarization in the US seems incorrigible today, a similar era of polarization in the first third of the

20th century was followed by a long period of non-partisan politics (McCarty, Poole and Rosenthal,

2008). So rather than infinite conflict snowballs– where conflict once initiated never subsides– history

for the most part looks like a series of conflict cycles, where even long periods of conflict eventually

end, often quite suddenly and unexpectedly.

This paper proposes a simple model of conflict snowballs, and then shows that such snowballs

contain the seeds of their own dissolution– thus accounting not only for the onset but also the end of

conflict. The basic idea of our approach is simple: once Group A and B get into a phase in which they

are both acting aggressively, the likelihood that a conflict snowball has been triggered by mistake at

some point increases over time. This implies that aggressive actions– which are typically informative

about how aggressive the other side is– eventually become uninformative. Once this happens, one

group will find it beneficial to experiment with cooperation, and, unless the other group is truly

aggressive, cooperation will resume– until the next conflict snowball begins.

Our model features a coordination game between overlapping generations of (representatives of)

4See McCarty, Poole and Rosenthal (2008) and Abramowitz (2011) on polarization of US politics.
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two groups. The “bad”action in the coordination game may correspond to fighting or initiating other

types of conflicts, and is a best response to bad actions from the other party, while the “good”action is

optimal when good actions are expected. Each side is uncertain about the type of their opponents, who

may be– with small probability– committed to the bad action. The two distinguishing features of our

approach are: (1) noisy Bayesian updating, so that individuals (groups) understand that conflict may

be initiated because of a misunderstanding or unintended action; and (2) limited information about the

exact sequence of events in the past, so that when and for what reason conflict has started is unknown.

These features together generate a distinctive pattern where, in the unique sequential equilibrium of

this dynamic game, a snowball of distrust and conflict is sometimes initiated and persists, but must

also endogenously come to an end. The onset of a conflict snowball is often due to a misperceived

aggression from the other side. The first contribution of our model is to show that because of limited

information about the past, the next generation, seeing only the conflict and not how it came about,

often responds by choosing a bad action, perpetuating the snowball.5 The main contribution of our

model is to show that such snowballs of conflict will eventually cease: when an individual or group

reasons that there have been “enough” chances for a conflict snowball to have gotten started (call

this number T ), they will conclude that the likelihood that it started by mistake– rather than being

started intentionally by a truly aggressive adversary– is suffi ciently high, and they will experiment

with the good action. In our baseline model, these two forces lead to a unique equilibrium which

features a mixture of deterministic and stochastic cycles. In particular, a single misperceived action

stochastically initiates a conflict snowball, which then concludes deterministically at the next time t

that is a multiple of T .

The rest of the paper argues that the forces we isolate in this simple dynamic game are relevant for

thinking about cycles of distrust in a variety of situations. First, in subsection 2.3 we argue that our

baseline game is a natural model of ethnic or international war. In addition to capturing the essence

of the Hobbesian view of conflict, ours is a direct overlapping generations analog of the models used

by Baliga and Sjostrom (2004) and Chassang and Padro i Miquel (2010) to study related issues in a

static setting. Our model implies that the unique equilibrium in the context of ethnic and international

conflict may involve cycles of distrust fueling cycles of conflict– so that neither war nor peace is an

absorbing state.6

Though similar forces are important for understanding other instances of the cycle of distrust,

these applications typically necessitate somewhat different and more detailed assumptions than in

5While informal accounts of conflict often invoke snowballs (e.g., Posen 1993), they do not clarify the conditions under
which they will emerge. For example, full observation of the history of signals and actions would preclude snowballs
for the following reason: if Group A knows that Group B perceived her initial action as aggressive and responded
aggressively, then Group A should not respond aggressively in turn (as she knows that Group B would have behaved this
way even if he were not inherently aggressive). In our model, limited information about past signals, as well as about
when conflict started, prevents this type of perfect inference and makes snowballs possible.

6Rohner, Thoenig and Zilibotti (2011) develop a related dynamic “Hobbesian”model of conflict, in which war signals
that one group does not value trade with the other and thus leads to the breakdown of trade. Their model does not
feature cycles of conflict or distrust.
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our baseline model. We therefore complement the baseline model with three more detailed models

of the cycle of distrust, each tailored to a particular application and arranged in order of increasing

complexity: trade, communication, and political partisanship. We study cycles of trade breakdown

in Section 3. We posit that some groups are unable to produce high-quality goods, while others can

produce them at a cost, and each agent decides whether to produce a high-quality good and whether

to trade in both periods of her life. The coordination game-like features emerge because this cost

is only worth paying when the other group will also produce high-quality goods, making exchange

worthwhile. We show that the equilibrium is essentially unique, and features a cyclical pattern similar

to the baseline model.

In Section 4, we study cycles of “miscommunication” using a similar setup consisting of two

groups with different political views and overlapping generations of players. Each group may be

extremist and thus stubbornly repeat their own views, while normal groups are willing to moderate

their communication in order to influence the other party. This model yields a cycle where phases

of informative communication alternate with phases of uninformative, “ideological,”communication.

This may be viewed as a dynamic model of social learning, where ideological extremism– or merely

the fear that the other side is extreme– can prevent information aggregation.7

Finally, in Section 5 we study the dynamics of political partisanship and participation using a model

where extreme politicians care primarily about a partisan political issue, while normal politicians care

primarily about a common-interest issue. A cycle of partisanship emerges, where politicians act on

the partisan issue when they think the other party is extremist, and act on the major issue when they

think the other party is moderate. Augmenting this model with a model of voter turnout, we predict

a cycle of voter turnout that mirrors the cycle of partisanship: turnout and propaganda are both

high in the partisan phase of the cycle, while turnout is low and communication between the parties

is informative in the cooperative phase. This model may capture aspects of the cycle of political

partisanship documented by McCarty, Poole and Rosenthal (2008), Abramowitz (2011), and others.8

Section 6 presents “technical”extensions of the baseline model, which show that our basic insights

are robust to relaxing a variety of convenient assumptions we make in the main analysis. These include

allowing two-sided errors, so that bad actions can also be perceived as good actions, and allowing more

information about past actions.

7 In this respect, it generalizes Morris (2001) as well as Prendergast (1993), Canes-Wrone, Herron, and Shotts (2001),
Maskin and Tirole (2004), and Acemoglu, Egorov and Sonin (2011). Relatedly, Banerjee and Somanathan (2001) and
Sethi and Yildiz (2009) present models where social learning is precluded because of heterogeneous and unknown biases
among members of society.

8Notably, our model generates such cycles even though the electorate itself does not become more polarized, which is
consistent with the evidence presented in Fiorina (2011).
Other related work includes Bernhardt, Krasa, and Polborn (2008), Chan and Suen (2008), and Gul and Pesendorfer

(2011), who present models linking polarization to competition among media outlets. One interpretation of “cooperation”
in our model is that the cooperative action is engaging in an informative political dialogue that gives the other party
the information it needs to set policy, while the uncooperative action is broadcasting propaganda to one’s base to try to
maximize turnout. On this interpretation, our model complements these papers by studying the incentives for political
parties themselves to provide useful information rather than propaganda.
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Our paper also relates to several strands of the literature on dynamic games, including anti-folk

theorems in overlapping generations games (e.g., Lagunoff and Matsui, 1997) and reputation with

limited records (e.g., Liu and Skrzypacz, 2011). We discuss the relationship of our paper to these and

other literatures in Section 7. Section 8 concludes, while the Appendix contains proofs omitted from

the text.

2 Baseline Model: Trust Game

In this section, we present our baseline model, which formalizes in the simplest possible way how

conflict snowballs can form but cannot last forever when individuals are Bayesian and have limited

information about the history of conflict. The ideas developed in this section are the basis for the

more detailed applications considered in the rest of the paper. At the end of this section, we present

our first application, ethnic conflict and international war, which uses the baseline model.

2.1 Model and Equilibrium Characterization

Two groups, Group A and Group B, interact over time t = 0, 1, 2, . . .. At every time t, there is one

active player (“player t”) who takes a pair of actions (xt, yt) ∈ {0, 1}×{0, 1}, where xt = 1 and yt = 1

are “good”or “honest”actions and xt = 0 and yt = 0 are “bad”or “cheating”actions; as will become

clear, xt is player t’s action toward player t− 1, and yt is player t’s action toward player t+ 1. In even

periods the active player is a member of Group A, and in odd periods the active player is a member

of Group B. A different player is active every period. A key assumption is that players observe very

little about what happened in past periods: in particular, before player t takes her action, she observes

only a signal ỹt−1 ∈ {0, 1} of player t − 1’s action toward her. This assumption captures the feature

that agents may know that there is currently conflict or cheating without fully knowing how this was

initiated in the past. We assume that ỹt−1 is determined as:

Pr (ỹt−1 = 1|yt−1 = 1) = 1− π

Pr (ỹt−1 = 1|yt−1 = 0) = 0,

where π ∈ (0, 1). Thus, a good action sometimes leads to a bad signal, but a bad action never leads

to a good signal.9

Each group consists either entirely of normal types or entirely of bad types. The probability that

a group is bad (i.e., consists of bad types) is µ0 > 0. Playing (xt = 0, yt = 0) is a dominant strategy

for the bad type of player t. For t > 0, the normal type of player t has utility function

u (xt, ỹt−1) + u (yt, xt+1) ,

9We relax this assumption as well as the assumption that nothing of the past history beyond last period’s conflict is
observed in Section 6.
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so her payoff is the sum of her payoff against player t − 1 and her payoff against player t + 1.10 The

normal type of player 0 has utility function u (y0, x1).11 We assume that each “subgame” between

neighboring players is a coordination game, and that (1, 1) is the Pareto-dominant equilibrium:

Assumption 1 1. u (1, 1) > u (0, 1).

2. u (0, 0) > u (1, 0).

3. u (1, 1) > u (0, 0).

Thus, the good action is a best-response to the good signal or to the expectation of the good

action, and the bad action is a best-response to the bad signal or to the expectation of the bad action.

We make the following joint assumption on u, π, and µ0, which holds if π and µ0 are small (since

the term in parentheses is between 0 and 1 by Assumption 1):

Assumption 2

µ0 < µ∗ ≡ 1− 1

1− π

(
u (0, 0)− u (1, 0)

u (1, 1)− u (1, 0)

)
.

Assumption 2 is equivalent to assuming that normal player 0, with belief µ0, plays y0 = 1 when

she believes that player 1 plays x1 = 1 if and only if he is normal and sees signal ỹ0 = 1.

We can now explain the logic of the model. Assumption 1 ensures that in any sequential equilibrium

player t does indeed play xt = 1 if and only if he is normal and sees signal ỹ0 = 1. In view of this,

Assumption 2 implies that normal player 0’s prior about the other group is suffi ciently favorable that

she starts out with y0 = 1.

Next, consider the problem of normal player 1. If he sees signal 1, then he knows the other group

is normal– since bad types take the bad action which never generates the good signal. In this case,

his belief about the other group is even better than player 0’s, so he plays y1 = 1 (in addition to

playing x1 = 1). But what if he sees signal 0? He clearly plays x1 = 0, but moreover, by Bayes rule,

his posterior belief that the other group is bad rises to

µ1 =
µ0

µ0 + (1− µ0)π
> µ0.

Now if µ1 is suffi ciently high– in particular, if it is above the cutoff belief µ
∗– then player 1 plays

y1 = 0 after she sees signal 0.12

Now suppose that up until time t normal players play yt = 0 after seeing signal 0, and consider the

problem of normal player t. Again, if she sees signal 1, she knows the other group is normal and plays

10This additive and undiscounted form of player t’s utility function is adopted for simplicity, and can be relaxed.
11Note that this makes action x0 irrelevant, so it we ignore it (equivalently, assume that player 0 only chooses y0 ∈
{0, 1}).
12To be clear, we do not assume that µ1 > µ∗. But if µ1 < µ∗, then the conflict “cycle” that emerges is the trivial

cycle where cooperation always restarts immediately after a misperception.
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(xt = 1, y1 = 1). But if she sees signal 0, she knows that this could be due to a bad signal arriving at

any time before t, because a single bad signal starts a snowball of bad actions. Thus, her posterior is

µt =
µ0

µ0 + (1− µ0)
(
1− (1− π)t

) .
If µt is above the cutoff belief µ

∗, then player t again plays yt = 0 after seeing signal 0. But note

that µt is decreasing in t, that µt → µ0 as t → ∞, and that µ0 < µ∗. Thus, there is some first time

T– given by (1) in the Appendix– at which µT ≤ µ∗. And at this time, player T plays yT = 1 even

if she sees signal 0. Thus, any snowball of bad actions that started before time T ends at T .

Finally, consider the problem of normal player T + 1. He knows that player T plays yT = 1 if and

only if she is normal. Thus, player T + 1 is in exactly the same situation as player 1, and play from

period T + 1 on is therefore exactly like play from period 1 on. Hence, play is characterized by cycles

of length T , in which a single bad signal starts at some time t starts a snowball of bad actions that

lasts until the next multiple of T .

A central feature of the above argument is that it holds regardless of beliefs about future play.

Consequently, equilibrium is unique up to one technicality: if µT exactly equals µ
∗, then cycles can

be of length either T or T + 1, and this can eventually lead to “restarts”of cooperation occurring at

a wide range of times. To avoid this possibility, we make the following genericity assumption on the

parameters:

Assumption 3 µt 6= µ∗ for all t ∈ N.

We now state our main result for the baseline model, establishing that there is a unique equilibrium

which is cyclic. The same cyclic equilibrium structure will arise in all of the more detailed applications

studied later in the paper.

Proposition 1 Under Assumptions 1-3, the baseline model has a unique sequential equilibrium. It

has the following properties:

1. At every time t 6= 0 modT , normal player t plays good actions (xt = 1, yt = 1) if she gets the

good signal ỹt−1 = 1, and plays bad actions (xt = 0, yt = 0) if she gets the bad signal ỹt−1 = 0.

2. At every time t = 0 modT , normal player t plays the good action xt = 1 toward player t − 1 if

and only if she gets the good signal ỹt−1 = 1, but plays the good action yt = 1 toward player t+ 1

regardless of her signal.

3. Bad players always play bad actions (xt = 0, yt = 0).

It is straightforward to turn the above discussion into a proof of Proposition 1, and we omit this

formal proof.13

13The proof is similar to– but simpler than– the proof of Propostion 4, which is in the Appendix.
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Figure 1: A Cycle of Conflict

Figures 1 and 2 graph the probability of observing conflict (i.e., the bad signal) when both groups

are normal, 1− (1− π)tmodT , as well as a normal player’s posterior assessment of the probability that

the other group is bad after observing conflict, µtmodT , for parameter values µ0 = 1/9, π = 1/10,

and (u (0, 0)− u (1, 0)) / (u (1, 1)− u (1, 0)) = 3/4.14 With these parameters, the period of the conflict

cycle T equals 10, and consequently the figures show that cooperation restarts every 10 periods. That

is, the probability that a conflict snowball will have started by time t increases until t = 10, at which

point this probability is so high that conflict is no longer suffi ciently informative about the other

group’s type (as indicated by the posterior belief in Figure 2 hitting the dotted line), and cooperation

is restarted.

2.2 Additional Results

To help build intuition about the mechanics of the baseline model, we next present simple comparative

statics on the cycle length T and results on social welfare when the probability of a misperception π

is small.

Our comparative statics result is as follows: First, cycles are longer when u (0, 0) is higher, u (1, 0)

is lower, or u (1, 1) is lower, as all of these changes make experimenting with the good action less

appealing (i.e., they decrease µ∗). Second, cycles are longer when the prior probability of the bad

type is higher, as this makes players more pessimistic about the other group (i.e., increases µt for

14The figures graph µtmodT and 1 − (1− π)
tmodT as continuous functions of t, even though time is discrete in the

model.
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Figure 2: The Corresponding Cycle of Beliefs

all t). Finally, the effect of the error probability π on cycle length in ambiguous, as there are two

competing effects: increasing π makes experimenting with the good action less appealing (decreases

µ∗), but also makes the bad signal less informative of the opposing group’s type, which makes players

more optimistic (decreases µt). It is straightforward to see that either effect can dominate: Taking

π → 0 sends µt to 1 for any fixed t, which implies that T →∞ as π → 0. On the other hand, taking

µ0 small and then taking π → 1 − 1
1−µ0

(
u(0,0)−u(1,0)
u(1,1)−u(1,0)

)
implies that µT must be small, and hence T

must be large. Combining these observations, it follows that T is non-monotone in π.15 Summarizing,

we have the following result:

Proposition 2 The period of the cycle in the baseline model T has the following properties:

1. It is increasing in u (0, 0), decreasing in u (1, 0), and decreasing in u (1, 1).

2. It is increasing in the prior probability of the bad type µ0.

3. It may be increasing or decreasing in the error probability π.

Another interesting property of the baseline model is that expected social welfare when both groups

are normal– averaged across all players– is bounded away from the effi cient level 2u (1, 1) , even as

the probability of a misperception π goes to 0. Thus, not only do some players receive payoff less

15For example, if µ0 = .01 and u(0,0)−u(1,0)
u(1,1)−u(1,0) = .5, then T = 11 when π = .001 and T = 7 when π = .4949, but T = 1

when π = .1. Note that if we had instead written player t’s utility function as u (xt, ỹt−1) + u (ỹt, xt+1) then µ∗ would
not depend on π and hence T would be unambiguously decreasing in π.
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than 2u (1, 1) for all π > 0 (which is immediate), but the fraction of players who get less than this

does not vanish as π → 0. The intuition is that, while the probability of a conflict snowball starting

each period goes to 0 as π → 0, the expected length of a conflict snowball conditional on its starting

goes to ∞ as π → 0, because when π is small conflict is very informative and it therefore takes a long

time for cooperation to restart after a misperception. This result is in stark contrast to what would

happen in a static setting, where, as π → 0, the players could coordinate on the good outcome with

probability approaching 1.16

In contrast, expected social welfare when both groups are normal does converge to the effi cient

level 2u (1, 1) when both the probability of a misperception π and the probability that a group is

bad µ0 go to 0, regardless of the relative sizes of these probabilities. Thus, both the probability of

accidental conflict and the fear of the other group’s true intentions must be small for effi ciency to

prevail. The intuition here can be seen from examining the formula for µt: if µ0 is vanishingly small,

then any positive probability of conflict 1−(1− π)t is large enough that a player who observes conflict

will restart cooperation. Hence, the probability that conflict actually occurs at any point in a given

T -period cycle goes to 0 when both π and µ0 go to 0.

Formally, we have the following result, where social welfare is evaluated according to the limit-of-

means criterion (proof in the Appendix).17

Proposition 3 Suppose that both groups are normal. Then the following hold:

1. The limit of expected social welfare as π → 0 is less than the effi cient level 2u (1, 1).

2. For any sequence
(
πn, µ0,n

)
converging to (0, 0) as n→∞ (such that Assumptions 1-3 hold for

all n), the limit of expected social welfare as n→∞ equals the effi cient level 2u (1, 1).

2.3 Application 0: Ethnic Conflict and International War

An immediate application of our baseline model is to ethnic conflict and international war. Consider

two ethnic groups (or two countries) who repeatedly face the potential for conflict. For each potential

conflict, the groups choose between two actions sequentially, and one of these corresponds to aggression

or war. We assume that representatives of the two ethnic groups alternate in taking the first action

as in the baseline model. The “security dilemma,”or the “Hobbesian trap,”suggests a game form in

which a group or country dislikes taking the peaceful action when the other side is aggressive. In our

overlapping-generations setup, this exactly corresponds to parts 1-2 of Assumption 1, implying that

aggression is a best response to the belief that the other side has been aggressive so far or is expected

to be aggressive in the future. Part 3 of Assumption 1 then implies that both sides are better off

without such aggression.18

16More precisely, in the “static”(i.e., two-period version) of our model, the probability that both players play 1 when
both groups are normal would converge to 1 as π → 0.
17That is, if player t’s payoff is ut, social welfare is defined to be limT→∞ 1

T

∑T
t=0 ut.

18One might argue that our baseline model would better capture the “first-mover advantage”aspect of ethnic conflict
if we allowed player t’s payoff from choosing war after getting the peaceful signal from player t − 1 to differ from her
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It is plausible in the context of such conflict that non-aggressive acts are sometimes viewed as

aggressive by the other party, justifying our assumption concerning the relationship between action

and signals (i.e., between ỹ and y).19 Finally, we believe that, though extreme, the assumption that

the past history of signals is not fully observed is also reasonable in this context. Even though we all

have access to history books, it is diffi cult to ascertain and agree on how and exactly when a given

conflict started (see also Section 6). Consequently, the structure of the baseline model together with

Assumptions 1-3 can be applied to the analysis of ethnic conflict or international war, and this leads

to the equivalent of Proposition 1, accounting for potential conflict snowballs and their endogenous

cessation.

3 Application 1: Trade

Our first more detailed application is to cycles of distrust in inter-group trade. We present a simple

model where members of one group will produce high-quality goods only if they expect members of

the other group to produce high-quality goods for which they can trade. If everyone is afraid that the

other group is unable or unwilling to produce high-quality goods (i.e., be a “bad” trading partner),

then the equilibrium involves a cycle in which phases of trust and trade alternate with phases of

distrust and the breakdown of production and trade.

Group A produces apples and Group B produces bananas. Group A members can produce rotten

(“bad”) apples for free regardless of whether Group A is normal or bad, but if it is normal (which

occurs with probability 1 − µ0), then they can also produce good apples at cost c > 0. Similarly for

Group B and bananas.

All players live for 2 periods, and get utility from consuming one piece of fruit in each period.

Members of Group A have a taste for bananas, and get utility b > c from consuming a good banana,

but only get utility d ∈ (0, c) from consuming a good apple. Members of Group B get b from consuming

a good apple and get d from consuming a good banana. No one gets utility from consuming rotten

fruit. Assume also that a player gets utility −ε if she trades for her opponent’s rotten fruit, where
ε > 0 is interpreted as a (small) transaction cost; with this interpretation, the payoff b of consuming

the other group’s fruit is the payoff net of the transaction cost.20

At time t = 1, 2, . . ., a market opens in which players t and t− 1 can exchange goods. Production

by players t and t−1 for the time t market is staggered as we describe next. Each period is subdivided

into three subperiods, which we denote as times t− 2
3 , t−

1
3 , and t for convenience.

payoff from choosing war prior to player t + 1’s playing peace; that is, if we allowed a player’s payoff to depend on
whether she moves first or second in a given conflict. Our results would not be affected by this generalization, so long
as each conflict remains a coordination game (i.e., a player wants to match her opponent’s action or signal, regardless of
whether she moves first or second).
19An alternative that leads to identical results is to assume that even when a group mostly consists of normal, non-

aggressive types, a few of its members may be aggressive (e.g., military commanders bent on initiating conflict even
when most politicians prefer peace).
20The transaction cost plays only a minor technical role in the analysis as discussed below.
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At time t− 2
3 , normal player t− 1 chooses whether to produce a good fruit or a rotten fruit for the

time t market (bad players always produce rotten fruit), and her quality choice is denoted yt−1 ∈ {0, 1}
({rotten, good}). If she produces a good fruit, it immediately rots with probability π. Both players
then observe the final quality of her fruit, denoted ỹt−1 ∈ {0, 1}.

At time t − 1
3 , normal player t chooses whether to produce a good fruit or a rotten fruit (having

observed ỹt−1), and her quality choice is denoted by xt ∈ {0, 1} (thus, xt is player t’s quality choice
at time t − 1

3 for the time t market, and yt is her quality choice at time t + 1
3 for the time t + 1

market). Again, if she produces a good fruit, it rots with probability π, and both players observe the

final quality of her fruit, denoted x̃t ∈ {0, 1}.
Finally, players t and t − 1 arrive at the time t market. They then simultaneously decide on

whether they would like to exchange goods: the exchange occurs if and only if both decide to do so.

Each player then consumes the fruit she is left with (and pays the transaction cost if trade occurred).

Player t− 1 then dies, player t+ 1 is born, and the game continues with player t making her quality

choice at time t+ 1
3 .

The trade model differs from the baseline model in that both players’good actions (or production

choices) can turn bad in each period, and that players makes decisions about trade as well as produc-

tion. Nonetheless, as we now show, equilibrium behavior in the trade model is closely related to that

in the baseline model.

Consider first the production decision of player 0. Let us conjecture that if player 0’s fruit does

not rot (ỹ0 = 1), then normal player 1 will produce a good fruit and trade will occur provided that

his fruit does not rot. Player 0’s expected payoff from producing a good fruit is:21

(1− µ0)
[
(1− π)2 b+ π (1− π) d

]
+ µ0 (1− π) d− c.

To see this, note that player 0 gets payoff b if player 1 is normal and neither fruit rots, while he gets

payoff d if her fruit doesn’t rot and either player 1 is normal but his fruit rots or player 1 is bad. On

the other hand, player 0’s expected payoff from producing a rotten fruit is 0, because rotten fruit never

generates a good signal (and is worth zero in consumption). Therefore, player 0 produces a good fruit

if and only if

µ0 < µ∗TRADE ≡ 1− 1

(1− π)2

(
c

b− d

)
.

Suppose that this is the case, and consider the production decisions of normal player 1 at time 2
3 .

Clearly, she will choose to produce a bad fruit if player 0’s fruit is bad, as in this case trade never

occurs. In contrast, if player 0’s fruit is good, the assumption that µ0 < µ∗TRADE is suffi cient to

guarantee that she will choose to produce a good fruit. Intuitively, a good fruit is more attractive

when one’s partner’s fruit is good, and the assumption that µ0 < µ∗TRADE implies that producing a

good fruit is optimal before knowing the quality of one’s partner’s fruit.

21Here and in what follows, we take the limit ε→ 0.
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Next, consider the production decisions of normal player 1 at time 1 + 1
3 . His position is now

similar to that of player 0 at time 1
3 , except that he has a different assessment of the probability that

the other group is bad. In particular, if player 0’s fruit was good, then he is certain that the other

group is good. If player 0’s fruit was bad, then he believes that the other group is bad with probability

µ1 =
µ0

µ0 + (1− µ0)π

as in the baseline model. Thus, if µ1 is above the cutoff belief µ
∗
TRADE , then player 1 produces a bad

fruit if player 0’s fruit was bad.

The analogy with the baseline model should now be clear. Assuming that µt′ > µ∗TRADE for all

t′ < t, then when player t−1’s fruit is bad player t believes that the other group is bad with probability

µt =
µ0

µ0 + (1− µ0)
(
1− (1− π)t

) .
Once µt drops below µ∗, player t will produce a good fruit for the time t + 1 market even if player

t− 1’s fruit was bad, and trade will resume until the next time a good fruit rots.

Formally, impose the following versions of Assumptions 2 and 3 from the baseline model.

Assumption 2′ µ0 < µ∗TRADE .

Assumption 3′ µt 6= µ∗TRADE for all t ∈ N.

We obtain the following result (proof in the Appendix):

Proposition 4 Under Assumptions 2′ and 3′, the trade model has a unique trembling-hand perfect

equilibrium. It has the following properties (where TTRADE ≡ min {t : µt < µ∗TRADE}):

1. For every time t 6= 0 modTTRADE, normal player t plays xt = 1 if and only if ỹt−1 = 1; approves

trade in market t if and only if ỹt−1 = 1; plays yt = 1 if and only if ỹt−1 = 1; and approves trade

in market t+ 1 if and only if x̃t+1 = 1.

2. For every time t = 0 modTTRADE, normal player t plays xt = 1 if and only if ỹt−1 = 1; approves

trade in market t if and only if ỹt−1 = 1; always plays yt = 1; and approves trade in market

t+ 1 if and only if x̃t+1 = 1.

3. Bad players always play xt = 0; approve trade in market t if and only if ỹt−1 = 1; always play

yt = 0; and approve trade in market t+ 1 if and only if x̃t+1 = 1.

Proposition 4 is the analog of Proposition 1 for the model of trade, and has a similar intuition.

When an agent receives a rotten fruit, she reckons there is a suffi ciently high probability that the other

side is not a good trading partner, and decides not to incur the cost for producing high-quality fruit

herself. This then creates a snowball effect where distrust in the ability of the other sides to be a good
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trading partner perpetrates over time. But, for the same reason as in the baseline model, this snowball

also comes to an end– after a while, one of the sides concludes that the observed lack of trade is not

very informative, and thus experiments with producing a high-quality fruit, which restarts trade.

It is also worth noting that the role of the staggered nature of production for each market,

the ε transaction cost, and the strengthening of the solution concept from sequential equilibrium

to trembling-hand perfect equilibrium is to ensure equilibrium uniqueness. Without these features,

the strategy profile described in Proposition 4 would still be an equilibrium, but there would also

be other, more “artificial”equilibria. For example, if production for each market were simultaneous,

there would be an equilibrium in which players always produce low-quality fruit because they are sure

that their trading partners do so as well. Without the transaction cost and trembling-hand perfection,

there would be equilibria where, when both fruits are rotten, players use their trade approval decisions

to send cheap talk messages (which are payoff irrelevant for them but matter for future generations).

4 Application 2: Communication

Another example of snowball effects, and hence of potential cycles, is communication between two

groups on opposite sides of an issue. Even though informative communication may be in the interest

of both parties, the fear that the other side is extremist can prevent communication between “mod-

erates” (normal players). In this section, we present a simple model illustrating this possibility. We

assume that the interests of moderates on the two sides are suffi ciently aligned to permit equilibrium

communication in the absence of extremists– indeed, we take the extreme case where moderates on

the two sides prefer the same policy, conditional on any state of the world. However, moderates will

tune out the other side when they believe that they are listening to extremists. This implies that mod-

erate communicators will not send extreme messages (so as to separate themselves from extremists),

provided they believe the other group is likely to be moderate. This leads to cycles of moderation and

extremism in communication.

Suppose that Group A is left-wing, while Group B is right-wing. There are overlapping generations,

and each player lives for two periods, staggered across the groups. Informally, the model is as follows:

1. Every period, a state of the world, θt, is randomly drawn and is observed by the old player.

2. The old player sends a message, st, to the young player (who is from the other group), who then

takes an action at (as in a standard cheap talk game).

3. The young player then ages, and the stage game repeats.

In particular, if a representative of Group A is the “sender”(resp., “receiver”) in period t, then a

representative of Group B is the “sender”(resp., “receiver”) in period t+ 1.

More precisely, the model is as follows: The first representative of Group A is active in period

0 only, while subsequent representative of Group A are active in periods {t, t+ 1} for t odd; and
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representatives of Group B are active in periods {t, t+ 1} for t even. In every period t = 0, 1, 2, . . .,

the period t state θt ∈ {−1, 0, 1} is drawn independently, with probability 1
3 on each state, and is

observed by the active Group A representative if t is even, and by the active Group B representative

if t is odd. The player who observes the state (the “sender”) then sends a message st ∈ {−1, 0, 1}
to the other player (the “receiver”), who receives message s̃t ∈ {−1, 0, 1}, where s̃t equals st with
probability 1 − 2

3π, and s̃t equals each of the other two possible messages with probability
π
3 each

(thus, the message is replaced with “white noise”with probability π). Finally, the receiver takes an

action at ∈ {−1, 0, 1}, and the game moves on to period t+ 1.

Each group consists either entirely of moderates, entirely of extremists, or entirely of naifs (i.e.,

“naive” players). The probability that a group consists entirely of extremists is µ0 > 0, and the

probability that a group consists entirely of naifs is ν0 > 0. Extremists and naifs are modelled as

“behavioral types.” It is assumed that left-wing extremists always send message st = −1 and take

action at = −1, and right-wing extremists always send message st = 1 and take action at = 1. Naifs,

on the other hand, always send message st = θt and take action at = s̃t; this implies that naifs can

be influenced by even extreme messages. Finally, a left-wing moderate who is active in period t gets

utility uL (at, θt) when action at is taken in state θt, and a right-wing moderate gets utility uR (at, θt);

thus, for example, a left-wing moderate who is active in periods t and t+ 1 gets utility

uL (at, θt) + uL (at+1, θt+1) .

We assume that these payoffs are realized at the end of period t + 1, so that there is no information

revealed from payoff realizations.

In addition, we assume that both left and right-wing moderates have preferences that satisfy single-

crossing in (a, θ) and are single peaked with bliss point equal to the state θt at time t. This implies

that left-wing and right-wing moderates always agree on the best action when the state of the world

is known. However, we assume that a left-wing moderate prefers action −1 when she believes that the

state is distributed “fairly evenly”on {−1, 0, 1}, while a right-wing moderate prefers action 1 when

he believes this, in a sense formalized below. In addition, we assume that uL (a, θ) = uR (−a,−θ) for
all (a, θ). This simply allows us to avoid stating separate assumptions for uL and uR; none of our

analysis relies on this symmetry.

We again impose a range of assumptions on uL (where the corresponding assumptions on uR are

implied by symmetry) in order to focus on the most interesting region of parameter space. To facilitate

exposition, we state these assumptions “parametrically”; we view them as being fairly weak in the

leading case where π is small relative to the other parameters.22 In particular, using the notation

“belief (x, y, z)”to stand for the belief that the state is −1 with probability x, 0 with probability y,

and 1 with probability z, we impose:

22For concreteness, a “typical” example satisfying the next assumption is given by π = .01, µ0 = .5, ν0 = .1, and
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Assumption COM 1. Action −1 is optimal for a left-wing moderate given belief(
(1− π)µ0 + π/3

(1− π) (1 + 2µ0) + π
,

(1− π)µ0 + π/3

(1− π) (1 + 2µ0) + π
,

1− π + π/3

(1− π) (1 + 2µ0) + π

)
(i.e., the state is equally likely to be −1 and 0, and somewhat more likely to be 1).

2. Action 0 is optimal for a left-wing moderate given belief(
π/3

(1− π) (1− µ0) + π
,
(1− π) (1− µ0) + π/3

(1− π) (1− µ0) + π
,

π/3

(1− π) (1− µ0) + π

)
(i.e., the state is equally likely to be −1 and 1, and much more likely to be 0).

Action 0 is optimal for left-wing moderate given belief(
π/3

(1− π) (2− 2µ0 − ν0) + π
,

(1− π) (1− µ0) + π/3

(1− π) (2− 2µ0 − ν0) + π
,
(1− π) (1− µ0 − ν0) + π/3

(1− π) (2− 2µ0 − ν0) + π

)
(i.e., state is most likely to be 0, somewhat less likely to be 1, and much less likely to be

−1).

3.

µ0 +
uL (−1,−1)− uL (1,−1)

uL (0,−1)− uL (1,−1)
ν0 ∈

(
1− 6 (1− π)

1 + 6π

(
uL (−1,−1)− uL (0,−1)

uL (0,−1)− uL (1,−1)

)
, 1

)
.

4. uL (−1, 0) > uL (1, 0).

Finally, for reasons familiar from cheap talk games, sequential equilibrium is not unique in this

model, even under appropriate payoff restrictions (unlike in our other models). For example, one can

always “switch”messages 0 and 1, say, so that message 0 corresponds to state 1 and vice versa.23 We

therefore impose the mild restriction of message-monotonicity: a sequential equilibrium is message

monotone if for all histories, if a normal sender sends signal s with positive probability when the state

is θ, then she never sends a signal strictly lower than s when the state is strictly higher than θ.24

The result is the following (proof in Appendix):

uL (a, θ) given by the following table:
state

action

-1 0 1
-1 15 6 1
0 5 7 3
1 0 3 4

23This is true even though our game is not quite a cheap talk game, due to the presence of naifs. If there are enough
naifs (ν0 large), then one could recover uniqueness, but it is natural to think of ν0 as small.
24This is adapted from Chen’s (2011) definition of message monotonicity to allow for mixed strategies. Chen assumes

concave loss functions and a continuous action space, ensuring that all sequential equilibria are in pure strategies. Here,
we allow for mixed strategies, even though we will show that all message-monotone sequential equilibria will still be in
pure strategies.
It is also worth noting that while messages are assumed to be monotone in θt, receiver actions are not monotone in s̃t

in the unique equilibrium of our model. This is fundamentally for the same reason as in Chen (2011): extreme messages
may be more likely to come from biased senders, and therefore are discounted. In fact, our model is quite similar to
a (special case of a) dynamic and two-sided version of Chen’s model with three kinds of senders (moderate, extreme,
and naive) rather than two (normal and naive). See also Chen, Kartik, and Sobel (2008) and Kartik, Ottaviani, and
Squintani (2007) for static and one-sided communication models with a mix of normal and naive players.
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Proposition 5 Under Assumption COM, the communication model has a unique message-monotone

sequential equilibrium. It has the following properties:

1. For all times t, left-wing moderate senders send st = 0 if θt = −1 and s̃t−1 ∈ {−1, 0} (or if
t = 0), and otherwise send st = θt. Right-wing moderate senders send st = 0 if θt = 1 and

s̃t−1 ∈ {0, 1}, and otherwise send st = θt.

2. For all times t, left-wing moderate receivers play at = −1 if s̃t ∈ {−1, 1}, and play at = 0 if

s̃t = 0. Right-wing moderate receivers play at = 1 if s̃t ∈ {−1, 1}, and play at = 0 if s̃t = 0.

The existence part of Proposition 5 is straightforward: one can compute a player’s posterior belief

about both the state and the other group’s type following every possible signal s̃ ∈ {−1, 0, 1}, and
show that Assumption COM implies that the prescribed behavior is a best response. The intuition

for uniqueness is as follows. For concreteness, focus on a left-wing sender and right-wing receiver. By

Assumption COM, a moderate receiver plays a = 1 after signal s̃ = −1, as this signal is always fairly

likely to have come from an extremist sender, in which case it contains no information about θ. Also,

a moderate receiver plays a = 1 after signal s̃ = 1, as this signal is informative of θ = 1 by message

monotonicity, and Assumption COM implies that a moderate receiver would play a = 1 in the absence

of an informative signal. Finally, a moderate receiver plays a = 0 after signal s̃ = 0. This follows

because if he played a = −1 or 1 after s̃ = 0, then moderate senders would play s = 0 when θ = 0,

targeting naive receivers; and this, by Assumption COM, implies that moderate receivers should play

a = 0 after s̃ = 0 after all. Given this characterization of moderate receivers’strategies, Bayes rule

and Assumption COM imply that moderate senders must play as specified in the proposition.

Intuitively, Proposition 5 shows that, in the unique message-monotone equilibrium, moderates

start by moderating their “own-extreme” signals. In particular, left-wing senders will misreport a

signal of −1 (and right-wingers will misreport 1) as 0 so as to separate themselves from the extremists

on their side. Moderating one’s own-extreme signal in this way is analogous to playing the honest

action in the baseline model, in that it leads to Pareto-improving communication when the other

group is moderate. In the future, signals other than the sender’s own-extreme signal are interpreted

as honest signals, and a moderate player who receives an honest signal plays action equal to the

signal, and then moderates her own signal next period. But then in this equilibrium an extreme

signal is evidence that the sender is an extremist, and a moderate from the other side who receives

such a signal takes the opposite action and does not moderate her own signal in the next period

(i.e., she sends her own-extreme signal if she thinks this is the state, in an effort to persuade naive

receivers). This then starts a snowball analogous to the snowballs we have seen in the baseline and

trade models. Nevertheless, there are also important differences from the models we have seen so far.

First, here the reason why moderates refrain from sending extreme messages is precisely because they

would like to distinguish themselves from extremists– thus the presence of extremists affects the form

of communication between moderates even outside the cycle of distrust. Second, and perhaps more
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importantly, there are no longer any deterministic restarts of trust here. This is because the stochastic

restarts of trust are frequent enough, ensuring that an own-extreme signal is always a strong indication

that the sender is extremist.25

5 Application 3: Political Partisanship and Participation

Our last and most detailed application is to cycles of political partisanship and political participation.

A standard– though not uncontroversial– narrative is that polarization in American politics was high

in the first third of the 20th century, low in the middle third, and high in the last third. For example,

McCarty, Poole, and Rosenthal (2008) document this pattern of polarization between Democrats

and Republican in congressional roll call votes. Another prominent view is that underlying political

preferences have not polarized to nearly the same extent as have the major parties’political positions

(Fiorina, 2011).

The model we present in this section provides an approach for thinking about polarization between

political parties in the absence of polarization of the electorate. In particular, we consider political

competition between two parties that can each be either moderate or extremist. Every period, the

representative of the party in power can take action on either a major, common interest issue (e.g.,

the economy) or a partisan issue (e.g., school prayer). Taking action on the major issue requires some

form of cooperation from the previous political leader; we model this by assuming that the previous

leader may learn some information about the economy that must be passed on for the current leader

to set economic policy effectively.26 Whether or not this cooperation is granted is observed by the

political supporters of the incumbent party– referred to as its “base”– and can influence their decision

on whether or not to turn out to vote (in an extension of the model, we allow both parties’bases to

turn out). The difference between moderate and extremist politicians is that moderates care more

about the major issue, while extremists care more about the partisan issue; thus, unlike in our earlier

models, we do not assume that extremists are committed to some course of action, and the behavior

of both moderates and extremists is determined by strategic considerations.

We show that this model leads to a distinctive pattern of partisanship and turnout that resembles

the cycles of distrust in our baseline model. Extremists never cooperate or communicate with the other

party, because in equilibrium cooperating would signal to the base that the other party is moderate

and the base would therefore not bother turning out. Moderates cooperate as long as they believe

that the other party is suffi ciently likely to be moderate. In equilibrium, a single accidental failure of

cooperation leads to a partisan phase in which no parties cooperate, the bases turn out, and politicians

act only on the partisan issue. However, eventually a politician realizes that a partisan phase was

quite likely to have started by accident, and hence cooperates with the other party, which leads to a

trusting phase where both parties cooperate, the bases do not turn out, and politicians act only on

25A similar effect arises in Sections 6.1 and 6.2.
26One could alternatively assume, with identical results, that the previous leader may need to give the current leader

a vote of confidence in order for her to be able to make major policy changes.
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the major issue. As in the baseline model, these phases alternate– and are driven by the extent to

which the parties trust each other.

Since this model has more moving parts than the others, we split this section into three subsections.

Subsection 5.1 presents the model, subsection 5.2 characterizes the unique equilibrium, and subsection

5.3 extends the model by allowing both parties’bases to turn out.

5.1 Model

Group A is a left-wing party and Group B is a right-wing party. In every period t = 0, 1, 2, . . ., a

representative of the group in power is the leader (“player t”). A different representative is chosen

every period, and representatives do not know what happened in past periods (including which group

was in power– the dynamics of power holding are described below). Each group can either consist

entirely of moderates or entirely of extremists. The probability that a group consists entirely of

extremists is µ0 > 0. Both moderates and extremists are policy-motivated but they differ in what

political issues they find more important.

Every period, player t can take action on one of two issues: the “major issue”wt or the “partisan

issue” zt. Players’ideal actions on the partisan issue are fixed over time and commonly known. In

contrast, the period t state θt ∈ {−1, 1} is drawn independently every period, with probability 1
2 on

either state. Player t observes the period t state θt and has the option of attempting to communicate

this to player t + 1. If player t attempts communication (denoted st = 1), communication succeeds

(denoted s̃t = 1) with probability 1− π ∈ (0, 1), in which case player t+ 1 observes θt (and can infer

that communication was attempted), and communication fails (denoted s̃t = 0) with probability π, in

which case player t + 1 does not observe θt (and also does not observe whether communication was

attempted).

The timing is as follows: At the beginning of period t, the identity of the group in power and

its representative, player t, is determined. Player t then observes θt, and also observes θt−1 if player

t− 1 successfully communicated states. Player t then chooses which issue to “take action”on. Taking

action on the major issue means choosing a policy wt ∈ [−1, 1] for the major issue, while taking action

on the partisan issue means choosing a policy zt ∈ [−1, 1] for the partisan issue, and in either case it

is assumed that the period t policy on the issue on which action is not taken is set equal to the default

policy 0. Finally, player t decides whether to attempt to communicate θt to player t + 1. Note that

player t makes these decisions without knowing which group will be in power in period t+ 1.

Player t cares about policy on both issues in periods t and t+ 1. The difference between left-wing

players and right-wing players is that they have opposite preferences about the partisan issue: left-wing

players have bliss point zt = −1, and right-wing players have bliss point zt = 1. The difference between

moderates and extremists is that moderates think the major issue is more important than the partisan

issue, while extremists think the partisan issue is more important.27 Formally, the relative importance

27 In particular, all differences in the propensities of moderates and extremists to communicate are derived rather than
assumed.
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of the two issues is measured by a constant α ∈ (0, 1). Moderate player t of type η ∈ {−1,+1}, where
−1 corresponds to left-wing and +1 corresponds to right wing, has payoff

umη (wt, wt+1, zt, zt+1, θt, θt+1) = − |wt − θt−1| − |wt+1 − θt| − α |zt − η| − α |zt+1 − η| .

Extremist player t of type η has payoff

ueη (wt, wt+1, zt, zt+1, θt, θt+1) = −α |wt − θt−1| − α |wt+1 − θt| − |zt − η| − |zt+1 − η| .

These payoff functions make it clear that the only difference between moderates and extremists is in

the weights that they put on the major and the partisan issues, and the only difference between left

and right-wing players is in their bliss point for the partisan issue.

We now describe the dynamics of power holding. Which group holds power in the initial period

t = 0 is determined by the flip of a fair coin, and in every subsequent period t = 1, 2, . . . which group

holds power is determined by an election at the end of period t − 1. The potential voters are either

“independents”or are members of a group of organized supporters of the left or the right, referred to

henceforth as the left and right bases. A base has to pay some cost c > 0 in order to organize and

motivate their supporters to turn out for the election, and we assume (for now) that a base can only

do this if its own party is in power. Thus, the incumbent party’s base will turn out for the election if

the potential gain compensates for the cost of organization. We assume that the number of net votes

from independent voters for the incumbent party in each period is given by an independent draw from

some distribution G symmetric about 0; hence, without turnout from the bases, the incumbent party

wins the election with probability G (0) = 1
2 . The size of each base is k, so when the supporters of the

incumbent party turn out, that party wins with probability G (k) > 1
2 , and to simplify notation we

let 1 − ρ ≡ G (k). Note that turning out increases the probability that the incumbent party wins by

(1− ρ)− 1
2 = 1

2 − ρ. We assume that ρ <
1−α

4 , that c ∈
((

1
2 − ρ

)
(1 + α)µ0,

(
1
2 − ρ

)
(2α)

)
, and that

µ0 < µ∗POL ≡
4αρ+ 2 (1− α)

1 + α
,

where these assumptions serve only to focus attention on the most interesting region of parameter

space. We also assume that the incumbent’s base at time t consists of individuals who are in their

youth at time t, and have the same payoff functions as moderate politicians.

The last element of the model is the information of the base. We assume that the period t base

knows only whether its group is in power (but not whether it is moderate or extremist) and the

realization s̃t. The interpretation is that s̃t = 1 represents an “informative” message to the next

leader, while s̃t = 0 represents a “propaganda”message to the base (and the probability law for s̃t
reflects the fact that a message that is meant to be informative may be misinterpreted as propaganda).

We also continue to assume that all players observe calendar time.

5.2 Equilibrium

We now show that this model has a sequential equilibrium in which politicians behave much as in the

baseline model– where attempting communication is like the “honest”action, and sending propaganda
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is like the “cheating”action– and where the base turns out if and only if it receives propaganda, and

that the equilibrium is unique for generic parameter values (proof in the Appendix).28

Proposition 6 The political partisanship model has a sequential equilibrium with the following prop-

erty, and it is unique for generic parameter values:

There exists an integer TPOL > 0 such that

1. At every time t 6= 0 modTPOL, moderate player t plays (wt = θt−1, st = 1) if s̃t−1 = 1, and

otherwise plays (zt = −1, st = 0) (if left-wing) or (zt = 1, st = 0) (if right-wing).

2. At every time t = 0 modTPOL, moderate player t plays (wt = θt−1, st = 1) if s̃t−1 = 1 (or if

t = 0), and otherwise plays (zt = −1, st = 1) (if left-wing) or (zt = 1, st = 1) (if right-wing).

3. Extremist player t always plays (zt = −1, st = 0) if left-wing or (zt = 1, st = 0) if right-wing.

4. The base turns out if and only if it receives propaganda.

There are several differences between Proposition 6 and Proposition 1. First, the analogy between

sending informative messages and the “honest” action in the baseline model must be established.

A preliminary observation is that extremists always act on the partisan issue, because for them the

partisan issue is more important than the major issue. Moderates, on the other hand, act on the major

issue if and only if they receive information about the current state, since they cannot improve on the

default policy on the major issue unless they are informed of the current state. Now, given that the

base turns out if and only if it receives propaganda, the benefit of attempting communication is greater

when the opposing group is more likely to be moderate, while the cost of attempting communication

(i.e., the opportunity cost of not sending propaganda) does not depend on whether the opposing

group is moderate (as after propaganda the next leader always acts on the partisan issue, as she is not

informed of the state). Thus, sending informative messages is like the “honest”action in the baseline

model.

Second, the incentives of the base must be accounted for. This is straightforward, because when

the base hears propaganda it knows that it is in a partisan phase, so its belief about the opposing

group is irrelevant (as in a partisan phase moderates and extremists play the same way), and the

assumption that c <
(

1
2 − ρ

)
(2α) implies that the base turns out. When the base hears communica-

tion, it infers that the opposing group is extremist with at most the prior probability µ0 (i.e., hearing

communications is “good news” about the other group’s type), in which case the assumption that

c >
(

1
2 − ρ

)
(1 + α)µ0 implies that the base does not turn out.

Third, the probability of power changes is now endogenous and depends on the two groups’types,

so that now the fact that a particular group finds itself in power is informative of the other group’s type.

28 In general, sequential equilibrium is not well-defined in games with a continuum of actions. This is not a problem
here, because the probability distribution over player t’s information sets depends on player t−1’s strategy only through
the binary variable st−1. So one can define sequential equilibrium by supposing that players “tremble”only on st.
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This makes Bayesian updating somewhat subtle. Nonetheless, Lemma 2 in the Appendix shows that

moderate player t’s assessment of the probability that the opposing group is extremist, µt (conditional

on player t− 1 failing to communicate and player t’s group holding power in period t), behaves as in

the baseline model in the long run, and also that µ1 → 1 as π → 0 (which implies that TPOL > 1 for

small π, so that partisan cycles are not trivial).

5.3 Allowing Both Bases to Turn Out

We now dispense with the simplifying assumption that only the base of the incumbent party can

turn out. The rest of the model is as above, and in particular the out-of-power period t base cannot

receive propaganda from its party, so it cannot infer whether or not the period t leader successfully

communicates (unlike the in-power period t base). Therefore, the out-of-power period t base can

condition its turnout decision only on calendar time.

The following result shows that there are two possible consequences of letting the out-of-power

base turn out: either it never turns out in equilibrium, and in this case, the equilibrium is exactly as

in Proposition 6, or it turns out deterministically in the later periods of each cycle, in which case the

cycle length can also be different from TPOL.

Proposition 7 When the out-of-power base can turn out, one of the following two statements hold,

and each holds for some parameter values:

1. The out-of-power base never turns out in sequential equilibrium, and the (generically unique)

sequential equilibrium strategies for the politicians and the in-power base are exactly as in the

main partisanship model.

2. There exist integers T̂ < T̃ such that the (generically unique) sequential equilibrium strategies

for the politicians and the in-power base are as in the main partisanship model with cycle length

T̃ , and the out-of-power base turns out at time t if and only if t ≥ T̂ mod T̃ .

Proposition 7 shows that partisan cycles behave much as in the main partisanship model when both

bases can turn out. However, the corresponding turnout cycle now has an additional deterministic

component: in each cycle, the out-of-power base turns out deterministically after a certain cutoff time

T̂ . Thus, the overall turnout cycle is given by stochastic turnout of the in-power base coinciding with

the onset of the partisan phase, deterministic turnout by the out-of-power base in the latter part of

each cycle, and a deterministic drop in turnout at the end of each cycle.

The intuition for Proposition 7 is that the out-of-power base would like to turn out if and only if

the partisan cycle has begun. Since this is more likely later in each cycle, the out-of-power base turns

out deterministically after a certain cutoff time T̂ in each cycle. If the implied cutoff time is greater

than the cycle length T̃ , then the out-of-power base never turns out (in which case T̃ must equal the

cycle length in the main partisanship model, TPOL).
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6 Extensions

This section presents three extensions of the baseline model, each relaxing a simplifying assumption

made in the main analysis. The goal is to show that our main explanation of cycles of distrust– and

thus our analysis of the applications– is not overly sensitive to these assumptions. Section 6.1 allows

the bad action to generate the good signal, as well as the other way around. Section 6.2 replaces the

deterministic dependence on calendar time with stochastic cycles generated by additional information

about the previous player’s type. Section 6.3 allows players to observe the signals of actions taken

more than one period ago.

6.1 Two-Sided Errors

The analysis of the baseline model was simplified by the assumption that only the good action can

generate the good signal. This section shows that our main conclusions still apply when either action

can generate either signal.

In particular, assume now that the signal ỹt−1 is distributed as follows:

Pr (ỹt−1 = 1|yt−1 = 1) = 1− π

Pr (ỹt−1 = 1|yt−1 = 0) = π′,

where π, π′ ∈ (0, 1) and π + π′ < 1. We explain the role of the assumption that π + π′ < 1 below.

The analog of Assumption 2, which guarantees that normal player 0 plays y0 = 1, is the following:

Assumption 2′′ (1− π) (u (1, 1)− u (1, 0)) > π′ (u (0, 1)− u (0, 0)), and

µ0 < µ∗2−SIDED ≡ 1− u (0, 0)− u (1, 0)

(1− π) (u (1, 1)− u (1, 0))− π′ (u (0, 1)− u (0, 0))
.

As in the baseline model, Assumption 1 guarantees that normal player t > 0 plays xt = 1 if and

only if ỹt−1 = 1, so it remains only to determine when normal player t plays yt = 1. This depends on

her assessment of the probability that the other group is bad after observing ỹt−1; as usual, denote

her assessment of this probability after observing ỹt−1 = 0 by µt, and denote her assessment of this

probability after observing ỹt−1 = 1 (which equals 0 in the baseline model, due to one-sided errors)

by µ′t. To compute these probabilities, let

M =

(
1− π π′

π 1− π′
)

be the Markov transition matrix governing the evolution of ỹt in the event that both groups are

normal, under the hypothesis that normal players play yt = 1 if and only if ỹt−1 = 0. That is, if both

groups are normal and ỹt = 1, then ỹt+1 = 1 with probability 1−π, while if ỹt = 0 then ỹt+1 = 1 with

probability π′. Then, by Bayes rule,

µt =
µ0 (1− π′)

µ0 (1− π′) + (1− µ0)
(

1−M t
(1,1)

) ,
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where M t
(1,1) is the (1, 1) coordinate of the tth power of M . This is simply because the probability of

observing x̃t−1 = 0 conditional on the other group being bad equals 1 − π′, while the probability of
observing x̃t−1 = 0 conditional on the other group being good is 1−M t

(1,1). Similarly,

µ′t =
µ0π

′

µ0π
′ + (1− µ0)M t

(1,1)

.

We may now explain the role of the assumption that π + π′ < 1. It may be easily checked that

the eigenvalues of the matrix M are 1 and 1 − (π + π′). Hence, the assumption that π + π′ < 1

guarantees thatM t
(1,1) converges to its steady-state value of

π′

π+π′ monotonically in t, and in particular

that µt > µ′t for all t, so that observing ỹt = 1 is always “good news”about the other group’s type.

The genericity assumption is now:

Assumption 3′′ µt 6= µ∗2−SIDED for all t ∈ N.

In the baseline model, it was the case that µt → µ0 as t → ∞, so Assumption 2 guaranteed the
existence of a time T such that µT < µ∗. With two-sided errors, M t

(1,1) →
π′

π+π′ as t→∞, so µt → µ∞

as t→∞, where
µ∞ =

µ0 (1− π′)
µ0 (1− π′) + (1− µ0) π

π+π′
.

If µ∞ < µ∗2−SIDED, then Assumption 2
′′ guarantees the existence of a smallest time T2−SIDED such

that µT2−SIDED < µ∗2−SIDED, and there is a deterministic cycle with period T2−SIDED, as in the

baseline model. If on the other hand µ∞ ≥ µ∗2−SIDED, then there is no deterministic cycle, and in

particular a bad signal always leads to a snowball of bad actions that lasts until the next accidental

good signal.

Summarizing, we have the following result (proof in the Appendix):

Proposition 8 Under Assumptions 1, 2′′, and 3′′, the model with two-sided errors has a unique

sequential equilibrium. If µ∞ < µ∗, then the equilibrium has the following properties:

1. At every time t 6= 0 modT2−SIDED, normal player t plays the good actions (xt = 1, yt = 1) if she

gets the good signal ỹt−1 = 1, and plays the bad actions (xt = 0, yt = 0) if she gets the bad signal

ỹt−1 = 0.

2. At every time t = 0 modT2−SIDED, normal player t plays the good action xt = 1 toward player

t − 1 if and only if she gets the good signal ỹt−1 = 1, but plays the good action yt = 1 toward

player t+ 1 regardless of her signal.

3. Bad players always play bad actions (xt = 0, yt = 0).

If instead µ∞ ≥ µ∗, then the equilibrium has the following properties:
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1. At every time t > 0, normal player t plays the good actions (xt = 1, yt = 1) if she gets the good

signal ỹt−1 = 1, and plays the bad actions (xt = 0, yt = 0) if she gets the bad signal ỹt−1 = 0.

2. Normal player 0 plays the good action y0 = 1 toward player 1.

3. Bad players always play the bad actions (xt = 0, yt = 0).

6.2 Independence from Calendar Time

One highly stylized aspect of the baseline model is the strict dependence of behavior on calendar time.

In particular, the T th player plays the good action (toward the next player) regardless of her signal,

while the T − 1st player plays the good action only if she gets the good signal. This “discontinuous”

behavior is driven by the endogenously changing informativeness of the bad signal (or conflict) about

the other group’s type. In particular, the T th player, correctly, thinks observing conflict is suffi ciently

likely that it is uninformative, while it is slightly more informative for the T − 1st player; and this

difference is enough to cause them to behave differently in equilibrium. Thus, the different behavior

of the T th and T − 1st players is not driven by calendar time per se– after all, nobody directly cares

about calendar time– but rather by the informativeness of conflict.

This section clarifies this idea by assuming that with probability q ∈ (0, 1), independently of all

other random variables, player t is “crazy.”Thus, each group consists of either 1 − q normal players
and q crazy players, or 1− q bad players and q crazy players. Crazy players are more inclined to play
the bad actions xt = 0 and yt = 0 than normal players are; for simplicity, we just assume that they

always play (xt = 0, yt = 0) though this is not necessary. Crazy players also differ from both normal

and bad players in that their type is observable to the next player. That is, every player t observes

whether or not player t− 1 was crazy, in addition to observing x̃t−1.

The point of adding crazy players to the baseline model is that now if player t sees that player t−1

was crazy, then she becomes like player T in the baseline model in that for her conflict is uninformative

of the other group’s type. Therefore, normal players always cooperate when the previous player was

crazy. In addition, if there are enough crazy players, there are no longer deterministic restarts of trust,

because getting the bad signal from a non-crazy player is always a strong signal that the other group

is bad. In this case, whether or not players observe calendar time in the model becomes irrelevant,

but cycles of distrust emerge again for reasons similar to those in the baseline model.

To see this formally, first note that the analog of Assumption 2, which guarantees that normal

player 0 plays y0 = 1, is now:

Assumption 2′′′

µ0 < µ∗CRAZY ≡ 1− 1

(1− q) (1− π)

(
u (0, 0)− u (1, 0)

u (1, 1)− u (1, 0)

)
.

As usual, let µt be the probability that normal player t assigns to the other group being normal

after getting a bad signal from a non-crazy player, under the hypothesis that normal players play
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yt = 0 if and only if they get a bad signal from a non-crazy player. The following lemma characterizes

µt:

Lemma 1 We have

µt =
µ0

µ0 + (1− µ0)
(

(1−q)π
q+(1−q)π

) (
1− (1− q)t (1− π)t

) .
This is decreasing in t, and satisfies limt→∞ µt ≡ µ∞ < µ∗CRAZY if and only if

q < q∗ ≡ π (µ∗CRAZY − µ0)

π
(
µ∗CRAZY − µ0

)
+ µ0

(
1− µ∗CRAZY

) ,
which is a positive number under Assumption 2′′′.

The genericity assumption is now modified to:

Assumption 3′′′ µt 6= µ∗CRAZY for all t ∈ N.

We now describe the unique equilibrium. When both groups are normal, conflict phases always

begin with a misunderstanding and end with the arrival of a crazy player. Whether there is also a

deterministic component of conflict cycles (as there is in the baseline model) depends on whether q is

greater or less than q∗. If q < q∗, then eventually being in a conflict phase is weak enough evidence

that the other group is bad that normal players restart trust (i.e., µ∞ < µ∗CRAZY ), so there are

deterministic restarts. But if q > q∗, then being in a conflict cycle is always strong enough evidence

that the other group is bad that normal players do not restart (i.e., µ∞ > µ∗CRAZY ), so restarts are

purely stochastic.

Proposition 9 Under Assumptions 1, 2′′′, and 3′′′, the model with crazy types has a unique se-

quential equilibrium. If q < q∗, then the equilibrium has the following properties (where TCRAZY ≡
min {t : µt < µ∗CRAZY }):

1. At every time t 6= 0 modTCRAZY , normal player t plays the good actions (xt = 1, yt = 1) if she

gets the good signal ỹt−1 = 1, and plays the bad actions (xt = 0, yt = 0) if she gets the bad signal

ỹt−1 = 0.

2. At every time t = 0 modTCRAZY , normal player t plays the good action xt = 1 toward player

t − 1 if and only if she gets the good signal ỹt−1 = 1, but plays the good action yt = 1 toward

player t+ 1 regardless of her signal.

3. Bad players and crazy players always play the bad actions (xt = 0, yt = 0).

If q > q∗, then the equilibrium has the following properties:
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1. At every time t > 0, normal player t plays good actions (xt = 1, yt = 1) if she gets the good signal

ỹt−1 = 1, and plays the bad actions (xt = 0, yt = 0) if she gets the bad signal ỹt−1 = 0.

2. Normal player 0 plays the good action y0 = 1 toward player 1.

3. Bad players and crazy players always play the bad actions (xt = 0, yt = 0).

The proof is straightforward given Proposition 1 and Lemma 1: If q < q∗ then µ∞ < µ∗CRAZY ,

and hence µt < µ∗CRAZY for suffi ciently large t, so TCRAZY is well-defined. The result in this case is

analogous to Proposition 1. In contrast, if q > q∗ then µ∞ > µ∗CRAZY , and hence µt > µ∗CRAZY for

all t. So normal player t plays yt = 1 if and only if ỹt−1 = 1.

6.3 More Information About the Past

In the baseline model, players observe a signal of only the most recent action yt−1, and get no in-

formation about any earlier actions. Though this simple information structure allowed us explicitly

characterize equilibrium and show that it features “restarts”of trust every T periods, it is not nec-

essary for our main intuition for cycling. This section shows that when players observe the previous

K signals, for any integer K, there are still deterministic restarts of trust (though not necessarily

at regular intervals); in particular, we show that there are still infinitely many times t at which a

normal player plays the good action xt = 1 even if she observes K bad signals, and that this occurs

for essentially the same reason as in the baseline model.29

Formally, let us modify the baseline model by supposing that players observe the previous

K signals, for some fixed integer K. That is, before choosing her action, player t observes(
ỹt−K , ỹt−(K−1), . . . , ỹt−1

)
, where this vector is truncated at 0 if t < K. Player t’s utility function

is still given by u (xt, ỹt−1) + u (yt, xt+1), exactly as in the baseline model.

Proposition 10 Under Assumptions 1 and 2, in any sequential equilibrium of the model where players

observe the last K signals, there are infinitely many times t at which normal player t plays the good

action yt = 1 toward player t+ 1 with positive probability when she observes all bad signals (i.e., when

ỹt−k = 0 for all k ∈ {1, . . . ,K}).

Proposition 10 and its proof, which is presented in the Appendix, show that our main intuition for

cycling goes through when players observe any number of past signals, not just one. However, when

K > 1 cycling is no longer regular (i.e., there is no longer a restart of trust every T periods), and

explicitly characterizing equilibrium seems very challenging.30

29 In addition, the event that player t observes K bad signals always occurs with positive probability, in particular with
probability at least πK .
30The reason for this is as follows: the good action yt = 1 is a best response to a single good signal (i.e., ỹt−k = 1 for

some k ∈ {1, . . . ,K}). In turn, when a player observes all bad signals, she has to update her beliefs about the last time
a player restarted trust, which is an intractable updating problem.
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7 Related Theoretical Literature

Before concluding the paper, we take a moment to relate it, from a more theoretical perspective, to

several existing classes of models that provide explanations for cyclic behavior in dynamic games:

repeated games with imperfect public monitoring, stochastic games, reputation models of credibility,

reputation models with limited records, and dynamic games with overlapping generations of players.

In abstract terms, our baseline model is best described as a reputation model with limited records and

overlapping generations, and it is to our knowledge the first such model in the literature. A central

and distinguishing feature of our model is the dynamic path of actions driven deterministically and

uniquely by the endogenous information content of those actions.31 More specifically, the fact that

our key mechanism can lead to deterministic cycles– together with the uniqueness of equilibrium–

highlights that it is in essence very different from the existing literature (though we have shown in

Sections 4 and 6 that variants of our model can also generate patterns of behavior that are more

complicated and realistic than regular deterministic cycles).

Repeated games with imperfect public monitoring date back to Green and Porter (1984). In their

model, cyclic equilibrium behavior is due to moral hazard: bad signals lead to phases of bad actions,

and vice versa. Abreu, Pearce, and Stachetti (1988, 1990) show this behavior can in fact emerge in

optimal equilibria. Yared (2010) applies these insights to cycles of war and peace. These models differ

from ours in that they have no incomplete information about types, they do not feature deterministic

cycles, and they do not have equilibrium uniqueness.

Two branches of the stochastic games literature are particularly related. First, there are stochastic

games of perfect information in which behavior cycles with the state. A leading example is Dixit,

Grossman, and Gul’s (2000) model of political compromise, which extends Alesina (1988) to the case

of more than two states. See also Baron (1996), Battaglini and Coate (2008), and Acemoglu, Golosov,

and Tsyvinski (2010). Second, there are reputation games where players’ types follow a Markov

process (Mailath and Samuelson, 2001; Phelan, 2006; Wiseman, 2009; Ekmecki, Gossner, and Wilson,

2011). Letting players’types change in our model would only produce a second reason for cycling.

Typically, these models do not have deterministic cycles or equilibrium uniqueness.

Among reputation models, the literature on “credibility,”starting with Sobel (1985) and Benabou

and Laroque (1992), is particularly related. In these models, there is a deterministic or stochastic

cycle in which a long-run player builds her reputation by being trustworthy against a series of short-

run players, before cheating them and thus burning her reputation. As such, cycling is a short-run

phenomenon that ends when players’types are learned.

The recent literature on reputation with limited records (Liu and Skrzypacz, 2011; Liu, 2011;

Monte, 2011) is closely related to our paper. Most closely related is Liu and Skrzypacz (2011),

where a long-run player facing a series of short-run player with limited records repeatedly builds her

31A notable partial exception here is Pesendorfer’s (1995) model of fashion cycles. In his model, a durable-goods
monopolist faces a population of consumers who signal their types by purchasing the good, and the logic of cycles is
entirely different.
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reputation up to a point and then exploits it. These models do not have deterministic cycles and the

mechanism for cycles is completely different.

Finally, our paper is related to the small literature on dynamic games with overlapping generations

of players. The folk theorem often fails in these models– and indeed the overlapping generations

aspect of our model is important for equilibrium uniqueness. The first anti-folk theorem in this

literature is derived by Lagunoffand Matsui (1997), who show uniqueness in an overlapping generations

coordination game. Bhaskar (1998) presents additional anti-folk theorems in a consumption-loan

model. Lagunoff and Matsui (2004) develop a model where two groups interact over time, with a new

representative of each group drawn every period and communication between generations, as in our

model. In their model, the groups play a prisoner’s dilemma (while they play a coordination game

in our model), and there is no incomplete information in their model (while incomplete information

and learning about the other group’s type is key in our model). They show that “all defect” is the

only equilibrium, but that a folk theorem holds if communication costs or altruism within groups is

introduced. Anderlini, Gerardi, and Lagunoff (2010) present a model of war related to Lagunoff and

Matsui (2004), and show that there can be equilibrium cycles of war that hold each group below what

its minmax payoff would be if it were a single decision-maker. Finally, Acemoglu and Jackson (2011)

study a coordination game with overlapping generations and imperfect monitoring, where social norms

change over time and “prominent”players can try to shift the social norm to a good static equilibrium.

Their model does not have incomplete information about player types or deterministic cycles.

8 Conclusion

This paper has proposed a model of cycles of distrust and inter-group conflict based on the classical

idea that conflict often results from distrust of the other side. In a dynamic context, a real or perceived

aggression from one group makes it appear as innately aggressive to the other side, which in response

acts more aggressively itself. When the first group cannot be sure whether this new aggression is

a response to its own action or is due to the other side’s actually being aggressive, a snowball of

aggression and conflict forms. But– as our model shows– such a snowball cannot last forever, because

it eventually becomes almost certain that a conflict snowball will have gotten started accidentally, at

which point aggressive actions become completely uninformative of the other group’s type. At such a

time, a group experiments with the trusting action, and cooperation is restored.

We have also argued that this mechanism is robust and can be useful in understanding a range

of situations in which there are (endogenous) cycles of distrust. First, the presence of a first-mover

advantage in violent conflict makes our approach relevant to cycles of Hobbesian ethnic conflict or

international war. Second, a similar mechanism emerges in a simple model of production and trade

and can account for cycles of trade and its breakdown. Third, we study cycles of miscommunication

in a model where moderates would like to communicate with moderates from the other group, and

show that the fear that the other side consists of extremists may lead to cycles of communication
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and communication breakdown. Finally, we show that similar forces can lead to cycles of political

partisanship in a dynamic model of policy choice and voter turnout.

Though our basic mechanism is simple, it is both different from existing explanations for cyclic

behavior in dynamic games and, we believe, potentially relevant for understanding why seemingly

unending conflicts end, and why cooperation and communication often follow periods of distrust.

Our model points to several possible areas for future research. On the theoretical side, it would be

interesting to study the more complicated reputational incentives that would emerge if players lived

for more than one period, and also to consider different ways in which players might learn about

the history of conflict and cooperation between the groups (though we make some progress in this

direction in Section 6). Finally, empirical analysis is needed to determine whether the mechanism

we highlight– agents concluding that long-lasting conflicts are no longer informative about the true

intentions of the other party– can indeed account for cycles of distrust, conflict, polarization, and

communication breakdown in practice.
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Appendix

Proof of Proposition 3. Rearranging the definition of T , one can check that T is the least integer

greater than log
(

µ∗−µ0
µ∗(1−µ0)

)
/ log (1− π), i.e.,

T =


log
(

µ∗−µ0
µ∗(1−µ0)

)
log (1− π)

 . (1)

This of course implies that (1− π)T ≤ µ∗−µ0
µ∗(1−µ0) ≤ (1− π)T−1. Note also that µ∗ depends on π, but

that limπ→0 µ
∗ = u(1,1)−u(0,0)

u(1,1)−u(1,0) ≥ µ0. Now, by Proposition 1, expected (limit-of-means) social welfare

equals expected average social welfare within each T -period block. Consider for example the first

block, consisting of periods 1 to T − 1. Continuing to let ut be player t’s payoff, and assuming that

both groups are normal, this equals

1

T

[
E [u0 + uT−1]

+
∑T−2

t=1

[(
1− (1− π)t

)
2u (0, 0) + (1− π)t π (u (1, 1) + u (1, 0)) + (1− π)t+1 2u (1, 1)

] ] .
We are interested in evaluating this expression as π → 0, which also implies (from (1)) T →∞. Thus,
the expression of interest is

lim
π→0

1

T

 E [u0 + uT−1] +
(
T − 1− 1−(1−π)T−1

π

)
2u (0, 0)

+
(

1− (1− π)T−1
)

(u (1, 1) + u (1, 0)) +
(

1−(1−π)T

π

)
2u (1, 1)



= lim
π→0

1

T


E [u0 + uT−1] + (T − 1) 2u (0, 0)

+
(

1− (1− π)T−1
)

(u (1, 1) + u (1, 0)) + 2
(

1−(1−π)T

π

)
(u (1, 1)− u (0, 0))

+2
((

1−(1−π)T−1

π

)
−
(

1−(1−π)T

π

))
u (0, 0) .


= 2u (0, 0) + 2 lim

π→0

1

T

(
1− (1− π)T

π

)
(u (1, 1)− u (0, 0)) ,

where the second equality follows by state rearrangement, and the third one simply from canceling the

terms that go to zero and nothing that (T − 1) /T → 1 as T → ∞. The first part of the proposition
then follows by observing that

lim
π→0

1

T

(
1− (1− π)T

π

)
= lim

π→0

1− µ∗−µ0
µ∗(1−µ0)

Tπ

 = lim
π→0

 1− µ∗−µ0
µ∗(1−µ0)

T log (1− π)


= lim

π→0

 1− µ∗−µ0
µ∗(1−µ0)

− log
(

µ∗−µ0
µ∗(1−µ0)

)
 < 1,

where the inequality holds for all µ0 > 0. Finally, proof of the second part of the proposition is

completed by observing that the limit of expected social welfare as n→∞ equals

2u (0, 0) + 2 lim
n→∞

1

T

(
1− (1− πn)T

πn

)
(u (1, 1)− u (0, 0)) ,
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and that

lim
n→∞

1

T

(
1− (1− πn)T

πn

)
= lim

n→∞

1− µ∗−µ0,n
µ∗(1−µ0,n)

Tπn

 = lim
n→∞

1− µ∗−µ0,n
µ∗(1−µ0,n)

T log (1− πn)



= lim
n→∞

 1− µ∗−µ0,n
µ∗(1−µ0,n)

− log

(
µ∗−µ0,n

µ∗(1−µ0,n)

)
 = 1,

where the final equality uses µ0,n → 0.

Proof of Proposition 4. First, note that in any trembling-hand perfect equilibrium (henceforth,

“equilibrium”) a player (good or bad) approves trade if and only if her opponent’s fruit is good. This

follows because trade strictly increases a player’s payoff if her opponent’s fruit is good and strictly

decreases a player’s payoff if her opponent’s fruit is bad– regardless of the quality of her own fruit–

and perfection requires that a player’s approval decision is a best response to a completely mixed

strategy of her opponent’s.32

Second, note that in any equilibrium normal player t plays xt = 1 if and only if ỹt−1 = 1. To see

this, note that her expected payoff in market t when she produces a good fruit and her opponent’s

fruit is good equals

(1− π) b− c.

Her expected payoff in market t when she produces a bad fruit is 0. In addition, her expected payoff in

market t+1 does not depend on her choice of xt, (because player t+1’s strategy cannot depend on the

outcome of market t, and player t− 1’s trade approval decision cannot give player t any information

about the other group’s type since a player’s trade approval decision is independent of her type).

Finally, Assumption 2′ implies that µ∗TRADE > 0, which in turn implies that (1− π) b − c > 0. So

Assumption 2′ implies that normal player t plays xt = 1 if and only if ỹt−1 = 1.

It remains only to determine when normal player t plays yt = 1. We proceed by induction on t.

Suppose that play in every equilibrium is as specified by the proposition for all t′ ≤ t < T , t ∈ N.
Then at time t+ 1

3 , normal player t’s assessment of the probability that the other group is good is 1

if ỹt−1 = 1 and is µt if ỹt−1 = 0 (and is µ0 if t = 0). Then normal player t’s expected payoff in market

t+ 1 when she produces a good fruit and her assessment is µ equals

(1− µ)
[
(1− π)2 b+ π (1− π) d

]
+ µ (1− π) d− c,

while her expected payoff in market t+1 when she produces a bad fruit equals 0. Hence, she produces

a good fruit if µ < µ∗TRADE and produces a bad fruit if µ > µ∗TRADE . Since µt > µ∗TRADE by definition

of T , it follows that she plays yt = 1 if and only if ỹt−1 = 1. This proves that play in every equilibrium

is as specified by the proposition for all t < T .
32Note that this argument relies on the presence of the transaction cost. It is the only place where the transaction

cost is used.
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The same argument now implies that, as specified in the proposition, normal player T’s assessment

is below µ∗TRADE regardless of ỹT−1 (strictly so, by Assumption 3′). This implies that she always

plays yT = 1. Repeating the argument from the previous paragraph now implies that play in every

equilibrium is as in the proposition for all t ∈ {T + 1, . . . , 2T}, and inducting on k ∈ N then implies
that play is as in the proposition for all t ∈ {kT + 1, . . . , (k + 1)T} for any k ∈ N, completing the
proof.

Proof of Proposition 5. We first establish the existence of an equilibrium of this form, and then

show that it is unique.

Let γt denote the probability that player t does not moderate her signal (i.e., sends st = θt for

all θt) when both players are normal and follow the strategies described in the proposition; this is

the same as the probability that s̃t−1 equals player t − 1’s own-extreme signal. We calculate player

t’s posterior belief about (1) the state, and (2) her opponent’s type, in terms of γt, conditional on

the received signal. For these calculations, suppose that the receiver is right-wing– the other case is

symmetric.

Posteriors about the state are as follows:

After signal s̃ = −1:

Pr (θ = −1) =
(1− π) (µ0 + ν0 + (1− µ0 − ν0) γt) + π

3

(1− π) (3µ0 + ν0 + (1− µ0 − ν0) γt) + π

Pr (θ = 0) =
(1− π)µ0 + π

3

(1− π) (3µ0 + ν0 + (1− µ0 − ν0) γt) + π

Pr (θ = 1) =
(1− π)µ0 + π

3

(1− π) (3µ0 + ν0 + (1− µ0 − ν0) γt) + π
.

This follows from Bayes rule by noting that the probabilities of the following joint events are:

Pr (θ = −1, s̃ = −1, extreme) = Pr (θ = 0, s̃ = −1, extreme) = Pr (θ = 1, s̃ = −1, extreme) =
(1− π)µ0

3
+
π

9

Pr (θ = −1, s̃ = −1, naif) =
(1− π) ν0

3
+
π

9

Pr (θ = −1, s̃ = −1, normal) =
(1− π) (1− ν0 − µ0)γt

3
+
π

9

Pr (θ = 0, s̃ = −1, extreme) =
(1− π)µ0

3
+
π

9

Pr (θ = 0, s̃ = −1, naif) = Pr (θ = 1, s̃ = −1, naif) = Pr (θ = 0, s̃ = −1, normal) = Pr (θ = 1, s̃ = −1, normal) =
π

9
.

After signal s̃ = 0:

Pr (θ = −1) =
(1− π) (1− µ0 − ν0) (1− γt) + π

3

(1− π) (ν0 + (1− µ0 − ν0) (2− γt)) + π

Pr (θ = 0) =
(1− π) (1− µ0) + π

3

(1− π) (ν0 + (1− µ0 − ν0) (2− γt)) + π

Pr (θ = 1) =
π
3

(1− π) (ν0 + (1− µ0 − ν0) (2− γt)) + π
.
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After signal s̃ = 1:

Pr (θ = −1) =
π
3

(1− π) (1− µ0) + π

Pr (θ = 0) =
π
3

(1− π) (1− µ0) + π

Pr (θ = 1) =
(1− π) (1− µ0) + π

3

(1− π) (1− µ0) + π
.

For the prescribed strategies to be an equilibrium it is required that, for all t, the receiver plays a = 1

after s̃ = −1, plays a = 0 after s̃ = 0, and plays a = −1 after s̃ = 1. The first and third of these

conditions are implied by Part 1 of Assumption COM (noting that after s̃ = −1, playing a = 1 is less

appealing when γt is higher, and Part 1 of Assumption COM implies that playing a = 1 is optimal

for γt = 1). The second of these conditions is implied by Part 2 of Assumption COM (as this implies

that the condition holds for γt = 0 and γt = 1, and preferences are single-crossing in (a, θ)).

Posteriors about the opponent’s type (again assuming a right-wing receiver and again using the

above expressions) are as follows:

After signal s̃ = −1:

Pr (extreme) = µt =
µ0 (3− 2π)

(1− π) (3µ0 + ν0 + (1− µ0 − ν0) γt) + π

Pr (naive) = νt =
ν0

(1− π) (3µ0 + ν0 + (1− µ0 − ν0) γt) + π

Pr (normal) = 1− µt − νt =
(1− µ0 − ν0) ((1− π) γt + π)

(1− π) (3µ0 + ν0 + (1− µ0 − ν0) γt) + π
.

After signal s̃ = 0:

Pr (extreme) = µt =
µ0π

(1− π) (ν0 + (1− µ0 − ν0) (2− γt)) + π

Pr (naive) = νt =
ν0

(1− π) (ν0 + (1− µ0 − ν0) (2− γt)) + π

Pr (normal) = 1− µt − νt =
(1− µ0 − ν0) ((1− π) (2− γt) + π)

(1− π) (ν0 + (1− µ0 − ν0) (2− γt)) + π
.

After signal s̃ = 1:

Pr (extreme) = µt =
µ0π

(1− π) (1− µ0) + π

Pr (naive) = νt =
ν0

(1− π) (1− µ0) + π

Pr (normal) = 1− µt − νt =
1− µ0 − ν0

(1− π) (1− µ0) + π
.

Here, we need that it is always optimal for the receiver to moderate his signal in the next period (i.e.,

send 0 when θ = 1) after s̃ = −1 and s̃ = 1, but not after s̃ = 0. It is easy to see that when she does
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so following s̃ = −1, she will also do it a fortiori following s̃ = 1. Now it is optimal for a sender with

beliefs µt and νt to moderate her signal if and only if

(1− νt)uL (1,−1) + νtuL (−1,−1) < (1− µt)uL (0,−1) + µtuL (1,−1) ,

or

µt +

(
uL (−1,−1)− uL (1,−1)

uL (0,−1)− uL (1,−1)

)
νt < 1.

So we need to show that, for any γt ∈ [0, 1], this inequality holds whenever µt and νt result from signal

s̃ = 0, while the opposite inequality holds whenever µt and νt result from signal s̃ = −1.33 A bit of

algebra shows that Part 3 of Assumption COM is a suffi cient condition for this to be the case.

The existence of an equilibrium of the specified form follows by noting that st = θt is optimal when

θt is not one’s own-extreme state (and this is in fact true regardless of the receiver’s type).

The proof of uniqueness of the message-monotone sequential equilibrium (henceforth “equilib-

rium”) proceeds in five steps. Let us continue to assume a right-wing receiver.

Step 1: In any equilibrium, moderate receivers play a = 1 after signal s̃ = −1.

Since preferences satisfy single-crossing in (a, θ), it suffi ces to check that a moderate receiver plays

a = 1 after signal s̃ = −1 when moderate senders send s = −1 after θ = −1 and θ = 0, but not after

θ = 1. This condition is exactly Part 1 of Assumption COM.34

Step 2: In any equilibrium, moderate receivers play a = 1 after signal s̃ = 1.

By message-monotonicity, the posterior distribution after signal s̃ = 1 is weakly higher (in the

sense of first-order stochastic dominance) than it would be if all senders sent signal s = 1 for all θ.

Part 1 of Assumption COM then implies that a moderate receiver plays a = 1 in that case, so the

claim follows from single-crossing.

Step 3: In any equilibrium, moderate senders send s = 1 when θ = 1.

This follows from Step 2, as sending s = 1 is then optimal against every type of receiver, and

strictly optimal against naive and moderate receivers.

Step 4: In any equilibrium, moderate receivers play a = 0 after signal s̃ = 0, and moderate senders

send s = 0 when θ = 0.

First, suppose moderate receivers play a = 1 with probability 1 after s̃ = 0. Then moderate

senders would send s = 0 when θ = 0 (as the moderate and extreme receivers would be playing a = 1

always, so moderate senders would target the naive receivers). But then Part 2 of Assumption COM

would imply that moderate receivers should play a = 0 after s̃ = 0, yielding a contraction.

Therefore, a moderate receiver must play either a = −1 or a = 0 with positive probability after

s̃ = 0. This implies that moderate senders send s = 0 when θ = 0, as this is clearly optimal against

naive and extreme receivers, and it is also strictly optimal against moderate receivers by Part 4 of

Assumption COM. Hence, Part 2 of Assumption COM ensures that regardless of what moderate

33This is actually stronger than necessary, because γt does not take on all values in [0, 1].
34This is in fact the reason why Part 1 of Assumption COM is a stronger condition than is needed for existence.
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senders do when θ = −1, it is strictly optimal for moderate receivers to play a = 0 after s̃ = 0. Thus

moderate receivers must play a = 0 with probability 1 after s̃ = 0.

Step 5: In any equilibrium, moderate senders send s = 0 when θ = −1 if µt +(
uL(−1,−1)−uL(1,−1)
uL(0,−1)−uL(1,−1)

)
νt < 1, and send s = −1 when θ = −1 if the opposite inequality holds.

This follows from the characterization of the moderate receiver’s strategy, single-crossing (which

implies that sending s = 0 is always preferable to sending s = 1), and the derivation of this inequality

in the existence part of the proof.

Before presenting the proof of Proposition 6, we state and prove the following lemma:

Lemma 2 In the political partisanship model, let µt be moderate player t’s assessment of the prob-

ability that the opposing group is extremist, conditional on player t − 1 failing to communicate and

player t’s group holding power in period t. Then limt→∞ µt = µ0, and limπ→0 µ1 = 1.

Proof. We work up to computing µt by first computing three other probabilities, which will be

denoted by χt, φt, and ψt. Let χt be the probability that whichever group is in power today is also

in power t periods from now, when the probability that power switches each period is ρ. Note that

this event is equivalent to power switching an even number of times out of t chances. Thus, it is

straightforward to check that

χt =

t
2∑

k=0

(
t

2k

)
ρ2k (1− ρ)t−2k if t is even,

χt =

t−1
2∑

k=0

(
t

2k

)
ρ2k (1− ρ)t−2k if t is odd.

In addition, it can easily be shown that if ρ = 1
2 (contrary to our assumptions) then χt = 1

2 .

Next, let φt be the probability that the left-wing group (say) is in power in period t and does

not observe communication, conditional on the event that the left-wing group is moderate and the

right-wing group is extremist. By Bayes rule,

φt =
1

2

[(
1

2

)t
(1− π)t−1 π +

t−1∑
m=1

(
1

2

)m−1

(1− π)m−1

(
1

2

(
1− χt−m

)
+

1

2
πχt−m

)]
+

1

2
(1− χt) .

This expression requires some explanation. The first term corresponds to the event that the left-wing

group is in power in period 0. This event is then divided into the events that the first time m at

which a player sets sm = 0 is m = 1, . . . , t. Conditional on the left-wing group holding power in

period 0, the probability that m = t, the left-wing group holds power in period t, and player t−1 does

not successfully communicate is
(

1
2

)t
(1− π)t−1 π. And for any m < t, conditional on the left-wing

group holding power in period 0, the probability that the first time at which a player sets s = 0 is

m, the left-wing group holds power in period t, and player t − 1 does not successfully communicate

is
(

1
2

)m−1
(1− π)m−1 (1

2

(
1− χt−m

)
+ 1

2πχt−m
)
, as after m− 1 periods of the left-wing group holding
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power and setting s = 1, there is probability 1
2 that the (extremist) right-wing group takes power, and

probability 1
2π that the left-wing group retains power but starts setting s = 0 (and in either event all

subsequent power switches occur with probability ρ). Finally, the 1
2 (1− χt) term corresponds to the

possibility that the right-wing group is in power in period 0.

Finally, let ψt be the probability that the left-wing group is in power in period t and does not

observe communication, conditional on the event that the left-wing group is moderate and the right-

wing group is moderate. By Bayes rule,

ψt =
1

2
(1− π)t−1 π +

t−1∑
m=1

(1− π)m−1 π

(
1

2

(
1− χt−m

)
+

1

2
χt−m

)
.

This formula is similar but somewhat simpler than the formula for φt. The first term corresponds to

the event that there are t− 1 successfully communications. For each term in the sum, the probability

that the first time at which a player sets s = 0 is m, the left-wing group holds power in period t, and

player t−1 does not successfully communicate is (1− π)m−1 π
(

1
2

(
1− χt−m

)
+ 1

2χt−m
)
, as after m−1

periods of successful communication and a single failed communication, the posterior probability that

either group holds power is 1
2 , and both groups subsequently set s = 0 (so subsequent power switches

occur with probability ρ).

The assessment of moderate player t of the probability that the opposing group is extremist,

conditional on player t−1 not successfully communicating (and conditional on player t’s group holding

power in period t) is now simply

µt =
µ0φt

µ0φt + (1− µ0)ψt
=

µ0

µ0 + (1− µ0) ψtφt

.

Now note that limt→∞ χt = 1
2 , so the sum in the formula for φt converges to∑∞

m=0

(
1
2

)m
(1− π)m

(
1
2 −

1
2π
)

= 1, and hence φt → 1
2

[
0 + 1

2

]
+ 1

2

(
1
2

)
= 1

2 . Similarly, the sum in

the formula for ψt converges to
∑∞

m=0 (1− π)m π
(

1
2

)
= 1

2 , and therefore ψt → 0 + 1
2 = 1

2 . Therefore,

limt→∞ µt = µ0. In addition, it is easy to verify that

ψ1

φ1

=
π

1
2π + ρ

,

which goes to 0 as π → 0, so µ1 → 1 as π → 0.

Proof of Proposition 6. Fix a time t < TPOL, where TPOL is to be computed. We first derive the

turnout decisions of the supporters of the incumbent party. When they see communication about θ,

they infer that their own party is moderate, so their net benefit from turning out is(
1

2
− ρ
)
µ (1 + α) ,

where the first term is the change in probability of the same party keeping power because of the

greater turnout, the second term, µ, is the belief after receiving informative communication that the
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other side is an extremist, and the last term is the net gain from having their own party rather than

an extremist opposing party in power, taking into account that moderates on both sides will choose

the right policy on the major issue. Under the hypothesized behavior of politicians, µ is determined

by Bayes rule and satisfies µ ≤ µ0. Intuitively, this is because both the information that the period t

base’s party is in power and the information that the period t leader successfully communicates suggest

that the opposing party is more likely to be moderate. To see this formally, note that if the opposing

party is extremist, then the only way that the period t base’s party holds power in period t and the

period t leader successfully communicates is if the period t base’s party holds power and successfully

communicates in periods 0, . . . , t, which occurs with probability
(

1
2

)t+1
(1− π)t+1. In addition, if the

opposing party is moderate, then the only way that the period t base’s party holds power in period t

and the period t leader successfully communicates is if there is successfully communication in periods

0, . . . , t (which occurs with probability (1− π)t+1), and the period t base’s party holds power in period

t (which, conditional on the opposing party being moderate and there being successful communication

in periods 0, . . . , t, occurs with probability 1
2). Thus,

µ =
µ0

(
1
2

)t+1
(1− π)t+1

µ0

(
1
2

)t+1
(1− π)t+1 + (1− µ0)

(
1
2

)
(1− π)t+1

≤ µ0.

Finally, the fact that µ ≤ µ0 combined with the assumption that c >
(

1
2 − ρ

)
(1 + α)µ0 implies that

c >
(

1
2 − ρ

)
(1 + α)µ, so the incumbent’s base never turns out following successful communication.

Next consider the behavior of the incumbent’s base following propaganda. Since every politician

acts on the partisan issue following propaganda, the net benefit from turning out in this case can be

written as

2α

(
1

2
− ρ
)
.

The assumption that c < 2α
(

1
2 − ρ

)
now implies that the incumbent’s base always turns out following

propaganda.

We now turn to moderate politicians’incentives. First, consider the payoff from playing st = 0.

Given the above assumptions, this ensures turnout but will also cause the next leader to act on that

partisan issue. When the belief that the other side is extremist is µ, this has payoff

− (1− ρ) (1)− ρ (1 + 2α) .

On the other hand, playing st = 1 yields payoff

π [− (1− ρ) (1)− ρ (1 + 2α)] + (1− π)

[
−1

2
(α)− 1

2
(µ (1 + 2α) + (1− µ) (α))

]
.

The difference between these two payoffs is given by

(1− π)

[
2αρ+ (1− α)− 1

2
(1 + α)µ

]
,
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which is positive for

µ < µ∗POL =
4αρ+ 2 (1− α)

1 + α
,

and negative for µ above this threshold. Thus, moderate politicians attempt communication if and

only if µ < µ∗POL (which is always a positive number).

In contrast, the payoff to an extremist incumbent from setting st = 0 equals

− (1− ρ) (α)− ρ (α+ 2) ,

while the payoff to an extremist incumbent from setting st = 1 equals

π [− (1− ρ) (α)− ρ (α+ 2)] + (1− π)

[
−1

2
(α)− 1

2
(µ (α+ 2) + (1− µ) (1))

]
.

The difference between these payoffs equals

(1− π)

[
2ρ− 1

2
(1− α)− 1

2
(1 + α)µ

]
,

which is positive for

µ <
4ρ− (1− α)

1 + α
.

However, the assumption that ρ < 1−α
4 implies that 4ρ−(1−α)

1+α < 0. Thus, extremist politicians never

attempt communication.

Now to compute TPOL, note that Lemma 2 and the assumption that µ0 < µ∗POL imply that there

exists a smallest integer t such that µt ≤ µ∗POL. Denoting this integer by TPOL and following the same
argument as in the baseline model now implies that the conjectured strategy profile (and beliefs) is a

sequential equilibrium, with cycle length TPOL.35

Finally, this sequential equilibrium is unique– up to indifference at non-generic parameter values–

by the same argument as in the baseline model, with the addition that the beliefs and strategies of

the base are also uniquely determined by induction on t. In particular, the t = 0 base does not turn

out after observing communication (as its assessment that the opposing party is extreme must be µ0,

regardless of whether or not it observes communication, in any sequential equilibrium), and the t = 0

base does turn out after observing propaganda (regardless of its assessment that the opposing party

is extreme). The rest of the induction argument proceeds exactly as in the baseline model (or as in

the proof of Proposition 4, where more details are provided).

Proof of Proposition 7. Suppose that t < T̃ , where T̃ is the cycle length when both bases can

turn out, which remains to be computed. When the out-of-power base turns out, it increases the

probability that its party holds power in period t + 1 by 1
2 − ρ (note that this is true even if the

in-power base also turns out, as in that case turning out increases the probability of a power switch

from G (−k) = ρ to 1
2). If player t successfully communicated and both parties are moderate, then the

35 In addition, the fact that limπ→0 µ1 = 1 implies that T > 1 when π is suffi ciently small.
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benefit to the out-of-power base of having its own party in power in period t+ 1 (compared to having

the other party in power) is 0. If player t successfully communicated and only the opposing party

is moderate, then this benefit is −1 + α (so that in this case the out-of-power base would rather its

party lose the election). If player t did not successfully communicate, then the benefit is 2α. Finally,

the event that player t successfully communicated and only the out-of-power party is moderate occurs

with probability 0. We now claim that the net benefit to the out-of-power period t base of turning

out (for t < T̃ ) is

NBt =

(
1

2
− ρ
)[

(1− µ0)2 (1− π)t (0) + µ0 (1− µ0)
(

1
2

)t
(1− π)t (−1 + α)

+
(

1− (1− µ0)2 (1− π)t − µ0 (1− µ0)
(

1
2

)t
(1− π)t

)
(2α)

]
.

To see this, note that the probability that player t successfully communicated and both parties are

moderate, conditional on the out-of-power base’s party being out of power, is (1− µ0)2 (1− π)t;

the probability that player t successfully communicated and only the opposing party is moder-

ate, conditional on the out-of-power base’s party being out of power, is µ0 (1− µ0)
(

1
2

)t
(1− π)t;

and, since the probability that player t successfully communicated and only the out-of-power

base’s party is moderate is 0, the probability that player t did not successfully communicate is

1− (1− µ0)2 (1− π)t − µ0 (1− µ0)
(

1
2

)t
(1− π)t.

Note that NBt is increasing in t, and that limt→∞NBt =
(

1
2 − ρ

)
(2α). Hence, the assumption

that c <
(

1
2 − ρ

)
(2α) implies that there is some time T̂ such that the out-of-power base turns out

if and only if T̂ < T̃ and t ≥ T̂ mod T̃ . Now observe that if T̂ ≥ TPOL (defined in the proof of

Proposition 6), then µt is as in Proposition 6, which implies that T̃ = TPOL and the out-of-power base

never turns out. If instead T̂ < TPOL then the computation of µt in the proof of Proposition 6 must

be modified to take into account that the probability of a power switch changes deterministically at

time T̂ (from 1
2 to 1− ρ if the in-power base does not turn out, and from ρ to 1

2 if the in-power base

does turn out). Without explicitly calculating T̃ in this case, it is easy to see that if T̂ < TPOL then

also T̂ < T̃ , as if T̂ ≥ T̃ then the formula for T̃ would be the same as for T , contradicting T̂ < TPOL.

Thus, if T̂ < TPOL, then there is a deterministic time T̃ > T̂ such that partisan phases always begin

with probability π and end deterministically at times t = 0 mod T̃ , the in-power base turns out only

during partisan phases, and the out-of-power base turns out for the last T̃ − T̂ periods of every T̃

period cycle (regardless of whether the partisan phase has begun or not).

Proof of Proposition 8. Since player t + 1 plays xt+1 = 1 if and only if he is normal and

ỹt = 1, it follows that (normal) player t plays yt = 1 if and only if his belief that the other group is

bad is below the cutoff µ∗2−SIDED. Now one can compute that M
t
(1,1) = π′+π(1−π−π′)t

π+π′ (for example,

by adopting the proof of Lemma 1). In particular, M t
(1,1) > π′ for all t, and hence µ′t < µ0 for all t.

Therefore, Assumption 2′′ implies that player t always plays yt = 1 after seeing signal ỹt−1 = 1. Finally,

µt > µ∗2−SIDED for all t < T2−SIDED (with the convention that T2−SIDED =∞ if µ∞ ≥ µ∗2−SIDED),

by definition of T2−SIDED, so player t plays yt = 0 after seeing ỹt−1 = 1, for all t < T2−SIDED. That

player t plays yt = 0 after seeing ỹt−1 = 1 for all t 6= 0 modT2−SIDED can now be established by
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induction, as in the baseline model.

Proof of Lemma 1. Suppose that normal players choose yt = 1 if and only if ỹt−1 = 1 or player

t− 1 is crazy. Now if both groups are normal, then non-crazy player t plays yt = 0 if and only if the

most recent “misheard signal”(i.e., time t′ such that yt′ = 1 but ỹt′ = 0) came after the most recent

arrival of a crazy player. Then denote the probability of this happening in period t by γt. Then one

can check that

γt0 =

(
t0−1∑
t=0

(1− q)t q
(
1− (1− π)t

))
+ (1− q)t0

(
1− (1− π)t0

)
,

where the firm term sums over times at which the most recent arrival of a crazy player could have

occurred, and the second term accounts for the possibility that there might not have been any crazy

players by time t0. Summing the geometric series yields

γt =

(
(1− q)π

q + (1− q)π

)(
1− (1− q)t (1− π)t

)
. (2)

Now, by Bayes rule,

µt =
µ0

µ0 + (1− µ0) γt
.

Note that µt is decreasing in t because γt is increasing in t. Moreover, from (2),

µ∞ =
µ0 (q + (1− q)π)

µ0q + (1− q)π .

Therefore, µ∞ < µ∗STO if and only if

q < q∗ ≡ π (µ∗STO − µ0)

π
(
µ∗STO − µ0

)
+ µ0

(
1− µ∗STO

) ,
which is a positive number under Assumption 2′′′.

Proof of Proposition 10. Suppose not. Then there exists a time T̄ such that at all times t ≥ T̄

normal player t plays yt = 0 after observing all bad signals. Suppose that both groups are normal,

and observe that the probability that player T̄ + K observes all bad signals is at least πK . In this

event, all subsequent players play yt = 0 and thus observe all bad signals. In the alternative event

that player T̄ +K observes at least one good signal, the probability that player T̄ + 2K observes all

bad signals is still at least πK . Hence, the overall probability that player T̄ + 2K observes all bad

signals is at least 1−
(
1− πK

)2
. Now it is easy to see by induction on m that player T̄ +mK observes

all bad signals with probability at least 1 −
(
1− πK

)m
. Hence, normal player T̄ + mK’s belief that

the other group is bad when she observes all bad signals is at most

µ̃T̄+mK =
µ0

µ0 + (1− µ0)
(
1− (1− πK)m

) .
This belief converges to µ0 as m → ∞, so it follows from Assumption 2 that µ̃T̄+MK < µ∗ for

some integer M . Assumption 2 now implies that normal player T̄ + MK would deviate to playing

yT̄+MK = 1 after observing all bad signals, which yields a contradiction and establishes the desired

result.
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