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Abstract

We provide a general framework for the analysis of the dynamics of institutional change (e.g., de-

mocratization, extension of political rights or repression of different groups), and how this dynamics

interacts with (anticipated and unanticipated) changes in the distribution of political power and in eco-

nomic structure. We focus on the Markov voting equilibria, which require that economic and political

changes should take place if there exists a subset of players with the power to implement such changes

and who will obtain higher expected discounted utility by doing so. Assuming that economic and political

institutions as well as individual types can be ordered, and preferences and the distribution of political

power satisfy a natural “single crossing”condition, we prove the existence of pure-strategy equilibrium,

provide conditions for its uniqueness, and present a number of comparative static results that apply at

this level of generality. We then use this framework to study the dynamics of political rights and repres-

sion in the presence of radical groups that can stochastically grab power depending on the distribution

of political rights in society. We characterize the conditions under which the presence of radicals leads

to repression (of less radical groups), show a type of path dependence in politics resulting from radicals

coming to power, and identify a novel strategic complementarity in repression.
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1 Introduction

Most regime transitions take place in the midst of uncertainty and turmoil, which sometimes

brings to power – or paves the road for the rise of – the most radical factions such as the

militant Jacobins during the Reign of Terror in the French Revolution or the Nazis during the

crisis of the Weimar Republic. The possibility of “extreme” outcomes is of interest not only

because the resulting regimes have caused much human suffering and powerfully shaped the

course of history, but also because, in many episodes, the fear of such radical extremist regimes

has been one of the drivers of repression against a whole gamut of opposition groups. The events

leading up to the October Revolution of 1917 in Russia illustrate both how an extremist fringe

group can rise to power, and the dynamics of repression partly motivated by the desire of ruling

elites to prevent the empowerment of extremist – and sometimes also of more moderate –

elements.

Russia entered the 20th century as an absolute monarchy, but started a process of limited

political reforms in response to labor strikes and civilian unrest in the aftermath of its defeat in

the Russo-Japanese war of 1904-1905. Despite the formation of political parties (for the first time

in Russian history) and an election with a wide franchise, the repression against the regime’s

opponents continued, and the parliament, the Duma, had limited powers and was considered by

the tsar as an advisory rather than legislative body (Pipes, 1995). The tsar’s intentions appear

to have been to introduce minimal power-sharing to appease the opposition, while still retaining

control, in part relying on repression against the leftist groups, his veto power, the right to

dissolve the Duma, full control of the military and cabinet appointments, and ability to rule by

decree when the Duma was not in session. In this instance, therefore, it appears that a fear of

further lurch to the left was a major motivation or at the very least excuse for limiting power

sharing.

This strategy handicapped the development of a constitutional regime in Russia, perhaps

paradoxically further strengthening the two major leftist parties, Social Revolutionaries and

Social Democrats (corresponding to communists, consisting of Bolsheviks and the Mensheviks),

which together controlled about 2/5 of the 1906 (the “second”) Duma and explicitly targeted a

revolution. Lenin, the leader of the Bolshevik wing of the Social Democrats, recognized that a

revolution was possible only by exploiting turmoil. In the context of the 1906 Duma, he stated:
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“Our task is [. . . ] to use the conflicts within this Duma, or connected with it, for choosing the

right moment to attack the enemy, the right moment for an insurrection against the autocracy.”

Later, he argued: “[. . . ] the Duma should be used for the purposes of the revolution, should

be used mainly for promulgating the Party’s political and socialist views and not for legislative

‘reforms,’ which, in any case, would mean supporting the counter-revolution and curtailing

democracy in every way.”

The February Revolution of 1917, in the midst of World War I that had become very un-

popular following large casualties, territorial losses and very limited military victories, created

the opening for the Bolsheviks, bringing to power the Provisional Government and then later,

the moderate Social Revolutionary Alexander Kerensky. Further military defeats of the Russian

army in the summer of 1917, the destruction of the military chain of command by emergence of

Bolshevick-led soldier committees,1 and Kerensky’s willingness to enter into an alliance with So-

cial Democrats to defeat the attempted coup by the army during the Kornilov affair strengthened

the Bolsheviks further. Still, in the elections to the Constituent Assembly in November 1917,

the Bolsheviks had only a small fraction of the vote. Nevertheless, they successfully exploited

their control of Petrograd Soviets to outmaneuver the more popular Social Revolutionaries, first

entering into an alliance with so-called Left Social Revolutionaries, and then coercing them to

leave the government so as to form their own one-party dictatorship.

This episode thus illustrates both the possibility of a series of transitions bringing to power

some of the most radical groups and the potential implications of the concerns of moderate

political transitions further empowering radical groups. Despite a growing literature on political

transitions, the issues we have just illustrated in the context of the Bolshevik Revolution cannot

be studied with existing models.2 This is because they necessitate a dynamic model where sev-

eral groups can form temporary coalitions and a rich set of stochastic shocks create a changing

environment, potentially leading to a sequence of political transitions away from current power-

1The Bolsheviks were against the war and in fact, favored defeat for the Russian forces. Lenin’s programmatic

article “The Defeat of One’s Own Government in the Imperialist War”published in July 1915, a year into World

War I, opens with the statement: “During a reactionary war a revolutionary class cannot but desire the defeat of

its government.”
2These types of political dynamics are not confined to episode in which extreme left groups might come to

power. The power struggles between secularists and religious groups in Turkey and more recently in the Middle

East and North Africa are also motivated by and illustrate similar concerns on both sides.
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holders. Moreover, such a model can also shed further light on key questions in the literature on

regime transitions, including those concerning political transitions with several heterogeneous

groups, gradual enfranchisement, and the interactions between regime dynamics and coalition

formation. We therefore start with developing a framework for the study of dynamic political

economy in the presence of stochastic shocks and changing environments. We then apply this

framework to the analysis of implications of potential shifts of power to radical groups during

tumultuous times.

The next example provides a first glimpse at the type of abstraction we will use and the

strategic interactions that may emerge.

Example 1 Consider a society consisting of n groups, spanning from −l < 0 (left-wing) to

r > 0 (right-wing), with group 0 normalized to contain the median voter. Let us assume that

the current powerholder, e.g., the Russian tsar or the elite in general, is the rightmost group

r. The stage payoff of each group depends on the current ‘political state’which encapsulates

the distribution of political and economic rights. Each group maximizes the discounted sum of

stage payoffs. Stochastic shocks affect both stage payoffs and the likelihood of shifts in political

power in a given political state (e.g., in the Russian context, the possibility of a group inside or

outside the Duma grabbing power or sidelining some groups).

Suppose that a shock to the environment starting from the stable dictatorship of the tsar

(group r) changes stage payoffs (e.g., protests reduce the payoffs to the tsar from monopolizing

power) and makes it desirable to share power with moderate groups, say j = r − 1, ..., r − k .

Now several considerations are potentially important. First, the tsar may not go all the way to

including groups j = r − 1, ..., r − k or may maintain a veto power if feasible, because he may

be worried of a ‘slippery slope’– once power shifts to these groups, they may later include

additional groups further to the left, which is costly for the tsar. Second, the probability that

radical extremist groups may gain power might be higher in states in which additional groups to

the left are included in the decision-making process, further discouraging limited power-sharing.

Thus, in the first two scenarios, the tsar might be afraid of our stylized description of the Russian

path where power gradually (and stochastically) shifts from left liberal groups to the coalition

of socialist/communist groups, and then ultimately to the most extreme elements among them,

the Bolsheviks. Third, and counteracting the first two, the most moderate central left groups,

such as r− 1 and r− 2, may be unwilling to enter into alliances with other groups to their left,
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such as r − k, because they are themselves afraid of a yet another switch of power to groups

to their left. But if so, the tsar may be more willing to allow power-sharing in this latter case,

calculating that further slide down the slope will be limited.

This example provides a simple model that might capture some of the interactions we have

outlined above (our general framework will be richer than this in several dimensions). Though

stylized, this example communicates the complex strategic interactions involved in dynamic po-

litical transitions in the presence of stochastic shocks and changing environments. For example,

a strengthening of extremist groups such as Bolsheviks may sometimes discourage power-sharing

with moderate groups because of slippery slope considerations. But paradoxically, if slippery

slope considerations discourage moderate groups from entering into any sort of alliance with

groups to their left, this might induce current powerholders to share power with them.

Against this background, the framework we develop in this paper will show that, under

natural assumptions, we can characterize the equilibria of this class of environments fairly tightly

and perform comparative statics, shedding light on these and a variety of other dynamic strategic

interactions. For instance, in the context of the above example, we will show that a range of

shocks that increase the risk of costly power shifts to the most extremist groups will (weakly)

discourage power-sharing. We will also show how repression against extremists might be driven

by fears of repression from the extremists when they take control (thus highlighting a natural

but novel type of strategic complementarity in dynamic political economy).

Formally, we consider a society consisting of i = 1, 2, ..., n groups or individuals and s =

1, 2, ...,m states, which represent both different economic arrangements with varying payoffs

for different types of individuals, and different political arrangements and institutional choices.

Stochastic shocks are modeled as stochastic changes in environments, which contain information

on preferences of all individuals over states and the distribution of political power within states.

This approach is general enough to capture a rich set of permanent and transitory (as well as both

anticipated or unanticipated) stochastic shocks depending on the current state and environment.

Individuals care about the expected discounted sum of their utility, and they make joint choices

among feasible political transitions, based on their political power. Our key assumption is

that both preferences and the distribution of political power satisfy a natural single crossing

property: we assume that individuals and states are “ordered,”and higher-indexed individuals

relatively prefer higher-indexed states and also tend to have greater political power in such
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states. (Changes in environments shift these preferences and distribution of political power, but

maintain single-crossing.)

Our notion of equilibrium is Markov voting equilibrium, capturing two natural requirements:

(1) that changes in states should take place if there exists a subset of players with the power to

implement them and who will obtain higher continuation utility (along the equilibrium path)

by doing so; (2) that strategies and continuation utilities should only depend on payoff-relevant

variables and states. Under these assumptions, we establish the existence of pure-strategy equi-

libria. Furthermore, we show that the stochastic path of states in any Markov voting equilibrium

ultimately converges to a steady state– i.e., to a state that does not induce further changes once

reached (Theorems 1 and 3). Although Markov voting equilibria are not always unique, we pro-

vide suffi cient conditions that ensure uniqueness (Theorems 2 and 4). We further demonstrate

a close correspondence between these Markov voting equilibria and the pure-strategy Markov

perfect equilibria of our environment (Theorem 5).

Despite the generality of the framework described here and the potential countervailing

forces highlighted by our example above, we also establish a number of strong comparative

static results. First, consider a change in environment (either anticipated or unanticipated)

which leaves unchanged preferences or the allocation of political power in any of the states

s = 1, ...s′, but potentially changes them in states s = s′ + 1, ...,m. The result is that if the

steady state of equilibrium dynamics described above, x, was at a state that did not experience

change (i.e., x ≤ s′), then the new steady state emerging after the change in environment can

be no smaller than this steady state (Theorem 6). Intuitively, a transition to any of the smaller

states s ≤ x could have been chosen, but was not, before the change. Now, given that preferences

and political power did not change for these states, they have not become more attractive. In

contrast, some of the higher-ranked states may have become more attractive, which may induce

a transition to a higher state. In fact, perhaps somewhat surprisingly, transition to a state

s ≥ s′+1 can take place even if all states s = s′+1, ...,m become less attractive for all agents in

society. An interesting and novel implication of this result is that in some environments, there

may exist critical states, such as a “stable democracy,”and if these critical states are reached

before the arrival of certain major shocks or changes (which might have otherwise led to their

collapse), there will be no turning back (see Corollary 1).

Second, our framework implies a related result on dynamic equilibrium trajectories (Theorem
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7). Consider a similar shock to that discussed in the previous paragraph, leaving preferences

and the distribution of political power the same in states s = 1, ..., s′. Our results is that if this

shock arrives before the steady state x ≤ s′ is reached and if the discount factor suffi ciently

small (smaller than some threshold β0), then the direction of changes in states will remain the

same as before (i.e., if there were transitions towards higher states before, this will continue,

and vice versa). Intuitively, this happens because, with suffi ciently small discount factor, all

agents care about the payoffs in the next period most, and by assumption, these payoffs have

not changed (though payoffs of states to the right of s′ may have changed very significantly).

This result again has a range of important and novel implications, which can be illustrated

with an application to the dynamics of democracy. Suppose that those currently holding power

were considering a limited extension of the franchise, and a shock reduces their power in full

democracy. Then this shock will not deter enfranchisement provided that agents are not very

forward-looking, but may do so otherwise (i.e., when they have high discount factors).

Third, suppose that a change in environment makes extreme states “sticky,” for example,

high-indexed individuals, who prefer the highest-indexed states, increase their political power

(but preferences remain unchanged). Another result shows that if the shock happened when

the society was away from these extreme states (e.g., in this example, it was in a suffi ciently

low-indexed state), then the equilibrium trajectory is not affected (Theorem 8). This once again

has interesting implications in the context of the dynamics of democracy. For example, suppose

that this change makes the poor suffi ciently powerful in democracy that any move away from

democracy becomes impossible if the poor oppose it. Then our result implies that this change

will only impact the equilibrium if we were currently in democracy and considering a move away

from it. For example, if the equilibrium, before the change, involved a transition from limited

democracy to a more democratic state, then this change in environment does not affect the

equilibrium path (Corollary 2).

The second part of the paper applies our framework to the issues discussed at the beginning

of the Introduction – the emergence and implications of radical politics. After establishing

that our framework and comparative statics can be directly applied to the class of problems

described in Example 1, we derive a number of additional results for this application. These

include the following. First, we characterize some of the factors making radicals themselves

choose to repress the rest of society when they come to power, and how society will react to
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the possibility that radicals may come to power (in terms of its repression of the political rights

of different groups). Second, applying our general comparative statics, we show that, starting

from a steady state, changes in probabilities of transition (affecting the likelihood of a takeover

by radicals) or changes in preferences in states where radicals are in power or have significant

power, will weakly increase repression against them. This result is notable for the same reasons

as our Theorem 6: it is true regardless of the direction of change). Third, applying our Theorem

7, we characterize the conditions under which an increase in the likelihood of radicals grabbing

power may change the dynamics of political liberalization. Fourth, we show a particular type of

path dependence: if the steady state before the arrival of a shock involved repression against the

left, then the arrival of the left radical, even if reversed, will reduce future repression against the

left. Fifth, we identify a new strategic complementarity: if the radicals’cost of using repression

against other groups declines, then this will tend to increase repression against the radicals. The

intuition is simple: the expectation that radicals, once in power, will use repression and solidify

their power encourages repression against them (and vice versa).3

Our paper is related to a large political economy literature. First, our previous work, in

particular Acemoglu, Egorov, and Sonin (2012), takes one step in this direction by introducing

a model for the analysis of the dynamics and stability of different political rules and constitutions.

However, that approach not only heavily relies on deterministic and stationary environments

(thus ruling out changes in political power) but also focuses on environments in which the

discount factor is suffi ciently close to 1 so that all agents just care about the payoff from a stable

state (that will emerge and persists) if such a state exists. Here, in contrast, it is crucial that

political change and choices are motivated by potentially short-term gains.4

3This result is also interesting as it provides a perspective on why repression differs markedly across societies.

For example, Russia before the Bolshevik Revolution repressed the leftists, and after the Bolshevik Revolution

systematically repressed the rightists and centrists, while the extent of repression of either extreme has been more

limited in the United Kingdom. Such differences are often ascribed to differences in “political culture”. Our

result instead suggests that (small) differences in economic interests or political costs of repression can lead to

significantly different repression outcomes.
4 In Acemoglu, Egorov and Sonin (2010), we study political selection and government formation in a population

with heterogeneous abilities and allow stochastic changes in the competencies of politicians. Nevertheless, this is

done under two assumptions, which significantly simplify the analysis and make it inapplicable to the general sets

of issues we are interested in here: stochastic shocks are assumed to be very infrequent and the discount factor is

again taken to be large (close to 1).
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Second, a diverse range of papers in dynamic political economy and in dynamics of clubs

emerge as special cases of our paper. Among these, Roberts (1999) deserves special mention as

an important precursor of our analysis.5 Roberts studies a dynamic model of club formation

in which current members of the club vote about whether to admit new members and whether

to contract the club. Roberts also makes single-crossing type assumptions and focuses on non-

stochastic environments and majoritarian voting (see also Barberà, Maschler, and Shalev, 2001,

for a related setup). Both our framework and characterization results are more general, not

only because they incorporate stochastic elements, but also because we provide conditions for

uniqueness, convergence to steady states, and general comparative static results. In addition,

Gomes and Jehiel’s (2005) paper, which studies dynamics in a related environment with side

transfers, is also noteworthy. This paper, however, does not include stochastic elements or

similar general characterization results either. Strulovici (2010), who studies a voting model

with stochastic arrival of new information, is also related but his focus is on information leading

to ineffi cient dynamics, while changes in political institutions or voting rules are not part of the

model.

Third, our motivation is also related to the literature on political transitions. Acemoglu and

Robinson (2000a, 2001) consider environments in which institutional change is partly motivated

by a desire to reallocate political power in the future to match the current distribution of power.

Acemoglu and Robinson’s analysis is simplified by focusing on a society consisting of two social

groups (and in Acemoglu and Robinson, 2006, with three social groups). In Acemoglu and

Robinson (2001), Fearon (2005), Powell (2005), and Acemoglu, Ticchi and Vindigni (2010),

anticipation of future changes in political power leads to ineffi cient policies, civil war or collapse

of democracy. There is a growing literature that focuses on situations where decisions of the

current policy makers affect the future allocation of political power (see also Besley and Coate,

1998). In Acemoglu and Robinson (2000a), the current elite decides whether to extend the

franchise to change the future distribution of political power as a commitment to future policies

(and thus potentially staving off costly social unrest or political revolution).6

5Other important contributions here include Barberà and Jackson (2004), Burkart and Wallner (2000), Jehiel

and Scotchmer (2001), Alesina, Angeloni, and Etro (2005), Bordignon and Brusco (2003), Lizzeri and Persico

(2004), and Lagunoff (2006).
6See also Bourguignon and Verdier (2000), where the choice of educational policy today affects political par-

ticipation in the future.
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Fourth, there is a small literature on strategic use of repression, which includes Acemoglu

and Robinson (2000b), Gregory, Schroeder, and Sonin (2011) and Wolitzky (2011). In Wolitzky

(2011), different political positions (rather than different types of individuals) are repressed

in order to shift the political equilibrium in the context of a two-period model of political

economy. In Acemoglu and Robinson (2000b), repression arises because political concessions

can be interpreted as a sign of weakness. None of the papers discussed in the previous three

paragraphs study the issues we focus on or make progress towards a general framework of the

sort presented here.

The rest of the paper is organized as follows. In Section 2, we formulate a general framework

of political economy with institutional changes and shocks: the environment, assumptions and

definitions we will use throughout the paper, and the concept of Markov Voting Equilibirum.

Section 3 contains the analysis of Markov Voting Equilibria. We start with the stationary case

(without shocks), then extend the analysis to the general case where shocks are possible, and then

compare the concepts of Markov Voting Equilibrium to Markov Perfect Equilibrium in a properly

defined dynamic game. We establish several comparative statics results that hold even at this

level of generality; this allows us to study the society’s reactions to shocks in applied models.

Section 4 applies the general model to issues of social mobility and dynamic (dis)enfranchisement.

Section 5 discusses possible extensions and limitations of the general framework. Section 6

concludes.

2 General Framework

Time is discrete and infinite, indexed by t ≥ 1. The society consists of n agents, N = {1, . . . , n}.

The set of agents is ordered, and the order reflects the initial distribution of some variable

of interest: agents with higher numbers may be the elite (and pro-authoritarian rule), while

those with lower numbers may be workers or peasants favoring democracy; other possible scales

include rich-vs.-poor or secular-vs.-religious. In each period, the society may find itself in one of

the h environments E1, . . . , Eh; we denote the set of environments by E . The environment that

the society finds itself in encapsulates agent’s economic payoffs and political rules, which are

described below in detail. Most importantly, the transitions between environments are stochastic

and follows a Markov chain: the probability that the society which lived period t in environment
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E will find itself in environment E′ equals

π
(
E,E′

)
. (1)

Naturally, ∑
E′∈E

π
(
E,E′

)
= 1.

Importantly, changes between environments are stochastic and beyond the control of agents.

This implies, for example, that a stochastic shock by itself cannot abolish a constitution in favor

of another one, but it can change the economic payoffs or reallocate political power in a way

that might induce such an outcome that powerful agents in the society decide to undertake these

acts.

We make the following assumption on the probabilities of transitions between environments:

Assumption 1 If 1 ≤ x < y ≤ h, then

π (Ey, Ex) = 0. (2)

In other words, Assumption 1 stipulates only a finite number of shocks.7 Moreover, it assumes

that environments are numbered so that only transitions to higher-numbered environments are

possible; this is without loss of generality, but enables us to use the convention that once the

last environment, here Eh, has been reached, there are no further stochastic shocks.8

Fix an environment E. In this environment, there is a finite set of states S = {1, . . . ,m},

which we assume to be the same for all environments.9 (the number of states ism). By states we

mean political or social arrangements, distribution of political power or of means of production,

over which the society, in principle, has control, at least if it gets support of suffi ciently many

powerful agents. Importantly, the set of states is ordered : this may be interpreted as a sequence

of political arrangements which gives less and less power to the poor and more and more power

7Notice that Assumption 1 does not preclude the possibility that the environment returns to the state where it

was before, but requires that it happens a finite number of times. Indeed, to model the possibility of q transitions

between E1 and E2, we can define E3 = E1, E4 = E2, etc.
8This does not mean that the society must reach Eh: for example, it is permissible to have three environments

with π
(
E1, E2

)
= π

(
E1, E3

)
> 0, and all other transition probabilities between being equal to zero.

9Acemoglu, Egorov, and Sonin (2011) allows for emergence of new states, but no other shocks are considered.

We keep the set of states the same mainly for convenience and to save on notation. In fact, emergence of a new

state is equivalent to a shock that makes transitions to/from this state feasible.
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to the elite as s ∈ S increases. To each state we assign stage payoff ui (s) = uE,i (s), which

individual i gets in a period which ends in state s if the current environment is E.

Definition 1 (Increasing Diff erences) Vector {wi (s)}s∈Bi∈A , where A,B ⊂ R, satisfies In-

creasing Differences condition (ID) if for any agents i, j ∈ A such that i > j and any states

x, y ∈ B such that x > y,

wi (x)− wi (y) ≥ wj (x)− wj (y) . (3)

We assume that the stage payoffs, with properly ordered individuals and states, satisfy the

ID property.

Assumption 2 In every environment E ∈ E, the vector of utility functions, {uE,i (s)}s∈Si∈N ,

satisfies the ID property.

Here, payoffs {uE,i (s)} are assigned to combinations of environments, states and individuals

rather than endogenously determined; this is made to simplify notation and the game. Implicitly,

we think that in every state there is some economic interaction that results in (expected) payoffs

{ui (s)}, and this will be modeled in Section 4. Any such interaction is permissible in our model,

as long as Assumption 2 is satisfied.

Apart from stage payoffs, states are characterized by political power. We capture this by

the set of winning coalitions, Ws = WE,s. As standard, we make the following assumption:

Assumption 3 (Winning Coalitions) For environment E ∈ E and state s ∈ S, the set of

winning coalitions Ws = WE,s satisfies:

1. (monotonicity) if X ⊂ Y ⊂ N and X ∈Ws, then Y ⊂Ws;

2. (properness) if X ∈Ws, then N \X /∈Ws;

3. (decisiveness) Ws 6= ∅.

The first part of Assumption 3 states that if some coalition has the capacity to implement

(social or political) change, then a larger coalition also does. The second part ensures that if

some coalition has the capacity to implement change, then the coalition of the remaining players

(its complement) does not have one. Finally, the third part, in the light of monotonicity propery,
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is equivalent to N ∈Ws, and it thus states that if all players want to implement a change, they

can do so.

Assumption 3 puts minimal and natural restrictions on the set of winning coalitions Ws

in each given state s ∈ S. We next impose a between-state (albeit still within-environment)

restriction on the sets of winning coalitions. We do so to capture the idea that states ranked

higher are also likely to be governed by people ranked higher. More formally, we adopt the

following definition of quasi-median voter from Acemoglu, Egorov, and Sonin (2012).

Definition 2 (Quasi-Median Voter) Player ranked i is a quasi-median voter (QMV) in

state s (in environment E) if for any winning coalition X ∈Ws, minX ≤ i ≤ maxX.

If we letMs = ME,s denote the set of QMVs in state s in environment E then, by Assumption

3, Ms 6= ∅ for any s ∈ S and E ∈ E ; moreover, the setMs is connected: whenever i < j < k and

i, k ∈Ms, then j ∈Ms.10 In many cases, the set of quasi-median voters is a singleton, |Ms| = 1.

This will hold in the following two important cases: whenever one individual is the dictator, i.e.,

X ∈ Ws if and only if i ∈ X (and then Ms = {i}), and when decisions are made by majority

voting among the entire set of players or some subset, as long as the number of players is odd.

If this holds, we would be able to prove stronger uniqueness results. An example when Ms is

not a singleton is unanimity rule, provided that there are at least two players.

The monotonicity assumption we impose is the following.

Assumption 4 (Monotone Quasi-Median Voter Property, MQMV) The sequences

{minMs}s∈S and {maxMs}s∈S are non-decreasing in S.11

Assumption 4 is mild and very intuitive; it ensures that states are ordered consistently

with agents’power. It suggests that if a certain number of higher-ranked agents is suffi cient to

implement a change in some state, then they are enough to implement a change in an even higher

state. This would hold in a variety of applications, including the one in this paper (Section 4)

and Roberts (1999). Trivially, if Ms is a singleton in every state, it is equivalent to Ms being

nondecreasing (where Ms is treated as the single element).

10There are other, equivalent ways to define QMV. For example, i ∈ Ms if and only if {j ∈ N : j < i} /∈ Ws

and {j ∈ N : j > i} /∈Ws, or i ∈Ms if and only if i belongs to any “connected”winning coalition.
11Equivalently, the set-valued function Ms is monotone nondecreasing on S (with respect to the strong set

order); see Milgrom and Shannon (1994).
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For some applications, one might want to restrict transitions between states that the society

may implement; for example, it might be realistic to assume that only transitions to adjacent

states are possible. For other applications, the society should be allowed to make any transitions

it wants. To capture both possibilities, we introduce a (environment-specific) mapping F = FE :

S → 2S , which maps every x ∈ S into the set of states the transition to which is feasible. In

other words, y ∈ F (x) means that the society may transit from x to y. We do not assume that

y ∈ F (x) implies x ∈ F (y), so irreversible transitions may be modeled. The only requirements

we impose are the following.

Assumption 5 For each environment E ∈ E, the binary relation F = FE satisfies:

1. For any x ∈ S, x ∈ F (x);

2. For any states x, y, z ∈ S such that x < y < z or x > y > z: If z ∈ F (x), then y ∈ F (x)

and z ∈ F (y).

The first part is almost tautological; it allows the society to remain in the same state. The

second part is another mild and natural requirement, implying that if a long transition between

two environments is feasible, then any transitions (in the same direction) between intermediate

environments also are. Cases that satisfy Assumption 5 and are important for applications

include: (a) any transitions possible: F (x) = S for any x; (b) one-step transitions: y ∈ F (x) if

and only if |x− y| ≤ 1; (c) one-direction transitions: y ∈ F (x) if and only if x ≤ y.12

The last part of environment characterization is the discount factor, β, which we assume to

be the same for all players and across all environments and allow it to take any value such that

β ∈ [0, 1). To summarize, the full description of each environment E ∈ E is

E =
(
N,S, β, {ui (s)}s∈Si∈N , {Ws}s∈S , {F (s)}s∈S

)
. (4)

In the game, each period t starts with environment Et−1 ∈ E and with state st−1 inherited

from the previous period; then Nature determines Et according to the Markov chain rule (1)

12 In an earlier version, we allowed for costs of transitions between states, and imposed a certain increasing

differences condition similar to part 2 of Assumption 5. A transition between states x and y may be thought as

infeasible if it is suffi ciently costly. In the current version we do not model costs of transitions to simplify notation

and analysis, and it is not required for the Application (Section 4). All results, statements, and proofs involving

costs of transition are available from the authors upon request.

13



and after that the society decides on st. In the beginning, the environment E0 ∈ E and the state

s0 ∈ S are exogenously given. The society may face a shock (change of the environment) and

then decides which state to move to, thereby determining state st. At the end of period t, an

individual ranked i gets instantaneous payoff

vti = uEt,i (st) . (5)

Denoting the expectation at time t by Et, the expected discounted payoff of individual i by the

end of period t can be written as

V t
i = Et

∑∞

k=0
βkuEt+k,i (st+k) . (6)

The following sums up the within-period timing in period t.

1. The environment Et−1 and state st−1 are inherited from period t− 1.

2. Shock which determines Et may occur: Et = E ∈ E with probability π (Et−1, E).

3. The society (collectively) decides on state st, subject to st ∈ FE (st−1).

4. Each individual gets instantaneous payoff given by (5).

We deliberately do not describe in detail how the society makes collective decisions (in step

3) as this is not required for the Markov Voting Equilibrium concept; we introduce the detailed

steps when we study the noncooperative foundations of MVE.

The equilibria will be characterized by a family of transition mappings φ = {φE : S → S}E∈E .

We let φkE be k
th iteration of φE , and we denote throughout φ

0
E (s) = s for any s ∈ S. With

each family of transition mappings we can associate continuation payoffs V φ
E,i (s) for individual

i if the state is s, which are recursively given by

V φ
E,i (s) = uE,i (s) + βE

∑
E′∈E

π
(
E,E′

)
V φ
E′,i (φE′ (s)) . (7)

(as 0 ≤ β < 1, the values V φ
E,i (s) are uniquely defined by (7)).

Definition 3 (Markov Voting Equilibrium, MVE) A set of transition mappings φ =

{φE : S → S}E∈E is a Markov Voting Equilibrium if the three properties hold:

1. (feasibility) for any environment E ∈ E and for any state x ∈ S, φE (x) ∈ FE (x);
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2. (core) for any environment E ∈ E and for any states x, y ∈ S such that y ∈ FE (x),{
i ∈ N : V φ

E,i (y) > V φ
E,i (φE (x))

}
/∈WE,x; (8)

3. (persistence) for any environment E ∈ E and for any state x ∈ S,{
i ∈ N : V φ

E,i (φE (x)) ≥ V φ
E,i (x)

}
∈WE,x. (9)

Property 1 requires that MVE involves only feasible transitions (in the current environment).

Property 2 is satisfied if no (feasible) alternative y 6= φ (x) is supported by a winning coalition in

x over φE (x) prescribed by the transition mapping φE . This is analogous to a “core”property:

no alternative should be both preferred to the proposed transition by some coalition of players

and at the same time enforceable by this coalition; notice, however, that the payoffs involved

are continuation utilities and are therefore endogenous to (collective) decisions of the future

periods, as well as stochastic shocks . Property 3 requires that it takes a winning coalition to

move from any state to some alternative. This requirement singles out the status quo if there

is no alternative which some winning coalition would prefer. To put it another way, it takes a

winning coalition to move away from a status quo. Both properties will be required for Markov

Perfect Equilibria of noncooperative game that we study below.

Throughout the paper, we focus on monotone MVE, i.e., MVE with monotone transition

mappings for each E ∈ E . In many cases this is without loss of generality, and Theorem 9 states

mild suffi cient conditions for when all MVEs are (generically) monotone. However, Example 5

shows that a nonmonotone MVE may exist if these conditions fail.

3 Analysis

In this section, we analyze the structure of equilibria and a general framework introduced in

Section 2. We first (Subsection 3.1) prove existence of monotone MVE in a stationary (deter-

ministic) environment. We then (Subsection 3.2) extend these results to situations in which

there are stochastic shocks and non-stationary elements. In Subsection 3.3, we study the rela-

tion between MVE and Markov Perfect Equilibria (MPE) of a dynamic game representing the

framework of Section 2. We then derive a number of comparative static results for the general

model in Subsection 3.4.

15



3.1 Stationary environment

We first study the case of only one environment (|E| = 1); this will form the induction base later.

For this part, we drop the index for the environment and assume that the only environment

persists.

For any mapping φ : S → S, the continuation utility of player i after a transition to s has

taken place is given by

V φ
i (s) = ui (s) +

∑∞

k=1
βkui

(
φk (s)

)
. (10)

We start our analysis with some preliminary lemmas which we think are of independent interest.

The next lemma emphasizes the critical role of quasi-median voters (QMV) in our theory.

Lemma 1 Suppose that vector {wi (s)} satisfies Increasing Differences property for S′ ⊂ S.

Take x, y ∈ S′, s ∈ S and i ∈ N and let

P = {i ∈ N : wi (y) > wi (x)} .

Then P ∈Ws if and only if Ms ⊂ P . A similar statement is true for relations ≥, <, ≤.

Lemma 1 is an immediate consequence of the ID property. If wi (y) > wi (x) for members

of Ws, then this holds for all i ≤ maxMs if y < x and for all i ≥ minMs if y > x. In either

case, this holds for members of some winning coalition. The “only if”part also follows from ID

property: it implies that wi (y) > wi (x) must hold for a connected coalition, and therefore it

holds for all members of Ms by the Definition 2 of quasi-median voter.

For each s ∈ S, let us introduce the binary relation >s on the set of n-dimensional vectors:

w1 >s w
2 ⇔

{
i ∈ N : w1

i > w1
2

}
∈Ws,

and let us introduce notation ≥s in a similar way. Lemma 1 now implies that if a vector {wi (x)}

satisfies ID, then for any s ∈ S, the relations >s and ≥s are transitive on {w· (x)}x∈S .

The next result shows that if φ is monotone, then continuation utilities
{
V φ
i (s)

}s∈S
i∈N

and{
V φ
i (s | x)

}s∈S
i∈N

satisfy increasing differences, provided that Assumption 2 and Assumption 5

are satisfied.

Lemma 2 For a mapping φ : S → S, vector
{
V φ
i (s)

}s∈S
i∈N

, given by (10), satisfies ID if at least

one of the two properties hold:
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1. φ is monotone;

2. for all x ∈ S, |φ (x)− x| ≤ 1.

This result, though simple, is critical for what follows. It establishes that if instantaneous

utilities satisfy the ID property, so do continuation utilities, provided that either of the conditions

on the transition mapping φ holds. In other words, once we ensure that φ satisfies one of these

properties, continuation utilities are guaranteed to satisfy ID.

For mapping φ to constitute a MVE, it must satisfy the three properties of Definition 3,

and of these, the ‘core’property is apparently hardest to satisfy. The next lemma simplifies the

analysis considerably by proving that if for a monotone mapping φ the ‘core’property is violated

(i.e., there is a deviation that makes all members of some winning coalition in the current state

better off), then one can find a monotone deviation, i.e., a deviation such that the resulting

mapping after the deviation is also monotone. We call it Monotone Deviation Principle by

analogy with One-Stage Deviation Principle in extensive form games, which also states that if

some deviation makes a player better off, then there is a one-stage deviation which does so.

Lemma 3 (Monotone Deviation Principle) Suppose that mapping φ : S → S is monotone

and satisfies property (1-feasibility) of Definition 3, but property (2-core) is violated, i.e., for

some x, y ∈ S (such that y ∈ F (x)),

V φ (y) >x V
φ (φ (x)) . (11)

Then one can pick x, y ∈ S such that y ∈ F (x), (11) holds, and the mapping φ′ : S → S given

by

φ′ (s) =

 φ (s) if s 6= x

y if s = x
(12)

is monotone.

The idea of proof is to take the “shortest”deviation, i.e., a pair (x, y) with minimal |y − φ (x)|

such that (11) holds. Without loss of generality, y > φ (x). Since φ is monotone and φ′, given

by (12), is not, there must be some z < x such that y < φ (z) ≤ φ (x); take the minimal of

such z. A deviation at z from φ (z) to y is monotone, and by assertion must hurt at least one

QMV at z, and thus by Assumption 2 it would hurt individual i = maxMx as z < x. If so, this
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individual i should benefit not only from deviation from φ (x) to y at state x, but also from φ (x)

to φ (z). Now, φ (z) ≤ φ (x) implies that a winning coalition at x benefits from such deviation.

But |φ (z)− φ (x)| < |y − φ (x)|, which contradicts that we took the shortest deviation.

With the help of Monotone Deviation Principle, we can prove the following result, which will

be critical for the proof of existence of MVE. Suppose that we split the set of states into two

subsets, [1, a] and [a+ 1,m], and find (by induction) the MVEs on these respective domains. The

question is whether these two mappings, when combined, form an MVE on the entire domain.

Clearly, feasibility and persistence (properties (1) and (3) of Definition 3) would hold, and the

Monotone Deviation Principle tells us that either a winning coalition in a prefers to move to

some state in [a+ 1,m], or a winning coalition in a+ 1 preferes to move to some state in [1, a].

The contribution of the next lemma is that the latter two possibilities are mutually exclusive,

and this is the key to the proof of existence (Theorem 1).

Lemma 4 (No Double Deviation) Let a ∈ [1,m− 1], and let φ1 : [1, a] → [1, a] and φ2 :

[a+ 1,m]→ [a+ 1,m] be two monotone mappings which are MVE on their respective domains.

Let φ : S → S be defined by

φ (s) =

 φ1 (s) if s ≤ a

φ2 (s) if s > a
(13)

Then exactly one of the following is true:

1. φ is a MVE on S;

2. there is z ∈ [a+ 1, φ (a+ 1)] such that z ∈ F (a) and V φ (z) >a V
φ (φ (a));

3. there is z ∈ [φ (a) , a] such that z ∈ F (a+ 1) and V φ (z) >a+1 V
φ (φ (a+ 1)).

We are now ready to prove the existence result.

Theorem 1 (Existence) There exists a monotone MVE. Moreover, if φ is a monotone MVE,

then evolution s0, s1 = φ (s1) , s2 = φ (s2) , . . . is monotone, and there exists a limit state sτ =

sτ+1 = . . . = s∞.

We use induction on the number of states. If m = 1, then φ : S → S given by φ (1) = 1 is an

MVE for trivial reasons. Form > 1, we assume, to obtain a contradiction, that there is no MVE.

Take any of m− 1 possible splits of S into nonempty Ca = {1, . . . , a} and Da = {a+ 1, . . . ,m},
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where a ∈ {1, . . . ,m− 1}, and then take MVE φa1 on Ca and MVE φa2 on Da (assume for

simplicity that they are unique; the Appendix describes the way we select φa1 and φ
a
2 in the

general case). Lemma 4 implies that either there is a deviation from a to [a+ 1, φa2 (a+ 1)] or

a deviation from a + 1 to [φa1 (a) , a], but not both (the first option is impossible because we

assumed that there is no MVE). Let us say that g (a) = r (for “right”) in the former case, and

that g (a) = l in the latter, then g is a well-defined single-valued function. We then have the

following possibilities.

If g (1) = r, we can “extend”the MVE φ1
2 onto the entire domain by assigning φ (1) ∈ [2,m]

appropriately; similarly, if g (m− 1) = l, we can extend φm−1
1 by choosing φ (m) ∈ [1,m− 1]

appropriately (details provided in the Appendix). It remains to consider the case where g (1) = l

and g (m− 1) = r. Then there must exist a ∈ {2, . . . ,m− 1} such that g (a− 1) = l and

g (a) = r. We take equilibria φa−1
1 on [1, a− 1] and φa2 on [a+ 1,m], and consider let us define

φ : S → S by

φ (s) =


φa−1

1 (s) if s < a

b if s = a

φa2 (s) if s > a

, (14)

where b ∈
[
φa−1

1 (a− 1) , a− 1
]
∪[a+ 1, φa2 (a+ 1)] is picked so that V φ

i (b) is maximized for some

i ∈Ma (and b ∈ F (a)). Suppose, without loss of generality, that b < a, then φ|[1,a] is a MVE on

[1, a]. By Lemma 3, to show that the (core) property is satisfied, it suffi ces to check that there

is no deviation from a + 1 to [b, a], but this follows from g (a) = r. The other two properties,

(feasibility) and (persitence), hold by construction, and thus φ (s) is MVE. The Appendix fills

in the details for this argument.

We next study the uniqueness of monotone MVE. We first introduce the following definitions.

Definition 4 Individual preferences are single-peaked if for every i ∈ N there is x ∈ S such

that for states y, z ∈ S such that z < y < x or z > y > x, ui (z) < ui (y) < ui (z).

This definition is standard. The next definition defines precisely what we mean by one-step

transitions.

Definition 5 We say that only one-step transitions are possible if for any x, y ∈ S with

|x− y| > 1, y /∈ F (x).
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The next examples shows that equilibrium is not always unique.

Example 2 (Example with two MVE) There are three states A,B,C, and two players 1 and

2. The decision-making rule is unanimity in all states. Payoffs are given by

id A B C

1 20 5 10

2 10 5 20

Suppose that β is suffi ciently close to 1, e.g., β = 0.9. Then there are two MVE. In one,

φ1 (A) = φ2 (B) = A and φ1 (C) = C. In another, φ2 (A) = A, φ2 (B) = φ2 (C) = C. This is

possible because preferences are not single-peaked, and there are more than one quasi-median

voters in all states.

However, single-peakedness alone is not enough, as the next example shows.

Example 3 (Example with single-peaked preferences and two MVE) There are three states

A,B,C, and two players 1 and 2. The decision-making rule is unanimity in state A and dicta-

torship of player 2 in states B and C. Payoffs are given by

id A B C

1 2 25 20

2 1 20 25

Then φ1 given by φ1 (A,B,C) = (B,C,C) and φ2 given by φ2 (A,B,C) = (C,C,C) are both

MVE when the discount factor is any β ∈ [0, 1).

The following theorem presents cases where equilibrium is (generically) unique.

Theorem 2 (Uniqueness) The monotone MVE is (generically) unique if at least one of the

following conditions holds:

1. for every s ∈ S, Ms is a singleton;

2. only one-step transitions are possible and preferences are single-peaked.

In other words, we can prove uniqueness essentially for the same set of assumptions for

which we can establish that any MVE is monotone (Theorem 9 below), and in the second case

we require, in addition, that preferences are single-peaked. This means that if either of the

conditions in Theorem 2 holds, then there is a unique MVE, and this MVE is monotone.
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3.2 Stochastic environments

We now extend our analysis to the case in which there are stochastic shocks. As our analysis

will clarify, this also enables us to deal with potentially “nonstationary” problems where the

distribution of political power or economic preferences will change in a specific direction in the

future. By Assumption 1, environments are ordered as E1, E2, . . . , Eh so that π (Ex, Ey) = 0

if x > y. This means that if we reached environment Eh, there are no further shocks, and the

analysis from Section 3.1 is applicable. In particular, we get the same conditions for existence

and uniqueness of MVE. We now use backward induction to find equilibrium transition mappings

in earlier environments.

The following Lemma is crucial for the analysis.

Lemma 5 Suppose φ is a monotone MVE in a stationary environment. Then continuation

payoff vector {Vi (s)}s∈Si∈N satisfies the ID condition.

Lemma 5 is the cornerstone of our study of stochastic environments. It suggests that if

utility functions satisfy ID, then, for any monotone MVE φ, so do continuation utilities. This

results will enable us to apply backward induction arguments as in the non-stochastic case.

To proceed by backward induction, let us take MVE φEh in the environment E
h; its existence

is guaranteed by Theorem 1. Suppose that we have found MVE {φE}E∈{Ek+1,...,Eh} for k =

1, . . . , h−1; let us construct φEk which would make {φE}E∈{Eh,...Eh} MVE in the environments{
Ek, . . . , Eh

}
. Suppose that as long as the environment is Ek, transition mappings are given

by φEk . Then continuation utilities of agent i are given by

V φ
Ek,i

(s) = uEk,i (s) + β
∑

E′∈{Ek,...,Eh}
π
(
Ek, E′

)
V φ
E′,i (φE′ (s))

= uEk,i (s) + β
∑

E′∈{Ek+1,...Eh}
π
(
Ek, E′

)
V φ
E′,i (φE′ (s)) (15)

+ βπ
(
Ek, Ek

)
V φ
Ek,i

(φEk (s)) .

By induction, we know φE′ and V
φ
E′ (φE′ (s)) for E

′ ∈
{
Ek+1, . . . Eh

}
. If suffi ces, therefore, to

show that there exists mapping φEk such that continuation values
{
V φ
Ek,i

(s)
}
s∈S
, determined
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from (15), would make φEk a MVE. Denote

ũEk,i (s) = uEk,i (s) + βEk
∑

E′∈{Ek+1,...Eh}
π
(
Ek, E′

)
V φ
E′,j (φE′ (s)) , (16)

β̃ = βπ
(
Ek, Ek

)
(17)

Then equation (15) may be rewritten as

V φ
Ek,i

(s) = ũEk,i (s) + β̃V φ
Ek,i

(φEk (s)) . (18)

Notice that
{
ũEk,i (s)

}s∈S
i∈N satisfy ID; this follows from Lemma 5 and from the additivity of

the ID property. We also have that β̃ ∈ [0, 1). This means that if we consider a game without

shocks, with the environment given by

E =
(
N,S, β̃,

{
ũEk,i (s)

}s∈S
i∈N ,

{
WEk,s

}
s∈S , {FEk (s)}s∈S

)
, (19)

then the recursive equation for continuation values under the transition mapping φEk would

be given precisely by (18). This makes Theorem 1 applicable; therefore, there is a transition

mapping φEk which constitutes a MVE in the environment E. But then by definition of MVE,

since {φE}E∈{Ek+1,...,Eh} was MVE, we have that {φE}E∈{Ek,...Eh} is MVE in the environments{
Ek, . . . , Eh

}
. This proves the induction step, and proceeding likewise, we can obtain the entire

MVE φ = {φE}E∈{E1,...Eh}.

Notice that this reasoning used backward induction, and thus Assumption 1 was indispens-

able. We have proved the following result.

Theorem 3 (Existence) Suppose that all environments E ∈ E satisfy the assumptions of the

paper, and Assumption 1 holds. Then there is a MVE φ = {φE}E∈E . The evolution s0, s1 =

φE1 (s0) , s2 = φE2 (s1) , . . . results in a limit state sτ = sτ+1 = . . . = s∞, but need not be

monotone. The limit state may depend on the time of arrival of shocks.

Now that we have established existence of MVE in a stochastic environment, a natural

question is whether or not it is unique. Our approach to this question is similar: using backward

induction, we reduce the problem to studying uniqueness of MVE in the environment E given by

(19), where the utilities are given by (16) and the discount factor is given by (17). However, this

is not straightforward, because single-crossing condition need not be preserved for continuation

utilities, as the next example shows (and it also need not be additive).
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Example 4 (Continuation utilities need not satisfy single-peakedness) There are four states

and three players, player 1 is the dictator in state A, player 2 is the dictator in state B, and

player 3 is the dictator in states C and D. The payoffs are given by the following matrix:

id A B C D

1 20 30 90 30

2 5 20 85 90

3 5 25 92 99

.

All payoffs are single-peaked. Suppose β = 0.5; then the unique equilibrium has φ (A) = C,

φ (B) = φ (C) = φ (D) = D. Let us compute the continuation payoffs of player 1. We have:

V1 (A) = 40, V1 (B) = 30, V1 (C) = 50, V1 (D) = 30; the continuation utility of player 1 is thus

not single-peaked.

Nevertheless, we can establish uniqueness under one of the following conditions.

Theorem 4 (Uniqueness) The monotone MVE is (generically) unique if at least one of the

following conditions holds:

1. for every environment E ∈ E and any state s ∈ S, Ms is a singleton;

2. in each environment, only one-step transitions are possible; each player’s preferences are

single-peaked; and, moreover, for each state s there is a player i such that i ∈ME,s for all

E ∈ E and the peaks (for all E ∈ E) of i’s preferences do not lie on different sides on s.

The first case is the same as in the stationary environment studied above. The second is more

demanding, but nevertheless worth stating. The last complex condition holds automatically if

political rules do not change as a result of shocks, and neither do players’ideal states under each

environment.

3.3 Noncooperative game

So far, we have not specified a noncooperative game which would substantiate MVE. We do

so in this section, and first we describe the game fully. For all environments E ∈ E and states

s ∈ S, we introduce a protocol θE,s, which is a finite sequence of all states in S \ {s}.

1. The environment Et−1 and state st−1 are inherited from period t− 1.
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2. Shock which determines Et may occur: Et = E ∈ E with probability π (Et−1, E),.

3. Let b1 = st−1. In the subsequent stages, alternative bj , j = 1, . . . ,m− 1, is voted against

θEt,st−1 (j). That is, all agents are ordered in a sequence and must support either bj or

θEt,st−1 (j). If the set of those who supported θEt,st−1 (j) is a winning coalition, i.e., is in

WEt,st−1 , then bj+1 = θEt,st−1 (j); otherwise, bj+1 = bj . When all alternatives have been

voted, the new state is st = bm.

4. Each individual gets instantaneous payoff given by (5).

We study Markov Perfect equilibria of this game.13 Naturally, with every MPE, a set of

transition mappings φ = {φE}E∈E is associated: φE (s) is the state with which period which

started with state st−1 and where there was a shock leading to state E ends. We can get the

following results.

Theorem 5 The following is true:

1. For any MVE φ (monotone or not) there exists a set of protocols {θE,s}s∈SE∈E such that there

exists a Markov Perfect equilibrium of the game above which implements φ. Moreover, if

φ is the unique MVE, then protocol

{θE,s (j)}m−1
j=1 = (s+ 1, s+ 2, . . . ,m, s− 1, s− 2, . . . , 1) (20)

may be used;

2. Conversely, if for some set of protocols {θE,s}s∈SE∈E and some MPE σ, the corresponding

transition mapping φ = {φE}E∈E is monotone, then it is MVE.

3. Under either of the assumptions of Theorem 9, a nonmonotone MPE cannot exist for any

set of protocols.

This theorem establishes the relation between the cooperative and noncooperative ap-

proaches. On the one hand, any MVE may be made an MPE of the game, if a protocol is

taken appropriately. If the equilibrium is unique, such protocol is easy to describe, and one

13To avoid the usual problems with equilibria in voting games, we assume sequential voting for some fixed

sequence of players. See Acemoglu, Egorov, and Sonin (2009) for a solution concept which would refine out

unnatural equilibria in voting games with simultaneous voting.
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possible variant is given by (20). In fact, a stronger result is true: the protocol given by (20)

always has a monotone MPE. On the other hand, an MPE gives rise to an MVE, provided

that the transition mapping is monotone. Part 3 of Theorem 5 gives suffi cient conditions which

ensure that any MPE is monotone.

3.4 Comparative statics

In this section, we compare different environments, and study properties that must hold. Com-

parative statics results are strongest when equilibrium is unique; hence, throughout this section,

we assume that either of Theorem 4, which guarantee uniqueness of MVE, holds. We also assume

that parameter values are generic.

Definition 6 We say that environments E1 and E2, defined for the same set of players and set

of states, coincide on S′ ⊂ S, if for each i ∈ N and for any states x ∈ S′, uE1,i (x) = uE2,i (x),

WE1,x = WE2,x, and also FE1 |S′ = FE2 |S′ (in the sense that for x, y ∈ S′, y ∈ FE1 (x) ⇔ y ∈

FE2 (x)) and βE1 = βE2.

Our next result shows that in two environments, E1 and E2 that coincide on a subset of

states (and differ arbitrarily on other states), there is a simple way of characterizing the transition

mapping of one environment at the steady state of the other.

Theorem 6 Suppose that environments E1 and E2 coincide on S′ = [1, s] ⊂ S. Suppose that

for some MVE φ1 in E
1, φ1 (x) = x. Then there exists MVE φ2 in E

2 such that φ2 (x) ≥ x.

Moreover, if φ1 (x) = x holds for any MVE φ1 in E
1, then φ2 (x) ≥ x for every MVE φ2 in E

2.

Intuitively, the theorem says that if x is a steady state (limit state) in environment E1

and environments E1 and E2 coincide on a subset of states [1, s] that includes x, then in an

environment the MVE in E2 will necessarily involve a transition to a higher stakes than x.

The reason why this is so (and the idea of the proof) is simple. To explain it, let us introduce

the notation φ|S′ to represent the transition function φ restricted to the subset of states S′. Now,

if we had that φ2 (x) < x, then φ1|S′ and φ2|S′ would be two different mappings both of which

would be MVEs on S′. But this would contradict the uniqueness of MVE. Of course, if y ∈ S′

is such that φ2 (y) = y, then φ1 (y) ≥ y. This proposition does not say anything about the

existence of a steady state in S′ for either of the mappings; nevertheless, if such a steady state
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does exist, it must either be a steady state also for the other mapping, or the other mapping

should move it right. Obviously, these results generalize for the case where S′ = [s,m] rather

than [1, s].

Theorem 6 compares MVEs in two distinct environments. In this sense, we can think of it

as a comparative static with respect to an unanticipated shock (taking us from one to the other

environment). We can also derives a similar result when there is a stochastic transition from

one environment to another. This is done in the next corollary.

Corollary 1 Suppose that E =
{
E1, E2

}
and, furthermore, that E1 and E2 coincide on S′ =

[1, s] ⊂ S. Suppose that, for some MVE φE1 in E
1 and some x ∈ S′, φE1 (x) = x. Suppose also

that this state x is reached before the shock arrives at time t. Then under some MVE, for all

τ ≥ t, sτ ≥ x. Moreover, if φE1 (x) = x for all MVEs φE1 in E
1, then sτ ≥ x for all τ ≥ t in

any MVE.

Suppose that before the shock, the society had found itself in a steady state, and as a result

of the shock, only higher states were affected (agents’utilities, sets of winning coalitions, or

feasibility of transitions could change). Corollary 1 implies that this could only make the society

move towards the direction where shock happened or stay where it was. In other words, the

only possibility for the society to stay in the region [1, x− 1] is not to leave it before the shock

arrives.

To understand the logic of this corollary, suppose that preferences change in such a way that

utilities of all agents become higher in some state on the right of where the society is before

the shock. Then it would be intuitive that transitions take place towards that state. But in

contrast, the corollary implies that even when the utilities of all agents become lower in one of

the states on the right, the society may still decide to move to the right. Intuitively, it is possible

that some transition to the right would benefit the current decision-makers, but the possibility

of further transitions to the right made them prefer the status quo. The shock removed this

last threat by making it empty, and now the society may be willing to make a transition to the

right. Of course, it is possible that the society will stay where it was; this would be the case,

for example, if the shock was minor.

One implication of this corollary can be derived by considering x as a stable democracy and

states to the left of x as less democratic states (states to the right might correspond to further
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developments of democracy or other refinements). Then the caller implies that certain types

of shocks may disrupt the emergence of a stable democracy if they arrive early. But if they

arrive late, after this stable democratic state has already been reached, they would not create a

reversal (though they may act as an impetus for additional transitions in a further democratic

direction).

Corollary 1 was formulated under the assumption that stable state x was reached before the

shock occurred. The next result removes this constraint, but only under the assumption that

the discount factor is low enough, i.e., that players are suffi ciently myopic.

Theorem 7 Suppose that E =
{
E1, E2

}
, 0 < π

(
E1, E2

)
< 1, π

(
E2, E1

)
= 0, and E1 and

E2 coincide on S′ = [1, s] ⊂ S. Then there exists β0 > 0 such that if βE1 = βE2 < β0, then

in the unique MVE φ, if the initial state is s0 ∈ S′ such that φE1 (s0) ≥ s0, then the entire

path s0, s1, s2, . . . (induced both under environment E1 and after the switch to E2) is monotone.

Moreover, if the shock arrives at time t, then for all τ ≥ t, sτ ≥ s̃τ , where s̃τ is the hypothetical

path if the shock never arrives.

In a monotone MVE, equilibrium paths are monotone without shocks. But with shocks, this

is no longer true, because the arrival of the shock can change the direction of the path. This

theorem shows that when the discount factor is suffi ciently low and two environments coincide

on a subset of states, then the equilibrium path is monotone even with shocks. Moreover, we

can also establish a ranking between the equilibrium path with and without the shock.

In addition, if we specify what the shock changes, we can also derive additional results on the

dynamics of equilibrium paths, which is done in the next theorem for the case in which shocks

change the set of quasi-median voters – i.e., it changes the distribution of political power in a

specific way.

Theorem 8 Suppose that environments E1 and E2 have the same payoffs, uE1,i (x) = uE2,i (x),

the same discount factors βE1 = βE2, that the same transitions are feasible (FE1 = FE2) and

suppose that ME1,x = ME2,x for x ∈ [1, s] and minME1,x = minME2,x for x ∈ [s+ 1,m]. Then

for any MVE φ1 in E
1 there is MVE φ2 in E

2 such that φ1 (x) = φ2 (x) for any x ∈ [1, s].

This result suggests that if in some right states the sets of winning coalition change in a

way that the sets of quasi-median voters change on the right without changes on the left (for
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example, because some additional players on the right to veto players), then the mapping is

unaffected for states on the left (i.e., those states that are not directly affected by the change).

For example, applied to the dynamics of democratization, this theorem implies that an absolute

monarch’s decision of whether to move to a constitutional monarchy is not affected by the power

that the poor will able to secure– provided that the middle class is still a powerful player.

This theorem implies the following corollary.

Corollary 2 Let E =
{
E1, . . . , Eh

}
. Suppose that:

1. for all environments E,E′ ∈ E and for all states x ∈ S and individuals i ∈ N , we have

uE,i (x) = uE′,i (x), FE = FE′, βE = βE′ and minME,x = minME′,x;

2. if x ∈ [1, s], then maxME,x = maxME′,x.

Then there is an MVE φ = {φE}E∈E such that φE1 (x) = · · · = φEh (x) for all x ∈ [1, s]. In

this MVE, if s0 ∈ [1, s] and there is a stable x ∈ [s0, s], then arrival of shocks does not alter the

equilibrium paths.

We thus have identified a class of shocks which do not change the evolution of the game. A

priori, one could imagine, for example, that if the poor lose the ability to protect democracy,

and instead the elite will be able to stage a coup, then this consideration may affect the desire

of the elite to extend the franchise and move to democracy, or that it may affect the desire of

the monarch to grant more power to the broad elite in the first place. Corollary 2 suggests,

however, that unless something else is going on, these shocks and these considerations alone are

not suffi cient to change the equilibrium path (unless, of course, the society starts the game in

democracy with the elite dreaming of staging a coup).

4 Application: Repression and Radicalism

In this section, we apply our general framework and the results derived so far to the study of

repression and radicalism.

4.1 Formal setup of a model of radical politics.

In what follows, we use the language and formalism of Section 2 and show how the model may

be applied to study radical politics as in Example 1 in the introduction. We first describe the
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initial environment, E1. There is a fixed set of n players N = {−l, . . . , r} (so n = l+r+1), which

we interpret as groups of (potentially large numbers of) individuals with the same preferences

(e.g., ethnicities or classes). We interpret the order of groups as representing some economic

interests (e.g., from poor on the left to rich on the right). We assume that each group solve the

collective action problem as all the members of the group have the same preferences.

The weight of each group i ∈ N is denoted by γi and represents the number of people

within the group, and thus the group’s political power. Throughout this exercise, we assume

genericity, in the sense that there are no two disjoint combinations of groups with exactly equal

total number of individuals (see Acemoglu et al., 2008, for a discussion of this assumption). We

assume that group 0 contains the median voter (we can always enumerate the groups to ensure

this). Individuals in group i have an ideal bliss point bi, where {bi} is increasing in i, and have

preferences over policy given by

ui (p) = − (p− bi)2 . (21)

The set of states is S = {−l − r, . . . , l + r} (so the total number of states is m = 2l+2r+1 =

2n−1), and they correspond to different combinations of political rights. We think of repression

as a way of reducing the political rights of certain groups. In particular, the set of players who

are not repressed in state s is Hs, where Hs = {−l, . . . , r + s} for s ≤ 0 and Hs = {−l + s, . . . , r}

for s > 014; those and only those who are not repressed are eligible to vote. This specification

implies that states below 0 correspond to repressing the rich (in the leftmost state s = −l−r only

the group −l participates in decision-making); similarly, states above 0 correspond to repressing

the poor (again, the rightmost state s = l + r on the group r has vote and state 1 involves

repressing just the most extreme left group, −l). The middle state s = 0 involves no repression

and corresponds to full democracy (where again notation is chosen in such a way that group 0

contains the median voter and rules in state 0).

All decisions in the society are made by a simple majority of those currently empowered.

This applies to transitions between states as well as to policy decisions within a given state

14We can allow for “partial”repression, where the votes of players who are repressed are discounted with some

factor. This would correspond to, say, repressing only a certain fraction of some population group. Ultimately,

this would complicate the notation without delivering major insights.

We can also allow for repressing any subsets of groups, thus having to consider 2n− 1 rather than 2n− 1 states

(see Acemoglu et al., 2012 [AER PAPER] for a model of repression of religious or secular groups where this is

allowed). To save on notation and focus on substantive issues related to shocks, we drop this possibility here.
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(in the latter case, we do not model it explicitly, as there is a Condorcet-winning policy bMs ,

whereMs is the group in state s where the effective median voter is located; hence, a reasonable

decision-making mechanism would deliver this policy bMs). Furthermore, we can assume that

repression is costly: repressing agents of type j for one period costs Cj , and that this cost is

incurred by all agents within society (e.g., economic effi ciency is reduced or taxes have to be

raised to support repression). For simplicity, we assume that the radical group −l is smaller

than the next group: γ−l < γ−l+1. In this case radicals cannot ensure their preferred policy

unless all other groups are repressed. (This is not an important assumption, but it is realistic

and simplifies the statements of results below.)

More formally, in state s, coalition X is winning if and only if

∑
i∈Hs∩X

γi >
1

2

∑
i∈Hs

γi. (22)

For generic sequences of proportions across groups, {γi}, there is one group, which is the quasi-

median voter as defined above. In this section, we will, interchangeably, refer to a quasi-median

voter (QMV), median voter or quasi-median group.

Given the above description, the stage payoff of individuals in group i in state s can be

written as:

ui (s) = − (bMs − bi)
2 −

∑
j /∈Hs

γjCj . (23)

Until the last result we present in this section, the reader may focus on the case in which Cj = C

for all j ∈ N .

One can easily check that all assumptions are satisfied in this environment. In particular,

the single-crossing assumption holds, as the sequence {bi} is increasing in i.

It is possible that a radical will come to power. We model this by assuming that there is a set

of h “radical”environments R−l−r, . . . , R−l−r+h−1, and probability λj ∈ [0, 1] that society will

transition to radical environment j = 1, . . . ,m starting from E. Environment Rj is the same as

E, except that in environment Rj , if the current state is one of −l−r, . . . , j, the decision-making

rule comes into the hands of the most radical group −l. In other words, in radical environment

Rj , radicals can grab power momentarily in space to the left of j. In the context of the Bolshevik

Revolution, this would correspond to assuming that in some possible environments, Bolsheviks

would have been able to grab control when Kerensky was in power but not when some other

further right government was in power. This formulation implies that the probability of a radical
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coming to power if the current state is s is µs =
∑s

j=−l−r λj , and it is (weakly) increasing in s.

Note also that the radical environment creates an opportunity for the radicals to grab power.

To do so, they will also need to repress the rest of the population (which is potentially costly

for them as specified above).

We can also contrast between permanent and transitory shocks: let us assume that in each

period in any of the environments Rj , there is a chance ν of returning back, which we model as

transition to the final environment L identical to E in terms of payoffs and winning coalitions.

In this way, ν = 0 will correspond to a permanent shock, and as ν increases, the tenure of the

radical will become shorter.

4.2 Characterization and comparative statics

We first study the benchmark case if there are no radicals, and then see the difference that

radicals bring.

Proposition 1 (Equilibria without radicals) In the absence of shocks (i.e., environment L

never changes), there exists a unique MVE given by a function φL : S → S. In this equilibrium:

1. Democracy is stable: φL (0) = 0.

2. For any costs of repression {Cj}j∈N , the equilibrium state/institution never features more

repression than the initial one: if s < 0 then φL (s) ∈ [−s, 0], and if s > 0, then φL (s) ∈

[0, s].

3. Consider repression costs parametrized by k: Cj = kC∗j , where
{
C∗j

}
are positive con-

stants. Then there is k∗ > 0 such that: if k > k∗, then φL (s) = 0 for all s, and if k < k∗,

then φL (s) 6= 0 for some s.

This proposition implies that if radicals are never a concern, democracy is stable. Moreover,

repression will not arise if it was not present from the beginning, and if it was, then there will

not be more repression and, perhaps, there will be less. Intuitively, the quasi-median voter can

choose the preferred policy anyway, and since repression is costly, choosing more of it makes no

sense. On the other hand, having less repression may change the balance of power, but it may

be worth it if the savings are suffi cient.
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In addition, high cost of repression makes the society immediately transit to full democracy,

but if repressions are not costly, this will not happen (at least not immediately).

Now suppose the radicals are a concern. In what follows, φ denotes the initial environment.

Proposition 2 (Radicals) There exists a unique MVE. Suppose when the society is at state s,

there is a transition to environment Rz happens (where z ≥ s) so that radicals can grab power.

Then the radicals are more likely to move to their preferred state −l − r if: (a) they are more

radical (meaning their ideal point b−l is lower, i.e., further from 0); (b) they are “weaker”(i.e.,

z is smaller) in the sense that there is a smaller set of states in which they are able to control

power.

This proposition implies that when the opportunity arises, radicals are more likely to move

to a situation in which they repress all other groups in society, thus moving to state −l−r, when

their preferences are more extreme (because in that case the outcome without such repression

would be unsatisfactory for them). The same is also true when they are “weaker”. This is

because when z is lower and they are weaker in this sense, there is a greater range of states such

that once there is a transition to one of these states, even if the environment stays at Rz, they

will lose the ability to repress other groups and secure outcome that they prefer; this in turn

encourages them to repress all other groups in society and move to state −l − r.

The next proposition discusses the implications of the possibility of radicals coming to power

on the political equilibrium before it happens. To formulate it, denote the expected continuation

utility of group i ∈ N from staying in state s ∈ S until the shock, and then following the

equilibrium play:

Wi (s) = ui (s) + β
−l−r+h−1∑
z=−l−r

λzVRz ,i (s) .

Proposition 3 (Repression by moderates anticipating radicals) The transition mapping

before radicals come to power, φE, satisfies the following properties.

1. If s ≤ 0, then φE (s) ≥ s.

2. If W0 (0) < W0 (s) for some s > 0, then there is a state x ≥ 0 such that φE (s) > s.

In other words, in some state there is an increase in repression in order to decrease the

chance of radical coming to power.15

15Note that we cannot say that this state is 0, because 0 may be made stable by slippery slope.
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3. If for all states y > x ≥ 0, WMx (y) < WMx (x), then for all s ≥ 0, φE (s) ≤ s. In other

words, in this case an increase in repression of the left does not happen. The condition is

more likely to be satisfied if costs C are high enough (k is high enough).

The first statement of this Proposition is quite strong. It says that if the median voter

would prefer a more repressive state if he could ensure no further repression unless radicals

come to power (which he cannot do because he is not in control in that state), then there is

some state starting from which there will be an increase in repressions against the left. This is

a non-trivial result: e.g., slippery slope considerations may make state 0 stable. Nevertheless,

starting from some state the society will see an increase in repressions against the left. The

second part gives a suffi cient condition for the opposite (and thus a necessary condition for an

increase in repression). Finally, the third part says that if radicals move to their preferred state

immediately, it does not matter whether the shock is permanent or transitory.

The next result compares the transition in anticipation of radicals (environment E) and in

the case where radicals are gone– or, equivalently, if they are impossible (environment L).

Proposition 4 Either φE |[0,l+r] = φL|[0,l+r], or there is s ≥ 0 such that φE (x) = φL (x) for

0 ≤ x < s and φE (x) > φL (x).

The first part implies that anticipation of radicals leads to weakly more repression, at least

starting from a suffi ciently “democratic” state. It says that the lowest states s ≥ 0 where the

society’s decision before and after the radicals would differ necessarily implies a relative increase

in repression in anticipation of radicals. This result need not generalize to all states s > 0 due

to slippery slope considerations: if for some s the society becomes afraid of radicals enough so

that this prevents further democratization, this state may become more attractive to right-wing

radical groups, who may then decrease repression. Of course, the first option (that the two

mappings are identical) is also a possibility; this would happen, e.g., if radicals are suffi ciently

unlikely.

The next result deals with stability of democracy.

Proposition 5 (Stability of democracy without a threat of radical) Suppose that full

democracy s = 0 (or more generally, any state which is most favorite to the decision-maker

there) does not allow for radicals coming to power (has µs = 0). Then this state is stable in
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all environments, and any state s > 0 will lead to (weakly) less repression, in the sense that

φE (s) ∈ [0, s] for s > 0.

Proposition 5 shows that if full democracy does not allow for radicals, then it is stable

regardless of possibility of radicals in other, less democratic states.

What if radicals can come to power in any state – or, more generally, what can we say

about a state which is stable in the environment E while nevertheless facing the possibility of a

radical? With the help of Theorem 6, we get the following results.

Proposition 6 (Less repressions) Suppose that there is a state s ≥ 0 (i.e., full democracy

or some state favoring the right), which is stable in E for some set of probabilities
{
µj
}
. Let us

change
{
µj
}
to
{
µ′j

}
such that µ′j = µj for j ≥ s. In this case, there be (weakly) less repression

of the left: φ′E (s) ≥ φE (s) = s.

This is a corollary of a general comparative statics results, but it is an interesting result

on its own. It says that if the society manages to change the probability of a radical coming

to power in elite-controlled states (e.g., through better repression technologies), although not

in the current state, then there may only be an increase, but never a decrease in repression of

radicals. This will happen regardless of the direction of the change. The intuition is simple: if

there is a lower chance of a radical coming to power, then these states become more attractive

to groups richer than the median. But even if this chance increases, it is possible that repression

may increase: while the pro-elite states do not become more attractive, it is possible that some

of them become stable. Hence, such a change may alleviate the concerns for a slippery slope.

Proposition 7 (Role of radicals in history) Suppose the society was in a stable state x ≥ 0

(in environment E) before the radical came to power. Then the ultimate state, after the radical

comes and possibly goes, will be some y ≤ x.

In other words, the history of having radicals radicals can only contribute to dismantling

of pro-elite institutions. This may happen in two ways. First, the radical may lock in power

forever. Second, he might decide not to do that (e.g., because it is costly, and leave the power

eventually). The proposition says that after he leaves, i.e., in the absence of a threat from

radical, the society will not increase repression of the left (by moving from x ≥ 0 to some y > x)

than it was. (Another way to say it: if the society wanted to move to the right of x before after
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the threat is gone, it would do so before the radical a fortiori.) (Notice that the previous result

(Proposition 6) showed that the change in the threat of radicals can actually make the regime

more pro-elite.)

In the next result, we apply Throem 8 to show that all the results come from radicals

grabbing power rather than just becoming influential enough to become veto players. Namely,

suppose that shocks merely make radicals veto players rather than give all the power to them.

Proposition 8 (Radicals as veto players) If shocks make radicals veto players while pre-

serving democratic decision-making, then mapping φ (s) |s≥0 is the same as in the benchmark

case where the initial environment is stable.

Notice that this result is not 100% trivial. Indeed, the mappings may differ for s < 0, as

the radical may prevent against the right groups from going away. This change in the mapping

φE (s) |s<0 could in principle affect the incentives of decision-makers in states s ≥ 0. However,

we show that this does not happen. The possibility of radicals becoming veto players never leads

to repression against left groups.

Our last result deals with strategic complementarity of repressions. Granted, if repressing

left-wing groups becomes easier, then precautionary repression become more likely. But it

turns out that even if repression by left-wing group becomes more likely, so does precaurionary

repression. Intuitively, the more the median voter is afraid that a radical will seize power

forever, the more he wants to prevent it. In other words, repressions feature the following

strategic complementarity: the ease of repressing one part of political spectrum leads to more

repression of the other part.

Formally, we have the following result. Consider the same environment, but suppose that the

cost of repressing right-wing groups decreases for the most radical group −l in all environments.

More precisely, in all environments, the utility function of radicals in states where right-wing

groups are repressed changes: For s < 0, we have

u−l (s) = − (bMs − b−l)
2 − ρ

∑
j /∈Hs

γjCj ,

where ρ ∈ [0, 1] (ρ = 1 corresponds to the previous case, and a lower ρ means that the radicals

are more tolerant to repressing right-wing groups. It is easy to check that such environments

satisfy the properties we require, including the increasing differences one. We have the following

result.
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Proposition 9 (Strategic Complementarity) Suppose ρ decreases. Then it becomes more

likely that φE (s) > s for at least one s ≥ 0.

5 Extensions

In this section, we relax some of the assumption made in Section 2. First, in Subsection 5.1, we

formulate the (simple and relatively mild) conditions under which all MVE are monotone. This

justifies our focus on monotone MVE in the first place. Then, in Subsection 5.2, we show how this

paper generalizes Roberts (1999) on voting in clubs, which would suggest that this framework

may be useful for club theory with dynamic collective decision-making and stochastic changes

in power and/or preferences. After that, in Subsection 5.3, we study the possibility that there is

an infinite number (a continuum) of states and/or agents and establish an existence of MVE.16

Finally, we show that our approach to stochastic shocks allows for studying situations where

the probabilities of transitions, π (E,E′), may depend on the state of the world. This would be

realistic, for example, when studying political experimentation.

5.1 Monotone vs nonmonotone MVE

So far, we focused on monotone MVE. In many interesting cases this is without loss of generatlity,

as the following theorem establishes.

Theorem 9 The following are suffi cient conditions for any MVE φ to be (generically)

monotone:

1. In all environments, the sets of quasi-median voters in two different states have either none

or exactly one individual in common: ∀E ∈ E , x, y ∈ S : x 6= y ⇒ |ME,x ∩ME,y| ≤ 1.

2. In all environments, only one-step transitions are possible.

This theorem is quite general. Part 1 covers, in particular, all situations where the sets of

quasi-median voters are singletons in all states. This implies that whenever in each state there is

16An earlier version also allowed for the possibility of an infinte number of shocks; we proved the existence of

a “mixed-strategy”MVE and provided an example where MVE, as defined in Definition 3, does not exist. The

earlier version also had a brief treatment of other possible shocks, like strategic political experimentation. This

goes beyond the scope of the paper and is omitted.
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a dictator (which may be the same for several states), or there is majority voting among sets of

odd numbers of players, any MVE is monotone, and thus all results in the paper are applicable

to all MVEs. The second part suggests that if only one-step transitions, i.e., transitions to

adjacent states are possible, then again any MVE is monotone. This means that our focus on

monotone MVE is without any loss of generality for many interesting and relevant cases. Also,

coupled with the result that monotone MVE always exist, this justifies our focus on monotone

MVE even if the conditions of Theorem 9 fail.

In addition, inspection of the conditions in Theorem 9 reveals that they are weaker than

conditions in Theorem 2 and 4. Consequently, when these theorems guarantee the uniqueness

of a monotone MVE, they, in fact, guarantee that it is unique in the class of all possible MVEs.

Moreover, if MVE is unique, it is monotone.

The next example shows that nonmonotone MVE are possible, if both conditions in Theorem

9 fail.

Example 5 There are three states A,B,C, and two players 1 and 2. The decision-making rule

is unanimity in all states. Payoffs are given by

id A B C

1 30 50 40

2 10 40 50

Suppose β is relatively close to 1, e.g., β = 0.9. Then there is a nonmonotone MVE φ (A) =

φ (C) = C, φ (B) = B. (There is also a monotone equilibrium with φ (A) = φ (B) = B,

φ (C) = C.)

The next example shows that genericity is also an important requirement.

Example 6 (Example with nonmonotone equilibrium due to nongeneric preferences.) There

are two states A and B and two players 1 and 2. Player 1 is the dictator in both stattes. Payoffs

are given by

id A B

1 20 20

2 15 25
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Take any discount factor β, e.g., β = 0.5, and any protocol. Then φ given by φ (A) = B and

φ (B) = A is nonmonotone (in fact, cyclic). This equilibrium is only possible for measure 0 of

preferences.

However, even if nonmonotone MVE exist, they still possess a certain degree of monotonicity,

namely, “monotone paths”, as the next results show.

Definition 7 A mapping φ = {φE}E∈E has monotone paths if for any E ∈ E and x ∈ S,

φ (x) ≥ x implies φ2
E (x) ≥ φE (x).

In other words, all equilibrium paths that this mapping generates, as long as the environment

does not change, are weakly monotone. We have the following result:

Theorem 10 Any MVE φ (not necessarily monotone) has, generically, monotone paths.

5.2 Relationship to Roberts’s model

As discussed in the Introduction, our paper is most closely related to Roberts (1999). Our notion

of MVE extends that of Roberts, who also looks at a dynamic equilibrium in an environment

that satisfies single-crossing type restrictions. More specifically, in Roberts’s model, the society

consists of n individuals, and there are n possible states sk = {1, . . . , k} , 1 ≤ k ≤ n. Each state

sk describes the situation where individuals {1, . . . , k} are members of the club, while others are

not. There is the following condition on individual payoffs:

for all l > k and j > i, uj (sl)− uj (sk) > ui (sl)− ui (sk) , (24)

which is the same as the strict increasing differences condition we imposed above (Definition 1).

Roberts (1999) focuses on deterministic environments with majoritarian voting among club

members. He then looks at a notion of Markov Voting Equilibrium (defined as an equilibrium

path where there is a transition to a new club whenever there is an absolute majority in favor of

it) and a median voter rule (defined as an equilibrium path where at each point current median

voter chooses the transition for the next step). Roberts proves existence for mixed-strategy

equilibria for each of the voting rules; they define the same set of clubs that are stable under

these rules.
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Roberts’s notion of Markov Voting Equilibrium is closely related to ours, only differing from

ours in the way that he treats clubs that have even numbers of members and thus might have

ties. In any case, the two notions coincide for generic preferences.

This description clarifies that Roberts’s setup is essentially a special case of what we have

considered so far. The dimensions in which our framework is more general are several: First,

Roberts focuses on the deterministic and stationary environment, whereas we allow for nonsta-

tionary elements and arbitrary stochastic shocks. Second, we allow for a much richer set of states

and richer distributions of political power across states (e.g., instead of majority rule, we allow

weighted supermajority rule, which could be different across states, or dictatorial rule; we also

allow for limited transition rules such as one-step transitions whereas Roberts does not). Third,

we prove existence of pure strategy equilibria and provide conditions for uniqueness. Fourth, we

provide general conditions for equilibria to be characterized by monotone transition maps and

to exhibit monotone sample paths. Fifth, we show the relationship between this equilibrium

concept and MPE of a fully specified dynamic game.

Most importantly, however, we provide a fairly complete characterization of the structure of

transitions and steady states, and show that at this level of generality, the range of comparative

static results can be derived. Such comparative statics are not only new but, thanks to their

generality, quite widely applicable. We also show how the framework can be applied in a

somewhat more specific but still general analysis of dynamics of political rights and repression,

and derive additional results in this context.

5.3 Continuous space

Here, we assume that states, and perhaps individuals, are taken from a continuous set. We study

Markov Voting equilibria in such environments. Namely, we study Markov Voting equilibria in

discrete environments obtained by sampling a suffi ciently dense but finite set of points.

More precisely, assume that the set of states is S = [sl, sh], and the set of individuals is given

by a unit continuum N = [il, ih]. (The construction and reasoning below are easily extendable

to the case where the are a finite number of individuals but a continuum of states, or vice versa.)

We assume that each individual has a utility function ui (s) : S → R, which is continuous as a

function of (i, s) ∈ N × S and satisfies the SID condition: for all i > j, x > y,
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ui (x)− ui (y) > uj (x)− uj (y) . (25)

The mapping F is assumed to be upper-hemicontinuous on S and to satisfy Assumption 5.

Finally, for each state s there is a set of winning coalitions Ws, which are assumed to satisfy

Assumption 3. As before, for each state s, we have a non-empty set of quasi-median voters Ms

(which may nevertheless be a singleton). We make the following monotonicity of quasi-median

voters assumption: functions inf Ms and supMs are continuous and increasing functions of s.

For simplicity, we assume there are no shocks, so the environment is fixed. Time is discrete

as before. We are interested in monotone transition functions φ : S → S; however, we do not

impose additional restrictions, e.g., continuity (it may be possible that there is no equilibrium

with a continuous transition function). The notions of MVE is the same as before, i.e., it is

given by Definition 3.

In this environment, we can establish the following existence result.

Theorem 11 (Existence) In the environment with continous set of states and/or continuous

set of individuals, there exists a MVE φ. Moreover, take any sequence of sets of states S1 ⊂

S2 ⊂ · · · and any sequence of individuals N1 ⊂ N2 ⊂ · · · such that
⋃∞
j=1 Sj is dense in S and⋃∞

j=1Nj is dense in N . Consider any sequence of monotone functions
{
φj : Sj → Sj

}∞
j=1

which

are MVE (not necessarily unique) in the environment

Ej =
(
N,S, β, {ui (s)}s∈Sji∈Nj , {Ws}s∈Sj , {Fj (s)}s∈Sj

)
(26)

(existence of such MVE is guaranteed by Theorem 1, as all assumptions are satisfied). Then

there is a subsequence {jk}∞k=1 such that
{
φjk
}∞
k=1

converges, pointwisely on
⋃∞
j=1 Sj, to some

MVE φ : S → S.

While this existence result does not characterize the set of equilibria in full, it guarantees

existence, and also shows that a MVE may be found as a limit of equilibria for finite sets of

states and individuals. The idea of the proof is simple. Take an increasing sequence of sets of

states , S1 ⊂ S2 ⊂ · · · and an increasing sequence of sets of individuals N1 ⊂ N2 ⊂ · · · such

that S∞ =
⋃∞
j=1 Sj is dense in S and N∞ =

⋃∞
j=1Nj is dense in N . For each Sj , take MVE

φj . We know that φi is a monotone function on Si; Since let us complement it to a monotone

(not necessarily continuous) function on S which we denote by φ̃i for each i. Since S∞ and N∞
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are countable, there is a subsequence φjk which converges to some φ : S∞ → S∞ pointwisely.

(Indeed, we can pick a subsequence which converges on S1, then a subsequence converging on

S2 etc; then use a diagonal process.) We then complete it to a function φ : S → S by demanding

that φ is either left-continuous or right-continuous at any point; in the Appendix, we show that

we can do that so that the continuation values are either left-continuous or right-continuous as

well). Then this continuity of continuation values will ensure that φ is MVE.

6 Conclusion

This paper has provided a general framework for the analysis of dynamics of institutional change

(e.g., democratization, extension of political rights or repression), and how this interacts with

(anticipated and unanticipated) changes in the distribution of political power and changes in

economic structure (e.g., social mobility or other changes affecting individuals’preferences over

different types of economic policies and allocations). We have focused on the Markov voting

equilibria, which require that economic and political changes should take place if there exists

a subset of players with the power to implement such changes and who will obtain higher

expected continuation utility by doing so. Under the assumption that different economic and

social institutions/policies as well as individual types can be ordered, and preferences and the

distribution of political power satisfy “single crossing,”we prove the existence of pure-strategy

equilibria and provide conditions for their uniqueness.

Despite its generality, we have shown that the framework yields a number of comparative

static results. For example, if there is a change from one environment to another (with different

economic payoffs and distribution of political power) but the two environments coincide up to a

certain state s′ and before the change the steady state of equilibrium was that some state x ≤ s′,

then the new steady state that emerges after the change in environment can be no smaller than

x. Another comparative static result is the following: again consider a change leaving preferences

and the distribution of the power the same in states s ≤ s′, but now arriving before the steady

state x ≤ s′ is reached. Then when all agents in society have discount factor suffi ciently small

(smaller than some threshold β̄), the direction of changes states will remain the same as before

(i.e., if there were transitions towards higher states before, this will continue, and vice versa).

Finally, we have also shown that a change in environment makes extreme states “sticky”takes
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place away from these extreme states, then the equilibrium trajectory is not affected.

We have also shown how this framework can be applied to the study of radical politics

and repression, and derived a range of additional comparative statics for this more specific

application.
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Appendix

Proof of Lemma 1. “If”: Suppose Ms ⊂ P , so for each i ∈ Ms, wi (y) > wi (x). Consider

two cases. If y > x, then ID implies that wj (y) > wj (x) for all j ≥ minMs, and such players

j form a winning coalition by definition of QMV. If y < x, then, similarly, wj (y) > wj (x) for

all j ≤ maxMs, and thus for a winning coalition. In either case, P contains a subset (either

[minMs, n] or [1,maxMs]) which is a winning coalition, and thus P ∈Ws.

“Only if”: Suppose P ∈ Ws. First, consider the case y > x. Let i = minP ; then ID implies

that for all j ≥ i, wj (y) > wj (x). This means that P = [i, n], and is thus a connected coalition.

Since P is winning, we must have j ∈ P for any j ∈ Ms, so Ms ⊂ P . The case where y < x is

similar, so Ms ⊂ P .

The proofs for relations ≥, <, ≤ are similar and are omitted. �

Proof of Lemma 2. Part 1. Take y > x and any i ∈ N . We have:

V φ
i (y)− V φ

i (x) = ui (y) +
∑∞

k=1
βkui

(
φk (y)

)
− ui (x)−

∑∞

k=1
βkui

(
φk (x)

)
= (ui (y)− ui (x)) +

∑∞

k=1
βk
(
ui

(
φk (y)

)
− ui

(
φk (x)

))
. (27)

The first term is (weakly) increasing in i if {ui (s)}s∈Si∈N satisfies ID, and the second is (weakly)

increasing in i as φk (y) ≥ φk (x) for k ≥ 1 due to monotonicity of φ. Consequently, (10) is

(weakly) increasing in i.

Part 2. If φ is monotone, then Part 1 applies. Otherwise, for some x < y we have φ (x) >

φ (y), and this means that y = x+ 1; there may be one or more such pairs. Notice that for such

x and y, we have

V φ
i (y)− V φ

i (x) =
(
ui (y) +

∑∞

k=1
β2k−1ui (x) +

∑∞

k=1
β2kui (y)

)
−
(
ui (x) +

∑∞

k=1
β2k−1ui (y) +

∑∞

k=1
β2kui (x)

)
=

1

1 + β
(ui (y)− ui (x)) . (28)

This is (weakly) increasing in i.

Let us now modify instantaneous payoffs and define

ũi (x) =

 ui (x) if φ (x) = x or φ2 (x) 6= x;

(1− β)Vi (x) if φ (x) 6= x = φ2 (x) .
(29)
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Consider mapping φ̃ given by

φ̃ (s) =

 φ (x) if φ (x) = x or φ2 (x) 6= x;

x if φ (x) 6= x = φ2 (x) .
(30)

Then φ̃ is monotone and {ũi (x)}x∈Si∈N satisfies ID. By Part 1, the continuation values
{
Ṽ φ̃
i (x)

}x∈S
i∈N

computed for φ̃ and {ũi (x)}x∈Si∈N using (10) satisfy ID as well. But by construction, Ṽ φ̃
i (x) =

V φ
i (x) for each i and s, and thus

{
V φ
i (x)

}x∈S
i∈N

satisfies ID. �

Proof of Lemma 3. Suppose, to obtain a contradiction, that for each x, y ∈ S such that

y ∈ F (x) and (11) holds, φ′ given by (12) is not monotone.

Take x, y ∈ S such that |y − φ (x)| is minimal among all such pairs x, y ∈ S (informally, we

consider the shortest deviation). By our assertion, φ′ is not monotone. Since φ is monotone

and φ and φ′ differ by the value at x only, there are two possibilities: either for some z < x,

y = φ′ (x) < φ (z) ≤ φ (x) or for some z > x, φ (x) ≤ φ (z) < φ′ (x) = y. Assume the former (the

latter case may be considered similarly). Let s be defined by

s = min (z ∈ S : φ (z) > y) ; (31)

in the case under consideration, the set of such z is nonempty (e.g., x is its member, and z found

earlier is one as well), and hence state s is well-defined. We have s < x; since φ is monotone,

φ (s) ≤ φ (x).

Notice that a deviation in state s from φ (s) to y is monotone: indeed, there is no state z̃

such that z̃ < s and y < φ (z̃) ≤ φ (s) by construction of s, and there is no state z̃ > s such

that φ (s) ≤ φ (z̃) < y as this would contradict φ (s) > y. Moreover, it is feasible, so y ∈ F (s):

this is automatically true if y = s, if y > s, this follows from s < y < φ (s), and if y < s, this

follows from y = φ′ (x) and y < s ≤ x. By assertion, this deviation cannot be profitable, i.e.,

V φ (y) ≯s V φ (φ (s)). By Lemma 2, since y < φ (s), V φ
maxMs

(y) ≤ V φ
maxMs

(φ (s)).Since s < x,

Assumption 4 implies (for i = maxMx) V
φ
i (y) ≤ V φ

i (φ (s)).

On the other hand, (11) implies V φ
i (y) > V φ

i (φ (x)). We therefore have

V φ
i (φ (s)) ≥ V φ

i (y) > V φ
i (φ (x)) (32)

and thus, by Lemma 2, since φ (s) < φ (x) (we know φ (s) ≤ φ (x), but φ (s) = φ (s) would

contradict (32)),

V φ (φ (s)) >x V
φ (φ (x)) . (33)
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Notice, however, that y < φ (s) < φ (x) implies that |φ (s)− φ (x)| < |y − φ (x)|. This

contradicts the choice of y such that |y − φ (x)| is minimal among pairs x, y ∈ S such that

y ∈ F (x) and (11) is satisfied. This contradiction proves that our initial assertion was wrong,

and this proves the lemma. �

Proof of Lemma 4. We show first that if [1] is the case, then [2] and [3] are not satisfied.

We then show that if [1] does not hold, then either [2] or (3) are satisfied, and finish the proof

by showing that [2] and [3] are mutually exclusive.

First, suppose, to obtain a contradiction, that both [1] and [2] hold. Then [2] implies that for

some z ∈ [a+ 1, φ (a+ 1)] such that z ∈ F (a), V φ (z) >a V
φ (φ (a)), but this contradicts that φ

is MVE, so [1] cannot hold. We can similarly prove that if (1) holds, then [3] is not satisfied.

Second, suppose that [1] does not hold. Notice that for any x ∈ S, φ (x) ∈ F (x) and

V φ (φ (x)) ≥x V φ (x), because these properties hold for φ1 if x ∈ [1, a] and for φ2 if x ∈ [a+ 1,m].

Consequently, if φ is not MVE, then it is because the (core) condition in Definition 3 is violated.

Lemma 3 then implies existence of a monotone deviation, i.e., x, y ∈ S such that y ∈ F (x) and

V φ (y) >x V
φ (φ (x)). Since φ1 and φ2 are MVEs on their respective domains, we must have

that either x ∈ [1, a] and y ∈ [a+ 1,m] or x ∈ [a+ 1,m] and y ∈ [1,m]. Assume the former;

since the deviation is monotone, we must have x = a and a+ 1 ≤ y ≤ φ (a+ 1). Hence, we have

V φ (y) >a V
φ (φ (a)), and this shows that [2] holds. If we assumed the latter, we would similarly

get that [3] holds. Hence, if [1] does not hold, then either [2] or [3] does.

Third, suppose that both (2) and (3) hold. Let

x ∈ arg max
z∈[φ(a),φ(a+1)]∩F (a)

V φ
minMa

(z) , (34)

y ∈ arg max
z∈[φ(a),φ(a+1)]∩F (a+1)

V φ
maxMa+1

(z) ; (35)

then x ≥ a + 1 > a ≥ y. By construction, V φ
minMa

(x) > V φ
minMa

(y) and V φ
maxMa+1

(y) >

V φ
maxMa+1

(x) (the inequalities are strict because they are strict in [2] and [3]). But this violates

the ID property that
{
V φ
i (s)

}s∈S
i∈N

satisfies as φ is monotone (indeed, minMa ≤ maxMa+1

by Assumption 4). This contradiction proves that (2) and (3) are mutually exclusive, which

completes the proof. �

For the proof of Theorem 1, the following auxiliary result (which is itself a corollary of

Lemma 4) is helpful.
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Lemma 6 (Extension of Equilibrium) Let S1 = [1,m− 1] and S2 = {m}. Suppose that

φ : S1 → S1 is a monotone MVE. Let

a = max

(
arg max

b∈[φ(m−1),m−1]∩F (a)
V φ

maxMm
(b)

)
. (36)

If

V φ (a) >m u (m) / (1− β) , (37)

then mapping φ′ : S → S defined by

φ′ (s) =

 φ (s) if s < m

a if s = m
(38)

is MVE. A similar statement, mutatis mutandis, applies for S1 = {1} and S2 = [2,m].

Proof of Lemma 6. Mapping φ′ satisfies property (1) 3 by construction. Let us show that

it satisfies property (2). Suppose, to obtain a contradiction, that this is not the case. By Lemma

3, there are states x, y ∈ S such that

V φ′ (y) >x V
φ′
(
φ′ (x)

)
. (39)

If x < m then, since deviation is monotone, y ≤ φ (m) = a ≤ m − 1. For any z ≤ m − 1,(
φ′
)k

(z) = φk (z) for any k ≥ 0, and thus V φ′ (z) = V φ (z); therefore,

V φ (y) >x V
φ (φ (x)) . (40)

However, this would contradict that φ is a MVE on S1. Consequently, x = m. If y < m, then

(39) implies, given a = φ′ (m),

V φ (y) >m V φ (a) . (41)

Since the deviation is monotone, y ∈ [φ (m− 1) ,m− 1], but then (41) contradicts the choice of

a in (36). This implies that x = y = m, so (39) may be rewritten as

V φ′ (m) >m V φ (a) . (42)

But since

V φ′ (m) = u (m) + βV φ (a) , (43)

(42) implies

u (m) >m (1− β)V φ (a) . (44)
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This, however, contradicts (37), which proves that φ′ satisfies property (2) of Definition 3.

To prove that φ′ is MVE, we need to establish that it satisfies property (3) of Definition 3,

i.e.,

V φ′
(
φ′ (x)

)
≥x V φ′ (x) (45)

for each x ∈ S′. If x ∈ S (i.e., x < m), then
(
φ′
)k

(x) = φk (x) for any k ≥ 0, so (45) is equivalent

to

V φ (φ (x)) ≥x V φ (x) . (46)

Since φ is MVE on S, (46) holds for x < m. It remains to prove that (45) is satisfied for x = m.

In this case, (45) may be rewritten as

V φ (a) ≥m V φ′ (m) . (47)

Taking (43) into account, (47) is equivalent to

(1− β)V φ (a) ≥m u (m) , (48)

which is true, provided that (37) is satisfied. We have thus proved that φ′ is MVE on S′, which

completes the proof. �

Proof of Theorem 1. We prove this result by induction by the number of states. For any

set X, let ΦX be the set of monotone MVE, so we have to prove that ΦX 6= ∅.

Base: If m = 1, then φ : S → S given by φ (1) = 1 is MVE for trivial reasons.

Step: Suppose that if |S| < m, then MVE exists. Let us prove this if |S| = m. Consider

the set A = [1,m− 1], and for any a ∈ A, consider two monotone MVE φa1 : [1, a] → [1, a] and

φa2 : [a+ 1,m]→ [a+ 1,m]. Without loss of generality, we may assume that

φa1 ∈ arg max
φ∈Φ[1,a],z∈[φ(a),a]∩F (a+1)

V φ
maxMa+1

(z) , (49)

φa2 ∈ arg max
φ∈Φ[a+1,m],z∈[a+1,φ(a+1)]∩F (a)

V φ
minMa

(z) . (50)

Define φa : S → S by

φa (s) =

 φa1 (s) if s ≤ a

φa2 (s) if s > a
. (51)

Let us define function f : A → {1, 2, 3} as follows. By Lemma 4, for every split S =

[1, a] ∪ [a+ 1,m] given by a ∈ A and for MVE φa1 and φ
a
2, exactly one of three properties hold;
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let f (a) be the number of the property. Then, clearly, if for some a ∈ A, f (a) = 1, then φa is a

monotone MVE by construction of function f .

Now let us consider the case where for every a ∈ A, f (a) ∈ {2, 3}. We have the following

possibilities.

First, suppose that f (1) = 2. This means that (since φa1 (1) = 1 for a = 1)

arg max
z∈[1,φ(2)]∩F (1)

V φ1

minM1
(z) ⊂

[
2, φ1 (2)

]
. (52)

Let

b ∈ arg max
z∈[2,φ(2)]

V φ1

minM1
(z) (53)

and define φ′ : S → S by

φ′ (s) =

 b if s = 1

φ1 (s) if s > 1
; (54)

let us prove that φ′ is a MVE. Notice that (52) and (53) imply

V φ1

minM1
(b) > V φ1

minM1
(1) . (55)

By Lemma 2, since b > 1,

V φ1 (b) >1 V
φ1 (1) . (56)

Notice, however, that

V φ1 (1) = u (1) / (1− β) , (57)

and also V φ1 (b) = V φ12 (b); therefore, (56) may be rewritten as

V φ12 (b) >1 u (1) / (1− β) . (58)

By Lemma 6, φ′ : S → S defined by (54), is a MVE.

Second, suppose that f (m− 1) = 3. In this case, using the first part of Lemma 6, we can

prove that there is a MVE similarly to the previous case.

Finally, suppose that f (1) = 3 and f (m− 1) = 2 (this already implies m ≥ 3), then there

is a ∈ [2,m− 1] such that f (a− 1) = 3 and f (a) = 2. Define, for s ∈ S \ {a} and i ∈ N ,

V ∗i (s) =

 V
φa−11
i (s) if s < a

V
φa2
i (s) if s > a

. (59)
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Let us first prove that there exists b ∈
([
φa−1

1 (a− 1) , a− 1
]
∪ [a+ 1, φa2 (a+ 1)]

)
∩ F (a) such

that

V ∗ (b) >a u (a) / (1− β) , (60)

and let B be the set of such b (so B ⊂
([
φa−1

1 (a− 1) , a− 1
]
∪ [a+ 1, φa2 (a+ 1)]

)
∩ F (a)).

Indeed, since f (a− 1) = 3,

arg max
z∈[φa−1(a−1),φa−1(a)]∩F (a)

V φa−1

maxMa
(z) ⊂

[
φa−1 (a− 1) , a− 1

]
. (61)

Let

b ∈ arg max
z∈[φa−1(a−1),a−1]∩F (a)

(
V φa−1

maxMa
(z)
)
, (62)

then (61) and (62) imply

V φa−1

maxMa
(b) > V φa−1

maxMa
(a) . (63)

By Lemma 2, since b < a,

V φa−1 (b) >a V
φa−1 (a) . (64)

We have, however,

V φa−1 (a) = V φa−12 (a) = u (a) + βV φa−12
(
φa−1

2 (a)
)
≥a u (a) + βV φa−12 (a) = u (a) + βV φa−1 (a)

(65)

(V φa−1 (a) = V φa−12 (a) by definition of φa−1, and the inequality holds because φa−1
2 is MVE on

[a,m]). Consequently, (63) and (64) imply (60). (Notice that using f (a) = 2, we could similarly

prove that there is b ∈ [a+ 1, φa (a+ 1)] such that (60) holds.)

Let us now take state some quasi-median voter in state a, j ∈ Ma, and state d ∈[
φa−1

1 (a− 1) , a− 1
]
∪ [a+ 1, φa2 (a+ 1)] such that

d = arg max
b∈B

V ∗j (b) , (66)

and define monotone mapping φ : S → S as

φ (s) =


φa−1

1 (s) if s < a

d if s = a

φa2 (s) if s > a

(67)

(note that V φ (s) = V ∗ (s) for x 6= a). Let us prove that φ (s) is MVE.
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By construction of d (66), we have that b ∈
[
φa−1

1 (a− 1) , φa2 (a+ 1)
]
∩ F (a),

V φ (b) ≯a V φ (d) . (68)

This is automatically true for b ∈ B, whereas if b /∈ F (a) \ B and b 6= a, the opposite would

imply

V φ (b) >a u (a) / (1− β) , (69)

which would contradict b /∈ B; finally, if b = a,

V φ (a) >a V
φ (d) (70)

is impossible, as this would imply

u (a) >a (1− β)V φ (d) (71)

contradicting (60), given the definition of d (66). Now, Lemma 6 implies that φ′ = φ|[1,a] is a

MVE on [1, a].

Suppose, to obtain a contradiction, that φ is not MVE. Since φ is made from MVE φ′ on

[1, a] and MVE φa2 on [a+ 1,m], properties (1) and (3) of Definition 3 are satisfied, and thus

there are only two possible monotone deviations that may prevent φ from being MVE. First,

suppose that for some y ∈ [a+ 1, φa2 (a+ 1)] ∩ F (a),

V φ (y) >a V
φ (d) . (72)

However, this would contradict (66) (and if y /∈ B, then (72) is impossible as d ∈ B). The

second possibility is that for some y ∈ [d, a],

V φ (y) >a+1 V
φ (φa2 (a+ 1)) . (73)

This means that

V φ
maxMa+1

(y) > V φ
maxMa+1

(φa2 (a+ 1)) . (74)

At the same time, for any x ∈ [a+ 1, φa2 (a+ 1)] ∩ F (a), we have

V φ
maxMa+1

(x) ≤ V φ
maxMa+1

(φa2 (a+ 1)) (75)

(otherwise Lemma 2 would imply a profitable deviation to x). This implies that for any such x,

V φ
maxMa+1

(y) > V φ
maxMa+1

(x) . (76)
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Now, recall that

φa1 ∈ arg max
φ∈Φ[1,a],z∈[φ(a),a]∩F (a)

V φ
maxMa+1

(z) . (77)

This means that there is z ∈ [φa1 (a) , a] ∩ F (a) such that

V
φa1

maxMa+1
(z) ≥ V φ

maxMa+1
(y) , (78)

and thus for any x ∈ [a+ 1, φa2 (a+ 1)] ∩ F (a),

V
φa1

maxMa+1
(z) > V φ

maxMa+1
(x) . (79)

But φa1 = φa on the left-hand side, and φ = φa on the right-hand side. We therefore have that

the following maximum is achieved on [φa (a) , a]:

arg max
z∈[φa(a),φa(a+1)]∩F (a)

V φa

maxMa+1
(z) ⊂ [φa (a) , a] , (80)

i.e., that (3) in Lemma 4 holds. But this contradicts that f (a) = 2. This contradiction completes

the induction step, which proves existence of MVE.

The last statement follows from that any MVE has monotone paths, and any monotone

sequence converges. �

Proof of Theorem 2. Part 1. Suppose that there are two MVEs φ1 and φ2. Without

loss of generality, assume that m is the minimal number of states for which this is possible, i.e.,

if |S| < m, then transition mapping is unique. Obviously, m ≥ 2.

Consider the set Z = {x ∈ S | φ1 (x) 6= φ2 (x)}, and denote a = minZ, b = maxZ. Without

loss of generality, assume that φ1 and φ2 are enumerated such that φ1 (a) < φ2 (a).

Let us first prove the following auxiliary result: that a < m and b > 1 and if x ∈

[max {2, a} , b], then φ1 (x) < x ≤ φ2 (x), and if x ∈ [a,min {b,m− 1}], then φ1 (x) ≤ x < φ2 (x).

Let us first prove that if φ1 (x) = x, then x = 1 or x = m. Indeed, assume the opposite and

consider φ2 (x). If φ2 (x) < x, then φ1|[1,x] 6= φ2|[1,x] are two MVEs for the set of states [1, x],

which contradicts the choice of m. If φ2 (x) > x, we get a similar contradiction for [x,m], and

if φ2 (x) = x, we get a contradiction by considering [1, x] if a < x and [x,m] if a > x. Similarly,

if φ2 (x) = x, then either x = 1 or x = m.

Assume, to obtain a contradiction, that a = m. Then Z = {m}, so φ1|[1,m−1] = φ2|[1,m−1],

and then having φ1 (m) 6= φ2 (m) is impossible for generic parameter values. We would get a
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similar contradiction if b = 1, which proves that a < m and b > 1, thus proving the first part of

Lemma.

Let us now show that for x ∈ [a, b] \ {1,m}, we have that either φ1 (x) < x < φ2 (x) or

φ2 (x) < x < φ1 (x). Indeed, neither φ1 (x) = x nor φ2 (x) = x is possible. If φ1 (x) < x and

φ2 (x) < x, then φ1|[1,x] and φ2|[1,x] are two different MVEs on [1, x], which is impossible; we get

a similar contradiction if φ1 (x) > x and φ2 (x) > x. This also implies that if a < x < b, then

x ∈ Z.

We now prove that for any x ∈ Z, φ1 (x) < φ2 (x). Indeed, suppose that φ2 (x) > φ1 (x)

(equality is impossible as x ∈ Z); then x > a ≥ 1. If x < m, then, as we proved, we must have

φ2 (x) < x < φ1 (x), and if x = m, then φ2 (x) < φ1 (x) ≤ m = x. In either case, φ2 (x) < x, and

since φ2 (a) > φ1 (a) ≥ 1, then by monotonicity of φ2 there must be y : 1 ≤ a < y < x ≤ m such

that φ2 (y) = y, but we proved that this is impossible. Hence, φ1 (x) < φ2 (x) for any x ∈ Z,

and using the earlier result, we have φ1 (x) < x < φ2 (x) for any x ∈ Z \ {1,m}.

To finish the proof, it suffi ces to show that φ1 (1) = 1 and φ2 (m) = m. Suppose, to obtain

a contradiction, that φ1 (1) > 1. We then have φ2 (1) > 1, then φ1 (2) ≥ 2 and φ2 (2) ≥ 2 and

thus φ1|[2,m] and φ2|[2,m] are MVEs on [2,m], and since b 6= 1, they must be different, which

would again contradict the choice of m. We would get a similar contradiction if φ2 (m) = m.

This completes the proof of the auxiliary result.

To finish the proof of the Theorem, notice that the auxiliary result implies, in particular,

that Z = [a, b] ∩ S, so Z does not have “gaps”. We define function g : Z → {1, 2} as follows. If

V
φ1
Mx

(x) > V
φ2
Mx

(x), then g (x) = 1, and if V φ2
Mx

(x) > V
φ1
Mx

(x), then g (x) = 2; the exact equality

cannot hold generically. Intuitively g picks the equilibrium (left or right) that agentMx prefers).

Let us prove that g (a) = 2 and g (b) = 1. Indeed, suppose that g (a) = 1; since a < m, we

must have φ1 (a) ≤ a < φ2 (a) (with equality if a = 1 and strict inequality otherwise). Consider

two cases. If a > 1, then for x < a, φ1 (x) = φ2 (x), and since φ1 (a) < a, then V φ1
Ma

(φ1 (a) | a) =

V
φ2
Ma

(φ1 (a) | a). But V φ1
Mx

(x) > V
φ2
Mx

(x) implies that V φ1
Ma

(φ1 (a) | a) > V
φ2
Ma

(φ2 (a) | a) (pro-

vided that β 6= 0), and thus V φ2
Ma

(φ1 (a) | a) > V
φ2
Ma

(φ2 (a) | a), which contradicts that φ2 is

MVE. If a = 1, then g (a) = 1 would imply that V φ1
M1

(1) > V
φ2
M1

(1). But φ1 (1) = 1, which means
uM1

(1)

1−β > V
φ2
M1

(1), thus uM1 (1) +βV
φ2
M1

(1) > V
φ2
M1

(1). But V φ2
M1

(1) = uM1 (1) +βV
φ2
M1

(φ2 (1) | 1),

and thus, provided that β 6= 0, we have V φ2
M1

(1 | 1) > V
φ2
M1

(φ2 (1) | 1). This contradicts that φ2

is an MVE, thus proving that g (a) = 2. We can similarly prove that g (b) = 1.
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Clearly, there must be two states s, s+ 1 ∈ Z such that g (s) = 2 and g (s+ 1) = 1. For such

s, let us construct mapping φ as follows:

φ (x) =

 φ1 (x) if x ≤ s

φ2 (x) if x > s
; (81)

then φ (s) ≤ s < φ2 (s) (inequality is strict unless s = 1) and φ (s+ 1) ≥ s + 1 >

φ (s) (inequality is strict unless s + 1 = m), which means that mapping φ is monotone.

Now, g (s) = 2 implies that uMs (x) + βV
φ2
Ms

(φ2 (s) | s) = V
φ2
Ms

(s) > V
φ1
Ms

(s) = uMs (x) +

βV
φ1
Ms

(φ1 (s) | s). But V φ2
Ms

(φ2 (s) | s) = V φ
Ms

(φ2 (s) | s) and V φ1
Ms

(φ1 (s) | s) = V φ
Ms

(φ1 (s) | s),

and thus V φ
Ms

(φ2 (s) | s) > V φ
Ms

(φ1 (s) | s) (note also that s+1 ≤ φ2 (s) ≤ φ2 (s+ 1)). Similarly,

g (s+ 1) = 1 implies V φ
Ms+1

(φ1 (s+ 1) | s+ 1) > V φ
Ms+1

(φ2 (s+ 1) | s+ 1). But this contradicts

Lemma 4 for mapping φ. This contradiction completes the proof.

Part 2. As in Part 1, we can assume that m is the minimal number of states for which this

is possible. We can then establish that if φ1 (x) = x, then x = 1 or x = m. If φ1 (x) < x < φ2 (x)

or vice versa, then for all i ∈Mx, there must be both a state x1 < x and a state x2 > x such that

ui (x1) > ui (x) and ui (x2) > ui (x), which contradicts the assumption in this case. Since for

1 < x < m, φ (x) 6= x, we get that φ1 (x) = φ2 (x) for such x. Let us prove that φ1 (1) = φ2 (1). If

this is not the case, then φ1 (1) = 1 and φ2 (1) = 2 (or vice versa). If m = 2, then monotonicity

implies φ2 (2) = 2, and if m > 2, then, as proved earlier, we must have φ2 (x) = x + 1 for

1 < x < m and φ2 (m) = m. In both cases, we have φ1 (x) = φ2 (x) > 1 for 1 < x ≤ m. Hence,

V
φ1
i (2) = V

φ2
i (2) for all i ∈ N . Since φ1 is MVE, we must have ui (1) / (1− β) ≥ V 1

i (2) for

i ∈ M1, and since φ2 is MVE, we must have V
2
i (2) ≥ ui (1) / (1− β). Generically, this cannot

hold, and this proves that φ1 (1) = φ2 (1). We can likewise prove that φ1 (m) = φ2 (m), which

implies that φ1 = φ2. This contradicts the hypothesis of non-uniqueness. �

Proof of Lemma 5. This result immediately follows from 2. �

Proof of Theorem 3. The existence is proved in the text. Since, on equilibrium path,

there is only a finite number of shocks, then from some period t on, the environment will be

the same, some Ex. Since φEx is monotone, the sequence {st} has a limit by Theorem 1. The

fact that this limit may depend on the sequence of shocks realization may be shown by a simple

example. �
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Proof of Theorem 4. Part 1. Without loss of generality, suppose that h is the minimal

number for which two monotone MVE φ = {φE}E∈E and φ′ =
{
φ′E
}
E∈E exist. If we take

Ẽ =
{
E2, . . . , Eh

}
with the same environments E2, . . . , E and the same transition probabilities,

we will have a unique monotone MVE φ̃ = {φE}E∈E ′ =
{
φ′E
}
E∈E ′ by assumption. Now, with

the help of transformation used in the proof of 3 we get that φE1 and φ
′
E1 must be MVE in a

certain stationary environment E′. However, by Theorem 2 such MVE is unique, which leads to

a contradiction.

Part 2. The proof is similar to that of Part 1. The only step is that we need to verify that

we can apply Part 2 of Theorem 2 to the stationary environment E′. In general, this will not

be the case. However, it is easy to notice (by examining the proof of Part 2 of Theorem 2) that

instead of single-peakedness, we could require a weaker condition: that for each s ∈ S there is

i ∈Ms such that there do not exist x < s and y > s such that ui (x) ≥ ui (s) and ui (y) ≥ ui (s).

We can then prove that if {ui (s)}s∈Si∈N satisfy this property and φ is MVE, then
{
V φ
i (s)

}s∈S
i∈N

also does. The rest of the proof follows. �

Proof of Theorem 5. Part 1. It suffi ces to prove this result for stationary case. For

each s ∈ S take any protocol such that if φ (s) 6= s, then θs (m− 1) = φ (s) (i.e., the desired

transition is considered last). We claim that there is a strategy profile σ such that if for state

s, φ (s) = s, then no proposal is accepted in periods where st = s, and if φ (s) 6= s, then no

proposal but the last one, φ (s), is accepted, and the last one is accepted. Indeed, under such

profile, the continuation strategies are given by (10). Hence, if the state is s such that φ (s) = s,

there is no winning coalition that wants to have any other alternative x 6= s accepted. If the

state is s such that φ (s) 6= s, then, anticipating that φ (s) will be accepted over s in the last

voting round, no winning coalition has an incentive to deviate and potentially support another

state x 6= φ (s); at the last round, however, φ (s) would be supported because of property (2) of

Definition 3.

To prove that protocol (20) will suffi ce if the equilibrium is unique, we make the following

observation. Close inspection of the proof of Theorem 1 reveals that we could actually prove

existence of monotone MVE which satisfies an additional requirement: If x < y < φ (x) or

x > y > φ (x), then {
i ∈ N : V φ

i (φ (x)) ≥ V φ
i (y)

}
∈WE,x. (82)
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If the equilibrium is unique, it satisfoes this additional constraint. It is then straightforward to

prove that protocol (20) would suffi ce.

Part 2. If the transition mapping is monotone, then continuation utilities
{
V φ
E,i (s)

}s∈S
i∈N

={
V σ
E,i (s)

}s∈S
i∈N

satisfy ID for any E ∈ E . Again, the proof that φ is MVE reduces to the stationary

case. For each state s, let us define a resolute irreflexive binary relation �s on S as follows:

x �s y if either V φ (x) >s V
φ (y) or (V φ (y) ≯s V φ (x) and for some a < b, θs (a) = x and

θs (b) = y), with the convention that θs (0) = s. In other words, �s resolves >s for continuation

values by giving precedence to states which are voted earlier in the protocol θs. The theory

of amendment agendas (see Shepsle and Weingast, 1984, and Austen-Smith and Banks, 1999)

implies that φ (s) must be the state that satisfies both properties of Definition 3. The details

are omitted to save space.

Part 3. The proof uses theory of amendment agendas, but otherwise similar to the proof of

Theorem 9 and is omitted. �

Proof of Theorem 6. Suppose, to obtain a contradiction, that φ2 (x) < x. Then φ1|S′

and φ2|S′ are mappings from S′ to S′ such that both are MVE. Moreover, they are different,

as φ1 (x) = x > φ2 (x). However, this would violate the assumed uniqueness (either assumption

needed for Theorem 2 continues to hold if the domain is restricted), which completes the proof.

�

Proof of Corollary 1. Consider an alternative set of environments E ′ =
{
E0, E2

}
, where

E0 coincides with E2 on S, but the transition probabilities are the same as in E . Clearly, φ′

such that φ′E0 = φ′E2 = φE2 is a MVE in E ′. Let us now consider stationary environments Ẽ0

and Ẽ1 obtained from E ′ and E , respectively, using the procedure from the proof of Theorem

3. Suppose, to obtain a contradiction, that φE2 (x) < x, then environments Ẽ0 and Ẽ1 coincide

on [1.s] by construction. Theorem 6 then implies that, since φE1 (x) = x, then φ′E0 (x) ≥ x

(since φ′E0 and φE1 are the unique MVE in Ẽ
0 and Ẽ1, respectively). But by definition of φ′,

x < φ′E0 (x) = φE2 (x) ≤ x, a contradiction. This contradiction completes the proof. �

Proof of Theorem 7. Let us first prove this result for the case where each QMV is a

singleton. Both before and after the shock, the mapping that would map any state x to a state

which maximizes the instantaneous payoff uMx (y) would be a monotone MVE for β < β0. By

58



uniqueness, φE1 and φE2 would be these mappings under E
1 and E2, respectively. Now it is

clear that if the shock arrives at period t, and the state at the time of shock is x = st−1, then

φE2 (x) must be either the same as φE1 (x) or must satisfy φE2 (x) > s. In either case, we get a

monotone sequence after the shock. Moreover, the sequence is the same if sτ ≤ s, and if sτ > s,

then we have sτ > s ≥ s̃τ automatically.

The general case may be proved by observing that a mapping that maps each state x to

an alternative which maximizes by uminMx (y) among the states such that ui (y) ≥ ui (x) for

all i ∈ Mx is a monotone MVE. Such mapping is generically unique, and by the assumption of

uniqueness it coincides with the mapping φE1 if the environment is E
1 and it coincides with φE2

if the environment is E2. The remainder of the proof is analogous. �

Proof of Theorem 8. It is suffi cient, by transitivity, to prove this Theorem for the case

where maxME1,x 6= maxME2,x for only one state x ∈ [s+ 1,m]. Moreover, without loss of

generality, we can assume that maxME1,x < maxME2,x. Notice that if φ1 (x) ≥ x, then φ1 is

MVE in environment E2, and by uniqueness must coincide with φ2.

Consider the remaining case φ1 (x) < x; it implies φ1 (x− 1) ≤ x−1. Consequently, φ1|[1,x−1]

is MVE under either environment restricted on [1, x− 1] (they coincide on this interval). Sup-

pose, to obtain a contradiction, that φ1|[1,s] 6= φ2|[1,s]; since x > s, we have φ1|[1,x−1] 6= φ2|[1,x−1].

We must then have φ2 (x− 1) > x − 1 (otherwise there would be two MVEs φ1|[1,x−1] and

φ2|[1,x−1] on [1, x− 1], and therefore φ2 (x) ≥ x. Consequently, φ2|[x,m] is MVE on [x,m] under

environment E2 restricted on [x,m]. Let us prove that φ2|[x,m] is MVE on [x,m] under envi-

ronment E1 restricted on [x,m] as well. Indeed, if it were not the case, then there must be a

monotone deviation, as fewer QMV (in state x) imply that only property (1) of Definition 3

may be violated. Since under E1, state x has fewer quasi-median voters than under E2, it is

only possible if φ2 (x) > x, in which case φ2 (x+ 1) ≥ x+ 1. Then φ2|[x+1,m] would be MVE on

[x+ 1,m], and by Lemma 6 we could get MVE φ̃2 on [x,m] under environment E1. This MVE

φ̃2 would be MVE on [x,m] under environment E2. But then under environment E2 we have

two MVE, φ̃2 and φ2|[x,m] on [x,m], which is impossible.

We have thus shown that φ1|[1,x−1] is MVE on [1, x− 1] under both E1 and E2, and the
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same is true for φ2|[x,m] on [x,m]. Take mapping φ given by

φ (y) =

 φ1 (y) if y < x

φ2 (y) if y > x
. (83)

Since φ1|[1,x−1] 6= φ2|[1,x−1] and φ1|[x,m] 6= φ2|[x,m] (φ1 (x− 1) ≤ x − 1, φ2 (x− 1) > x − 1,

φ1 (x) < x, φ2 (x) ≥ x), φ is not MVE in E1 nor it is in E2. By Lemma 4, in both E1 and

E2 only one type of monotone deviation (at x − 1 to some z ∈ [x, φ2 (x)] or at x to some

z ∈ [φ1 (x− 1) , x]) is possible. But the payoffs under the first deviation is the same under both

E1 and E2; hence, in both environments it is the same type of deviation.

Suppose that it is the former deviation, at x − 1 to some z ∈ [x, φ2 (x)]. Consider the

following restriction on feasible transitions:

F̃ (a) =

 F (a) if a ≥ x;

F (a) ∩ [1, x− 1] if a < x;
(84)

denote the resulting environments by Ẽ1 and Ẽ2. This makes the deviation impossible, and thus

φ is MVE in Ẽ1 (in Ẽ2 as well). However, φ1 is also MVE in Ẽ
1, as it is not affected by the

increase in cost, and this contradicts uniqueness. Finally, suppose that the deviation is at x to

some z ∈ [φ1 (x− 1) , x]. Then consider the costs

F̄ (a) =

 F (a) if a < x;

F (a) ∩ [x,m] if a ≥ x;
(85)

denote the resulting environments by Ē1 and Ē2. This makes the deviation impossible, and thus

φ is MVE in Ẽ2. However, φ2 is also MVE in Ẽ
1, as it is not affected by the increase in cost.

Again, this contradicts uniqueness, which completes the proof. �

Proof of Corollary 2. The proof is similar to the proof of Corollary 1 and is omitted. �

Proof of Theorem 9. Part 1. It suffi ces to prove this result in stationary environments.

Suppose MVE φ is nonmonotone, which means there are states x, y ∈ S such that x < y and

φ (x) > φ (y). By property (1) of Definition 3 applied to state x, we get

VmaxMx (φ (x)) ≥ VmaxMx (φ (y)) , (86)

and if we apply it to state y,

VminMy (φ (y)) ≥ VminMy (φ (x)) . (87)
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Since maxMx ≤ minMy by assumption, (86) implies

VminMy (φ (x)) ≥ VminMx (φ (y)) . (88)

Since in the generic case inequalities are strict, this contradicts (87).

Part 2. Again, consider stationary environments only. If φ is monotone, then for some

x, y ∈ S we have x < y and φ (x) > φ (y), which in this case implies φ (x) = y = x + 1 and

φ (y) = x. Property 2 of Definition 3, when applied to state x, implies that for all i ∈Mx,

Vi (y) ≥ Vi (x) . (89)

This means that generically, for all i ∈My,

Vi (y) > Vi (x) . (90)

The same property 2, when applied to state y, implies that for all i ∈My,

Vi (x) ≥ Vi (y) . (91)

But (91) contradicts (90) as costs are nonnegative. This contradiction completes the proof. �

Proof of Theorem 10. Take any MVE φ. Suppose, to obtain a contradiction, that for

some x, φ (x) > x, but φ2 (x) < φ (x) (the other case is considered similarly). Denote y = φ (x)

and z = φ (y). By property (2) of Definition 3 applied to state y, for all i ∈My,

Vi (z) ≥ Vi (y) . (92)

The means that (92) holds for all i ∈ Mx. However, property (1) of Definition 3, applied to

state x, implies that, generically, at least for one i ∈Mx,

Vi (y) > Vi (z) . (93)

But this contradicts (92), and this contradiction completes the proof. �

Proof of Theorem 11. Take an increasing sequence of sets of points, S1 ⊂ S2 ⊂ S3 ⊂ · · · ,

so that
∞⋃
i=1

Si is dense. For each Si, take MVE φi. We know that φi is a monotone function on Si;

let us complement it to a monotone (not necessarily continuous) function on S which we denote

by φ̃i for each i. Since φ̃i are monotone functions from a bounded set to a bounded set, there is
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a subsequence φ̃ik which converges to some φ̃ pointwisely. (Indeed, we can pick a subsequence

which converges on S1, then a subsequence converging on S2 etc; then use a diagonal process.

After it ends, the set of points where convergence was not achieved is at most countable, so we

can repeat the diagonal procedure.) To show that φ̃ is a MVE, suppose not, then there are two

points x and y such that y is preferred to φ̃ (x) by all members of Mx. Here, we need to apply

a continuity argument and say that it means that the same is true for some points in some Si.

But this would yield a contradiction. �

Proof of Proposition 1. Part 1. We start by proving that there exists a unique monotone

MVE. To show this, we need to establish that all requirements for existence and generic unique-

ness are satisfied.

(ID) Consider group i and take two states x, y with x > y. The policy in state x is bMx and

the policy in state bMy . Since Mx ≥My and b is increasing in the identity of the group, we have

bMx ≥ bMy . Take the difference

ui (x)− ui (y) = − (bMx − bi)
2 −

∑
j /∈Hx

γjCj −
(
−
(
bMy − bi

)2 −∑
j /∈Hy

γjCj

)
=

(
bMx − bMy

) (
2bi − bMx − bMy

)
−
∑

j /∈Hx
γjCj +

∑
j /∈Hy

γjCj .

This only depends on i through bi, which is increasing in bi. Hence, ID is satisfied.

(Monotone QMV) The QMV in state s is Ms. If s ≤ 0, then an increase in s implies that

groups on the right get more power, and s ≤ 0, then an increase in s implies that groups on the

left get more power.

(Costs) There are no costs of transition, and thus the assumption holds trivially.

(QMV are singletons) This holds generically, when no two disjoint sets of groups have the

same power.

This establishes that there is a unique monotone MVE. To show that φ (0) = 0, suppose not.

Without loss of generality, φ (0) > 0. Then if s1 = 0, monotonicity implies that st > 0 for all

t > 1. But M0 = 0, thus bM0 = b0 and uM0 (0) = 0, while uM0 (s) < 0 for s 6= 0. This shows

that if φ (0) > 0, there is a profitable deviation to 0. This contradiction completes the proof.

Part 2. Consider the case s < 0 (the case s > 0 is considered similarly). Since φ (0) = 0,

monotonicity implies that φ (s) ≤ 0. To show that φ (s) ≥ s, suppose, to obtain a contradiction,

that φ (s) < s. Then, starting from the initial state s1 = s, the equilibrium path will involve
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st < s for all t > 1. Notice, however, that for the QMV Ms, uMs (s) = −
∑

j /∈Hs γjCj , and

for x < s, uMs (x) = − (bMx − bMs) −
∑

j /∈Hx γjCj < uMs (s), as Hx is a strict superset of Hs.

Again, there is a profitable deviation, which completes the proof.

Part 3. Consider the mapping φ such that φ (s) = 0 for all s. Under this mapping,

continuation utilities are given by

V φ
i (s) = − (bMs − bi)

2 − k
∑

j /∈Hs
γjC

∗
j −

β

1− β (b0 − bi)2 ,

and in the absense of costs of transtitions, V φ
i (s | x) = V φ

i (s) for all agents i and all states s, x.

Now, the two conditions required to hold for φ to be an MVE simplify to:

for any s, x : V φ
Ms

(0) ≥ V φ
Ms

(x) ;

for any s : V φ
Ms

(0) ≥ V φ
Ms

(s) ;

clearly, the second line of inequalities is a subset of the first. This simplifies to

for any s, x: k
∑

j /∈Hx
γjC

∗
j ≥ (bMs)

2 − (bMx − bMs)
2 .

Clearly, as k increases, the number of equations that are true weakly increases. Furthermore,

for k high enough, the left-hand side becomes arbitrarily large for all x except for x = 0 where it

remains zero, but for x = 0, bMx = 0 and thus the right-hand side is zero as well. Finally, if k is

small enough, the left-hand side is arbitrarily close to 0 for all s and x, and thus the inequality

will be violated, e.g., for s = x = 1. This proves that there is a unique positive k∗ with the

required property. �

Proof of Proposition 2. Part 1. The equilibrium exists and is unique because the

required properties hold in each of the environments, and thus Theorems 3 and 4 are applicable.

Let φL be the mapping after radicals have left. Since the environment L is static, φL coincides

with φ from Proposition 1 (i.e., if radicals are impossible). Now take any radical environment

Rz (so states x ≤ z are controlled by radicals). Notice that φRz (s) is the same for all s ≤ z

(otherwise, setting φRz (s) = φRz (z) for all s < z would yield another MVE since there is not

cost of transition, thus violating uniqueness). Consider two situations: z < 0 and z ≥ 0.

Suppose first that z < 0. Then φRz (0) = 0 (similar to the proof of Part 1 of Proposition

1), and thus by monotonicity φRz (s) ∈ [−l − r, 0]. For any x such that z < x < 0, φRz (x) ≥ x

(again, similar to that proof). Notice that as b−l varies, the mapping φRz |[z+1,l+r] does not
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change. Indeed, equilibrium paths starting from x ≥ z + 1 remain within that range, and thus

continuation utilities of Mx for any x ≥ z+ 1 do not depend on b−l; moreover, a deviation from

x ≥ z+ 1 to some y ≤ z cannot be profitable for obvious reasons. The state φRz (z) is such that

it maximizes the continuation utility of the radical −l among the following alternaties: moving

to some state y ≤ z, staying there until transition to environment L and moving according to

φL, and moving to some state y > z, moving according to φRz until the transition to L and

according to φL after the transition. Notice that as b−l decreases, the continuation utilities of

the radical −l under all these options, except of moving to state y = −l − r, strictly decrease,

while the payoff of that option remains unchanged (and equal to − 1
1−βk

∑
j>−l γjC

∗
j ). Hence,

an decrease in b−l makes this transition more likely starting from state z, and thus for all s ≤ z.

Now suppose that z ≥ 0. Trivially, we must have φRz (z) ≤ 0. In this case, φRz |[z+1,l+r]

may depend on b−l, moving to y ∈ [z + 1, l + r] is suboptimal for the radical anyway. So in this

case, the equilibrium φRz (z) maximizes the radical’s continuation utility among the options of

moving to some y ≤ 0, staying there until transition to L, and then moving according to φL.

Again, only for y = −l− r the continuation payoff remains unchanged as b−l decreases, and for

all other options it decreases. Hence, in this case, too, a lower b−l makes φRz (z) = −l− r more

likely. Moreover, since the equilibrium path starting from any y ≤ 0 will only feature states

s ≤ 0, and for all possible y ≤ 0, the path for lower y is first-order stochastically dominated by

the path for higher y, an increase in k makes φRz (z) = −l − r less likely.

It remains to prove that an increase in z decreases the chance of transition to −l− r for any

given s ≤ z. This equivalent to saying that a higher z decreases the chance that φRz (−l − r) =

−l−r. Suppose that z increases by one. If z ≥ 0 (thus increasing to z+1 ≥ 1), then φRz (−l − r)

does not change as moving to y ≥ 1 was dominated anyway. If z < 0 (thus increasing to

z + 1 ≤ 0), then this increase does not change φRz |[z+2,l+r], and thus the only change is the

option to stay in z + 1 as long as the shock leading to L does not arrive. This makes staying

in −l − r weakly less attractive for the radical, and for some parameter values may make him

switch.

Part 2. Suppose, to obtain a contradiction, that for some s ≤ 0, φE (s) < s. Without loss of

generality we may assume that this is the lowest such s, meaning φE (s) is φE-stable. Consider

a deviation at s from φE (s) to s. This deviation has the following effect on continuation utility.

First, in the period of deviation, the QMV Ms gets a higher instantaneous payoff. Second,
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the continuation utilities if a transition to Rz for some z takes place immediately after that

may differ (if there is no shock, then both paths will converge at φE (s) thus yielding the same

continuation utilities). Consider possible case. If z ≥ s, then the radicals are in power in both

s and φE (s). As showed in the proof of Part 1, the radicals will transit to the same state, thus

resulting in the same path and continuation utilities. If, however, z < s, then the transition in

Rz will be chosen by Ms if he stayed in s, hence, this transition will maximize his continuation

payoff under Rz, and this need not be true if he moved to φE (s) (regardless of whether radicals

rule in this state or they don’t). In all cases, the continuation utility after the current period is

weakly higher if he stayed in s than if he moved to φE (s) < s, and taking into account the first

effect, we have a strictly profitable deviation. This contradicts the definition of MVE, which

completes the proof. �

Proof of Proposition 3. Part 1. Suppose, to obtain a contradiction, that φE (s) ≤ x for

all x ≥ 0. By Part 2 of Proposition 2, φE (s) ≥ s for s ≤ 0, which now implies φE (0) = 0.

As in Theorem 3, we may treat the environment E as static, with Wi (s) as quasi-utilities

and β̃ = β (1− µ) as the discount factor. The payoff from staying in 0 for player M0 =

0 is V0 (0) = W0(0)

1−β̃ . By definition of MVE, VMs (φE (s)) ≥ VMs (s), and since continuation

utilities satisfy ID, φE (s) ≤ s, and M0 ≤ Ms, it must be that V0 (φE (s)) ≥ V0 (s). Since

V0 (s) = W0 (s) + β̃V0 (φE (s)), we have V0 (φE (s)) ≥ W0(s)

(1−β̃)
. Consequently, it must be that

V0 (φE (s)) > V0 (0). This is impossible if φE (s) = 0, and it suggests a profitable deviation at 0

from 0 to s otherwise. This contradiction proves that such x exists.

Part 2. Suppose, to obtain a contradiction, that for some s > 0, φE (s) > s. Without

loss of generality, assume that φE (s) is itself φE-stable. By definition of MVE, VMs (φE (s)) ≥

VMs (s). This is equivalent to WMs (φE(s))

1−β̃ ≥WMs (s)+
β̃WMs (φE(s))

1−β̃ , thus implyingWMs (φE (s)) ≥

WMs (s). Setting y = φE (s) and x = s, we have y > x ≥ 0 and WMx (y) ≥ WMx (x), a

contradiction. This completes the proof. �

Proof of Proposition 5. Proposition 1 proved this result for environment L. For any

of the radical environments Rz (z < 0), the quasi-utility of the QMV of state 0, group 0, is

ũRz ,0 (0) = 0, and for s 6= 0, ũRz ,0 (s) < 0. This means that continuation utility ṼRz ,0 (s) < 0.

Hence, if φRz (0) = s 6= 0, there would be a profitable deviation at 0 from s to 0; this proves

that φRz (0) = 0. Now, monotonicity yields that φRz (s) ≥ s for all s ≥ 0. This tells us that
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if we consider Rz|[0,l+r] to be a static environment with quasi-utilities ũRz ,i (s) and the quasi-

discount factor β̃ = β (1− ν), then φRz |[0,l+r] is an MVE. But notice that φL|[0,l+r] is also an

MVE in this environment, because continuation utilities ṼRz ,i (s) would equal the corresponding

continuation utilities in the environment L, where it is an MVE: ṼRz ,i (s) = VL,i (s). Since the

MVE must be unique, we have φRz |[0,l+r] = φL|[0,l+r], and thus φRz (s) ∈ [0, s] for s ≥ 0, because

this property holds for φL. Another iteration of this argument would establish the same for the

initial environment E, which completes the proof. �

Proof of Proposition 6. This is an immediate corollary of Theorem 6. �

Proof of Proposition 7. Let us first prove that for any Rz and any x ≥ 0, φRz (x) ≤ x.

Suppose, to obtain a contradiction, that φRz (x) > x ≥ 0. Consider two cases. If z ≥ x (so

radicals are in power), then at x they have a profitable deviation from φRz (x) to x, since the

path starting at x is first-order stochastically dominated by one starting at φRz (x) > x, both are

contained in [0, l + r], and on this set the preferences are radicals are monotone. Consequently,

in this case, φRz (x) > x is impossible. The second case is z < x, meaning that Mx is the

QMV. In that case deviation to x is again profitable: indeed, VL,Mx (x) is maximal among all

VL,Mx (y) for y ≥ x, and the path φRz (x) , φ2
Rz (x) , . . . yields, pointwisely, lower utility than the

path x, φRz (x) , φ2
Rz (x) , . . .. This shows that φRz (x) ≤ x.

Now suppose that x ≥ 0 is stable in E. Then it does not change if a shock never arrives,

and the result holds trivially. Once a transition to Rz has taken place, we have φRz (x) ≤ x,

implying that the entire path satisfies this property. If there is never a transition to L, then

the statement again holds; otherwise, suppose that this shock arrives when the society is at

s ≤ x. Since φL (x) ≤ x, we must have that φL (s) ≤ x, and so the entire path lies below x.

Convergence follows from finiteness of S, and the ultimate state y satisfies y ≤ x. �
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