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Private information in an independent, private-values market provides incentives 
to traders to manipulate equilibrium prices strategically. This strategic behavior 
precludes ex post efficient market performance. Increasing the number of traders 
improves the efficiency of some trading mechanisms by enabling them to better 
utilize the private information traders’ bids and offers reveal. This paper shows that 
the expected inefficiency of optimally designed mechanisms, relative to ex post 
efficient allocations, decreases almost quadratically as the number of traders 
increases. Journal of Economic Literature Classification Numbers: 026, 022. ( 1989 
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1. INTRODUCTION 

Private information prevents achievement of ex post efficiency within a 
small, private goods market. A trading mechanism’s efficiency may improve 
as the number of traders increases because more traders may enable it to 
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utilize more efficiently the private information traders’ bids and offers 
reveal. This paper shows that within a simple market an optimally designed 
mechanism rapidly overcomes the constraints of private information as the 
market becomes large: the expected inefficiency of the mechanism’s alloca- 
tions relative to ex post efficient allocations is, at worst, O((ln T)/T') where 
T is an index of the number of traders. This result provides a benchmark 
against which the rate other trading mechanisms converge to ex post 
efficiency can be compared. 

That private information is responsible for small markets’ inefficiency 
may be seen by considering an example. Let a single buyer and a single 
seller bargain over an indivisible object. Suppose the reservation value of 
the seller is $48, the reservation value of the buyer is $52, and these reser- 
vation values are common knowledge. Ex post efficiency requires that trade 
occurs because the object is more valuable to the buyer than to the seller.’ 
Given the absence of private information, a mediator can be appointed 
who can use the common knowledge of the traders’ reservation values to 
set a take-it-or-leave-it price of $50. The buyer and seller then agree to 
trade, and ex post efficiency is achieved. 

If, however, each trader’s reservation value is private to himself, then 
negotations on a satisfactory price may deadlock. If the buyer is confident 
that the seller’s reservation value lies in the interval [25, 551, he may hold 
out for a price less than $50. If the seller is confident that the buyer’s value 
is in the interval in [45, 751, he may hold out for a price greater than $50. 
Holding out is rational for each in terms of an expected utility calculation 
because not to hold out would allow the other trader to extract a 
disproportionate share of the expected gains from trade. 

But if both hold out, no trade occurs and the outcome is ex post inef- 
ficient. Myerson and Satterthwaite [23] showed that, for bilateral trade in 
the presence of private information, this inefficiency is general: if trader 
participation is voluntary, no mechanism exists such that it always has an 
ex post efficient, BayesianNash equilibrium. Thus incentives to engage in 
oppotunistic behavior are intrinsic to small markets whenever valuations 
are private. 

In contrast to the small numbers case, this type of private information is 
not a problem within large markets. In the limit as a market becomes large 
each trader has no effect on the market clearing price. Therefore each 
trader reveals his true reservation value and an ex post efficient, 
competitive allocation results. These observations form the basis for 
economists’ intuition that as a market grows in size the importance of 
private information as a source of inefficiency decreases. 

’ See Holmstrom and Myerson [ 171 for a definition and discussion of the three concepts : 
ex post effkiency, interim efficiency, and ex ante efficiency. 
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Our goal in this paper is to identify, as a function of the number of 
traders, an upper bound on the relative inefficiency in a market with 
private information. A reasonably precise statement of our result is this. 
The market we study consists of tnir, sellers, each desiring to sell a single 
unit of traded good, and tM, buyers, each seeking to by a single unit of 
the good, where r is an index of the market’s size. Traders’ preferences are 
fully described by their reservation values, which are independently drawn 
from the distribution F for buyers and the distribution H for sellers. Each 
trader’s reservation value is private knowledge to him.” 

For the moment, fix the value of z. Construct a trading mechanism that 
is ex ante efficient in the sense that it 

(a) satisfies individual rationality and 
(b) maximizes the sum of buyers’ and sellers’ ex ante expected gains 

from trade. 

Individual rationality means that the expected utility of a trader who 
knows his own reservation value but who does not yet know the reserva- 
tion values of the other traders is nonnegative. Thus every trader, whatever 
his reservation value, wants to participate in the trading mechanism 
because participation offers him gain in expectation. The sum of the 
traders’ ex ante expected utilities is the average gains from trade the 
mechanism would generate if 

(a) it were utilized repeatedly and 
(b) on each repetition every traders’ reservation value were inde- 

pendently and freshly drawn from the distributions F and H. 

For a given market size z we define this optimal mechanism’s relative 
inefficiency as follows. Compute the ex ante expected gains from trade that 
an ex post efficient mechanism would generate if it existed. While such 
mechanisms generally do not exist for the market we study, this measure 
is well defined and easily calculated. The optimal mechanism’s relative 
efficiency is the ratio of its ex ante expected gains from trade to that of the 
ex post efficient mechanism. The optimal mechanism’s relative inefficiency 
is then one minus its relative efficiency. Our main result is that, as r 
becomes large, an upper bound on the optimal mechanism’s relative 
inefficiency is O((ln T)/z?). 

Two caveats need emphasis. First, this is an optimal mechanism result. 
An optimal mechanism has the desirable property that it maximizes the 
sum of the traders’ expected gains from trade. It has the undesirable 
property that the specific rules for trade vary as the distributions F and H 

*This is the independent private values model that has been used in auction theory. See 
Milgrom and Weber [20]. 
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vary. We do not observe trading institutions where rules vary in this 
manner; it is hard even to imagine such an institution. Trading rules that 
are invariant with respect to F and H are therefore unlikely to generate as 
great expected gains from trade as our optimal mechanism.3 Nevertheless 
our conjecture is that realistic trading rules such as the sealed-bid double 
auction studied by Wilson [30, 311 may have relative inefficiencies of the 
same order as the optimal mechanism.4 

The second caveat is that our results are derived in the context of a spe- 
cial model. Demand, and supply are unitary, traders are risk neutral, and 
reservation values are independently distributed. It is hard to think of a 
market where this is a fully adequate abstraction of reality. For example, 
in many markets traders’ reservation values are correlated with each other. 
This dependence enables each trader to infer information about the other 
traders’ reservation values from his own reservation value. The extent to 
which our results hold when the specific assumptions of our model are 
relaxed is an open question. 

This work is related to several sets of work in economic theory. First, 
and most directly related, is the work that Chatterjee and Samuelson [a], 
Myerson and Satterthwaite [23], Wilson [30, 313, Williams [29], 
Leininger et al. [ 193, and Satterthwaite and Williams [26] have done 
using the same basic model we use here. Chatterjee and Samuelson [2] 
showed with a bilateral example that one cannot expect ex post efficiency 
from the double auction. Myerson and Satterthwaite [23] showed that ex 
post efficiency is in general not achievable in bilateral trade if individual 
rationality is required. Williams [29] investigated ex ante efficient 
mechanisms where, instead of maximizing the expected gains from trade, 
the buyer and seller are assigned arbitrary welfare weights. Leininger et 
al. [ 191 and Satterthwaite and Williams [26] characterized the variety of 
equilibria that exist for the bilateral double auction. Wilson [31] studied 
double auctions with multiple buyers and sellers. He showed that if the 
number of traders is large enough and well-behaved equilibria exist, the 
double auction is interim efficient. 

The second body of work to which this paper is related is auction theory. 
Auction theory is concerned with markets in which private information 
exists only on the buyer’s side of the market, not on both sides as is the 
case in this paper. Our paper is most closely related to the normative work 
that Myerson [22] epitomizes. It is less closely related to the positive 
branch of auction theory such as Milgrom and Weber [20]. From the 

’ Satterthwaite and Wiliams 1261 show that the bilateral sealed-bid double auction generi- 
cally does not achieve ex ante effkiency. 

4 Satterthwaite and Williams [27] have recently shown this conjecture to be true for the 
buyers’ bid double auction. 
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viewpoint of this work, auction theory is notable because it has been 
successful in relaxing the restrictive assumptions of private valuations and 
statistical independence. The presence of two-sided uncertainty creates 
technical difficulties that have prevented us from making a comparable 
relaxation of these assumptions. 

The third body of work is general equilibrium theory. Roberts and 
Postlewaite [25] studied the noncooperative incentives that agents have 
to pursue strategic behavior within complete information exchange 
economies. They considered an exchange economy in which 

(a) agents report preferences, 
(b) a competitive equilibrium is computed based on the reported 

preferences, and 
(c) goods are allocated as prescribed by the computed equilibrium. 

They show that as the economy becomes large each agent’s incentive to 
misreport his preferences in order to manipulate the calculated price 
becomes vanishingly small. This formalizes the idea that for large, perfectly 
competitive economies strategic behavior is unimportant. It, however, is 
not comparable with our result for three reasons: 

(i) private information does not exist in their model, 
(ii) each agent’s equilibrium misrepresentation is not calculated, and 
(iii) the rate at which the incentive to misrepresent vanishes is not 

calculated. 

A number of authors including Hildenbrand [ 161, Debreu [S], and 
Dierker [6] have studied the rate at which core allocations within 
exchange economies converge to competitive allocations. Debreu, for 
example, showed that core allocations converge as the inverse of the 
number of agents. This can be interpreted as showing that the gains traders 
earn from engaging in strategic rather than price-taking behavior declines 
rapidly as the number of traders increase. Thus the spirit of these results is 
the same as in our results. The difference lies in the nature of the 
equilibrium concept used and the informational assumptions. 

2. PRELIMINARIES 

Model 

There are M = rM, buyers each of whom seeks to buy a single unit of 
the traded good and N = zN, sellers each of whom seeks to sell the single, 
indivisible unit he owns of the traded good. Denote the total number of 
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traders by H = M + N. Let xi and zj represent buyer i and seller j’s reserva- 
tion values, respectively. Buyers’ reservation values are independently 
drawn from the distribution F, and sellers’ reservation values are 
independently drawn from the distribution H. Both distributions have 
positive densities (fand h) on the bounded interval [a, b]. The realization 
of each trader’s reservation value is private to that trader and unverifiable 
by anyone else. The initial numbers of buyers and sellers and the distribu- 
tion functions of their reservation values constitute the essential data of the 
trading problem. Therefore we call the quadruplet (M,, NO, F, H) the 
trading problem. 

A trading problem (M,, N,, F, H) is vegufar if 

(i) F and H have continuous and bounded first and second 
derivatives on (a, 6) and 

(ii) the functions xi + (F(xi) - 1 )/‘(x,) and Z, + H(;,)/h(z;) are both 
nondecreasing over the interval (a, b). 

The purpose of these regularity assumptions is to restrict the set of 
admissible trading problems sufficiently to permit us to construct ex ante 
efficient mechanisms. 

Before proceeding we need additional notation. Let x= (x,, . . . . x,), 
z = (z,, . . . . z,), x_, = (x,, . . . . xi- I, x,, ,, . . . . x,), and Z-, = (z,, . . . . “;- (, 
z,+ 1, ..,, I~). The density g(x, z) = fl,M=, f(xi) .n,“=, h(~,) describes the 
joint density of all the reservation values, the density g(xei, 2) = 
g(x, ~)/f(x,) describes the density of reservation values buyer i perceives 
himself as facing, and the density g(x, Z-,) = g(.r, =)/h(~,) describes the 
density of reservation values seller j perceives himself as facing. 

For a particular trading problem (M,, N,, F, H), fix T so that size of 
the market is n = t(M, -I- N,) traders. A trading mechanism consists of n 
probability schedules and n payment schedules that determine the final dis- 
tribution of money and goods given the declared valuations of the traders. 
Let the probabilities of an object being assigned to buyer i and seller j in 
the final distribution of goods be pi(.f, i) and q;(.<, Z), respectively, where 
i- and f are the vectors of buyers and sellers’ declared valuations. The 
declared valuation a trader reports need not be his true reservation value. 
Let the payments made to buyer i and seller j be r:($ t) and st(.?. Z), 
respectively. A negative value for r: indicates that buyer i plays Ir:l units of 
money for the right to receive one unit of the traded object with probability 
p’. The r: and s,’ payments are not necessarily conditional on whether 
buyer i actually receives an object or seller j actually gives up his object.’ 

5 We would like to regard the payments r, and s, to be certainty equivalents of payments 
that are made only when an individual is involved in a trade. Such a no-regret property seems 
desirable. but we have not identified the conditions under which it can be imposed. 
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We assume that the market size r, the joint density of reservation values g, 
the probability schedules p and q, and the payment schedules r and s are 
common knowledge along all traders. The trading process is initiated when 
all players simultaneously declare reservation values in the interval [a, b]. 
Given these bids and offers, the N objects and money are reallocated as the 
trading mechanism (p, q, r, s) mandates. 

Each trader has a von Neumann-Morgenstern utility function that is 
additively separable and linear both in money and in the reservation value 
of the traded object. Thus buyer i’s expected utility, given that his true 
reservation value is ?ci and the vectors of declared reservation values are C? 
and I, is 

Oi(.x,, i’, ?) = rT(.<, 2) + .x,pT($ 2). (2.01 ) 

Similarly, seller j’s expected utility is 

V,(z,, i, 2) = qa, 2) - Zi( 1 - qf(.% 2)). 

Each trader’s expected utility function is normalized so that if (.?, 2) are 
such that he is certain to neither trade an object nor make or receive a cash 
payment, then his expected utility is zero. 

We constrain the trading mechanism in three ways to conform with our 
notions of voluntary trade among a set of independent buyers and sellers. 
First, in the final distribution of goods and money, the N objects are each 
assigned to a trader. Thus, necessarily, there is balance of goods in expecta- 
tion : 

iil p:(.?, 2) + f q;(i, 5) = N (2.03 ) 
/=I 

for all (a, i). An allocation schedule achieves balance of goods in fact by 
making its assignment of objects correlated across traders6 Second, 
payments are constrained to offset receipts: 

(2.04) 
,=I ,= I 

6 Specifically for a given set of declared valuations, buyer 1 can be assigned an object with 
probability p, through an independent draw of a random number in the [0, l] interval. 
Buyer 2 can next be assigned an object with probability p2 through a second independent 
draw, etc. This process of assigning objects through independent draws first to the M buyers 
and then to the N sellers can be continued until either (a) all N objects have been assigned 
or (b) K objects remain and exactly K buyers and sellers remain to have an object assigned 
to them. If eventually (a) occurs. then the remaining buyers and sellers should be excluded 
from receiving an object. If eventually (b) occurs, then the K remaining buyers and sellers 
should each receive an object. This rule guarantees that exactly N objects are distributed. The 
dependence that this rule induces between the probability of buyer 1 being assigned an object 
and seller N not being assigned an object has no effect on our results. 
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for all (i, i). The reason for this latter constraint is that trading connotes 
individuals freely cooperating with one another without subsidy or tax 
from a third party. Third, the mechanism must be individually rational. 

In addition to these three constraints we also impose a fourth constraint 
on the mechanism : incentive compatibility. An incentive compatible 
mechanism never gives any trader an incentive to declare a reservation 
value different than his true reservation value, i.e., declaration of true 
values is a Bayesian-Nash equilibrium if the mechanism is incentive com- 
patible.’ Imposition of it is costless because the revelation principle states 
that for every mechanism an equivalent incentive compatible mechanism 
exists8 Therefore, even though we do not consider all conceivable 
mechanisms, we know that none of the mechanisms we overlook ex ante 
dominate the mechanisms we do consider. 

Formalization of the individual rationality and incentive compatibility 
constraints requires additional notation and definitions. Let 

~~(~~)=~...~p:(x,z)g(x-.~, z)d-XL,& (2.05) 

and 

F;(xi) = I s . . . I:(x,,‘)~(,~~~,-~)~x~;~z. (2.06) 

Conditional on buyer i’s reservation value being xi, the quantities p:(x,) 
and ?T(x;) are, respectively, his expected probability of receiving an object 
and his expected money receipts. The probabilities qJ and SJ have parallel 
definitions for seller j. The expected utilities of buyer i and seller j condi- 
tional on their reservation values are 

ui(-Xj) = T:(Xi) + XjpI(.X;) (2.07 ) 

and 

VJZj) = $(Zi) - Zj( 1 - q;(Z,)). (2.08) 

Individual rationality requires that, for all buyers i and all sellers j, 
U,(x,) > 0 for every xi E [a, b] and Vi(z,) 2 0 for every zj E [a, b]. Incentive 
compatibility requires that, for every buyer i and all xi and .fi in [a, b], 

U,(x,) > r:(ai) + Xijq(2,) (2.09) 

’ Harsanyi [15] introduced these concepts of Bayesian equilibrium. 
8 The revelation principle has its origins in Gibbard’s paper [7] on straightforward 

mechanisms and was developed by Myerson [21,22], Harris and Townsend [14], and Harris 
and Raviv [ 131. 

64’48,L21 
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and, for every seller j and all z and i in [a, b], 

V,(z,) 2 qi,, - Zj( 1 - q;,‘(j,,,. (2.10) 

If (2.09) is violated for some xi and Zi, then buyer i has an incentive to 
declare gi rather than his or her true reservation value, xi. From this point 
forward we only consider incentive compatible mechanisms and we assume 
that traders always reveal their true reservation values. 

Characterization of Incentive Feasible Mechanisms 

A mechanism is called incentive feasible if it is both individually rational 
and incentive compatible. Theorem 1 characterizes all incentive feasible 
mechanisms. It exactly generalizes Myerson and Satterthwaite’s [23] 
Theorem 1 from the bilateral case to the general case of multiple buyers 
and sellers. 

THEOREM 1. Consider a given replication t of a trading problem 
(M,, NO, F, H). Let p’( ., .) and q’( ., . ) be the buyers and sellers, probabil- 
ity schedules, respectively. Functions r’( ., ) and s’( ., .) exist such that 
(p’, q’, r’, s’) is an incentive feasible mechanism tf and only ifp;( .) is a non- 
decreasing function for all buyers i, qi(. ) is a nondecreasing function for all 
sellers j, and 

M 
CJ‘ f( 

F(xi) - 1 . . . 
i=l xi+ f(Xi) > 

p;(x, z) g(x, z) dx dz 

z, + H(zj) - 
.’ h(z,) > 

[l-q;(x,s)] g(x,z)dxdz>O. (2.11) 

Furthermore, given any incentive feasible mechanism, for all i and j, Ui(. ) is 
nondecreasing, Vj( . ) nonincreasing, and 

= 1 min U,(x)+ C ZEnFb, Vi(z) 
j= 1 -ye Ccbl j=l 

= P:(x, z) gb, z) dx dz 

zj+$$) [l-q;(x,z)]g(x,z)dxdz. (2.12) 

This theorem is the key to constructing ex ante optimal mechanisms 
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because it establishes that if the probability schedules (p’, q’) satisfy the 
relatively simple constraint (2.11), then payment schedules (T’, s’) exist 
such that the mechanism (p’, q’, rT, s’) is an incentive feasible trading 
mechanism.’ 

Ex Ante Efficiency 
A trader’s ex ante expected utility from participating in trade is his 

expected utility evaluated before he learns his reservation value for the 
object. Thus 8; = J Ui( t) f (t) dt and rj = j Vi(t) h(t) dt are buyer i and 
seller j’s ex ante expected utilities, respectively. A trading mechanism is ex 
ante efficient if not trader’s ex ante expected utility can be increased 
without either 

(a) decreasing some other trader’s ex ante expected utility or 
(b) violating incentive feasibility. 

We focus on a particular ex ante efficient mechanism: the one that places 
equal welfare weights on every trader and maximizes the sum of the 
traders’ ex ante expected utilities. This maximiation is equivalent to 
maximizing the sum of all traders’ expected gains from trade because each 
trader’s utility function is separable in money and the object’s reservation 
value. In contrast, ex post optimality requires that the mechanism, 
irrespective of incentive feasibility, exhausts the potential gains from trade 
by assigning the N objects to the N traders who have the highest 
reservation values. 

Virtual Reservation Values and u-Schedules 

Virtual reservation values play a crucial role in construction of ex ante 
efficient mechanisms.” Buyer i’s virtual reservation value is 

tiB(X,, c() = Xi + ci.(‘:“;t, ‘), 

and seller j’s virtual reservation value is 

iS(;,,+zj+ct.~ 
I 

(2.13) 

(2.14) 

where tc is a nonnegative, scalar parameter. Let the vector of virtual reser- 
vation values be 1,9(x, z, CC) = [tiB(x,, a), . . . . $‘(z,, a)]. 

9 The assumption that trader’s utility functions are linear in money is important in this 
simplification. Maximization of the expected gains from trade is dependent only on the final 
allocation of goods, not on the payments among the traders. 

lo Myerson [24] introduced the concept of virtual utility, A virtual reservation value is a 
special case of a virtual utility. 
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Define RB(x, z, a) to be the rank of the element $B(~i, a) within $ and 
define Rs(x, Z, a) to be the rank of the element II/‘(z,, a) within I,+. For 
example, if M= N= 1 and $ = (0.4, 0.2), then RF= I = 2 and R,"= 1 = 1.” 
Given this notation, a trading problem (M,, N,, F, H), and a value T, we 
define a class of buyer and seller probability schedules that are 
parameterized by a: 

p:"(x, z) = 
1 if Ry(x,z, a)>M, 
0 if Ry(x,z, cc)<M, i = 1, . . . . M; (2.15) 

qT(x, z) = 
1 if RT(x, z, ~1) > A4, 
0 if Rs(x, z-, cc)<M, j = 1, . . . . N. (2.16) 

Let p” = (py, . . . . p;) and q'" = (47, . . . . q;). This pair of probability 
schedules, which we call an a-schedule, assigns the N available objects to 
those N traders for whom the objects have the highest virtual reservation 
values. 

Before proceeding further we should discuss virtual reservation values 
and a-schedules. If CI = 0, then $‘(xi, 0) = xi and Il/“(zj, 0) = zj. The virtual 
reservation values equal the true reservation values and the N objects are 
assigned to the N traders who have the highest reservation values. If, 
however, a > 0, then $,(x,, a) <xi and tij(zj, c() > Z, almost everywhere. 
Thus, for c( > 0, buyers’ virtual reservation values are distorted downward 
to be below their true reservation values and sellers’ virtual reservation 
values are distorted upward to be above their true reservation values. 
Intuitively these distortions express the strategic behavior that traders 
exhibit under a mechanism such as the double auction that is not incentive 
compatible. In this case the possibility exists that the objects will not be 
assigned to the N traders whose reservation values are highest. Specifically, 
if a > 0, then pairs of reservation values (x,, z,) exist such that xi > zj and 
$B(x,, a) < Ic/“(z,, a). Trade fails to occur in such a case even though it 
should because the buyer values the object more than the seller. For this 
reason an cc-schedule does not necessarily achieve ex post optimality when- 
ever a> 0. 

r’ If several elements of I) have the same value so that it is ambiguous which buyers and 
sellers should be classified as having virtual reservation prices as ranking within the top N, 
then the probability schedules should randomize among the several candidates so as to 
guarantee that exactly N traders are assigned an object. Thus if seller 2 and buyer 3 are tied 
for rank M, then each should be given a nonindependent probability of 0.5 for receiving an 
object in the final allocation. 
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3. RESULTS 

Ex Ante Efficient Mechanisms and cr*-Schedules 

Fix the value of the parameter CI > 0 and consider the a-schedule 
(p’“, 4’“). Theorem 1 states necessary and sufficient conditions for payment 
schedules (r, S) to exist such that the trading mechanism (p’“, q’“, r, s) is 
incentive feasible. Central to the theorem’s requirements is inequality 
(2.1 I), the incentive feasibility (IF) constraint. For the case of an 
a-schedule, substitution of (2.13) and (2.14) into (2.11) yields the require- 
ment 

- ,g, I)“(?,, 1 )[ 1 - q;‘(x, z)]} g(x, z) d.lc dz 

3 0. (3.01) 

This function G(cr, r) plays a central role in the theorems that follow. 
Let z* =min{aE [IO, l)\G( a, t)aO). An cc-schedule (p’“, 4’“) is an 

cx*-schedule if and only if a=~* and pf”*( .) and qJ”( .) are nondecreasing 
over [a, 61 for all buyers i and all sellers j. By definition, an x*-schedule 
satisfies Theorem I’s requirements. Therefore payment schedules (r’“‘, sra*) 
exist such that the mechanism (p”*, q’“‘, rr’*, s’%*) is incentive feasible. 
We call this mechanism the a*-mechanism for the trading problem 
(M,, A’,, F, H) with a market size t. 

Theorem 2 states sufficient conditions for the a*-mechanism-if it 
exists-to be an ex ante efficient mechanism. Theorem 3 states sufficient 
conditions for the a*-mechanism to exist and be ex ante efficient for a 
trading problem with a given market size. 

THEOREM 2. Suppose an a*-mechanism exists for market size z of 
the trading problem (AI,, No, F, H). The a*-trading mechanism 
(p?“‘, q’“*, y*, STZ* ) is ex ante efficient and has positive expected gainsfrom 
trade. 

THEOREM 3. If (M,, N,, F, H) is a regular trading problem, then, for 
every market size z, the cr*-mechanism esists, is incentive feasible and ex 
ante efficient, and has positive expected gains from trade. 

Convergence to Ex Post Optimality 

Before we determine the rate a which the ex ante optimal mechanism 
converges to ex post optimality, we need to show that it converges as 
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z -+ co. Theorem 4 establishes this convergence both as it approaches the 
limit and in the limit. In order to understand the theorem, recall two facts. 
First, the closer the parameter a is to zero, the less virtual reservation 
values are distorted from true reservation values and the closer the 
cc-schedule comes to achieving ex post optimal assignment of the objects. 
Second, for a given value of a and a given market size r, if G(cr, r) 2 0, then 
payment schedules (r, s) exist such that (p”, q”, r, s) is incentive feasible. 

THEOREM 4. Pick an a E (0, 1). If the trading problem (M,, N,, F, H) is 
regular, then a z’ > 0 exists such that, for all market sizes t > T’, G(a, t) > 0. 
Moreover lim, _ % G( 0, t ) = 0. 

The content of the theorem is that, no matter how close to zero we set a, 
if the market becomes large enough, then that a-schedule and its associated 
payment schedule is incentive feasible. 

Rate of Convergence 

We present two results. The first is an upper bound on the size of the 
parameter a* as a function of r. The magnitude of a* as a function of z is 
a measure of the mechanism’s distance from ex post optimality. 

THEOREM 5. Consider a regular trading problem (M,, N,, F, H). The 
parameter a* of the ex ante efficient a*-mechanism is at most O((ln t)“‘/z) 
for large t. 

The second result, which is our main result, states an upper bound on 
the expected proportion of the gains from trade that the optimal 
mechanism fails to realize. Let T*(t) represent the expected gains from 
trade that the ex ante efficient a*-mechanism realizes for the trading 
problem (M,, N,, F, H) with market size z and let To(z) represents the 
expected gains from trade that an ex post efficient mechanism (if one 
existed) would realize for the same trading problem and market size. 
Let W(T) = 1 - [T*(z)/T”(~)] b e a measure of the market’s relative 
inefficiency. 

THEOREM 6. Consider a regular trading problem (MO, No, F, H). For 
the ex ante efficient, a*-mechanism, W(z) is at most O(ln r/r*), i.e., for large 
z. a K exists such that 

Two comments about Theorem 6 are in order. First, the order of W as 
a function of z indicates the mechanism’s rate of convergence toward ex 
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post optimality and is independent of the choice of the underlying distribu- 
tions F and H. For a given value of z, however, the absolute size of W is 
a function of F and H. Second, we conjecture that the bounds stated in 
Theorem 5 and 6 are not tight. Specifically, the example in the next section 
suggests that the true bounds are 0( l/z) for Theorem 5 and 0( l/~‘) for 
Theorem 6. 

4. AN EXAMPLE 

In this section we numerically calculate for varying market sizes 7 the 
ex ante efficient a*-trading mechanisms when M, = N, = 1 and traders’ 
reservation values are uniformly distributed on the unit interval. This 
distributional assumption guarantees that the trading problem is regular as 
Theorem 3 requires. Therefore an a*-mechanism exists for all market 
sizes z. 

The key step in constructing an efficient mechanism for a given number 
of traders is to calculate CI* as the solution of G(cr, t) = 0. Given that 
traders’ reservation values are uniformly distributed over [IO, 11, 
$B(~,,cl)=(l+c().~i-~ and $s(~,,~)=(l+~)~,. Since N,=M,=l, 
G(cr, T) = 0 reduces to 

G(U, t) = T j; I+bB(X, 1 ) p’“(X)f(X) dX 

=T I ‘(2x-I)p”(X)dX-j0’22(1-q’~(;))~~}=o, (4.01) 
0 

where all i and j subscripts have been suppressed because all traders are 
symmetric with each other. It may be rewritten as 

([2x- 11 p’“(x)-2X[l -q”(x)]} d-x=0. (4.02) 

Calculation of the marginal probabilities p’“(x) and q”(z) is messy, but 
straightforward. ‘* 

Table I presents the results. The values of u* have the following inter- 
pretation. If buyer i with reservation value xi and seller j with reservation 
value Z, are each the marginal trader on his side of the market, then 

‘* Details are in Gresik and Satterthwaite [9]. 
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TABLE I 

Properties of the @*-Mechanisms as the Number Traders Increases 

T u* a.*/(1 +cc*j l/U* T*(T) T’(T) W(T) 

1 0.3333 0.2500 3.00 0.14060 0.16661 0.1564 
2 0.2256 0.1841 4.43 0.31146 0.39999 0.0563 
3 0.1603 0.1382 6.24 0.62572 0.64286 0.0267 
4 0.1225 0.1091 8.17 0.87527 0.88887 0.0153 
6 0.0827 0.0764 12.09 1.37507 1.38462 0.0069 
8 0.0622 0.0586 16.08 1.87504 1.88235 0.0039 

10 0.0499 0.0475 20.04 2.37501 2.38095 0.0025 
12 0.0416 0.0399 24.04 2.87501 2.88000 0.0017 

necessarily i’s virtual reservation value is greater than j’s virtual reservation 
value, i.e., tiB(xi, a*) > tjs(.zj, cr*). Substitution of explicit forms for tj” and 
II/’ into this inequality followed by some algebraic manipulation shows that 
necessarily 

a* x-Zj> * +r*’ 

This required, positive difference in reservation values is the wedge that 
privacy of traders’ reservation values creates within finite-sized markets. Its 
presence makes achievement of ex post efficiency impossible. Note that as 
CC* becomes small, the size of this wedge becomes essentially equal to the 
value of CI* itself. The fourth column displays ~/CC* and shows that c(* is 
apparently bounded from below by l/25. The last column shows for that 
W(r), the relative inefficiency of this market, vanishes as (l/~‘) for larger 
T. Finally, note that by the time the market reaches 12 traders (t = 6) its 
relative ineficiency is down to the negligible level of less than 1%. 

5. COMPARISON WITH A FIXED-PRICE MECHANISM 

Theorem 6 serves as a benchmark for evaluating how well other 
mechanisms elicit and use private information as the market becomes large. 
Here we make this comparison for the fixed-price mechanism.13 It works as 
follows. Price is fixed at the competitive price c that would obtain if our 
simple market had a continuum of buyers with reservation value dis- 

I3 William Rogerson suggested to us that the fixed-price mechanism is an interesting alter- 
native to the double auction. See Hagerty and Rogerson [ 111 for a discussion of its properties 
in the bilateral case. 
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TABLE 11 

Comparative Inefftciences of the Fixed Price 
Mechanism ( W’) and the Optimal Mechanism ( W) 

1 0.2500 0.1564 
2 0.2187 0.0563 
3 0.1979 0.0267 
4 0.1826 0.0153 
6 0.1611 0.0069 
8 0.1462 0.0039 

10 0.1350 0.0025 
12 0.1262 0.00 17 

tributed on F and a continuum of sellers with reservation values distributed 
on H. All buyers whose reservation values are greater than c indicate that 
they want to buy one unit and all sellers whose reservation values are less 
than c indicate that they want to sell one unit. The strategy of reporting 
honestly the desire to trade or not to trade is a dominant strategy for each 
trader because price is fixed. If the market does not clear, which is almost 
always the case, then rationing is done by random selection from among 
the traders on whichever side of the market is long, 

The problem with random exclusion is that a buyer i whose gains from 
trade, xi - c, are large is just as likely to be excluded as a buyer k whose 
gains from trade, xk - c, are small. Therefore, as r becomes large, the 
average loss per excluded trader remains a constant. This is unlike the 
optimal mechanism where, as r becomes large, the average loss per 
unrealized trade declines rapidly because of the optimal mechanism’s 
ability to use the private information it elicits. 

Asymptotically for the fixed-price mechanism, the number of traders who 
wish to trade but who are excluded is O(r1/2).‘4 This is also the order of 
the gains from trade that the mechanism fails to realize. The number of 
traders who wish to trade at this fixed price c is O(r). Therefore the gains 
from trade that a hypothetical ex post efficient mechanism would be expec- 
ted to realize are O(r). Dividing the order of the expected inefficiency by 
the order of the total gains available gives the result W’(r) = 0(1/r”‘) 
for the fixed-price mechanism, which contrasts starkly with W(z)= 
0{ (In ~)/r’} for the optimal trading mechanism. Further contrasting the 

I4 This follows from the fact that the number of buyers who wish to trade at the fixed price 
c is a binomial variable that can be approximated asymptotically by a normal distribution 
with standard deviation O(r”‘). This calculation is a special case of Bhattacharya and 
Majumdar’s [ 1 ] Theorem 3.1. 
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performance of these two mechanisms is the fact that the magnitude of the 
inefficiency starts out larger for the fixed-price mechanism than for the 
@*-mechanism. Table II, which shows W(r) and W’(r) for M, = N, = 1 and 
uniformly distributed reservation values, illustrates both these points. In 
fact, for the small values of t shown on the table, IV(t) converges to ex 
post efficiency at a rate noticeably slower than 0( l/t”‘). Both of these 
comparisons emphasize the benefit of eliciting valuation information from 
traders and-within the limits of incentive compatibility-using it to assign 
the objects appropriately. 

6. FURTHER QUESTIONS 

Our results are only a starting for understanding how fast market 
mechanisms converge to perfect competition in the presence of private 
information. Four of the more important questions that need attention are 
as follows. First, are asymptotic results useful when studying trading 
problems? While the numerical results of Section 4 are supportive of the 
idea that even for small numbers the asymptotic rate is a good approxima- 
tion, we cannot conclude without further investigation that it is an equally 
good, small number approximation for prior distributions other than the 
uniform. Second, if traders are risk averse, does the O((ln z)/r*) result con- 
tinue hold? A recent paper of Ledyard [18] emphasizes the importance of 
this question. He shows, within the context of a somewhat different model, 
how careful selection of utility functions for a fixed set of agents can lead 
to almost any desired equlibrium behavior.15 

Third, if agents’ reservation values are not independent of each other, 
but rather are correlated, then does our convergence result hold? Milgrom 
and Weber [20] have shown in their studies of auctions that such distinc- 
tions are important. Gresik [S] employs a discrete distribution model of 
bilateral trade to show that the introduction of affiliated valuations can 
result in the existence of ex post efficient trading mechanisms. Whether 
these results carry over to models with continuous distributions is an open 
question. Fourth, is our focus on optimal mechanisms constructed using 
the revelation principle appropriate? In practice direct revelation 
mechanisms are seldom used to allocate goods. The reason is that a direct 
revelation mechanism’s allocation and payment rules must be changed each 
time the traders’ prior distributions concerning other traders’ reservation 
values change. This cannot be done practically because traders’ priors are 
unobservable. Consequently, the rules of a real trading mechanism are kept 

I5 Ledyard’s argument as it stands not address the focus of this paper: how does a Bayesian 
equilibrium converge toward the competitive allocation as the initial set of traders is 
replicated repeatedly. 



RATE OF CONVERGENCE TO EFFICIENCY 321 

constant and not changed each time traders’ expectations about each 
others’ reservation values change. This makes the result of Wilson [3 1 ] 
concerning the interim efficiency properties of the double-auction 
mechanism desirable. 

7. PROOFS 

Preliminaries 

Detailed proofs of Theorems 1, 2, and 3 are contained in Gresik and 
Satterthwaite [9] and in less detailed form in Gresik and Satterthwaite 
[lo] and Wilson [30]. The techniques of the proofs are a straightforward 
generalizations of Myerson and Satterthwaite’s [23] treatment of the 
bilateral case. 

Proofs of Theorems 4, 5, and 6 require a detailed understanding of the 
asymptotic behavior of the marginal distributions pTa and 4”. We defined 
p’“(x,) to be the marginal probability that a buyer i with reservation value 
-xi receives an object.16 Its interpretation in terms of a simple random trial 
is this. Fix ‘CL Draw independently M- 1 = zM, - 1 buyers’ reservation 
values from F and N= zN, sellers’ reservation values from H. Transform 
these reservation values into virtual reservation values using $“( ., CI) and 
$‘( ., a), respectively. The probability p’“(xi) is the probability that buyer 
i’s virtual reservation value $B(xj, c() is greater than the Mth-order statistic 
of the M+ N- 1 virtual reservation values of the other traders.” If 
$B(~~j, CC) is less than the Mth-order statistic, then buyer i is not assigned 

object. Denote with 4 this Mth-order statistic.” Then 
f(.ri) = Pr{t d $B(.~- LX)}. Th$ in order to understand p” 
understand th:Mth-or’ier statistic’c,,. 

we must 

A standard result is that the Mth-order statistic of a sample of 
n = r(M, + N,) random variables independently drawn from a single dis- 
tribution function is asymptotically normally distributed.” A second, less 
well-known result is that the expected value of the Mth-order statistic of a 
size n random sample drawn from a distribution converges asymptotically 
toward the population quantile of order M,/(M,, + N,) at a rate 
O((ln T)/T').'~ Two reasons exist why these results cannot be applied 

I6 The i subscript identifying the buyer is suppressed because, given our assumption that 
each buyer’s reservation value is drawn from F and given our focus on a*-mechanisms, every 
buyer’s p” distribution is identical. 

” The first-order statistic is the smallest element of the sample, the second-order statistic is 
the second smallest element, etc. 

I8 The meaning of the p subscript on &r is made clear later in this section. 
” See Theorem 9.2 in David 14, pp. 254-2551 and Theorem A of Section 2.3.3 in Serfling 

[28, p. 771. 
‘a See Hall [12], David and Johnson 131, and expression (4.6.3) in David 14, p. go]. 
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directly to our problem. The first is this. The M- 1 buyers’ reservation 
values are drawn from the distribution F and transformed into virtual 
reservation values by $“. Similarly the iV sellers’ reservation values are 
drawn from the distribution H and transformed by $“. Therefore the result- 
ing sample of virtual reservation values are not drawn, as the standard 
theorems require, from a single distribution; it is a sample of nonidentically 
distributed random variables. The second problem is that $I’ is the dis- 
tribution for the Mth-order statistic of a sample of size n - 1, not a sample 
of size n. In other words, as r increases the ratio of buyers to sellers in the 
sample underlying jY’ changes. Theorem 7 below resolves both problems. 

In order to state Theorem 7 some additional notation is helpful. Let 
{‘fc, ‘.., *“,-,, ‘Is, . . . . $i} denote the vector of virtual reservation values 
where each virtual reservation value $y is drawn independently from F and 
each lc,; is independently drawn from fi. The distribution P is the distribu- 
tion that is obtained by drawing a reservation value from F and then trans- 
forming that value into a virtual reservation value by means of $“( ., x). R 
is similarly defined. Let [a’, 6’1 be the union of the supports of F and G. 
The dependence of P on a is suppressed because we use only the 
asymptotic behavior of ,” for fixed values of X. Define, for any t E [a’, h’], 
the average distribution function to be f(t) = pF(‘(t) + (1 - p) A(t) where 
p = M&M, + N,). The population quantile of order p is rp= 
inf,{ y: r(y) 2 p}. Finally, define (~(t)=M,F(t)[l-~(:()]+N,j;(t) 
[ 1 - A(t)]. It is the standard deviation of the random number of virtual 
reservation values that are no greater than t whenever the sample is MO 
buyers and N, sellers. 

THEOREM 7. Let rPr be the Mth-order statistic of a sample 
($F, . . . . $“,- ,, $7, . . . . I/J”,) where M=tM,, N=sN,, all $7 are drawn from 
the distribution P and all lc,s are drawn from lhe distribution R. Let 
n = r(M, + N,) and p = M,/(M, + N,,). In a neighborhood of tp, f has 
positive continuous density r’ and bounded second derivative r”, then, for 
any t, 

lim Pr Cz(M, + N,H”*(5”,, - 5,) 
~(~p)/{(Mo+N,)“2~‘(~p))’ * 

(7.01) T-% 

and, as 7-+ a-3, 

(7.02) 

The theorem is stated from the buyer’s point of view. A simple relabeling 
of the variables permits us to apply it to sellers. Its proof is found in Gresik 
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and Satterthwaite [ 10, Th. 6.51. The theorem is almost a restatement of the 
standard results for the special case in this paper. The aspect that differs 
from the standard results is that we have been unable to obtain the 0{ l/z’, 
bound on IE(fpb,- <,)I that is found in the standard results and that, we 
conjecture, holds here. It is this inability that causes the bound in 
Theorem 6 to be O((ln z)/T’) instead of 0(1/z’).” 

Proof of Theorem 4. As the initial step in this proof we must show how 
Theorem 7 applies to p” and ,I’. Consider some buyer i. For i to be 
assigned an object his virtual reservation value must be greater than the 
Mth-order statistic of the virtual reservation values of the N sellers and the 
other M - 1 buyers. Denote by $$,) this order statistic and let ,4,“” be its 
distribution function. Theorem 7 applies to $yG,. It is asymptotic normal 
with an asymptotic expected value 6:;) and asymptotic variance a;/~. 

The density function p’“( .) describes the distribution of the random 
variable ,~(a, t) = [$“I -‘($Fi,) where [$“I ‘( .) is the inverse of $“( ., c(); 
it is the critical value that i’s reservation value must exceed if i is to be 
assigned an object.22 The variate x(c(, z) is also asymptotically normal with 
asymptotic expectation X* = [ 11/‘] ~ ‘( $r;, ,) and asymptotic variance 
J’oi/z where J=a[$“]-‘/8xi evaluated at I,&$,). Consequently as 7 

becomes large the distribution of ~(a, T) approaches a step function with 
the step at X*. 

Define SF;,, ,4sa, 1,5$), af, ;(a, z), and Z* in parallel fashion. As t 
becomes large the distribution z(c(, r) approaches a step function with the 
step at 5* where Z* < .U*. The reason for the inequality Y* < .U* is this. 
First, as z becomes large, I$:&) - $:;,I approaches zero because the sam- 
ples that generate $sif) and $F;, become essentially identical as z increases. 
Second, for all )’ in the ranges of II/“( ., c() and $‘( ., c(), necessarily 
[$B]p’(~~)- [$s]p’(.v)>O because $B(.~,a)-.u<O and $‘(x, c()--x>O. 
Third, (2.13) and (2.14) imply that if a>0 and N’E (a, h), then 
lp(w, a)-l+bB(w, a)>O. 

We can now prove the theorem’s second part: lim, j 7. G(0, t) = 0. One 
form in which (3.01), the IF constraint, can be written is 

G(x, z) = A4 j-b t,bB(x, 1) p’“(x) f(x) dx 
0 

- N s ,” $“(z. l)[l -G’“(Z)] h(z) dz 

2 0. (7.03) 

Theorem 7 implies that, as z increases, the variances of JY( .) and q”(. ) 

” See (7.23) and (7.24). 
*2 The inverses exist because regularity implies monotonicity of $” and ILs, 
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approach zero. This means that in the limit, if M =O, both distributions 
become step functions with the step at the competitive price c. Thus 

p(x)= O 
i 

if x d c, 
1 if x > c, 

and 

i 

0 
ij”O(z)= 1 

if 
if ;;; 

(7.04) 

(7.05) 

Substitution of these into (7.03) and integrating the resulting expression 
shows that, for a = 0 and z -+ co, the IF constraint is satisfied: 

lim G(0, t) 
z--tee. 

=Mj” i,GB(x, l)P”“(x)f.(x)dx-NJ*bt//S(z, l)[l -q”‘(z)] h(z)dz 
a u 

=Mj’(xf(x)+F(x))dx-N/C(zh(z)+H(z))dz-M/hdx 
< cl <’ 

=Mj’d[xF(x)]-Nj’d[zH(z)]-Mj’dx=O (7.06) 
< u ‘ 

because N(a) =O, F(‘(b) = 1, and M(l -F(c)) =NH(c). Therefore in the 
limit, when the number of traders becomes infinite, the competitive price c 
satisfies the IF constraint, describes the ex ante efficient mechanism, and is 
ex post efficient. 

We now prove the first half of the theorem. Fix the value of cx within 
(0, 1). The resulting a-mechanism transforms the vector of traders’ reserva- 
tion values (x,, . . . . x,, zi, . . . . zN) into a vector of virtual reservation values 
(tiB(x,, a), . . . . \I/‘(z~, c()) and assigns the N objects to the N traders who 
have the highest virtual reservation values. Suppose, for some i, 
G(cr, S) < 0. As t increases from z^ the distributions pZ’ and 9” approach 
step functions. Therefore, as with (7.06), 

- N jub I)‘(z, l)[ 1 - q’*(z)] h(z) dz} 

= 11. dxF(x) - N 1” dzH(z) - A4 s” dx 
u c- l 

= M[bF(b) - x*F(x*)] - Nz*H(Z*) - M(b - X*) 

= x*M( 1 - F(x*)) - Z*NH(z*) 

=(X*--*)M(l-F(x*))>O (7.07) 
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because : 

(a) asymptotically M( 1 -F(X*)) is the expected number of buyers 
whose reservation values are greater than II/F:) and are therefore assigned 
an object; 

(b) asymptotically NH(.?*) is the expected number of sellers whose 
reservation values are less than I,$$, and are therefore assigned to sell their 
objects; 

(c) M( 1 -F(X*))= NH(Z*) >O because the blance of goods con- 
straint requires that supply equal demand ; and 

(d) .f* -z* > 0 is shown at the proofs beginning. 

The asymptotic normality of LIF’ and /jy and the differentiability of 
$“( ., a) and @“( ., ~1) imply that, as z increases, G(cr, T) approaches 
1% + m G(cc, T) continuously. Therefore, a T' must exist such that, for all 
T>T', G(cr,T)>O. 

Proof of Theorem 5. The proof is based on an analysis of the 
asymptotic properties of the IF constraint, G(cr, T) = 0. Recall that, for a 
given T, the ex ante efficient mechanism is the a*-mechanism where CI* is 
the root of G(cr, T) = 0. Rewriting (3.01) and reversing its order of integra- 
tion gives 

G(ol,T)=MjbZ(r)~B(r;~rT)dr+i\ij~J(I)~S(r;a,T)df-!\iK=O (7.08) 
a (I 

where 

z(r) = j” tiB(x, 1 )f(-~1 dx, 
I 

J(t)=f$(z; l)h(z)dz, 
I 

(7.09) 

PB(x; c(, T) = dp’“(x)/dx, &(z; LX, T) = dq’“(z)/dz, (7.10) 

p’*(x) = j.’ pB( t; LY, 5) dr, 
‘1 

q’“(z) = j; ps(t; a, T) dr, 

(7.11) 

K= $‘(z, 1) h(z) dz = b. (7.12) 

The functions pB and ps are probability density functions for p” and 4’“, 
respectively. As the first part of the proof of Theorem 4 points out, p7’ and 
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$’ are asymptotically normal distribution functions with variances that are 
0(1/s); thus asymptotically pB and ps are normal densities.‘3 

Taylor series expansions around c, the competitive price, may be taken 
of I(t) and J(t) and substituted into (7.08): 

G(a,r)=Mjub{Z(c)+Z’(c)(~-c) 

=o (7.13) 

where I’(c) and J’(c) are first derivatives of I and J evaluated at c, Z”(c) 
and J”(c) are second derivatives, and R,(t),and R,(t) are the remainder 
terms for the expansions. Two sets of terms may be dropped. First, a 
derivation similar to that of Eq. (7.06) shows that, for large z, 

MCbI(C)PB(f;~,T)df+NShJ((.)~S(I;~,T)dl-NK=O; (7.14) 
a L( 

therefore these three terms may be dropped.24 Second, the two remainder 
terms R, and R, may be dropped because, for large T, they are inconse- 
quential in comparison with the remaining terms. This follows from three 
facts : 

(i) both terms are 0[(t - c)‘], 
(ii) the densities &( .; CL, T) and ps( .; or, T) become spikes centered on 

c as T becomes large and a approaches zero, and 
(iii) the region of integration is a bounded interval. 

23 See footnote 24 for a qualification of this statement. 
l4 The reason that we must make (7.14) conditional on r being large is that @“(a) > 0 and 

p’“(b) < 1 for small r, i.e., they are improper distribution functions for small r. As r becomes 
larger, p”(a) +O and p”(b) + 1 very quickly. Specifically, Theorem 6.1 in Gresik and 
Satterthwaite [lo] implies that both p’“(a) and 1 -p’“(b) are O(e-‘). For large r these 
quantities are negligible. 
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Let Z(cc, z) = [I/I”]-‘(I+$:;,,). Therefore $B[x(c(, T), a] = $“[Z(cc, r), CC] = 
* rhI. The standard result that the asymptotic expectation of a function of 
a random variable equals the function of the variable’s asymptotic expecta- 
tion applies to .~(a, x) and ?(c(, T). Therefore, for large T, 

Ic/“[X(cr, z), a] = lp[S(a, r), cf] (7.18) 

where X(c(, T) is the expected value of +~(a, r), etc. 
For any realization of reservation values, exactly M traders must have 

virtual utilities less than or equal to the realization of ll/yLI. This means 
that the expected number of traders with virtual reservation values less 
than or equal to $$,,, is M. Therefore, asymptotically, 

(M- 1) F[Z(a, r)] + NH[S(a, t)] = A4 (7.19) 

where F[X(tx, r)] is the probability that a buyer will have a reservation 
value such that tiB(.xi, CI) < I/:;,, (M- 1) F[Z(r, r)] is the expected 
number of the M- 1 buyers who will not be assigned an object because 
their virtual utility values are too low, etc. 

Equations (7.18) and (7.19) implicity define .U(c(, r) and ~(LY, t). Holding 
T constant, they may be differentiated with respect to c(: 

(M- l)fI,+Nh5,=0, 

F-l+.f”x,-(F-l)f’x,=~~+~+~h’l,-~h’d, (7.20) if, + - 
f f' h h’ 

where H= H(c), F= F(c), f = f(c), h =/z(c), f’=df(c)/x;, h’=&(c)/&,, 
3, = aZ(O, 7)/&t, 5, = %(O, T)/&, and c is the competitive price. The 
derivatives are evaluated at tx = 0 and c because, as t becomes large, c( -+ 0, 
X -+ c, and z” + c. Solving the system for X, and evaluating it for large T at 
cc = 0 gives 

- NCfH- (F- l)hl zKt 
xa= Nhf+(M-1)f2 

(7.21) 

where K’ is some constant. Similar calculations show that Z, = K”, 
c%T~/&= 0(1/r), and aa;/&= O(l/?). The denominator of (7.17) is there- 
fore dominated by constant terms and, for large r, is 0( 1). 

For large T both sides of (7.17) can be integrated because its 
denominator is essentially constant : 
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f 
* 

a’(s) dT = - 5 
M”Z” fg + N,J” 

dz 
x 

MJ’ 2 + NJ” 

(7.22) 

where X,, Z,, a&at, and aa;/& are evaluated at a =0 where 
K = M,Z’K’ + N, J’K”. Therefore, for large r, 

-- & M,Z”(az,(O, T) - ago, cc)) 

--&Iv,J~+$(~, T)-@;(o, CCI)) 

=o(@+r)+o(j) 

= o (In t)“’ 
( > ? . 

(7.23) 

This follows from three facts. First, when CI = 0, x(c(, r ) = :(a, r) = $yG, and 
lim ? _ r($F,4l) = c. Second, Theorem 7 implies that 

1,‘Z 

IE(lj$-c)l=O q- . 
i > 

(7.24) 

Third, Theorem 4 states that a( co ) = 0. 

Proof of Theorem 6. A Taylor series expansion of the ex ante expected 
gains from trade, T[a(z), T], that an tl*-mechanism realizes is 

aqo,q i 
go, 7) + a(t) ~ 

2 a2TCE(z), sl 
aa +2 Ca(r)l aa’ (7.25) 

where E(Z) E [0, a(z)]. Three facts allow us to evaluate (7.25). First, for 
large t, the ex post optimal mechanism assigns the N objects to those N 
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agents whose reservation values are greater than c, the competitive price. 
Therefore 

T(0,r)srM,1‘6(t-c)f(t)dt+rN,~‘(c-t)h(t)dt=O(~) (7.26) 
c u 

for large T. 
Second, the last two terms on the right-hand side of (7.25) represent the 

ex post gains from trade that the ex ante optimal mechanism fails to realize 
as a consequence of tl(r) being greater than zero. Let S(cr, T) represent these 
two terms. S may be evaluated, for large r, as follows. Recall from the 
proof of Theorem 4 the meaning of X(CL, z) and Z(c1,z). For large z the 
expected number of buyers excluded from trading as GI increases from zero 
to tl(z) is 

(7.27) 

and the gains from trade that are lost from this exclusion are 

J 
.?(a. I) 

TM0 (t-c)f(t)dt. (7.28) 
c 

A similar expression exists for the gains from trade that the cl*-mechanism 
fails to realize on the sellers’ side. Consequently, for large z, 

-S(u, s)=sN, J L’ 
Z(cz,z) 

(c-t)h(t)dt+rMoJ-fix’Ti(t-c)f(t)dt. (7.29) 
c 

Differentiation gives 

= -zlv,[c-Z(C1,t)]h[z(cr,t)]z,+tM,[.~(~,z)-c]f[x(cc,~)]x, 
(7.30) 

and 

a2qu, T) - 
aa2 

= -zN,((c - 5)[hZ,, + h’(FJ2] - h(z,)2) 

+zM,((x-C)[f~n,+f'(X1)2]+f(-Y31)2) (7.31) 
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where Z= .?(a, z), h = h[Z(a, T)]. fI = dZ(a, t)/aa, Z,, = d22(a, 7)/da2, 

h’ = dh[Z]/dz, etc. Evaluated for large 7 and a = 0 these derivatives are 

am, 7) -= 
aa 

wo, 7.) = o 

da 

and 

a2qo,7) a2s(o,7) - 
da2 = - aa2 = z(Noh(c)(Q2 + Mof(c)(,u,)‘) = O(7) (7.33) 

because a(t) + 0, X(a, 7) + c; 2(a, 7) -+ c, X, --f K’, and Z, + K” as 5 + co. 
Finally, the third fact is Theorem 5’s result that for large 7, 

a( 7) = 0( (In 7)“‘/7). 

These facts are sufficient to evaluate the expression of interest: 

a7-(o,7) i 
T(0, 7) + a(7) ~ 

2 amw, 7) 

, _ TM). 71= 1 _ 
aa +z [Ia(7)l ax2 

T(O, 7 1 T(O, 7) 

1 [a(7)]‘a2T(0, 7) 

=Z T(O,7) aa 

(7.34) 

which proves the theorem. 
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