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1. Introduction

Conventional game theory relies on agents correctly ascribing preferences to

the other agents. Unless an agent has a dominant strategy, that is, her optimal

choice depends on the choices of others and therefore indirectly on their prefer-

ences. We consider here the genesis of the strategic sophistication necessary to

acquire others’ preferences.

We address the questions: Why and how might this ability to impute prefer-

ences to others have evolved? In what types of environments would this ability

yield a distinct advantage over alternative, less sophisticated, approaches to

strategic interaction? In general terms, the answer we propose is that this abil-

ity is an evolutionary adaptation for dealing with strategic environments that

have a persistent element of novelty.

Our interpretation of strategic sophistication is dynamic in that it entails

learning other agents’ preferences from their observed behavior. It also extends

the theory of revealed preference in that knowing others’ preferences has conse-

quences for one’s own actions. Throughout the paper, we refer to such strategic

sophistication, for simplicity, as ToP, for “theory of preferences”.1

The argument made here in favor of such strategic sophistication is a substan-

tial generalization and reformulation of the argument in Robson (2001) concern-

ing the advantage of having an own utility function in a non-strategic setting.

In that paper, an own utility function permits an optimal response to novelty.

Suppose an agent has experienced all of the possible outcomes, but has not expe-

rienced the particular gamble in question and so does not know the probabilities

with which these are combined. This latter element introduces the requisite nov-

elty. If the agent has the biologically appropriate utility function, she can learn

1 Our “theory of preferences” is an aspect of “theory of mind”, as in psychology. An individual

with theory of mind has the ability to conceive of herself, and of others, as having agency,

and so to attribute to herself and others mental states such as belief, desire, knowledge, and

intent. It is generally accepted in psychology that human beings beyond infancy possess theory

of mind. The classic experiment that suggests children have theory of mind is the “Sally-Ann”

test described in Baron-Cohen, Leslie, and Frith (1985). According to this test, young children

begin to realize that others may have beliefs they know to be false shortly after age four. This

test relies on children’s verbal facility. Onishi and Baillargeon (2005) push the age back to 15

months using a non-verbal technique. Infants are taken to express that their expectations have

been violated by lengthening the duration of their gaze. The presence of this capacity in such

young individuals increases the likelihood that it is, to some degree at least, innate.
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the correct gamble to take; conversely, if she acts correctly over a sufficiently

rich set of gambles, she must possess, at least implicitly, the appropriate utility

function.

We consider here a dynamic model in which players repeatedly interact. Al-

though the perfect information game tree is fixed, with fixed terminal nodes,

there are various physical outcomes that are assigned to these terminal nodes in

a flexible fashion. More particularly, the outcomes are randomly drawn in each

iteration of the game from a finite outcome set, where this outcome set grows

over time, thus introducing suitable novelty.

Individuals know how their own utility functions are defined on all these phys-

ical outcomes, but do not know the preferences of their opponents. There will be

an advantage to an agent of sophistication—of effectively understanding that her

opponents act optimally in the light of their preferences. Such a sophisticated

agent can then learn opponents’ preferences in order to exploit this information.

The sophisticated players are contrasted with naive players who are rein-

forcement learners, viewing each subgame they initiate as a distinct indivisible

circumstance. Naive players condition in an arbitrary fashion on their own pay-

offs in each novel subgame. That is, their reinforcement learning is initialized

in a general way.

Sophistication enables players to better deal with the innovation that arises

from new outcomes than can such “naive” players that adapt to each subgame as

a distinct circumstance.2 The edge to sophistication derives from a capacity to

extrapolate to novel circumstances information that was learned about others’

preferences in a previous situation.3

2 The novelty here is circumscribed, but it is clear that evolution would be unable to deal with

completely unrestricted novelty.
3 The distinction between the ToP and naive players might be illustrated with reference to the

following observations of vervet monkeys (Cheney and Seyfarth 1990, p. 213). If two groups are

involved in a skirmish, sometimes a member of the losing side is observed to make a warning

cry used by vervets to signal the approach of a leopard. All the vervets will then urgently

disperse, saving the day for the losing combatants. The issue is: What is the genesis of this

deceptive behavior? One possibility, corresponding to our ToP strategy, is that the deceptive

vervet effectively appreciates what the effect of such a cry would be on the others, acts as

if, that is, he understands that they are averse to a leopard attack and exploits this aversion

deliberately. The other polar extreme corresponds to our naive reinforcement learners. Such

a type has no model whatever of the other monkeys’ preferences and beliefs. His alarm cry
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Consider now our strategic environment in greater detail. We view the par-

ticular environment here as a convenient test-bed on which we can derive the

speeds with which the various players can learn. The basic results do not seem

likely to be specific to this particular environment, so these differences in relative

learning speeds would be manifested in many alternative models.

We begin by fixing a game tree with perfect information, with I stages, say.

There are I equally large populations, one for each of the stages or the associ-

ated “player roles.” In each iteration of the game, a large number of random

matches are made, with each match having one player in each role. The physical

outcomes assigned to the terminal nodes are drawn randomly and uniformly in

each iteration from the finite outcome set that is available then.

Players have preference orderings over the set of outcomes that are ever pos-

sible, and so preferences over the finite subset of these that is actually available

in each period. Each player is fully aware of her own utility function but does

not directly know the preference ordering of his opponents.

At each date, at the start of each period, a new outcome is added to the set

of potential outcomes, where each new outcome is drawn independently from a

given distribution. The number of times the game is played within each period

grows at a parametric rate, potentially allowing the preferences of other players

to be learned.4

All players see the history of the games played—the outcomes that were chosen

to attach to the terminal nodes in each iteration of the game, the choices that

were made by all player roles (but not, directly, the preferences of others).

Players here differ with respect to the extent and the manner of utilization of

this information.

All strategies use a dominant action in any subgame they face, if such an

action is available. This is for simplicity, in the spirit of focussing on the im-

plications of others’s preferences, while presuming full utilization of one’s own

behavior conditions simply on the circumstance that he is losing a fight. By accident perhaps,

he once made the leopard warning in such a circumstance, and it had a favorable outcome.

Subsequent reapplication of this strategem continued to be met with success, reinforcing the

behavior.
4 When there more outcomes already present, there is more to be learned about where a new

outcome ranks.
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preferences. However, the current set up would permit such sequentially rational

behavior to be obtained as a result rather than as an assumption.

Although the naive strategies can condition in an arbitrary way on their own

observed payoffs in a novel subgame, it is crucial that they condition only on

these payoffs. The other details of these naive strategies are not relevant to the

main result. Indeed, even if the naive players apply a fully Bayesian rational

strategy the second time a subgame is played, they will still lose the evolutionary

race here to the ToP players. A slower and therefore more reasonable rate of

learning for the naive players would only strengthen our results.

Once history has revealed the ordinal preferences of all subsequent players

in any subgame to the ToP players, they choose a strategy that is a function

of these ordinal preferences and their own. Furthermore, there is a particular

ToP strategy, the SPE-ToP strategy, say, that not only observes subsequent

preferences but uses the SPE strategy associated with these preferences and

their own.

The ToP players know enough about the game that they can learn the pref-

erences of other player roles, in the first place. In particular, it is common

knowledge among all the ToP players that there is a positive fraction of SPE-

ToP players in every role.

It is not crucial otherwise how the ToP players behave—they could even

minimize their payoffs according to a fully accurate posterior distribution over

all the relevant aspects of the game, when the preferences of all subsequent

players are not known.

We do not assume that the ToP players use the transitivity of opponents’

preferences.5 The ToP players build up a description of others’ preferences only

by observing all the pairwise choices. Generalizing this assumption could only

strengthen our results by increasing ToP players’ learning speed.

Between each iteration of the game, the fraction of each role that plays each

strategy is updated to reflect the payoffs that this strategy obtains. This up-

dating rule is subject to standard weak assumptions. In particular, the strategy

that performs the best must increase at the expense of other strategies.

5 Indeed, the results here would apply even if preferences were not transitive.
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Theorem 1 is the main result here—for an intermediate range of values for

a parameter governing the rate of innovation, a unique SPE is attained, with

the SPE-ToP strategy ultimately taking over the population in each role, at the

expense of all other strategies—naive or ToP.

Moreover, our results hold if the ToP incur a fixed per game cost. This is

a key finding of the present paper since the previous literature has tended to

find an advantage to (lucky and) less smart players over smarter players—see,

for example, Stahl (1993). The underlying reasons for the reverse (and more

plausible) result here are that, in the limit considered in Theorem 1, i) the naive

players do not know the game they face while, at the same time, ii) the SPE-ToP

players do know all the relevant preferences and, furthermore, have adapted to

play the SPE strategy.

It is unambiguously better then to be “smart”—in the sense of ToP —than it

is to be naive, no matter how lucky—even for the relatively mild form of naivete

here.

2. A Model

2.1. The Environment.

Consider first the underlying games. The extensive game form is a fixed tree

with perfect information and a finite number of stages, I ě 2 , and a fixed finite

number of actions, A ě 2 , at each decision node.6 Every complete history of

the game then has I decision nodes and there are AI terminal nodes.

There is one “player role” for each such stage, i “ 1 , . . . , I, in the game. (In a

reversal of the usual convention, the first player role to move is I and the last to

move is 1 . This simplifies the notation used in the proof. Role i therefore has a

subgame of rank i in that there are i successor nodes in each path to a terminal

node.) Each player role is represented by an equal-sized “large” population

of agents, where these agents differ in their choice of strategy. The strategies

are described precisely below, but they will be grouped into two “categories”—

sophisticated (ToP) and naive.

6 The restriction that each node induce the same number of actions, A, can be relaxed. Indeed,

it is possible to allow the game tree to be randomly chosen. This would not fundamentally

change the nature of our results but would considerably add to the notation required.
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Independently in each iteration of the game, all players are randomly and

uniformly matched with exactly one player for each role in each of the resulting

large number of games.

There is a fixed overall set of physically observable outcomes, each with con-

sequences for the material payoffs of the I player roles. Player role i “ 1 , . . . , I

has then a function mapping all outcomes to material payoffs. A fundamental

novelty is that, although each player role knows her own payoff at each outcome,

she does not know the payoffs for the other player roles.

For notational simplicity, however, we avoid the explicit construction of out-

comes, with payoff functions defined on these. Given a fixed tree structure with

T terminal nodes, we instead simply identify each outcome with a payoff vec-

tor and each game with a particular set of such payoff vectors assigned to the

terminal nodes. We assume that all material payoffs are scalars, lying in the

compact interval rm,M s, for M ą m ą 0 , for simplicity.7

Assumption 1: The set of all games is represented by Q “ rm,M sTI , for M ą

m ą 0 . That is, each outcome is a payoff vector in Z “ rm,M sI , with one

component for each player role, and there are T such outcomes comprising each

game.

Let n “ 1 , 2 , . . . , denote successive dates. Within each corresponding period,

n, there is available a finite subset of outcomes Zn Ă Z, determined in the

following way. There is an initial finite set of outcomes Z0 Ă Z, of size N , say,

where each of these outcomes is drawn independently from Z according to a

cumulative distribution function F as follows.

Assumption 2: The cdf over outcomes F has a continuous probability density

that is strictly positive on Z.

At date n ě 1 , at the beginning of period n, a new outcome is added to the

existing ones by drawing it independently from Z according to the same cdf F .

Within each period, the set of outcomes is then fixed, and once an outcome is

7 This abbreviated way of modeling outcomes introduces the apparent complication that the

same payoff for role i might be associated with multiple possible payoffs for the remaining

players. However, with the current set-up, when the cdf F is continuous, the probability of any

role’s payoff arising more than once, but with different payoffs for the other roles, is zero. Each

player i can then safely assume that a given own payoff is associated to a unique (but initially

unknown) vector of other roles’ payoffs. We then adopt this simpler set-up.
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introduced it is available thereafter. Figure 1 is a schematic representation of

the game.

We specify the number of games that are played within each period as fol-

lows.

Assumption 3: The number of iterations of the game played in period n is

κpnq “ tpN ` nqαu, for some α ě 0 .8

If the parameter α is low, the rate of arrival of novelty is high in that there are

not many games within each period before the next novel outcome arrives; if α

is high, on the other hand, the rate of arrival of novelty is low.

Consider now a convenient formal description of the set of games available in

each period.

Definition 1: In period n, the empirical cdf based on sampling, with equal

probabilities, from the outcomes that are actually available, is denoted by the

random function Fnpzq where z P rm,M sI . The set of games in period n is

the T -times product of Zn. This is denoted Qn. The empirical cdf of games in

period n derives from T -fold independent sampling of outcomes according to Fn

and is denoted by Gnpqq, where q P Q “ rm,M sIT .9

In each iteration, t “ 1 , ..., κpnq, of the game in period n, outcomes are

drawn independently from Zn according to the cdf Fn, so the game is chosen

independently in each iteration according to Gn.

The cdf’s Fn and Gn are well-behaved in the limit. This result is elegant

and informative and so is included here. First note that the distribution of

games implied by the cdf on outcomes, F , is given by G, say, which is the cdf

on the payoff space rm,M sIT generated by T independent choices of outcomes

distributed according to F . Clearly, G also has a continuous pdf that is strictly

positive on rm,M sIT . These two later cdf’s are then the limits of the cdf’s Fn

and Gn—

8 Here t¨u denotes the floor function. It seems more plausible, perhaps, that the number of

games per period would be random. This makes the analysis mathematically more complex,

but does not seem to fundamentally change the results. The present assumption is then in the

interests of simplicity.
9 Note that Fn and Gn are random variables measurable with respect to the information avail-

able in period n, in particular the set of available outcomes Zn.
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Lemma 1: It follows that Fnpzq Ñ F pzq and Gnpqq Ñ Gpqq with probability

one, and uniformly in z P rm,M sI , or in q P rm,M sIT , respectively.

Proof. This follows directly from the Glivenko-Cantelli Theorem. (See Billings-

ley 1986, p. 275, and Elker, Pollard and Stute 1979, p. 825, for its extension to

many dimensions.) �

Role 1

Role 2

Role 3

1z 2z
Z

naive

naive

ToM

ToM

..

.

..

.

F

3z 4z

outcome introduced in period n

nZ

t
nof period

distribution of strategies at
t of period nrepetition

game at repetition

Figure 1: A Schematic Representation of the Key Elements of the Model.

We turn now to the specification of the strategies for each player role.

2.2. Strategies.

When making a choice in period n and iteration t, every player, whether

naive or ToP, knows the history so far, Hn,t, say, and the game, qn,t, drawn

for the current iteration. The history records the outcomes available in the

current period, n, the randomly drawn games and the empirical distributions

of choices made in all previous periods and iterations. Although each player

observes the outcome assigned to each terminal node, as revealed by the payoff

she is assigned at that node, it should be emphasized that she does not observe

other roles’ payoffs directly.

More precisely, for each player role i, given that decision-node h is reached

by a positive fraction of players in period n and iteration t, let πn,tphq P ∆pAq

then record the aggregate behavior of i player roles at h. It follows that Hn,t “
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tZn, pq1 ,1 , π1 ,1q, . . . , pqn,t´1 , πn,t´1 qu.10 Let Hn,t be the set of period n and

iteration t histories, and let H “
Ť

n,tHn,t.

Strategies can be formally described as follows. Let Σi denote the set of

choices available to the player role i’s. A strategy is then a function c :H ˆQ ÝÑ

Σi.11 An individual in period n at iteration t with strategy c uses cpHn,t, qn,tq

in game qn,t, cpHn,t`1 , qn,t`1 q in qn,t`1 , and so on.

As part of the specification of the map c, we assume that all strategies choose

a strictly dominant action in any subgame they initiate, whenever such an action

is available. For example, the player at the last stage of the game always chooses

the outcome that she strictly prefers. This assumption is in the spirit of focussing

upon the implications of other players’ payoffs rather than the implications of

one’s own payoffs. Indeed, if players are to learn other players’ preferences from

observing their choices, other players cannot be completely free to act contrary

to their own preferences.

More importantly, in the present model, using any such dominant choice could

be made a result rather than an assumption. The key part of this assumption is

sequential rationality, since such a dominant choice is optimal conditional upon

having reached the node in question.

It is the large population in each role that is crucial in this connection. With

only a single player in each role, the player in role i ă I might well prefer to not

choose such a dominant action in order to misrepresent her preferences to some

player j ą i, so inducing j to choose in a way that is beneficial to i. However,

when there is a large number of players in every role, who are randomly matched

in each iteration of the game, each role i player has no effect on the distribution

of i’s choices that is observed by any role j ą i and thus no effect on j’s future

behavior. In these circumstances, not only is the best choice by each i myopic,

in the sense of neglecting the future, but it is also sequentially rational.

Strategies that failed to use such dominant choices would eventually be pushed

to an arbitrarily low level. Once this was so, we would approximate the current

10 If n ą 1 but t “ 1 , then Hn,t “
 

Zn, pq1,1 , π1,1q, . . . , pqn´1 ,κpn´1q, πn´1 ,κpn´1qq
(

. If n “ t “

1 , then Hn,t “ H.
11 It will not be required that ToP players remember the entire history. All that is needed is

that they make and retain the exact inferences about other roles’ binary preferences that are

possible from observing the aggregate choices made in each period. It is not important whether

naive players remember the entire history or not, in familiar subgames.
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model. There is no reason then to be suspicious of the current assumption,

but the approximation would make the proofs more complicated, so we do not

pursue this option.

All strategies then satisfy—

Assumption 4: Consider any i player role, and any i player subgame q. The

action a at q is dominant for i if for every action a1 ‰ a, for every outcome z

available in the continuation game after i’s choice of a in q, and every outcome

z1 available in the continuation game after i’s choice of a1 in q, zi ą z1i. For each

i “ 1 , . . . , I, every strategy always chooses any such dominant action.

2.2.1. Naive Players.

We adopt a definition of naivete that binds only if the subgame is new. This

serves to make the ultimate results stronger, since the naive players can be

otherwise rather smart. When the subgame is new, and there is no dominant

choice, naive players condition in an arbitrary fashion on their own payoffs, but

act in ignorance of other players’ preferences.

Definition 2: All naive strategies satisfy Assumption 4 in all subgames. There

is a finite number of naive strategies that map their own observed payoffs to an

arbitrary pure choice, whenever any of the subgames faced has never arisen

previously, and a dominant strategy is lacking.

If any subgame faced is not new, and there is no dominant strategy, there is

no constraint imposed on any naive strategy. Although it makes an implausible

combination, the naive players could then be fully Bayesian rational with respect

to all of the relevant characteristics of the game—updating the distribution of

opponents’ payoffs, for example.

The following example illuminates the strengths and weaknesses of naive

strategies, describing the opportunity that exists for more sophisticated strategies—

Example 1: Consider Figure 2. In view of Assumption 4, the P1 ’s always

make the SPE choice. The problem for the P2 ’s is to make the appropriate

choice for each of the games they face, but where the outcome for each choice

depends on the unknown preferences of the P1 ’s.

The key consideration in the long-run concerns how the various strategies

perform when payoffs are chosen independently according to the cdf F . Suppose,
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2x 2y 2z 2w
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Figure 2: I “ A “ 2 .

for simplicity, that the cdf F represents independent choice of the two payoffs

from the uniform distribution on [1,2].

A salient naive strategy for P2 is to choose L, for example, if and only if the

50-50 average of the own payoffs after choosing L exceeds the 50-50 average of

the own payoffs after choosing R, in any novel game. That is, choose L if and

only if x2 ` y2 ą z2 ` w2 . If either choice is dominant, this simple rule makes

that dominant choice. Moreover, given risk neutrality in the payoffs, this naive

strategy is the Bayesian rational procedure initially when there is no additional

information about P1 ’s preferences, since each of P1 ’s choices are then equally

likely given either choice for P2 .

Whenever there is not a dominant choice for P2 , however, any naive strategy

must make the wrong choice with strictly positive probability, under any F with

full support. To show this for this F , it is enough to note the following. There is

a clearly a positive probability that neither L nor R is dominant. Further, when

there is no dominance, one of the following typical patterns of P2 ’s payoffs must

arise i) x2 ą z2 ą w2 ą y2 or ii) x2 ą z2 ą y2 ą w2 .12 In case i), L is optimal

if and only if x1 ą y1 , which has probability 1 {2 . In case ii), L is optimal if

and only if x1 ą y1 or both y1 ą x1 and w1 ą z1 . This has overall probability

3 {4 . That is, any naive rule makes the wrong choice in a nontrivial subset of

novel games, given the actual pattern of P1 ’s payoffs.

Furthermore, we subsequently show that, whenever α ă 3 , the naive P2 s see

only novel games, in the limit.13 Hence any naive strategy makes a suboptimal

12 That is, it is without loss of generality to assume that the highest payoff is x2 . If there is no

dominance, the next highest cannot be y2 and so can be taken as z2 without loss of generality.

The only issue is how the two outcomes left rank relative to one another.
13 To see this, observe the following. Assumption 3 implies that the total number of iterations

in any period n history is bounded above by n ¨ pN ` nqα ă pN ` nqα`1 where N is the initial
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choice in a positive fraction of games, in the long run. This creates an oppor-

tunity for sophisticated strategies for P2 that observe the choices made by the

P1 ’s and thereby build up a picture of P1 ’s preferences.

2.2.2. Sophisticated Players.

There are two aspects to the ToP strategies. The first of these, given as

part i) of Definition 3 below, concerns the utilization of the knowledge of oth-

ers’ preferences. Picking the SPE choice at each node when the preferences

of subsequent players are known characterizes the SPE-ToP strategy that will

eventually dominate the population in every role. The second aspect, given as

ii) of Definition 3, concerns how such knowledge of the preferences of others

could be acquired from observing their behavior.

Definition 3: All ToP strategies always satisfy Assumption 4 in all subgames.

It is convenient to describe the remaining requirements on the ToP strategies

in the reverse order to the temporal order in which they apply. i) If a ToP

player in role i knows the ordinal preferences of all subsequent players over the

set Zn, each such ToP player maps the array of own preferences plus those

of subsequent players to a pure action at each decision node (still subject to

Assumption 4). A particular ToP strategy, the SPE-ToP strategy, maps all of

these preferences to the SPE choice at each node, if this SPE choice is unique.

Other ToP strategies make a non-SPE choice in at least one subgame defined

by the ordinal preferences of others and of the player in question.14 ii) It is

common knowledge among all ToP players that there exists a positive fraction

of SPE-ToP players in every role.

What is meant in Definition 3 i) by hypothesizing that the ToP strategies

“know” the preferences of subsequent players? That is, what patterns of play

reveal these preferences under Definition 3 ii)? We use Example 1 to illustrate

number of outcomes. Since only one game is played at each iteration, this provides also an

upper bound on the number of distinct games occurring along any such history. Further, in

period n, there are |Zn|
4 “ pN ` nq4 possible games. It follows that if α ` 1 ă 4 , then the

fraction of games that are familiar tends to zero, surely. This result is stated as Lemma 7 in

the Appendix.
14 This requirement is merely to avoid triviality. It has the following implication. Since the

preferences involved are ordinal, the probability of such a subgame is positive under F . Indeed,

the probability of a game that repeats this subgame for every decision node of the role in

question is also positive. Such games will then give the SPE-ToP strategy a strict advantage

over any other ToP strategy.
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these issues and then indicate how the argument can be generalized by consid-

ering the case where I “ 3 .

Example 1 Revisited: In this example with I “ A “ 2 , all of the ToP

P2 ’s learn one of P1 ’s binary preferences, whenever the P1 are forced to make

a choice between two outcomes that has not arisen before. This follows since

Assumption 4 implies that the P1 ’s always make the SPE choice. Indeed,

whenever α ą 1 , so that the rate of introduction of novelty is not too fast,

such learning by the ToP P2 ’s will be essentially complete in the limit.15 If

α P p1 , 3 q, the ToP strategies then have a clear knowledge edge over the naive

strategies.

Each ToP strategy maps the preferences of P1 , once these are known, as

well as own preferences, to an action. The SPE-ToP strategy fully exploits

the knowledge edge of the ToP strategies over the naive strategies, by mapping

these two preference profiles to the SPE choice. It is obvious in Example 1 that

this SPE-ToP strategy will then eventually outdo all other strategies, naive or

sophisticated, since only the SPE-ToP comes to correctly anticipate all of the

choices of the P1 ’s.

It will not matter that in the interim—when the sophisticated strategies do

not know P1 preferences—that they make inappropriate choices, as these in-

stances occur with vanishing probability. Similarly, neither will it matter how

sophisticated the naive strategies are on familiar games, since these also arise

with vanishing probability.

We now further illustrate this mechanism, by extending the argument in Ex-

ample 1 to the case I “ 3 . Learning about i “ 1 ’s preferences remains straight-

forward, whenever α ą 1 , and proceeds as before. Indeed, role 1 ’s preferences

then become common knowledge among all ToP players in role 2 and 3 . The

15 This is a key theoretical result of the paper, given in the Appendix as Lemma 2. Although

the proof there is complicated by the need to allow more than two stages, it is nontrivial even

for I “ 2 . It is not hard to see, however, that α ą 1 means that complete learning is not ruled

out, as follows. The introduction of the n-th novel outcome results in N ` n´ 1 new pairwise

choices. There are κpnq ą pN`n´1 qα iterations of the game before the introduction of further

novelty. Therefore, whenever α ą 1 the number of iterations between outcomes outstrips the

number of new pairwise choices introduced. As n grows to infinity, this shows it is at least

possible that the P2 ToPs will see nearly all of the P1 choices before the next outcome arrives.

The more difficult task is to show that this possibility is realized, for the ToP strategies given

in Definition 3.
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new interesting case then concerns how the ToP players in role 3 can learn

role 2 ’s preferences. Suppose then a game is drawn in which some subgame

has a dominant choice a, say, for role 2 , as Assumption 4, and this subgame

is reached.16 It follows from Assumption 4 that all players in role 2 take this

dominant action. The ToP players in role 3 do not know that such a dominant

choice exists for 2 . They do know, however, that the 2 ’s also know 1 ’s prefer-

ences. Hence, whether such a dominant choice exists or not, the SPE-ToP ’s in

role 2 have unequivocally demonstrated to the ToP in role 3 that they prefer

the outcome induced by a to any outcome they might have induced instead.

Still under the assumption that α ą 1 , the ToP players in role 3 can then build

up a complete picture of the preferences of role 2 .17

The common knowledge assumption for the ToP players, as described in Def-

inition 3 ii), can be stripped to its bare revealed preference essentials. It is

unimportant, that is, what or whether the ToP players think, in any literal

sense. All that matters, in the case that I “ 3 , for example, is that it is as if

the ToPs in roles 3 add to their knowledge of role 2 ’s preferences as described

above. Once a ToP player in role 3 has seen histories in which all of role 2 ’s

binary choices have been put to the test like this, given that this is already true

for role 1 , the role 3 ToP players effectively know all that is relevant about

the ordinal preferences of subsequent players and can act on this basis. This is

essentially purely a mechanical property of the map, c, used by the ToP players.

That is, not merely can the naive players be “zombies”, in the philosophical

sense, but so too can the ToP players.18

2.3. Evolutionary Adaptation.

The population structure and associated payoffs are as follows—

Definition 4: The total population of all strategies is normalized to 1 for every

role i. The sophisticated (ToP) strategies are labelled as r “ 1 , . . . , R, for R ě

1 , say where r “ 1 is the SPE-ToP strategy. The naive strategies are labelled

as r “ R` 1 , . . . , R̄, where R̄ ą R. The fraction of the total population in role

16 That this subgame is reached could be forced by assuming that this subgame arises for all of

3 ’s choices.
17 Lemma 2 in the Appendix proves the key result that α ą 1 ensures complete learning.
18 That is, the revealed preference approach adopted here is agnostic about internal mental

processes. For a philosophical treatment of “zombies”, see Kirk (2014).
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i “ 1 , . . . , I that uses strategy r “ 1 , . . . , R̄ in period n “ 1 , 2 , . . . and iteration

t “ 1 , . . . , κpnq is then denoted f in,tprq, where f in,t “ pf
i
n,tp1 q, . . . , f

i
n,tpR̄qq. The

average material payoff obtained by such a strategy r in role i in period n and

iteration t is then denoted z̄in,tprq, where z̄in,t “ pz̄
i
n,tp1 q, . . . , z̄

i
n,tpR̄qq.

The population evolves in a standard adaptive fashion between each iteration

of the game. This has the property, in particular, that the fraction of individ-

uals who use a strategy that is best increases, given only that there is some

suboptimal strategy—

Assumption 5: Consider role i “ 1 , . . . , I in period n “ 1 , 2 , . . . and at itera-

tion t “ 1 , . . . , κpnq. If the population structure is f in,t with average payoffs z̄in,t,

the population structure in the next iteration is given by f in,t`1 “ Ψpf in,t, z̄
i
n,tq.

19

This function Ψ : ∆R̄´1 ˆrm,M sR̄ Ñ ∆R̄´1 , where ∆R̄´1 is the unit simplex in

RR̄, has the properties i) Ψ is continuous, ii) Ψrpf
i
n,t, z̄

i
n,tq{f

i
n,tprq ą η for some

η ą 0 , and for r “ 1 , . . . , R̄, iii) if z̄in,tpr
˚q “ maxr“1 ,...,R̄ z̄

i
n,tprq ą z̄in,tpr

1q, for

some r1 P t1 , . . . , R̄u, then Ψr˚pf
i
n,t, z̄

i
n,tq ą f in,tpr

˚q and iv) if z̄in,t “ z̄in,tpr
1q, for

all r, r1 P t1 , . . . , R̄u, then Ψpf in,t, z̄
i
n,tq “ f in,t.

20

Recall that Figure 1 gives a schematic representation of the model.

2.4. The Main Result.

The main result is that, in the limit, the SPE-ToP strategy fully learns the

preferences of others, applies this knowledge to choose the optimal action, and

dominates the population.

Theorem 1: Suppose Assumptions 1-5 all hold. Suppose that there are a finite

number of ToP strategies, including SPE-ToP in particular, as in Definition 3,

and a finite number of naive strategies, as in Definition 2. If α P p1 , A2´1 q, then

the proportion of SPE-ToP players in role i, f in,tp1 q, tends to 1 in probability,

as nÑ 8, for all t “ 1 , . . . , κpnq, and for all i “ 2 , . . . , I. The observed pattern

of play in each realized game converges to an SPE, in probability.

The proof of this is relegated to the Appendix.

The following specific remarks apply—

i) The result for i “ 1 holds trivially by Assumption 4.

20 Ψr denotes the rth component of the vector Ψ, r “ 1 , . . . , R̄.
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ii) The proof shows that all of the ToP strategies learn others’ preferences

essentially always if α ą 1 , but all naive strategies see essentially only new

subgames if α ă A2 ´ 1 , in the long run. If both inequalities hold, as above,

there is an opportunity for the ToP strategies to outdo the naive strategies, one

that the SPE-ToP fully exploits.

iii) We focus here on the case that α P p1 , A2 ´1 q. These bounds are tight in

the sense that, if α ă 1 then it is mechanically impossible for the ToP players

to learn the preferences of opponents from their binary choices.21 On the other

hand, if α ą A2 ´ 1 , then naive players in role 2 see only familiar subgames in

the limit.22

iv) If the role i is earlier in the game, so i is larger, it is harder for naive

strategies to learn all the subgames they initiate. In the role i, that is, the cutoff

value for a naive strategy is α “ Ai ´ 1 , below which learning is impossible in

the long run, and this increases with i. However, the task faced by the ToP

strategies does not become more complex in the same way, in that the cutoff

value of α “ 1 is unaffected by the role i involved.

v) If it were assumed that naive players need to have experienced the entire

game, and not just a subgame they initiate, before they can learn it, the upper

bound for α would be AI ´ 1 , uniformly in i “ 2 , . . . , I.

vi) If α ă 1 , so that all the ToP players are overwhelmed with novelty, as are

the naive players, the outcome of the evolutionary contest hinges on the default

behavior of the naive and ToP strategies when these face their respective novel

circumstances. As long as the naive players are not given a more sophisticated

default strategy than the SPE-ToPs players, the naive players will, at best,

match the SPE-ToPs players.

vii) If α ą A2 ´ 1 , naive players in at least role 2 have seen most subgames

previously, in the long run. The relative performance of the SPE-ToP and

the naive players then depends on the detailed long run behavior of the naive

players. If the naive players play a Bayesian rational strategy the second time

they encounter a given subgame, they might tie the SPE-ToP players. It is, in

21 The proof is analogous to that of Lemma 7 in the Appendix which establishes the corre-

sponding property for naive players.
22 The proof is analogous to that of Lemma 2 in the Appendix which establishes the corre-

sponding property for the ToP players.



18

any case, not intuitively surprising that a clear advantage to SPE-ToPs relies

upon there being at least a minimum rate of introduction of novelty.

The eventual predominance of the SPE-ToPs over all the naive strategies re-

solves the issue raised by Stahl (1993) in this context. Consider any particular

naive strategy that maps own payoffs to an action, where this choice cannot, of

course, condition on the future realization of the sequence of games. If there

is a dominant strategy in any subgame, this naive strategy chooses that by as-

sumption. Otherwise, although there may be a set of subgames, with positive

probability under F conditional on the observed own payoffs, in which the naive

strategy makes the SPE choice, there must also be a set of subgames, also with

positive conditional probability under F , for which this is not true. Since any

particular naive strategy must therefore, with probability one, choose subopti-

mally in a positive fraction of games, in the limit, it is outdone, with probability

one, by the SPE-ToP that is not preprogrammmed but rather adapts to the out-

comes and games that are drawn, and ultimately chooses optimally essentially

always.23

That is—

Corollary 1: Under the hypotheses of Theorem 1, any particular naive strat-

egy will, with probability one, choose suboptimally in a positive fraction of new

subgames in the limit.

Further, ToP strategies could be extended to deal with occasional shifts in

preferences over outcomes. Such a generalized model would be noisier than the

current model, and therefore harder to analyze, but this potential flexibility of

the ToP strategies would constitute a telling additional argument in their favor.

It follows, significantly, that the evolutionary dominance of the SPE-ToP is

robust to the introduction of sufficiently small cost, completing the resolution

of the issue raised by Stahl (1993). Suppose that all ToP strategies entail a per

game cost of ω ą 0 , to reflect the cognitive cost associated with deriving the

preferences of others from observation. Then we have

23 This argument has the following subtlety. Consider a particular realized sequence of games.

With probability one, each observed own payoff is associated with a unique vector of payoffs

for the other roles. It follows that, with probability one, there exists a naive strategy that

maps own payoffs to an action that is the SPE choice in every such realized subgame. To

choose this naive strategy in advance is to condition on the future, however, given that there

are uncountably many possible naive strategies.
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Corollary 2: Theorem 1 remains valid when all ToP strategies entail a per

game cost ω (where the naive players have zero cost), if ω is small enough.

If α ą A2 ´ 1 , however, then naive players in at least role 2 are usually

familiar with the subgame they initiate, in the long run. The presence of a fixed

cost might then tip the balance in favor of the naive players. If α ă 1 , so all

players, naive or sophisticated, are overwhelmed with novelty, this might also be

true, when the default play of the naive and sophisticated players is comparable.

The presence of such a per game cost, that is independent of the number

of outcomes, is not unreasonable since the ToP strategies would require the

maintenance of a brain capable of sophisticated analysis. However, the memory

demands of the naive players here are likely to be greater than the memory

demands of ToP. The naive players need to remember each game; the ToPs

need only remember preferences over each pairwise choice for opponents, and if

memory is costly then these costs would be lower for the ToPs whenever there

are a large number of outcomes. In this sense, consideration of all costs might

well reinforce the advantage of the ToP players over the naive players.

The attainment of an SPE in Theorem 1 relies on the assumption that there

is a large population in each role, with random matching for each iteration of the

game. Even though a non-SPE choice by all role i players might benefit all role

i players since it could advantageously influence the choice of a role j ą i, this

benefit is analogous to a public good. The choice by just one role i player has

no effect on j’s information bearing on i’s preferences. Thus, the optimal choice

by any particular role i player is sequentially rational. (The large population

in each role, together with random matching, also ensures choices are myopic,

ignoring, that is, future iterations of the game.) This argument that an SPE is

attained once the preferences of others are known is analogous to Hart (2002).24

We close this subsection with several additional general remarks.

1) The key issue here is how ToPs deal with novelty—the arrival of new

outcomes—rather than with complexity—the unbounded growth of the outcome

set. Indeed, the model could be recast to display the role of novelty as follows.

24 Hart considers a finite population in each role, with mutation ensuring all subgames are

reached. His result is that the SPE is attained for a large enough common population size and

small enough mutation rate.
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Suppose that a randomly chosen outcome is dropped whenever a new outcome

is added, at each date n, so the size of the outcome set is fixed, despite such

updating events. There will then be a critical value such that, if the number of

games played between successive dates is less than this critical value, the naive

players will be mechanically unable to keep up with the flow of new games.

There will also be an analogous but lower critical value for the ToPs. If the

fixed interval between updating events is chosen to lie between these two critical

values, the naive players will usually be faced with novel subgames; the ToPs

will face a stochastic but usually positive fraction of subgames in which the

preferences of subsequent player roles are known. This provides a version of the

current results, although one that is noisier and therefore more awkward than

the current approach.25

2) The sophisticated players here do not use the transitivity of others’ pref-

erences. If they were to do so, this could only extend the range of α over which

complete learning of opponents’ preferences would arise, and therefore the range

over which the sophisticated strategies would outcompete the naive strategies.26

3) Consideration of a long run equilibrium, as in Theorem 1, is simpler an-

alytically than direct consideration of the speed of out-of-equilibrium learning

of the various strategies. More importantly, it also permits the use of minimal

restrictions on the naive and ToP strategies, as is desirable in this evolutionary

context.

4) Our results show how an increase in the rate of introduction of novelty

might precipitate a transition from a regime in which there is no advantage to

strategic sophistication to one in which a clear advantage is evident. This is con-

sistent with theory and evidence from other disciplines concerning the evolution

of intelligence. For example, it is argued that the increase in human intelligence

was in part due to the increasing novelty of the savannah environment into which

we were thrust after we exited our previous arboreal niche. (For a discussion of

25 The need in the current model for the number of games played between updating events to

grow with time is a reflection of the fact that each new outcome produces a larger number of

novel games when there is already a larger number of outcomes.
26 Although they do not apply directly, the results of Kalai (2003) concerning PAC-learning and

P-dimension, Theorem 2.1 and Theorem 3.1, in particular, suggest that the use of transitivity

might lower the critical value of α as far as 0 .
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the intense demands of a terrestrial hunter-gatherer lifestyle, see, for example,

Robson and Kaplan, 2003.)

2.5. Related Literature.

We outline here a few related theoretical papers in economics. The most

abstract and general perspective on strategic sophistication involves a hierarchy

of preferences, beliefs about others’ preferences, beliefs about others’ beliefs

about beliefs about preferences, and so on. (Robalino and Robson, 2012, provide

a summary of this approach.) Harsanyi (1967/68) provides the classic solution

that short circuits the full generality of the hierarchical description.

A strand of literature is concerned to model individuals’ beliefs in a more re-

alistic fashion than does the general abstract approach. An early paper in this

strand is Stahl (1993) who considers a hierarchy of more and more sophisticated

strategies analogous to iterated rationalizability. A smartn player understands

that no smartn´1 player would use a strategy that is not pn ´ 1 q-level ratio-

nalizable. A key aim of Stahl is to examine the evolution of intelligence in this

framework. He obtains negative results—the smart0 players who are right in

their choice of strategy cannot be driven out by smarter players in a wide variety

of plausible circumstances. Our positive results, in Corollary 2, in particular,

stand in sharp contrast to these previous results.

Mohlin (2012) provides a recent substantial generalization of the closely re-

lated level-k approach that allows for multiple games, learning, and partial ob-

servability of type. Nevertheless, it remains true that lower types coexist with

higher types in the long-run. This is not to deny that the level-k approach

might work well in fitting observations. For example, Crawford and Iriberri

(2007) provide an explanation for anomalies in private-value auctions based on

this approach.

There is by now a fairly large literature that examines varieties of, and al-

ternatives to, adaptive learning. Camerer, Ho and Chong (2002), for example,

extend a model of adaptive, experience-weighted learning (EWA) to allow for

best-responding to predictions of others’ behavior, and even for farsighted be-

havior that involves teaching other players. They show this generalized model

outperforms the basic EWA model empirically. Bhatt and Camerer (2005) find

neural correlates of choices, beliefs, and 2nd-order beliefs (what you think that
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others think that you will do). These correlates are suggestive of the need

to transcend simple adaptive learning. Finally, Knoepfle, Camerer and Wang

(2009) apply eye-tracking technology to infer what individuals pay attention to

before choosing. Since individuals actually examine others’ payoffs carefully,

this too casts doubt on any simple model of adaptive learning.

3. Conclusions

This paper presents a model of the evolution of strategic sophistication. The

model investigates the advantages to learning opponents’ preferences in simple

games of perfect information. An unusual feature is that the outcomes used

in the game are randomly selected from a growing outcome set. We show how

sophisticated individuals who recognize agency in others can build up a picture

of others’ preferences while naive players, who react only to their own observed

payoffs in novel situations, remain in the dark. We impose plausible conditions

under which some sophisticated individuals, who choose the SPE action, dom-

inate all other strategies—naive or sophisticated—in the long run. That is, we

establish a clear sense in which it is best to be smart, in contrast to previous

results.

Kimbrough, Robalino and Robson (2014) presents experiments that measure

the ability of real-world individuals to learn the preferences of others in a strate-

gic setting. The experiments implement a simplified version of the theoretical

model, using a two-stage game where each decision node involves two choices.

We find 1) evidence of highly significant learning of opponents’ preferences over

time, but not of complete games, and 2) significant correlations between behav-

ior in these experiments and responses to two well-known survey instruments

from psychology intended to tentatively diagnose autism, as an aspect of theory

of mind.



23

Appendix

A. Proof of Theorem 1

The proof of the theorem is given in two parts. Recall that α determines the

number of games played in each period as described in Assumption 3. The first

part shows that if α ą 1 , the ToP players learn their opponents’ preferences

in the limit.27 The ultimate dominance of the SPE-ToPs is established in the

second part.

Part 1. ToPs Learn Opponent Preferences. The result proved here is

that the ToPs learn their opponents’ preferences whenever α ą 1 . This sets the

stage for the ultimate dominance of the SPE-ToPs.28 We first introduce some

notation.

Definition 5: ∆i
npz, z

1q is the set of i role subgames, available in period n,

that satisfy the following. The subgame q is in ∆i
npz, z

1q if and only if, for two

actions, say a, a1 P A, z is the unique SPE outcome of the subgame following

i’s choice of a, and z1 is the unique SPE outcome of the subgame following i’s

choice of a1, and moreover one of the actions a, a1 is stricly dominant for the i

players themselves.

The subgames of Definition 5 play a special role in how ToPs learn preferences.

Recall that player roles are enumerated in reverse order of play. Consider a

situation in which player 1 ’s reach a subgame q P ∆1
npz, z

1q. Suppose that z

is strictly preferred by player 1 ’s to z1. Assumption 4 implies all the player 1 ’s

reaching q will there choose the action resulting in z. Any ToP observing this

choice will then know that player 1 ’s prefer z to z1. To establish as common

knowedge then player 2 ’s preferences over, say, z, z1 it suffices for player 2 ’s to

be observed making a choice in a subgame q P ∆2
npz, z

1q when all the player 1

pairwise choices in q had already been established as common knowledge among

the ToPs. With this in mind consider the following. Suppose z, z1 P Z is such

27 If α ă 1 , it is easily shown that it is mechanically impossible for the ToP players to learn

opponents’ preferences.
28 In particular, the SPE-ToPs will then eventually choose an SPE in each game. Although in

general this SPE choice is sub-optimal initially, it is the appropriate strategy in the long run

(as will be established later).
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that the 1 players prefer z to z1. Say that the history Hn,t reveals players in

role 1 prefer z to z1 if along Hn,t a subgame q P ∆1
npz, z

1q was reached and all

the 1 role players there chose the action delivering z. Proceeding inductively,

suppose z, z1 P Z is such that player i’s prefer z to z1. Say that Hn,t reveals

players in role i ą 1 prefer z to z1 if along Hn,t a subgame q P ∆i
npz, z

1q was

reached, after all the pairwise preferences of the i´1 , . . . , 1 role players in q had

been revealed, and there all of the i role players chose into the i ´ 1 subgame

delivering z in the SPE.

To keep an account of how much information has been revealed along a given

history we define—

Definition 6: For each date n “ 1 , 2 , . . . , and each iteration t “ 1 , . . . , κpnq,

the random variable Ki
n,t is number of outcome pairs pz, z1q P ZnˆZn such that

Hn,t reveals i role preferences on tz, z1u. Write Lin,t “ Ki
n,t{|Zn|

2—the fraction

of i role pairwise preferences that are revealed along Hn,t.29

A key step in establishing the eventual dominance of the SPE-ToPs is to

show that if α ą 1 , then Lin,t tends to one in probability, for each i ě 1 . Here,

convergence in probability of Lin,t to L, for instance, is taken to mean that for

each η there is a n̄ such that P
 

|Lin,t ´ L| ă η
(

ą 1 ´ η for each n ě n̄, and

t “ 1 , . . . , κpnq. The aim of the remainder of this section is to prove the following

result.

Lemma 2: Suppose α ą 1 , then Lin,t tends in probability to one, i “ 1 , . . . , I.30

The proof relies on two preliminary results (Lemmas 3 and 4 below). First

two definitions—

Definition 7: Consider i ą 1 . For each period n “ 1 , 2 , . . . , and each itera-

tion t “ 1 , . . . , κpnq, Iin,t P t0 , 1 u is such that Iin,t “ 0 if and only if the game

drawn at iteration t of date n is such that all the available pairwise choices of

players j “ 1 , . . . , i´ 1 have been revealed along Hn,t.

29 Assumption 2 implies that with probability one, throughout period n, the number of pairs

pz, z1q P Zn ˆ Zn such that zi ‰ z1i is |Zn| ¨ r|Zn| ´ 1 s{2 . Thus, with probability one this is

the maximal number of preference revelations possible up to period n. We opt in favor of the

simpler expression |Zn|
2 in the denominator of Lin,t, and to allow this set Ki

n,1 “ |Zn| for each

n and require that Ki
n,t increase by 2 with each revelation of an i role preference ordering.

30 If α ă 1 , it follows that Lin,t Ñ 0 surely. This follows from an adaptation of the proof of

Lemma 7.



25

Definition 8: For each ε ą 0 ,

Sinpεq “
!

pz, z1q P Zn ˆ Zn : |∆i
npz, z

1
q|{|Zn|

Ai
´2
ă ε

)

.

When ε is small, the number of subgames in
Ť

Si
npεq

∆i
npz, z

1q is a small fraction

of the number of possible i role subgames.31 The roles of Iin,t, and Sinpεq are

clarified in the following lemma.

Lemma 3: Each of the following is true.

1. Consider i ą 1 . For each ε ą 0 , n “ 1 , 2 , . . . , and t “ 1 , . . . , κpnq,

EpKi
n,t`1 |Hn,tq ´K

i
n,t ě

´ EpIin,t |Hn,tq `

«

ε ¨max

#

0 , 1 ´ Lin,t ´
|Sinpεq|

|Zn|2

+ffAI´i

.

If i “ 1 , the above expression holds for i with Iin,t identically equal to

zero.

2. There exists an Spεq such that Spεq tends to zero as ε tends to zero, and

such that for each ε ą 0 , |Sinpεq|{|Zn|
2 almost surely converges to Spεq.

Proof. Consider the first enumerated claim. Fix an i ě 1 , and let Un,t de-

note the outcome pairs pz, z1q P Zn ˆ Zn such that i’s preferences on tz, z1u

have not been revealed along Hn,t. Notice that Lin,t “ 1 ´ |Un,t|{|Zn|
2 . Define

Jn,t P t0 , 1 u such that Jn,t “ 1 if and only if, at iteration t of date n, for each

i player subgame q there is some pz, z1q P Un,t such that q is in ∆i
npz, z

1q. For

i “ 1 , since there are no players after i, set Iin,t ” 0 in all of the following

expressions. Note that if r1 ´ Iin,ts ¨ Jn,t “ 1 , then i’s choice at any i sub-

game reveals i preferences over some pair of outcomes pz, z1q P Un,t. Therefore,

Ki
n,t`1 ´ Ki

n,t ě r1 ´ Iin,ts ¨ Jn,t. Since r1 ´ Iin,ts ¨ Jn,t ě Jn,t ´ Iin,t, it follows

that for each t “ 1 , . . . , κpnq ´ 1 ,

EpKi
n,t`1 |Hn,tq ´K

i
n,t ě EpJn,t |Hn,tq ´ EpI

i
n,t |Hn,tq. (1)

31 Recall that the set of i role subgames in period n is Qin ” |Zn|
Ai

, and thus
ˇ

ˇ

ˇ

ˇ

ˇ

Ť

pz,z1qPSi
npεq

∆i
npz, z

1q

ˇ

ˇ

ˇ

ˇ

ˇ

|Qin|
ă ε ¨

|Sinpεq|

|Zn|2
ď ε.
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Next observe that EpJn,t |Hn,tq “ P tJn,t “ 1 |Hn,tu , and

P tJn,t “ 1 |Hn,tu ě

»

–

ÿ

pz,z1qPUn,t

|∆i
npz, z

1q|

|Qin|

fi

fl

AI´i

. (2)

This is because the distribution over games at date n can induced by the AI´i-

times independent sampling of i player subgames, uniformly from Qin, while the

fraction of i role subgames in ∆i
npz, z

1q at date n is |∆i
npz, z

1q|{|Qin|. Using Sinpεq

in equation (2) gives,

P tJn,t “ 1 |Hn,tu ě

¨

˝

ÿ

pz,z1qPUn,t zS
i
npεq

|∆i
npz, z

1q

|Qin|

˛

‚

AI´i

ě

˜

ε ¨
|Un,t zS

i
npεq|

|Zn|2

¸AI´i
(3)

ě

«

ε ¨max

#

0 ,
|Un,t|

|Zn|2
´
|Sinpεq|

|Zn|2

+ffAI´i

“

«

ε ¨max

#

0 , 1 ´ Lin,t ´
|Sinpεq|

|Zn|2

+ffAI´i

.

Equations (1) and (3) together deliver the desired result.

The second enumerated claim follows by direct application of Lemma 1 in the

light of Assumption 2. �

Lemma 4: Let xs, s “ 1 , 2 , . . . , be a sequence taking values in r0 , 1 s. Given

ε̄ ą 0 , consider a family of sequences, tθspεqu , ε P p0 , ε̄s, that satisfy the

following conditions. For each ε P p0 , ε̄s, limsÑ8 θspεq “ θpεq P R`, where

θpεq tends to one as ε tends to zero. Suppose lim infrxs`1 ´ xss ě 0 , and that

xs`1 ´ xs ă 0 only if xs ą θspεq. Then xs converges to some limit x̂ P r0 , 1 s.

Proof. Fix an arbitrary η ą 0 . Choose a ε P p0 , ε̄s such that θpεq ą 1 ´ η{3 ,

and then choose T1 so that if s ě T1 , then θspεq ą 1 ´ 2 ¨ η{3 . Choose T2

such that xs`1 ´ xs ą ´η{3 for every s ě T2 . Define T “ max tT1 , T2 u , and

σ “ inf ts ě T : xs`1 ´ xs ă 0 u . If σ “ 8, then clearly xs converges. Suppose



27

then that σ is finite. Observe the following. Whenever s ě T , if xs`1 ´ xs ă 0 ,

then xs ą θspεq ą 1 ´ 2 ¨ η{3 . Thus, since xs`1 ´ xs ą ´η{3 , for all s ě T ,

it follows that xs`1 ´ xs ă 0 implies xs`1 ą 1 ´ η, whenever s ě T. It follows

then that xs ą 1 ´ η for each s ą σ. Clearly xs converges since η can be chosen

arbitrarily small. �

Lemma 4 plays a key role in showing that the sequences tEpLin,tqu are conver-

gent (Lemma 6 below). Convergence of EpLin,tq to L̄, say, means that for each

η there is a n̄ such that |EpLin,tq ´ L̄| ă η for each n ě n̄, and t “ 1 , . . . , κpnq.

First another preliminary result—

Lemma 5: If the subsequence tEpLin,1 qu converges, then tEpLin,tqu convererges

and possesses the same limit. If the subsequence tLin,1 u converges in probability

to Li, say, then so does tLin,tu.

Proof. The result pertaining to convergence in probability implies the result

about the expectations converging. It thus suffices to prove the claim concerning

convergence in probability. With that in mind assume the subsequence tLin1 u

converges in probability to Li. Recall that Lin,t “ Ki
n,t{|Zn|

2 . Then, notice that

since Ki
n,t is non-decreasing in n, and t, Lin,t ě Lin1 for each t “ 1 , . . . , κpnq.

The number of outcomes increases by one at the beginning of each period, thus

Lin`1 ,1 ě Ki
n,t{r|Zn|`1 s2 ě Lin,t´2 {|Zn|, for each n, and each t “ 1 , . . . , κpnq.

Hence, for all n, and t “ 1 , . . . , κpnq,

Lin,1 ´ L
i
ď Lin,t ´ L

i
ď Lin`1 ,1 ´ L

i
`

2

|Zn|
.

Given ε ą 0 we may choose a n̄ such that for all n ě n̄, 2 {|Zn| ă ε{2 , and

P
!

|Lin,1 ´ L
i| ă ε{2

)

ą 1 ´ ε (since tLin,1 u converges in probability to Li).

Clearly now for all n ě n̄, and t “ 1 , . . . , κpnq, P t|Lin,t ´ Li| ă εu ą 1 ´ ε.

ε ą 0 is arbitrary and thus Lin,t converges in probability to Li. �

Lemma 6: Suppose α ą 1 . Then EpL1
n,tq converges to some L̄1 P r0 , 1 s. If Ljn,t

converges in probability to one for each j “ 1 , . . . , i´1 , then EpLin,tq converges

to some L̄i P r0 , 1 s.

Proof. Fix i ě 1 . The notation L̂n, and K̂n, will from now on be used as short-

hand for Lin,1 , and Ki
n,1 , respectively. In view of Lemma 5 it suffices to prove

that the subsequence tEpL̂nqu converges. With that aim in mind notice first that



28

L̂n`1 ´ L̂n “
1

|Zn|2
¨

κpnq´1
ÿ

t“1

rKi
n,t`1 ´K

i
n,ts `

K̂n`1

r|Zn| ` 1 s2
´
Ki
nκpnq

|Zn|2
(4)

ě
1

|Zn|2
¨

κpnq´1
ÿ

t“1

rKi
n,t`1 ´K

i
n,ts ´

2

|Zn|
.

Write Yn,tpεq “ 1 ´Lin,t ´ |S
i
npεq|{|Zn|

2 , take the expectation in (4), and apply

Lemma 3 to obtain

EpL̂n`1 q ´ EpL̂nq ě ´
2

|Zn|
´

1

|Zn|2

κpnq´1
ÿ

t“1

E
`

Iin,t
˘

`
1

|Zn|2
¨

κpnq´1
ÿ

t“1

E
´

rε ¨max t0 , Yn,tpεqus
AI´i

¯

.

(5)

Twice applying Jensen’s inequality (i.e., first EpXN q ě EpXqN , given a random

variable X, and then Epmax tX1 , Y2uq ě max tEpX1q, EpX2qu given X1 , X2)

yields

EpL̂n`1 q ´ EpL̂nq ě ´
2

|Zn|
´

1

|Zn|2

κpnq´1
ÿ

t“1

E
`

Iin,t
˘

`
1

|Zn|2
¨

κpnq´1
ÿ

t“1

rε ¨max t0 , E pYn,tpεqqus
AI´i

.

(6)

Lin,t is everywhere non-decreasing in t “ 1 , . . . , κpnq, and thus Ynκpnqpεq ď

Yn,tpεq, for each t “ 1 , . . . , κpnq. Using this in (6) delivers

EpL̂n`1 q ´ EpL̂nq ě ´
2

|Zn|
´

1

|Zn|2

κpnq´1
ÿ

t“1

E
`

Iin,t
˘

`
κpnq ´ 1

|Zn|2
¨
“

ε ¨max
 

0 , E
`

Ynκpnqpεq
˘(‰AI´i

.

(7)

Thus EpL̂n`1 q´EpL̂nq ă 0 implies the expression on the right-hand-side of (7)

is negative. After some rearranging it becomes clear that EpL̂n`1 q´EpL̂nq ă 0

only if
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E
`

Ynκpnqpεq
˘

ă
1

ε

»

–

2 ¨ |Zn|

κpnq ´ 1
`

1

κpnq ´ 1

κpnq´1
ÿ

t“1

E
`

Iin,t
˘

fi

fl

1 {AI´i

. (8)

By definition, Yn,tpεq “ 1 ´ Lin,t ´ |S
i
npεq|{|Zn|

2 . Since L̂n`1 ě Lin,t ´ 2 {|Zn|

for each t “ 1 , . . . , κpnq, it follows that

Yn,tpεq ě 1 ´ L̂n`1 ` 2 {|Zn| ´ |S
i
npεq|{|Zn|

2 ,

for each t “ 1 , . . . , κpnq. Using this in (8) and then solving for EpL̂n`1 q yields:

EpL̂n`1 q ´ EpL̂nq ă 0 only if EpL̂n`1 q ą θnpεq, where

θnpεq ”1 ´
2

|Zn|
´ E

˜

|Sinpεq|

|Zn|2

¸

´
1

ε

»

–

2 ¨ |Zn|

κpnq ´ 1
`

1

κpnq ´ 1

κpnq´1
ÿ

t“1

E
`

Iin,t
˘

fi

fl

1 {AI´i

.

(9)

θnpεq, is defined here with the sequence tθspεqu from Lemma 4 in mind. Consider

then the following. If α ą 1 , then |Zn|{rκpnq ´ 1 s tends to zero as n tends to

infinity. For i ą 1 , if Ljn,t converges to one in probability, j “ 1 , . . . , i´ 1 , then

Iin,t tends to zero in probability, and thus so does
řκpnq´1
t“1 EpIin,tq{rκpnq ´ 1 s

(recall that Iin,t is identically zero for i “ 1 ). Therefore, θnpεq tends to 1 ´Spεq,

where Spεq is the almost sure limiting value of Sinpεq{|Zn|
2 (from Lemma 3).

Spεq tends to zero as ε tends to zero (Lemma 3 again). We have already argued

that EpL̂n`1 q ´ EpL̂nq ě ´2 {|Zn|, and thus lim infrEpL̂n`1 q ´ EpL̂nqs “ 0 .

Lemma 4 now gives the desired result. �

We are now in a position to prove Lemma 2.

Proof of Lemma 2. Fix α ą 1 . The proof is by induction. Consider first i ą 1 .

The induction hypothesis is: If Ljn,t tends to one in probability, j “ 1 , . . . , i´1 ,

then Lin,t converges to one in probability. As in the proof of Lemma 6 write

L̂n “ Lin1 . It suffices, to prove the induction claim, that the subsequence

L̂n converges to one in probability (Lemma 5). Toward that end, first write

Yn,tpεq “ 1 ´Lin,t´ |S
i
npεq|{|Zn|

2 (for role i as in the proof of Lemma 6). Write
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(with equation (7) in mind) Ȳnpεq “
“

ε ¨max
 

0 , EpYnκpnqpεqq
(‰AI´i

, and

X̄n “
2 ¨ |Zn|

κpnq ´ 1
`

1

κpnq ´ 1

κpnq´1
ÿ

t“1

EpIin,tq.

Consider dates s, m, such that s ą m. Summing the terms of equation (7) from

m to s gives,

EpL̂sq ´ EpL̂mq “
s´1
ÿ

n“m

rEpL̂n`1 q ´ EpL̂nqs

ě

s´1
ÿ

n“m

κpnq ´ 1

|Zn|2
“

Ȳnpεq ´ X̄n

‰

.

(10)

Lemma 6 gives that the sequence tEpL̂nqu converges, and therefore implies that

limmÑ8 supsěmrEpL̂sq ´ EpL̂mqs “ 0 . When α ą 1 the series
řs
n“mrκpnq ´

1 s{|Zn|
2 diverges to infinity as s tends to infinity.32 It follows then from (10)

that lim infrȲnpεq ´ X̄ns ď 0 for each ε ą 0 . Observe now that if Ljn,t ÝÑ 1

in probability, then Iin,t tends to zero in probability, and thus EpIin,tq tends to

zero in probability. The Cesaro means,
řκpnq´1
t“1 EpIin,tq{rκpnq ´ 1 s thus tend to

zero also, and hence X̄n tends to zero. It follows that lim inf Ȳnpεq “ 0 , for all

ε ą 0 . In view of the definition of Ȳnpεq, this implies lim inf Yn,tpεq “ 0 for all

ε ą 0 , and thus lim infr1 ´EpL̂nq´ |S
i
npεq|{|Zn|

2 s “ r1 ´ L̄´Spεqs “ 0 , where

L̄ is the limiting value of EpL̂nq. Since Spεq can be made arbitrarily small by

choice of ε, it follows that L̄ “ 1 . Since L̂n is surely bounded above by one, we

have that L̂n converges to one in probability. This completes the proof of the

induction claim.

What is needed now to complete the proof is to show that L1
n,t tends to one in

probability. This follows by applying the previous arguments in establishing the

convergence of Lin,t for i ą 1 . In particular, in the definition of X̄n set Iin,t “ 0 ,

and then proceed as above. �

Part 2. Eventual Dominance of SPE-ToPs. Fix an i ą 1 throughout.

From now on a single subscript will denote the total number of iterations. For

example, rather than writing Hn,t for the history at iteration t of date n, Hs

will be used where s “
řn´1
m“1 κpmq ` t. In this section it will be proved that if

32 That is, that limsÑ8

řs
n“1

1
n “ 8, and

řs`N
n“m`N

1
n “

řs
n“m

1
|Zn|

ă
řs
n“mrκpnq ´ 1 s{|Zn|

2 .
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the arrival rate of novelty α lies in the range p1 , A2 ´ 1 q, and if the fraction of

players in role j “ 2 , . . . , i´1 that are the SPE-ToP tends to one in probability,

then the fraction of players in role i that is the SPE-ToP will tend to one in

probability also. Consider first some required definitions and results.

Definition 9: The game q is new to i at Hs if no i subgame of q has occured

along Hs. Ns P t0 , 1 u is such that Ns “ 1 if and only if the game in iteration

s is new to i.

Lemma 7: Suppose α ă Ai ´ 1 , for i “ 2 , . . . , I, then every subgame is new to

i in the limit. In particular, P tNs “ 1 |Hsu converges to one almost surely.33

Proof. First observe the following. If s is the total number of iterations along

Hs “ Hn,t, then s ď
ř

mďn κpmq. Assumption 3, where N is the number of out-

comes initially, then gives s ď n¨pN`nqα, and hence s ď pN`nqα`1 “ |Zn|
α`1 .

Since there are AI´i i role subgames in the fixed game tree, the number of i

role subgames that have been encountered along Hs is surely bounded above by

AI´i ¨ |Zn|
α`1 , and therefore the fraction of i subgames encountered previously

along Hs is no greater than AI´i ¨|Zn|
α`1 {|Zn|

Ai

, which clearly converges to zero

whenever α` 1 ă Ai. This establishes the result as the distribution over games

at iteration t of date n can be induced by drawing the appropriate number of i

subgames uniformly from the Ai-times product of Zn. �

Definition 10: The measure induced by F on the full set of games Q is µ, and

the measure induced by F on the full set of i role subgames, Qi, is µi.

Lemma 8: For each strategy r of role i that is not the SPE-ToP strategy there

exists a set of games Qprq with positive measure under µ such that if q P Qprq

and q is new to i at Hs, then for every subgame q1 of q, the choice made by r in

q1 at Hs is not part of an SPE of q1.

Proof. It suffices to show that for any alternative r to the SPE-ToP there

exists a set of i subgames, Qiprq, with positive measure under µi, such that

for all q P Qiprq, if q is new, then r’s choice in q is not part of an SPE. 34 If

r ą 1 is a ToP alternative to the SPE-ToP this follows by definition. Thus,

33 If α ą Ai ´ 1 , then the fraction of games that are new to i converges to 0 in probability.

The proof is analogous to that of Lemma 2.
34 Any game that has each i subgame in Qiprq will belong to Qprq, and thus Qprq has measure

at least rµipQiprqqsA
I´i

ą 0 , since there are AI´i subgames of player i in each game and since µ

is derived from the AI -fold independent sampling from F , while µi is derived from the Ai-fold

independent sampling from F .
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assume r is a naive strategy. Recall that each naive strategy maps own payoffs

to a fixed choice whenever making a choice in a new subgame. Although this

mapping might correspond to an SPE in some i subgames, the richness of the

set of possible games ensures it does not correspond to an SPE choice on a set

of i subgames with positive measure under µi. To see this fix an action a P A.

Suppose i’s choice of a is part of an SPE in every subgame in a subset Q̃ of i

role subgames. Then, for almost every q P Q̃, lacking a dominant choice for i,

the action a can be rendered suboptimal in some q1 obtained from q through a

re-assignment of the remaining player j “ i´ 1 , . . . , 1 payoffs. The result then

follows since the set of subgames contained in Q̃ such that i has no dominant

choice has positive measure under µi. �

Definition 11: For each i role strategy r “ 2 , . . . , R̄, Bsprq P t0 , 1 u is such

that Bsprq “ 1 if and only if the game drawn at iteration s is new to i and

belongs to Qprq.

Definition 12: Let Cs P t0 , 1 u be such that Cs “ 1 if and only if at iteration

s some alternative to the SPE-ToM in role i outdoes the SPE-ToM in any i role

subgame reached by the i players.

Definition 13: Qδ is the set of games such that the absolute difference between

any payoffs of the game is at least δ. For each ξ ą 0 , and δ ą 0 , Dspξ, δq P t0 , 1 u

is such that Dspξ, δq “ 1 if and only if at iteration s each of the following hold:

1) the game is in Qδ, 2) the fraction of remaining players after i, j “ 1 , . . . , i´1 ,

that chooses an SPE in every subgame is at least 1 ´ ξ, and 3) the SPE-ToMs

in role i themseves make an SPE choice at each node they reach.

Now the last of the preliminary results—

Lemma 9: 1) If α ă A2 ´ 1 , then P tBsprq “ 1 u converges to µpQprqq. In

addition suppose α ą 1 , and that the fraction of players in roles j “ 1 , . . . , i´1

that is the SPE-ToM tends to one in probability. Then, 2) Cs tends to zero in

probability, and 3) for each ξ ą 0 , P tDspξ, δq “ 1 u tends to µpQδq.

Proof. 1) Let I t¨u denote the indicator function. Recall that Bsprq is equal

to one if and only if the game at iteration s is new to i and in Qprq (Defi-

nition 11), and that Ns “ 1 if and only if the game at iteration s is new to

i. Thus, where qs denotes the game at iteration s, Bsprq “ Ns ¨ I tqs P Qprqu,
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and therefore Ns ` I tqs P Qprqu ´ 1 ď Bsprq ď I tqs P Qprqu . Taking expecta-

tions gives EpBsprqq ÝÑ EpI tqs P Qprquq (i.e., Lemma 7 implies EpNsq ÝÑ 1 ).

Notice that P tSu “ EpI tSuq given an event S. Thus, P tBsprq “ 1 u ÝÑ

P tqs P Qprqu . Lemma 1 delivers the desired result since it implies P tqs P Qprqu

converges to µpQprqq.

2) If α ą 1 , then Lemma 2 implies the SPE-ToPs in role i choose an SPE

of the underlying game with probability tending to one. By hypothesis, the

remaining players also choose an SPE with probability tending one. Thus, in

the long run, the SPE-ToPs at role i choose optimally.

3) Let D̂s P t0 , 1 u equal one if and only if the SPE-ToPs in role i choose

an SPE of the game drawn at iteration s, and at least 1 ´ ξ of the remaining

players behave as in an SPE of the game. Then, Dspξ, δq “ I tqs P Qδu ¨ D̂s,

and thus I tqs P Qδu ` D̂s ´ 1 ď Dspξ, δq ď I tqs P Qδu . Taking expectations

gives EpDspξ, δqq ÝÑ EpI tqs P Qδuq (since by hypothesis EpD̂sq ÝÑ 1 ). Thus,

P tDspξ, δq “ 1 u ÝÑ P tqs P Qδu . Lemma 1 gives P tqs P Qδu ÝÑ µpQδq, and

hence P tDspξ, δq “ 1 u ÝÑ µpQδq as claimed. �

We are now in position to prove the key result of this section.

Lemma 10: Suppose α P p1 , A2 ´ 1 q. If the fraction of players in role j “

2 , . . . , i´ 1 that is the SPE-ToM tends to one in probability, then the fraction

of players in role i that is the SPE-ToM tends to one in probability.

Proof. It will first be proved that Epf isp1 qq converges by showing that the

sequence tEpf isp1 qqu satisifies the hypotheses imposed on txsu from Lemma 4.

With that in mind notice the following, which is implied by Assumption 5 (Parts

i, and iii). For each ε ą 0 and δ ą 0 there are positive numbers ∆ and ξ such

that the following is true for any strategies of i, r and r1. Suppose the fraction

of i’s using strategy r1 exceeds ε at iteration s. Suppose at the same time that

1) strategy r1 choses an SPE in every subgame reached by the i’s, 2) the game is

such that the minimal absolute payoff difference between any i payoffs is greater

than δ, 3) the proportion of remaining players j “ i ´ 1 , . . . , 1 that choose an

SPE in each subgame is at least 1 ´ ξ, and 4) the strategy r makes a non-SPE

choice in every i subgame. Then, 5) the fraction of i players that use strategy r1
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increases by at least ∆. 35 Notice that the previous facts imply the following.

For each ε ą 0 there is a triple of positive numbers pδpεq,∆pεq, ξpεqq that give

the above implications with δ “ δpεq,∆ “ ∆pεq, and ξ “ ξpεq, where δpεq can

be chosen so that limεÑ0 δpεq “ 0 . 36 In the remainder let pδpεq,∆pεq, ξpεqq be

as just described.

Next, recall the definitions of Bsprq, and Dspξ, δq (Definitions 11, and 13,

respectively). For each ε ą 0 , and strategy r ą 1 , if the fraction of role i

players that use strategy r at iteration s is no less than ε, then the fraction of

i players that use the SPE-ToP strategy increases by at least ∆pεq, whenever

Dspξ, δq ¨ Bsprq “ 1 , for any ξ ď ξpεq, and δ ě δpεq (i.e., Bsprq ¨Dspξ, δq “ 1 if

and only if the 1)-4) above with r1 “ 1 , the SPE-ToP strategy). Thus, where

I tu denotes the indicator function, if Bsprq ¨Dspξpεq, δpεqq ¨ I
 

f isprq ě ε
(

“ 1 ,

then f is`1 p1 q ´ f isp1 q ą ∆pεq. Next, recall that Cs “ 1 if and only if some

alternative to the SPE-ToP at role i outdoes the SPE-ToP in some subgame at

iteration s. Since f is`1 p1 q ´ f
i
sp1 q ě ´1 , if follows that f is`1 p1 q ´ f

i
sp1 q ě ´Cs

(Assumption 5 (iii-iv) implies this since Cs “ 1 if and only if some strategy

obtains a higher payoff than does the SPE-ToP in some subgame at iteration

s). Hence, for each r “ 2 , . . . , R̄ and s “ 1 , 2 , . . . ,

f is`1 p1 q ´ f
i
sp1 q

ě∆pεq ¨Bsprq ¨Dspξpεq, δpεqq ¨ I
 

f isprq ě ε
(

´ Cs

ě∆pεq ¨
“

Bsprq ¨ I
 

f isprq ě ε
(

`Dspξpεq, δpεqq ´ 1
‰

´ Cs

“∆pεq ¨
“

I
 

f isprq ě ε
(

¨ rBsprq ` µpQprqq ´ µpQprqqs `Dspξpεq, δpεqq ´ 1
‰

´ Cs

ě∆pεq ¨
“

I
 

f isprq ě ε
(

¨ µpQprqq´ | Bsprq ´ µpQprqq | `Dspξpεq, δpεqq ´ 1
‰

´ Cs.

(11)

35 That is, given a minimal payoff difference of δ, if ξ is sufficiently small, a large enough

fraction of the remaining players choose the unique SPE so that the SPE choice is optimal for

i. Since, by assumption, r deviates from the SPE in every reached subgame, the payoff to r is

dominated stricty by the payoff to r1. Assumption 5 then implies an increase in the fraction of

the i population that uses r1. Note, however, that even when the average payoff to r1 exceeds

the payoff to r, the rate at which role i’s abandon r in favor of r1 is limited by the fraction of

i’s that use r at iteration s, and hence the requirement that f isprq ą ε.
36 As asserted initially, Assumption 5 gives: For each ε ą 0 and δ ą 0 there are positive numbers

∆ and ξ such that, if 1)-4) above hold, then 5) holds. To obtain the desired pδpεq,∆pεq, ξpεqq,

choose the function δpεq first, so that limεÑ0 ε “ 0 . Then, choose ∆pεq and ξpεq as required to

to make 1)-4) imply 5).
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In the third line of (11) we use the fact that B ¨D ě B `D´ 1 , for any binary

variables B,D P t0 , 1 u. Taking expectations in equation (11) gives

E
`

f is`1 p1 q
˘

´ E
`

f isp1 q
˘

ě ∆pεq ¨
”

P
 

f isprq ě ε
(

¨ µpQprqq

´ |E pBsprq ´ µpQprqqq| ` EpDspξpεq, δpεqqq ´ 1
ı

´ EpCsq.
(12)

Therefore, E
`

f is`1 p1 q
˘

´E
`

f isp1 q
˘

ă 0 implies, after rearranging in (12), that

for each r1 “ 2 , . . . , R̄,

P
 

f ispr
1
q ě ε

(

ă max
rě2

"

1

µpQprqq
¨

„

1 ´ EpDspξpεq, δpεqqq `
EpCsq

∆pεq

` |E rµpQprqq ´Bsprqs|

*

.

(13)

Let φspεq denote the value of the maximum in (13). Since E
`

f is`1 p1 q
˘

´

E
`

f isp1 q
˘

ă 0 implies

Epf isprqq ă ε ¨ p1 ´ φspεqq ` φspεq, r “ 2 , . . . , R̄, (14)

we have

E
`

f is`1 p1 q
˘

´ E
`

f isp1 q
˘

ă 0 , only if

Epf isp1 qq ě 1 ´ rR̄ ´ 1 s ¨ rε ¨ p1 ´ φspεqq ` φspεqs.
(15)

With (15) in mind set θspεq from the statement of Lemma 4 to 1 ´rR̄´1 s ¨ rε ¨

p1´φspεqq`φspεqs. Lemma 9 implies φspεq ÝÑ r1´µpQδpεqqs{minrě2 tµpQprqqu.

Then, set θpεq from Lemma 4 to

1 ´ rR̄ ´ 1 s ¨

„

ε ¨

ˆ

1 ´
1 ´ µpQδpεqq

minrtµpQprqq

˙

`
1 ´ µpQδpεqq

minrě2 tµpQprqq



,

so that θspεq ÝÑ θpεq. In view of our choice of δpεq, θpεq thus defined tends to

zero as ε approaches zero (since limδÑ0 µpQδq “ 1 , by Assumption 2). Next,

since f is`1 p1 q ´ f isp1 q ě ´Cs, lim infrEpf is`1 p1 qq ´ Epf isp1 qqs “ 0 , and thus

Lemma 4 gives that Epf isp1 qq is a convergent sequence.
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To see that f isp1 q must converge in probability to one, note that Lemma

9 implies that the right-hand-side of (12) converges to ∆pεq ¨ rP
 

f isprq ě ε
(

¨

µpQprqq`µpQδpεqq´1 s. Since Epf is`1 p1 qq´Epf
i
sp1 qq ÝÑ 0 , in view of equation

(12), it follows that lim suprP
 

f isprq ě ε
(

` µpQδpεqq ´ 1 s ď 0 , for all ε ą 0 ,

and r “ 2 , . . . , R̄. This gives lim supP
 

f isprq ě ε
(

ď 0 , for all ε ą 0 , and

r “ 2 , . . . , R̄, which establishes the result. �

Theorem 1 now follows by induction.
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