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Goal: formulate a definition of sequential equilibrium for multi-stage games with infinite 
type sets and infinite action sets, and prove general existence. 
Sequential equilibria were defined for finite games by Kreps-Wilson 1982,  
but rigorously defined extensions to infinite games have been lacking. 
Various formulations of “perfect bayesian eqm” (defined for finite games in Fudenberg-
Tirole 1991) have been used for infinite games. No general existence. 
Harris-Stinchcombe-Zame 2000 explored definitions with nonstandard analysis. 

It is natural to try to define sequential equilibria of an infinite game can by taking limits of 
sequential equilibria of finite games that “approximate” it. 

But no general definition of “good finite approximation” has been found. 
It is easy to define sequences of finite games that seem to be converging to the infinite game 
(in some sense) but have limits of equilibria that seem wrong. 

We therefore take another route. We work with the infinite game itself, and consider for any 
epsilon and any finite partition of the players’ type (information) spaces, strategies that are 
epsilon-optimal only at each of the finitely many partition elements. We then consider the 
limit as epsilon tends to zero and as the type-space partitions become arbitrarily fine, i.e., 
finer than any particular finite partition. 

The definition presented here is based on intuitive judgments about what is reasonable. 
Others are encouraged to explore alternative definitions. 

We begin with several examples. The first motivates the new formalism we use to describe 
the solution of a game. The others motivate why we do not define a solution as the limit of 
sequential equilibria of finite games that approximate the given infinite game. 
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Nonexistence and strategic entanglement (Harris-Reny-Robson 1995) 
Example: Date 1: Player 1 chooses a1 from [-1,1], player 2 chooses from {L,R}.  
Date 2: Players 3 and 4 observe the date 1 choices and each choose from {L,R}. 

For i=3,4, player i’s payoff is -a1 if i chooses L and a1 if i chooses R. 

Player 2’s payoff depends on whether she matches 3’s choice. 
If 2 chooses L then she gets 1 if player 3 chooses L but -1 if 3 chooses R; and 
If 2 chooses R then she gets 2 if player 3 chooses R but -2 if 3 chooses L. 

Player 1’s payoff is the sum of three terms: 
(First term) If 2 and 3 match he gets -|a1|, if they mismatch he gets |a1|; 
plus (second term) if 3 and 4 match he gets 0, if they mismatch he gets -10; 
plus (third term) he gets -|a1|2. 

There is no subgame perfect equilibrium of this game. But its “solution” seems obvious. 

Approximations in which 3 and 4 can distinguish between a1 = +,0,- and in which 1’s action 
set is {-1,…,-2/m,-1/m,1/m,2/m,…,1} have a unique subgame perfect (hence sequential) 
equilibrium in which player 1 chooses ±1/m with probability ½ each, player 2 chooses L and 
R each with probability ½ , and players i=3,4 both choose L if a1=-1/m and both choose R if 
a1=1/m. The limit “solution” is a1= 0, a2 = L or R each with prob. ½, and (a3,a4) = (L,L) or 
(R,R) each with prob. ½ . (But, for general games, finite approximations are unreliable.) 

Player 3’s and player 4’s strategies are entangled in the limit. 

The solution of this game (and generally) cannot be described by independent strategies, so 
we introduce a new formalism to describe game solutions. 
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Problems of spurious signaling in naïve finite approximations 
Example. Nature chooses {1,2}, p() = /3. Player 1 observes t1 =  and chooses             
a1 [0,1]. Player 2 observes t2 = (a1) and chooses a2{1,2}. Payoffs are as follows. 
 
    
 
 
It should not be possible for player 2 to always match the state because, if it were   
possible, then 
-  for any a1[0,1] that might be chosen by player 1, (a1)1/2 must never be chosen, implying 
   that choosing (a1)1/2 instead of a1 would be a profitable deviation for player 1. 
But if player 1 is restricted to any finite subset, F, of his action space [0,1], then player 2 
can always match the state as follows:  
- player 1 chooses the largest action in F that is less than 1; 
- player 2 chooses a2 = 1 iff (t2)1/2F. 

Thus, we must not simply discretize the players’ action spaces to obtain a finite game. 

To obtain a finite game while avoiding such spurious signaling, we could limit player 2’s 
ability to distinguish her types and allow player 1 any finite subset of his actions. That is, we 
could coarsen the players’ information by finitely partitioning each of their type spaces, Tik, 
and then pass to the limit by expanding the players’ finite action sets to fill in the action 
spaces Aik faster than the type-space partitions become arbitrarily fine. 

But this too leads to difficulties, as the next example shows. 

 a2 = 1 a2 = 2 
 = 1 (1,1) (0,0) 
 = 2 (1,0) (0,1) 
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Limitations of step-strategy approximations  
Example. Player 1 chooses a1 [0,1]. Player 2 observes t2 = a1 and chooses a2[0,1]. The 
game is zero-sum. Player 1 receives 1 if their choices do not match and -1 otherwise. 
(This discontinuous game is the reduced form of a two-stage continuous game.) 
There should be no equilibrium in which player 2 fails to match player 1’s choice. 
 
However, for any fixed partition of player 2’s type space T2 = [0,1], player 1 can mix 
uniformly over a large enough finite set of actions within a single element of 2’s partition so 
that player 2 has an arbitrarily small chance of matching 1’s choice. 
 
Player 2 would like to use the strategy "choose a2 = t2," but this strategy can be approximated 
only by step functions when player 2 has finitely many feasible actions. 
Step functions close to this strategy yield very different expected payoffs because 2’s utility 
function is discontinuous (but such discontinuities can arise in the reduced form of a 
continuous game with one additional stage). 
 
If we gave player 2 the strategy  s2(t1) = t1, she would use it! 
 
This example suggests that, because strategies can be particularly important for players, we 
should include them (even if not measurable w.r.t. the players’ finite partitions), and not 
merely actions, in our finite approximations. 
 
But, as the next example shows, this brings us back again to the problem of spurious 
signaling.  
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Spurious signaling returns 
Example. Nature chooses {1,2}, p() = /3. Player 1 observes t1 =  and chooses             
a1 [0,1]. Player 2 observes t2 = (a1) and chooses a2{1,2}. Payoffs are as follows. 
 
    
 
 

As before, it should not be possible for player 2 to always match the state. 

But fix any finite partition of 2’s types, and consider filling in the players’ pure strategy sets. 
For any finite set F of pure strategies (actions) for player 1, we can always add one more 
pure strategy a1 = x such that (x)1/2 is not in F. And we can add to player 2’s finite set of pure 
strategies the pure strategy s2 such that s2(t2) = 1 iff (t2)1/2F{x}. 
 
Then, player 2 always matches the state if player 1 chooses x and player 2 chooses s2 . 
 
 
Taken together, the examples indicate that attempting to approximate the true game with a 
finite game is unreliable because it can produce unwanted equilibria. 
(Harris-Stinchcombe-Zame 2000 provide many excellent additional examples of this kind.) 
 
We therefore always permit the players to employ ALL of their infinitely many strategies. 

 a2 = 1 a2 = 2 
 = 1 (1,1) (0,0) 
 = 2 (1,0) (0,1) 
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Multi-stage games =(,N,K,A,T,p,,u) 
i  N = {players}, finite set; 
k  {1,...,K}  periods of the game. 
Let  L = {(i,k)| iN, k{1,...,K}} = {dated players}.  We write ik for (i,k). 
Aik = {possible actions for player i at date k}; history independent. Ak = iN Aik. 
Tik = {possible informational types for player i at date k}, disjoint sets. Tk = iN Tik. 
k = {possible date k states}. 
-algebras (closed under cntbl  and complements) of measurable subsets are specified  for 
k, Aik and Tik. Product spaces are given their product -algebras. 
A = kKiNAik  = {possible sequences of actions in the whole game}. 
T = kKiNTik  = {possible sequences of types in the whole game}. 
 = kKk  = {possible states in the whole game}. 
A = {possible outcomes of the game}. 
The subscript, <k, denotes the projection onto periods before k, and ≤k weakly before.  
e.g., A<k = h<kiNAih = {possible action sequences before period k} (A<1 = {}),  
and for aA, a<k=h<kiNaih is the partial sequence of actions before period k. 
The date k state is determined by a regular conditional probability pk from <kA<k to k. 
i.e., for each (<k,a<k), pk(.|<k,a<k) is a cntbly additive prob. on the msbl subsets of k, and 
for each msbl subset C of k, pk(C|<k,a<k) is a msbl function of (<k,a<k). 
Player i's period k information is given by a measurable type function ik:≤k A<k  Tik. 
Assume perfect recall:  ikL, m < k,  there is a measurable ikm:TikTimAim such that 
ikm(ik(≤k,a<k)) = (im(≤m,a<m),aim), , aA. 
Each player i has a measurable and bounded utility function  ui: A .  
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Strategies and induced distributions 
A strategy, sik, for ikL is any regular conditional probability from Tik to (Aik).  

i.e., for each tikTik, sik(|tik) is a countably additive probability on the measurable subsets of 
Aik, and for each measurable subset C of Aik, sik(C|tik) is a measurable function of tik. 

Let Sik denote ik’s set of strategies, let Si = kSik, denote i’s set of strategies, and let Sk = 
iNSik and S = ikLSik. 

For any skSk and any tk = (tik)iN Tk, let sk(|tk) denote the product of the measures sik(|tik), 
for iN. 

Each skSk determines a regular conditional probability hk from <kA<k to kAk as 
follows. For any measurable subset Z of kAk, and any (<k,a<k)<kA<k, 

hk(Z|<k,a<k,sk) = ∫_k sk(Zk(k)|k(≤k,a<k))pk(dk|<k,a<k),  

where Zk(k)={ak:(k,ak)Z}, and k(≤k,a<k) = (ik(≤k,a<k))iN. 

Set H1 = h1, and define the probability measures H2,…,HK inductively as follows. For each k 
and any measurable subset W of ≤kA≤k, 

Hk(W|s) = ∫_<kA_<k hk(Wk(<k,a<k)|<k,a<k,sk)Hk-1(d(<k,a<k)|s),  

where Wk(<k,a<k) = {(k,ak) : (k,<k, ak,a<k)W}.  

HK(.|s) is the probability measure over the outcome set A induced by the strategy s. 
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Conditional probabilities, payoffs, and observable events 
 
Consider any sS and any ikL. 
 
For any measurable RikTik, let  Pr(Rik|s) = HK({(,a): ik(≤k,a<k)Rik}|s). 
 
Define the conditional probability P on A as follows. For any measurable YA, if 
Pr(Rik|s) > 0, let 
 
P(Y|Rik,s) = HK({(,a) Y: ik(≤k,a<k)Rik}|s)/Pr(Rik|s). 
 
If Pr(Rik|s) > 0, define player i’s conditional expected payoff by 
 
Ui(s|Rik) = A ui(,a) P(d(,a)|Rik,s). 
 

The set of observable events for i at k that can have positive probability is 
Qik = {Qik Tik| Qik is measurable and sS such that Pr(Qik|s) > 0}. 
 

Let Q = ikL Qik  (a disjoint union) denote the set of observable events, i.e., the set of all 
events that can be observed with positive probability by some dated player. 
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Type-set partitions and (,)-sequential equilibria 

 A type-set partition is any  =ikLik such that each ik is a finite partition of measurable  
 subsets of Tik. (So elements of ik are disjoint measurable sets with union Tik.) 

 Type-set partitions are partially ordered by their fineness. Say that =ikLik is finer than    
 o=ikL

o
ik if, ikL, each element of ik is a subset of some element of o

ik. 

 Say that ciSi is a date-k continuation of siSi if cij = sij for all dates j < k. 

For any  > 0 and any type-set partition , say that sS is an (,)-sequential equilibrium   
of   if ikL, observable ikikQik, 
 

1.  Pr(ik|s) > 0, and 
 

2.  Ui(ci,si|ik)  Ui(s|ik) + ,  for every date-k continuation ci of si. 
 

Note: Changing i’s choice only at dates j ≥ k does not change the probability of i's types at k, 
so Pr(ik|ci,si) = Pr(ik|s) > 0. 
  
Fact. For any finite game with perfect recall, if  is the finest possible type-set partition (the 
partition given by the players’ information sets), then a strategy profile is part of a sequential 
equilibrium iff it is the limit as →0 of a sequence of (,)-sequential equilibria. 
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Outcome events and assessments 
Recall: Q = ikL Qik  (a disjoint union) is the set of observable events, i.e., the set of all 
events that can be observed with positive probability by some dated player. 
Let Y = {measurable subsets Y of A} be the set of all outcome events. 

For any dated player ik and any observable event QikQik, let 
I(Qik) = {(,a)A| ik(,a<k)Qik}. 
  
An assessment for  is a vector  of conditional probabilities (Y|Q)[0,1]  YY, QQ, 
such that for any outcome events Y and Z and any observable events Qik and Qjm: 
1. (Y|Qik)[0,1],  (A|Qik) = 1,  (|Qik) = 0  (probabilities); 
2. if  YZ=  then  (YZ|Qik) = (Y|Qik) + (Z|Qik)  (finite additivity); 
3. (Y|Qik) = (YI(Qik)|Qik)  (conditional support); 
4. (YI(Qjm)|Qik) (I(Qik)|Qjm) = (YI(Qik)|Qjm) (I(Qjm)|Qik)  (Bayes consistency). 
 
So {assessments } is a compact (product topology) subset of [0,1]YQ. 
 
Note. Bayes consistency implies that (Y|Tik) = (Y|Tjm), for all ik and jm in L. 
So the unconditional distribution on outcomes A can be defined by (Y) = (Y|Tik), 
measurable YA, ikL. 
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Sequential equilibrium 

Recall: Y = {measurable Y  A}, and Q = ikLQik = {observable events}. 

 

An assessment [0,1]YQ is a sequential equilibrium if for every  > 0, for every type- 

space partition , and for every finite subset Φ of YQ, there is an (,)-sequential 

equilibrium [,,Φ] of  , such that P(Y|Q,[,,Φ])  is well-defined and within  of  

(Y|Q), (Y,Q)Φ. 

 

Remark. {(,,Φ)} is a directed set when (’,’,Φ’) is considered larger than (,,Φ) iff ’≤ , 
’ is finer than , and Φ’ contains Φ. Then, an assessment [0,1]YQ is a sequential 
equilibrium iff there is a mapping [] such that the net of assessments {P(|,[,,Φ])} 
converges to , i.e., such that 

                         lim(,,Φ) P(Y|Q,[,,Φ]) = (Y|Q), (Y,Q)YQ,  

where each [,,Φ] is some (,)-sequential equilibrium of  . 

Note. For any ikL and any QQik, Pr(Q|[,,Φ]) > 0 for all fine enough  (e.g., whenever 
Q is the union of elements of ik). So P(Y|Q,[,,Φ]) is well-defined for all fine enough . 
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Regular multi-stage games with projected types 
Let =(,N,K,A,T,p,,u) be a multi-stage game (hence with perfect recall). 
 is a regular game with projected types if there is a finite set J such that ikL, jJ,  
Aikj and kj such that: ikL, 
(i) Aik = jJAikj, k = jJkj,  
(ii) kj is a nonempty complete separable metric space and Aikj is a nonempty compact 
metric space jJ, and all spaces, including products, are given their Borel sigma-algebras, 
(iii) a measurable fk:≤k A<k  [0,∞), and jJ, a finite countably-additive measure     
kj on the Borel subsets of kj such that (<k,a<k)<kA<k and Borel subsets Ck, 
pk(C|<k,a<k) = ∫C fk(k|<k,a<k)k(dk), where k = jJkj is a product measure on k=jJkj,  
(iv) {ui(,)f1(1|<1,)… fK(K|<K,)} is an equicontinuous family,  
(v) ik:(h≤kjJhj)(nNh<kjJAnhj)Tik is a projection onto (hjHhj)(nhjMAnhj) for 
some H{(h,j): h≤k,jJ} and some M{(n,h,j): nN, h<k, jJ}, where H and M may 
depend on ik, and where the projection onto the empty set is a constant function. 
Note. A family G of real-valued functions on a metric space X is equicontinuous if xX, 
>0, >0 such that if x’X is within  of x, then |g(x)-g(x’)| <  for all gG. 
Remark. (a) The equicontinuity condition (iv) holds if all sets are compact and the function 
within curly brackets is jointly continuous in (,a). (b) One can always reduce the number of 
coordinates |J| of, say k, to (K+1)|N| or less by grouping them according to the |N|-vector of 
dates at which each player observes them, if ever. 
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Existence 

Theorem. The set of sequential equilibria is nonempty for all regular games with projected 
types and is equivalent to the set of Kreps-Wilson sequential equilibria in all finite games. 

 

Remark. (a) Regular games with projected types include all finite games and allow games  
with perfect information, multi-stage games with observable actions, signaling games, …   
(b) Since distinct players can observe the same kj, regular games with projected types need 
not satisfy the Milgrom-Weber (1985) absolute continuity condition. 
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