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Bayesian Allocation Mechanisms

I In allocation mechanisms, agents choose messages.

I The messages determine an outcome: a (randomized)
allocation from a (discrete) set and transfers from agents.

I Examples include auctions, provision of public goods, ....

I Question: under what conditions does such a model have an
equilibrium?
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The Issue of Equilibrium Existence

I When the mechanism is indirect, the outcome is deterministic
for most message profiles.

I The outcome function is therefore a discontinuous function of
the messages.

I Therefore, fixed-point theorems cannot be applied directly.
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Approaches To The Problem

I Assuming “monotonicity,” the classical approach in auctions
analyzed differential equations arising from first-order
conditions.

I Later literature (Athey (2001), McAdams (2003), Reny-Zamir
(2004), Reny (2011)) gave conditions for best replies to
monotone strategies to be monotone.

I They used these conditions to provide existence theorems.

I These conditions (typically some kind of affiliation) are very
non-generic (de Castro (2009)).
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Discontinuous Games

I Recent results on existence of equilibria in discontinuous
games (Reny (1999), McLennan et al. (2012),
Barelli-Meneghel (2013), Bich-Laraki (2013)) have not proved
useful for this problem.

I The conditions in this literature are typically difficult to verify.
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A Notable Exception

I Jackson, Simon, Swinkels, and Zame (2002) gave an existence
theorem using endogenous tie-breaking: the allocation at
points of discontinuity depends on the types of the agents.

I The ideas of this paper are related to earlier work of Simon
and Zame (1990) for discontinuous games with complete
information.

I Jackson and Swinkels used these results to establish existence
of equilibria in mixed strategies for private-value auctions.
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Our Approach in This Work

I We investigate the issue of the existence of equilibria in
behavioral strategies.

I In particular, we examine whether there exist equilibria for
which the probability of “ties” is zero.

I We exploit the fact that discontinuities in Bayesian
Allocation-Mechanisms are ‘mild,” in that the set of
discontinuities is a lower-dimensional set.

I We study the related question of existence of ε-Nash
equilibria.
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Notation

I The set of agents is N = {1, . . . ,N}.
I The set of types of each agent n is Ωn. ΠnΩn = Ω.

I The prior on Ω is p, assumed to be absolutely continuous
w.r.t. to the product Πnpn of the marginals.

I The set of outcomes is a finite set Z and ∆(Z ) is the set of
lotteries over Z .
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Notation—continued.

I The set of messages of player n is a compact metric space Bn.
ΠnBn = B.

I λ× t : B → ∆(Z )× RNZ is the outcome function:
λ(b) ∈ ∆(Z ) is the allocation and tn(b, z) is the transfer from
n if z is the allocation.

I Each n is an expected-utility maximizer and his payoff depends
on (ω, z) and on his monetary transfers: un : Ω× Z ×R→ R.

I un,z(ω, t) is the payoff conditional on z . Assume:
1. un,z is a Caratheodory function (measurable w.r.t. ω and
continuous w.r.t. tn) and maps Ω× Tn to a bounded set for
each compact set Tn.
2. un,z is strictly decreasing in the transfer tn.
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Assumptions

I t : B → RNZ is continuous.

I Let D be the set of b such that λ is discontinuous.

I D−n(bn) is the cross-section of D over bn.

I For µ−n ∈ Πm 6=n(∆(Bm)), bn is a point of continuity if
µ−n(D−n(bn)) = 0.

I Mild discontinuity: For each µ−n, the set of bn that are points
of continuity is dense and measurable in Bn.
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Behavioral Strategies

I A pure strategy of n is a measurable map βn : Ωn → Bn.

I n’s interim payoff from a profile β is:

πn(ωn, β) =
∑
z

∫
Ω−n

un,z(ω, tn,z(β(ω)))λz(β(ω))dp−n(ω−n|ωn).

I A behavioral strategy for player n is a transition-probability
function σn : Bn × Ωn → [0, 1], where Bn is the Borel
sigma-algebra on Bn.

I σn(·|ωn) is the mixture over Bn of player n if his signal is ωn.

I n’s set of behavioral strategies is Σn. Σ = ΠnΣn.

I The payoff πn(ωn, b, σ−n) is defined by the usual expectation
formula.
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Assumptions—continued.

I bn is a point of continuity against σ if σ−n assigns zero
probability to D−n(bn).

I Assumption: Suppose σ is a behavioral-strategy profile such
that σ(D|ω) = 0 for a.e. ω. There exists another behavioral
strategy profile σ̃ such that for each n:

1. each bn is a point of continuity against σ̃;
2. for each bn that is a point of continuity against σ,

πn(ωn, σ−n, bn) = πn(ωn, σ̃−n, bn) for a.e. ωn.

I In an auction, suppose a subset of players choose a bid with
positive probability, even though the bid has zero probability
of winning. The assumption allows us to change this bid so
that ties could not occur even if somebody else deviates to
this bid—e.g., allowing bidders not to enter any bid suffices.
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A Class of Tie-Breaking Rules

I Alternate tie-breaking rules: the set of λ̃ : Ω× B → ∆(Z )
that agree with λ when b /∈ D.

I Λ is the set of all such rules.

I The payoff function with λ̃ is denoted πn(ωn, σ; λ̃).

Lemma
Let σk be a sequence in Σ converging to σ∗. There exists λ∗ ∈ Λ
such that πn(·, σk) converges weakly to πn(·, σ;λ∗) in L∞(Ωn; pn).

I λ∗ is an “endogenous” tie-breaking rule, as in JSSZ.

I Ξ is the set of (σ∗, λ∗) obtained as limits of sequences σk as
above.
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Assumptions—continued.

Let σ be a behavioral strategy profile such that σ(D|ω) > 0 for a
set of ω with positive p-probability. For each n, let X ∗n be the set
of (ωn, bn) such that bn is not a point of continuity against σ−n.
• There does not exist λ∗ such that (σ, λ∗) ∈ Ξ and for each n and
ςn-a.e. pair (ωn, bn) and (ω′n, b

′
n) in a subset Xn of X ∗n with

ς∗n(Xn) = ς∗n(X ∗n ):

1. (Individual Rationality) πn(ωn, bn, σ−n;λ∗) > πn(ωn, b
′
n, σ−n)

for every b′n that is a point of continuity against σ−n;

2. (Incentive Compatibility) πn(ωn, bn, σ−n;λ∗) > ψ∗n(ωn, ω
′
n, b
′
n),

where ψ∗n(ωn, ω
′
n, b
′
n) is ωn’s payoff at bid b′n using ω′n instead

of ωn to determine the allocation.
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Interpretation of Key Assumption •

I There is no endogenous tie-breaking rule that:

1. (IR): gives agents at least as much as from choosing points of
continuity.

2. (IC): does not benefit an agent with signal ωn who mimicks a
different signal ω′n.

I This rule has the flavor of better-reply security, in the sense
that it is a special case of a Bayesian formulation of the idea.

I A special case arises when the tie-breaking rule λ at a tie
produces a Pareto-optimal allocation that is not individually
rational.
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A Basic Existence Theorem

Theorem
Under our assumptions, the game Γ has a Nash equilibrium
σ∗ ∈ Σ∗ such that for each n, every bn is a point of continuity
against σ∗. In particular, σ∗ is an equilibrium for all tie-breaking
rules in Λ.

Sketch of the Proof:

I Consider a sequence Γk of approximations of the game Γ
(e.g., discrete approximations).

I For each k , let σk be an equilibrium with associated
equilibrium payoffs vkn (ωn).
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Sketch of Proof—continued.

I Let (σ∗, λ∗) be the limit of the equilibria and let v∗n (ωn) be
the limiting payoff.

I We argue by contradiction that there is no point of
discontinuity.

I v∗n (·) is at least the payoff from choosing a point of continuity
against σ∗. Therefore, λ∗ satisfies IR.

I IC is satisfied since each type could mimic the strategy of any
other type along the sequence σk and hence at the limit.

I The theorem goes through if the set of feasible messages is
type-dependent, given by a correspondence ϕn : Ωn → Bn.
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ε-Nash Equilibria

I Say that σ is a 0-equilibrium if it is the limit of a sequence of
ε-equilibria in which ties occur with zero probability.

I We give conditions for existence of 0-equilibria.

I Assume that λ is deterministic outside D.

I If, as in the proof of the theorem, we obtain the limit (σ∗, λ∗)
of equilibria of perturbed games, but λ∗ is deterministic, then
σ∗ is obtainable as a 0-equilibrium (though not necessarily
through the sequence σk).
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The Set-Up

I Ωn = [0, 1].

I Z is the set of unit vectors in Rn along with the origin: it is a
specification of who, if anybody, gets the object.

I Bn is the union of an interval [0, b] and a distinguished point
b∗ (the outside option of not participating in the auction,
which is different from bidding 0).

I The discontinuity set D is where there is a tie for the highest
bid.

I When a bidder chooses the outside option b∗, he cannot cause
a tie.

Paulo Barelli, Hari Govindan & Bob Wilson Bayesian Allocation-Mechanisms
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Characterization of Tie-Breaking Rules

I In this set up, given any profile σ of behavioral strategies,
there can only be a countable number of points of
discontinuities (atoms of the bid distribution).

I For each atomic bid b, a tie-breaking rule λ∗ specifies an
allocation for the signal profile for which b is the highest bid.

I Individual rationality simplifies to checking whether a bidder
could do better than the tie-breaking rule by bidding up or
down a little, avoiding the atom.

I Incentive compatibility applies to all signals that choose the
bid b.

Paulo Barelli, Hari Govindan & Bob Wilson Bayesian Allocation-Mechanisms



Introduction
The Model

Results
Single-Unit Auctions

Conclusion

All-Pay Auctions

I In this case the transfer rule is tn(z , b) = bn, independent of
the outcome z .

I We assume the following for each n:

1. un(ω, en, bn) > un(ω, z , bn) for z 6= en. (Player n strictly
prefers to win the object than lose.)

2. un(ω, z , b) < un(ω, z , b∗n). (The upper bound on bids is
dominated by the outside option.)

Theorem: Under these conditions, the all-pay auction has an
equilibrium in behavioral strategies.
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All-Pay Auctions—continued.

I It is a simple matter to verify that IR is violated by any
mechanism λ∗.

I At a tie at a bid less than b, it is impossible to give every
player the good, yet each can get it for himself by bidding a
little higher.

I By assumption, at b each player would rather opt out.

I There is no assumption that un depends on ω at all, which
implies that the result applies to a game with complete
information as well!
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Private-Value First- and Second-Price Auctions

I un,z depends on ω only through ωn.

I First-Price Auction: tn(z , bn) = bn if z = en.

I Second-Price Auction: tn(z , bn) = bm if z = en where bm is
the second-highest bid.

I Assume that the action correspondence ϕn : Ωn → Bn

restricts ωn to undominated bids, i.e., un(ωn, bn) > 0.
We make the following further assumptions:

1. For each bn, un(ωn, bn) 6= 0 for a.e. ωn. (Rules out discrete
type space.)

2. un(ωn, b) < un(ωn, b
∗
n).
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Existence

I We now have the theorem proved by Jackson and Swinkels
(2002): The game has an equilibrium without ties.

I Verification of the IR condition is straightforward.

I At an atomic bid, all signals want either to win or lose.

I Because of the restriction on the bids, all signals want to win,
and can by bidding higher.

I Observe that the argument is the same for both first- and
second-price auctions: at a tie, both rules have the same
payment.

I Without the first assumption (i.e., even with discrete type
spaces) there are 0-equilibria.
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Two-Bidder Common-Value Auctions

I Assume that un(ω, en, bn) = um(ω, em, bn).

I The assumptions for the Common-Value case are identical to
that for the private-values case, except that we do not need a
restriction on the bid correspondence.

I Assume that for each bn, un(ω, en, bn) 6= 0 for a.e. ω.

I Assume that un(ω, en, b) < un(ω, z , b∗n). (Better to opt out
than pay the highest bid.)

Paulo Barelli, Hari Govindan & Bob Wilson Bayesian Allocation-Mechanisms
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Two-Bidder Common-Value Auctions—continued.

I Under our assumptions there exists an equilibrium without
ties.

I The verification of IR is simple. The tie-breaking rule of the
game (equal split) is Pareto optimal.

I Thus at least one of the two players is better off under the
standard tie-breaking rule rather than the endogenous one λ∗.

I This player can bid up or down depending on whether the
joint pie (net of the bid) is positive or not.

I The idea has the flavor of using reciprocal u.s.c. and payoff
security to get existence (Dasgupta-Maskin (1986), Reny
(1999)).
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The Two-Bidder Interdependent-Values Case

I Up to now, we only used the IR condition of the assumption
to rule out atoms. This case uses the IC constraint as well.

I In the interdependent-values case, un depends on the entire
profile ω and not just ωn.

I For simplicity we assume that un(ω, z , 0) = 0 if z 6= en (n gets
no value if he does not get the object, zero being the value of
the outside option).

I We assume that un(ω, en, bn) is strictly increasing in ωn.
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The Crucial Assumption

I Fix a subset Ω̃m of m’s signals and fix a bid bn.

I For each ωn, we can now look at the conditional expectation
E (un(ω, en, bn)|ωn, Ω̃m).

I Our main assumption is that this conditional expectation is
(a.e.) strictly increasing in ωn.

I The condition is trivially satisfied in the private-values case.

I In the general case, it is weaker than assuming that un is
weakly increasing in ωm and that the distribution p is
affiliated.

Paulo Barelli, Hari Govindan & Bob Wilson Bayesian Allocation-Mechanisms



Introduction
The Model

Results
Single-Unit Auctions

Conclusion

An Existence Theorem

I Under the above conditions, there exists an equilibrium
without ties.

I The proof uses both the IC and IR conditions.
I Assume that there is an atomic bid with a tie-breaking rule λ∗.
I Increasing conditional expectations implies that the probability

of winning is monotonically increasing in one’s own signals if
the rule is to satisfy IC.

I This implies that the probability of beating player m is
monotonically decreasing in ωm.

I The marginal type that ωn beats with positive probability
must be worth beating to get the object.

I This implies that ωn would prefer to beat all types of m,
which he can do by bidding a little above b.
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The N-bidder Case

I It is easy to generalize the above assumption to the N-bidder
case.

I However, such an assumption does not nest affiliation.

I That is a big problem, since a satisfactory theory would use
weaker conditions for (0-)equilibria than is required for the
existence of pure strategy equilibria, much less monotone
equilibria.

I What is the main issue here?
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An Example

I At a tie, a player need not know how many other bidders are
involved (e.g. it could be a three-way, or a two-way, or a
k-way tie for the object).

I He might want to behave differently depending on what kind
of a tie it is.

I Consider a simple three-player common-value auction where
there is a tie at some bid. A two-way tie results in a total pie
(net of the bid) of 12. A three-way tie results in a pie of −30.

I Assuming symmetry, each player gets half of each of the
two-way ties and a third of the three-way tie, to yield a net
payoff of 2.

I Bidding up wins against all ties, and thus a payoff of −6.
Bidding down gives him 0.

I Thus each bidder prefers to stay at the tie!
Paulo Barelli, Hari Govindan & Bob Wilson Bayesian Allocation-Mechanisms
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A Possible Resolution

I For simplicity, consider a symmetric 3-bidder case.

I In the case of a tie, give players information about how many
players are involved in the tie.

I Charge a small fee and then let them bid again in a next
round.

I We have an “almost-proof” that this results in a 0-equilibrium.
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Conclusion

I Previous existence results rely on strong assumptions
— affiliated distributions are nongeneric
— private- and common-value models are restrictive
— endogenous tie-breaking is impractical

I Structural features of allocation mechanisms can be exploited
— Payoff discontinuities are ”mild”, occurring at tied bids
— “Increasing conditional expectations” is more robust
— ε- or 0-equilibrium is better predictor in practice

I For simple auctions designs, these assumptions largely suffice
for existence
— Even, apparently, for models with interdependent values
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I What further assumptions will yield pure-strategy equilibria?

I Do they suffice for a wider class?
— Multi-unit auctions, double auctions, multistage dynamic
allocation processes,...
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