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Abstract

Using the duality between a closed convex set and its support function we develop
a novel geometric approach to mechanism. We derive the support function for the
set of feasible interim values and extend the literature on reduced-form auctions to
social choice environments. We next refine the support function to include Bayesian or
dominant strategy incentive constraints using a geometric interpretation of incentive
compatibility. Borrowing results from majorization theory that date back to Hardy,
Littlewood, and Pólya (1929) we elucidate the “ironing” procedure first introduced
by Myerson (1981). The optimal mechanism for any social choice problem and any
linear objective simply follows from Hotelling’s lemma. We consider several extensions
including the characterization of optimal mechanisms for general concave objectives
and the reduced-form implementation for general environments with interdependent
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second-best allocation is ex post incentive compatible.
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1. Introduction

Mechanism design concerns the creation of optimal social systems by maximizing a well-

defined social welfare function taking into account resource constraints and participants’

incentives and hidden information. It provides a framework to address questions like “what

auction format assigns goods most efficiently or yields the highest seller revenue” and “when

should a public project such as building a highway be undertaken?” The difficulty in an-

swering these questions stems from the fact that the designer typically does not possess

detailed information about bidders’ valuations for the goods or about voters’ preferences for

the public project. A well-designed mechanism should therefore elicit participants’ private

information in a truthful, or incentive compatible, manner and implement the corresponding

social optimum.

The constraints imposed by incentive compatibility are generally treated separately from

other more basic constraints, such as resource constraints. As a result, mechanism design

theory appears to have developed differently from classical approaches to consumer and pro-

ducer choice theory despite some obvious parallels. For example, in producer choice theory,

the firm also maximizes a well-defined objective, its profit, over a feasible production set

that reflects its resource constraints. A well-known result is that a firm’s optimal production

plan follows by evaluating the gradient of the profit function at output and factor prices –

Hotelling’s lemma. One contribution of this paper is to draw a parallel between classical

choice theory and mechanism design by showing how standard micro-economics tools such

as Hotelling’s lemma can be used to derive optimal mechanisms.

Our approach is geometric in nature and utilizes convexity of the set of feasible outcomes,

which consists of a collection of probability simplices, one for each type profile. To conve-

niently parameterize this high-dimensional set we employ techniques from convex analysis,

a subfield of mathematics that studies properties of convex sets and functions. A key result

in convex analysis is the duality between a closed convex set and its support function, which
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is convex and homogeneous of degree one (e.g. a firm’s profit function). We exploit this

duality to derive, in a surprisingly simple manner, the support function of the feasible set

for a general class of social choice problems.

Despite this simplicity, our geometric approach provides a powerful new perspective on

reduced form implementation. Maskin and Riley (1984) first noted that with risk-averse

bidders the optimal mechanism typically cannot be found by point-wise maximization but

instead requires maximization over the set of interim allocation rules. This raises the is-

sue of reduced form implementation: “which interim allocation rules are implementable, i.e.

for which interim allocation rule does there exist an ex post allocation rule that generates

it?” For the symmetric case, Matthews (1984) provided a set of inequalities and conjec-

tured they were both necessary and sufficient, a conjecture that was subsequently proven by

Border (1991).1 Our geometric approach clarifies the origin of the so called “Maskin-Riley-

Matthews-Border” conditions. They are standard duality inequalities for the set of interim

feasible allocations. Importantly, our approach generalizes these conditions to arbitrary

social choice problems.2

We next refine the support function to include incentive constraints using a geometric

characterization of incentive compatibility. Borrowing results from majorization theory due

to Hardy, Littlewood, and Pólya (1929) we provide a reinterpretation of the “ironing” proce-

dure introduced by Mussa and Rosen (1978) and Myerson (1981). We show that the support

function for the set of feasible and incentive compatible outcomes is simply the support

function for the feasible set, evaluated at ironed weights.3

1Extensions to asymmetric bidders were first provided by Border (2007), see also Mierendorff (2011) and
Che et al. (2010). Alternative approaches can be found in Che, Mierendorff, and Kim (2011) who study
reduced-form auctions in terms of network flow problems, Hart and Reny (2011) who characterize reduced-
form auctions using second-order stochastic dominance, and Vohra (2011) who employs a linear-programming
approach to reduced-from auctions.

2Economics papers that rely on reduced-form implementability include Armstrong (2000), Brusco and
Lopomo (2002), Pai (2009), Che, Condorelli, Kim (2010), Pai and Vohra (2010, 2011, 2012), Manelli and
Vincent (2010), Asker and Cantillon (2010), Belloni, Lopomo, and Wang (2010), Hörner and Samuelson
(2011), Mierendorff (2011), and Miralles (2012). See Alaei et al. (2012) and Cai et al. (2012a, 2012b) for
papers in computer science literature.

3Hence, the geometric approach is an alternative to Lagrangian methods that are typically used to
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A major question in mechanism design is whether dominant strategy incentive compati-

bility is more stringent than Bayesian incentive compatibility. For example, does requiring

dominant strategies limit a seller’s revenue? A recent contribution by Manelli and Vincent

(2010) shows that for the special case of single-unit, independent private-value auctions the

answer is negative: Bayesian incentive compatibility and dominant strategy incentive com-

patibility are equivalent in this setting. Gershkov et al. (2013) extend this equivalence result

to social choice environments by generalizing a theorem due to Gutmann et al. (1991).4 Here

we provide a simpler proof by showing that the support functions of the sets of interim values

under Bayesian and dominant-strategy incentive compatibility are identical.

Using the support function for the set of feasible and incentive compatible outcomes we

derive the optimal mechanism by applying Hotelling’s lemma. In particular, we determine

the optimal allocation for any social choice problem and any linear objective and show that

the optimal allocation can be implemented in dominant strategies. As an illustration, we

determine the optimal auction for shares when bidders have decreasing marginal valuations.

We finally discuss some extensions and applications of the geometric approach. First,

for general concave objectives that depend on both agent values and transfers we provide a

fixed-point condition that characterizes the optimal mechanism. Second, we further extend

the reduced-form implementation to richer environments with multi-dimensional, correlated

types, non-linear utilities, and interdependent values. Third, in environments with linear

interdependencies we illustrate that the equivalence between Bayesian and ex post incentive

compatibility breaks down. Furthermore, when the surplus maximizing allocation, i.e. first-

best, is not achievable we provide a condition when the second-best allocation rule is ex post

incentive compatible.

characterize feasible and incentive compatible outcomes (see Ledyard and Palfrey, 1999, 2007).
4See Kushnir (2013) for an extension of this result to the environments with correlated types.
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1.1. Organization

In Section 2 we illustrate our approach via an example of a single-unit auction with two

ex ante symmetric bidders and two possible types. For this example, we demonstrate how

to derive the support function for the feasible set, how to refine it to include incentive

constraints, and how the optimal mechanism follows from Hoteling’s lemma. Section 3

develops the approach for social choice problems, discusses its implications for reduced form

implementability, establishes equivalence of Bayesian and dominant strategy implementation,

and provides the optimal (dominant strategy) mechanism for any linear objective. Section

4 presents the extensions and applications. Section 5 discusses further developments and

concludes. The Appendix contains most of the proofs.

2. A Simple Auction Example

A central result in convex analysis concerns the duality between a closed convex set C ⊂ IRn

and its support function SC : IRn → IR, defined as

SC(W) = sup{V ·W |V ∈ C},

with V·W =
∑n

i=1 ViWi being the usual inner product. The support function is homogeneous

of degree one, convex, and lower semi-continuous. Conversely, any function with these

properties is the support function of a closed convex set, defined as the intersection of half

spaces

C =
{
V ∈ IRn |V ·W ≤ SC(W) ∀W ∈ IRn

}
.

Consider, for instance, the two-dimensional simplex shown in the left panel of Figure 1.

In this panel, the blue dots show the outcomes of the maximization problem. It is readily
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Figure 1. Illustration of duality. The left panel shows how the support function is determined by

maximizing V ·W over the simplex. The right panel shows how the simplex can be recovered from

the inequalities V ·W ≤ S(W) = max(0,W1,W2) for W ∈ IR2.

verified that the support function for the simplex is

S(W) = max(0,W1,W2).

In turn, the simplex can be recovered from the duality inequalities V ·W ≤ S(W), which

define half spaces of possible V for each W ∈ IR2. In the right panel of Figure 1 these half

spaces are bounded by the green lines and their intersection reproduces the simplex.

To illustrate our approach consider a single-unit auction with two ex ante symmetric

bidders and two equally likely types, x < x. Let Q (Q) denote a bidder’s expected probability

of winning when her type is low (high) and define Q = (Q,Q). The set of all feasible

symmetric allocations is indicated by the shaded area in the left panel of Figure 2.5 The

support function for this set is given by:

Sinterim(W) =
1

4
max(0,W ) +

1

2
max(0,W ,W ) +

1

4
max(0,W )

5Symmetry implies that a bidder wins with probability 1
2 when facing a rival of the same type, which

occurs with probability 1
2 . Hence, the maximum expected probability of winning is 1

2 ·
1
2 + 1

2 · 1 = 3
4 .
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Figure 2. The figure illustrates for a single-unit auction with two-bidders and two equally-likely

types that the set of feasible and Bayesian incentive compatible allocations (right panel) can be

described as intersection of the set of feasible allocations (left panel) with the half-space that is

“above the 45-degree line” (middle panel).

which is simply the probability-weighted sum of the support functions for the two-dimensional

simplices, S(W) = max(0,W1,W2), one for each of the four possible profiles.6

For our example, Bayesian incentive compatibility is equivalent to the monotonicity of

the allocation rule, i.e. Q ≥ Q (see Section 3). To derive the support function for the set of

feasible and Bayesian incentive compatible allocations it is convenient to describe this set as

the intersection of the feasible set and the half-space “above the 45-degree line,” see Figure

2. The half-space can be written as (−1, 1) ·Q ≥ 0 and its support function equals

SH(W) =

 0 if W = −Λ(−1, 1)

∞ if W 6= −Λ(−1, 1)

for any Λ ≥ 0. The support function for the intersection follows from the convolution:

SBICinterim(W) = inf{Sinterim(W1) + SH(W2) |W1 + W2 = W}

= inf
Λ≥ 0
Sinterim(W + Λ(−1, 1))

6The four possible profiles for (W1,W2) are (W,W ), (W,W ), (W,W ), and (W,W ), each of which occur
with probability 1

4 .
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Figure 3. The figure illustrates the maximization of the linear objective over the set of feasible

and Bayesian incentive compatible allocations. The lines are level-surfaces for the linear objective

W ·Q and the dots are optimal allocations when 0 < W < W (blue) and 0 < W < W (red).

It is readily verified that in optimum Λ = 0 when W ≤ W and Λ = 1
2
(W −W )) otherwise.

To summarize, the support function for the set of feasible and Bayesian incentive-compatible

allocations is simply

SBICinterim(W) = Sinterim(W+)

where W+ denote the “ironed” weights

W+ =

 (W,W ) if W ≤ W

1
2
(W +W,W +W ) if W > W

We consider now the maximization of the linear objective W · Q over the feasible and

Bayesian incentive compatible set when the weights satisfy 0 < W < W , see the solid

blue line on Figure 3. The support function reduces to Sinterim(W+) = 1
4
W + 3

4
W and the

optimal interim allocations follow from Hotelling’s lemma: Q = ∇Sinterim(W+) = (1
4
, 3

4
)

(blue dot). These expected probabilities of winning result when using an efficient symmetric

allocation rule. Next suppose the weights satisfy W > W > 0, see the dashed red line

on Figure 3. Now the support function simplifies to Sinterim(W+) = 1
2
(W + W ), which

yields Q = ∇Sinterim(W+) = (1
2
, 1

2
) (red dot). This allocation results from using a random
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mechanism. We next generalize the above steps to social choice problems with an arbitrary

number of agents and alternatives.

3. Social Choice Implementation

We consider an environment with a finite set I = {1, 2, . . . , I} of agents and a finite set

K = {1, 2, . . . , K} of social alternatives. When alternative k is selected, agent i’s payoff

equals aki xi where aki is some constant and agent i’s type, xi, is distributed according to

probability distribution fi(xi) with discrete support Xi = {x1
i , . . . , x

Ni
i }, where the xji are

non-negative with xj−1
i < xji for j = 2, . . . , Ni.

7 Let x = (x1, ..., xI) ∈ X =
∏

i∈I Xi

denote the profile of agents’ types. Without loss of generality we restrict attention to direct

mechanisms characterized by K + I functions, {qk(x)}k∈K and {ti(x)}i∈I , where ti(x) ∈ IR

is agent i’s payment and qk(x) is the probability alternative k is selected. We define the ex

post value vi(x) =
∑

k∈K a
k
i q
k(x) so that agent i’s utility from truthful reporting, assuming

others report truthfully as well, is ui(x) = xivi(x)− ti(x).

3.1. Feasibility

The probabilities with which the alternatives occur satisfy the usual feasibility conditions

qk(x) ≥ 0 for k ∈ K and
∑

k∈K q
k(x) = 1. In other words, for each type profile x ∈ X, the

qk(x) define a simplex in IRK . The support function for the cartesian product of sets equals

the sum of support functions (see Section 13 in Rockafellar, 1970), so we can simply write

the support function S : IRK|X| → IR as a sum, over all type profiles, of simplex support

7This formulation includes many important applications, e.g. single or multi-unit auctions, public goods
provision, bilateral trade, etc. For example, single-unit auctions are captured by setting aki = δki for i =
1, . . . , I and k = 1, . . . , I + 1, where alternative i = 1, . . . , I corresponds to the case where bidder i wins
the object and alternative I + 1 corresponds to the case where the seller keeps the object. As another
example, public goods provision can be summarized by two alternatives, i.e. k = 1 when the public good is
implemented and k = 2 when it is not, and aki = δk1 for i = 1, . . . , I.
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functions

S(w) =
∑
x∈X

max
k∈K

wk(x)

Let C ∈ IRn be a closed convex set and let A : IRn → IRm be a linear transformation. Recall

that Av · w = v · ATw where AT denotes the transpose of A. The support function for

the transformed set AC is thus given by SAC(w) = SC(ATw) for w ∈ IRm. The support

function for the set of ex post values is therefore

Sex post(w) =
∑
x∈X

max
k∈K

∑
i∈I

akiwi(x)

Throughout we distinguish interim variables using capital letters: Vi(xi) denotes the interim

value, Ti(xi) denotes the interim payment, and Ui(xi) = Vi(xi)xi−Ti(xi) denotes the interim

utility of agent i ∈ I. Since interim values are linear transformations of ex post values,

Vi(xi) =
∑

x−i
f−i(x−i)vi(x), we can once more invoke the above rule for the support function

of the transformed set. To arrive at expressions that are symmetric in the probabilities we

define the interim support function using the probability-weighted inner product

V ·W =
∑
i∈I

∑
xi ∈Xi

fi(xi)Vi(xi)Wi(xi).

In other words, we multiply the interim weight Wi(xi) associated with Vi(xi) by fi(xi) so

that all terms are weighted by f(x) =
∏

i fi(xi). Using this definition of the support function

we obtain the following result.

Proposition 1. The support function for the set of feasible interim expected values is

Sinterim(W) = Ex

(
max
k∈K

∑
i∈I

akiWi(xi)
)

(1)

and the feasible interim values V satisfy V ·W ≤ Sinterim(W) for all W ∈ IR
∑

i |Xi|.
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It is insightful to work out the duality inequalities for single-unit private-value auctions,

which fit the social choice framework as follows: alternative k = 1, . . . , I corresponds to the

event when bidder i wins, i.e. aii = 1 and aki = 0 for k 6= i, and alternative I + 1 corresponds

to the event when the seller keeps the object. In this case, the reduced form value Vi(xi)

is equal to a bidder i’s interim expected chance of winning Qi(xi) = Ex−i
(qi(x)) and the

support function in Proposition 1 simplifies to

Sinterim(W) = Ex

(
max
i∈I

(0,Wi(xi))
)

An exhaustive set of inequalities follow by choosing, for each i ∈ I, a subset Si ⊆ Xi and

setting Wi(xi) = 1 for xi ∈ Si and 0 otherwise and then varying the set Si.

Proposition 2. For single unit auctions, the duality inequalities simplify to

∑
i∈I

∑
xi ∈Si

fi(xi)Qi(xi) ≤ 1−
∏
i∈I

∑
xi 6∈Si

fi(xi) (2)

for any subset Si ⊆ Xi, i = 1, . . . , I.

The inequalities in Proposition 2 are known as the Maskin-Riley-Matthews-Border condi-

tions for reduced form implementation, an approach to optimal auctions initiated by Maskin

and Riley (1984). They were conjectured to be necessary and sufficient by Matthews (1984)

based on the following intuition: the probability that a certain bidder with a certain type

wins (left side) can be no higher than the probability that such a bidder exists (right side).

The conjecture was subsequently proven and generalized by Border (1991, 2007). Besides

clarifying their origin as basic duality inequalities, Proposition 1 extends these conditions to

social choice problems. In Section 4 we further extend the reduced form implementation to

environments with multi-dimensional, correlated types, non-linear utilities, and interdepen-

dent values.
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3.2. Incentive Compatibility

A mechanism is dominant strategy incentive compatible (DIC) if truthful reporting is a dom-

inant strategy equilibrium.8 Necessary and sufficient conditions for a mechanism (q, t) to be

DIC is that the ex post values and payments satisfy

(vi(x
j
i ,x−i)− vi(x

j−1
i ,x−i))x

j−1
i ≤ ti(x

j
i ,x−i)− ti(x

j−1
i ,x−i) ≤ (vi(x

j
i ,x−i)− vi(x

j−1
i ,x−i))x

j
i (3)

for j = 2, . . . , Ni. Moreover, ex post individual rationality (EXIR) requires that ui(x) ≥ 0 for

x ∈ X, i ∈ I. Since agent utilities satisfy the single crossing condition the EXIR constraints

are binding only for the lowest type: ti(x
1
i ,x−i) ≤ vi(x

1
i ,x−i)x

1
i . This constraint can be

included as the upward incentive constraint (3) for j = 1 if we set vi(x
0
i ,x−i) = ti(x

0
i ,x−i) =

0.

Similarly, a mechanism (q, t) is Bayesian incentive compatible (BIC) if truthful reporting

is a Bayes-Nash equilibrium. Bayesian incentive compatibility holds if and only if the interim

values and payments satisfy

(Vi(x
j
i )− Vi(x

j−1
i ))xj−1

i ≤ Ti(x
j
i )− Ti(x

j−1
i ) ≤ (Vi(x

j
i )− Vi(x

j−1
i ))xji (4)

for j = 2, . . . , Ni. Furthermore, interim individual rationality (INIR) requires that Ui(xi) ≥ 0

for all xi ∈ Xi, i ∈ I, which again holds if Ti(x
1
i ) ≤ Vi(x

1
i )x

1
i . This constraint can also be

included as the upward incentive constraint for j = 1 if we set Vi(x
0
i ) = Ti(x

0
i ) = 0.

To evaluate the BIC and DIC constraints from an agent’s viewpoint we determine how

they affect the interim support function. In Section 2 we illustrate how to obtain the support

function of the intersection of interim feasible set and the incentive constraint represented by

a half space. If incentive constraints include several half spaces Bm ·V ≥ 0 for m = 1, . . . ,M

8More precisely, qi(xi,x−i)xi − ti(xi,x−i) ≥ qi(x
′
i,x−i)xi − ti(x

′
i,x−i) for all i ∈ I, x′i, xi ∈ Xi and

x−i ∈ X−i.
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the support functions of intersection can be calculated as (see Section 13 Rockafellar, 1970)

inf
Λm≥ 0

Sinterim(W +
M∑

m= 1

ΛmBm) (5)

The DIC constraints in (3) imply that ex post values are non-decreasing.9 Furthermore, each

of the vi(x
j
i ,x−i) appears in two constraints: vi(x

j+1
i ,x−i)− vi(xji ,x−i) ≥ 0 and vi(x

j
i ,x−i)−

vi(x
j−1
i ,x−i) ≥ 0. Let λi(x

j
i ,x−i) be associated with the first constraint and λi(x

j−1
i ,x−i)

with the second. Likewise, the BIC constraints in (4) imply that interim values are non-

decreasing and each Vi(x
j
i ) appears in two constraints, for which we similarly denote Λi(x

j
i )

and Λi(x
j−1
i ).10 Define for j = 1, . . . , Ni the differences

∆λi(x
j
i ,x−i) ≡ λi(x

j
i ,x−i)− λi(x

j−1
i ,x−i)

∆Λi(x
j
i ) ≡ Λi(x

j
i )− Λi(x

j−1
i )

with λi(x
0
i ,x−i) = λi(x

Ni
i ,x−i) = 0 and Λi(x

0
i ) = Λi(x

Ni
i ) = 0. Using the notion of the

support function based on the probability-weighted inner product and formula (5) we obtain

the following result.

Proposition 3. The support function for the set of feasible interim expected values that

satisfy dominant strategy incentive compatibility is given by

SDIC(W) = inf
0≤λi(x)

Ex

(
max
k∈K

∑
i∈I

aki (Wi(xi)−
∆λi(x)

fi(xi)
)
)

(6)

Likewise, the support function for the set of feasible interim expected values that satisfy

9Moreover, monotonicity of ex post values is also sufficient for DIC implementation: given non-decreasing
ex post values one can always finds transfers that satisfy (3).

10Monotonicity of interim values is also sufficient for BIC implementation.
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Bayesian incentive compatibility is

SBIC(W) = inf
0≤Λi(xi)

Ex

(
max
k∈K

∑
i∈I

aki (Wi(xi)−
∆Λi(xi)

fi(xi)
)
)

(7)

The minimization problem that defines the DIC support function involves more parameters,

which could result in a lower support function (reflecting a smaller set). This is not the case,

however, if the solutions to the minimization problems satisfy λi(xi,x−i) = Λi(xi) for all x−i.

Example 1. Consider again the single-unit auction example of Section 2 with two agents

and two equally-likely types. Unlike in Section 2, however, we do not impose symmetry. We

first include only the DIC constraints for agent 1 to the interim support functions.11

S(W) = inf
0≤λ1,λ1

1
4

max(0,W 1 − λ1,W 2) + 1
4

max(0,W 1 + λ1,W 2)

+ 1
4

max(0,W 1 − λ1,W 2) + 1
4

max(0,W 1 + λ1,W 2)

where W i and W i are weights associated with x and x for agent i respectively, and λ1 and λ1

are associated with constraints v1(x, x)−v1(x, x) ≥ 0 and v1(x, x)−v1(x, x) ≥ 0 respectively.

Surprisingly, there is always exists a solution to the minimization problem that does not

depend on agent 2’s weights λ1 = λ1 = max(0, 1
2
(W 1−W 1)). Similarly, if we introduce now

the DIC constraints for agent 2 there is an optimal solution that does not depend on agent 1’s

weights λ2 = λ2 = max(0, 1
2
(W 2−W 2)). We can consider the minimization over parameters

λ1 and λ2 sequentially only because of their geometric interpretation: each minimization

corresponds to the intersection of the feasible set with the corresponding incentive constraint.

For our example then the DIC minimization problem for any weights gives the same outcome

as the BIC minimization problem. Therefore, the BIC and DIC support functions coincide.

�

To show the equivalence more generally we rely on results from majorization theory. Let

11Without loss of generality we scale the λ parameters by 1
2 .
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p1, . . . , pn denote arbitrary non-negative numbers and consider two sequences σ and ς with

elements σj, ςj for j = 1, . . . , n. We will write σ �p ς if

l∑
j= 1

pjσj ≥
l∑

j= 1

pjςj for l = 1, . . . , n− 1

n∑
j= 1

pjσj =
n∑

j= 1

pjςj

The following result dates back to Hardy, Littlewood, and Polya (1929), see also Fuchs

(1947).

Lemma 1. If σ, ς are non-decreasing sequences and σ �p ς then we say that σ p-majorizes

ς and we have
n∑

j= 1

pjg(σj) ≤
n∑

j= 1

pjg(ςj)

for any continuous convex function g : IR→ IR.

Consider any sequence σ, not necessarily non-decreasing, and let σ+ denote the non-

decreasing sequence such that (i) σ �p σ+ and (ii) any other non-decreasing sequence ς

that satisfies σ �p ς is p-majorized by σ+. The latter property motivates calling σ+ the

largest non-decreasing sequence that satisfies σ �p ς. Lemma A1 in the Appendix establishes

that sequence σ+ is well defined and that ς = σ+ is the solution to

min
σ�p ς

n∑
j= 1

pjg(ςj)

where the minimization considers all possible sequences, which are not necessary non-decreasing.

Now consider the BIC minimization problem in (7). Note that the shifted weights

Ŵi(xi) = Wi(xi)−
∆Λi(xi)

fi(xi)
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satisfy Wi �fi Ŵi for all i ∈ I.12 In other words, varying the Λi(xi) results in sequences

Ŵi that are fi-majorized by Wi. Lemma A1 implies the Λi(xi) should be chosen such that

Ŵi = W+
i . Importantly, the same solution applies to the DIC minimization problem in (6).

Proposition 4. The support function for the set of feasible interim expected values that

satisfy BIC or DIC incentive compatibility constraints is given by

SBIC(W) = SDIC(W) = Sinterim(W+)

for any W ∈ IR
∑

i |Xi| with Sinterim given in Proposition 1.

3.3. Optimal Mechanisms: Linear Objectives

The mechanism that maximizes the linear objective V·Ω over the set of feasible and incentive

compatible interim values follows from applying Hotelling’s lemma to the support function

of Proposition 4 (see Section 13 Rockafellar, 1970). The BIC-DIC equivalence result of

Proposition 4 ensures that the resulting mechanism can be written as a dominant strategy

incentive compatible mechanism.

Proposition 5. For any social choice problem and any linear objective V ·Ω, an optimal

dominant strategy incentive compatible allocation is given by

qk(x) =

 1/|M| if k ∈ M

0 otherwise
(8)

where M ≡ arg maxk∈K
∑

i∈I a
k
i Ω

+
i (xi). Given vi(x) =

∑
k∈K a

k
i q
k(x), optimal payments

equal

ti(x) = xivi(x)−
∑
xji <xi

(xj+1
i − xji )vi(x

j
i ,x−i) (9)

12Since
∑l

j=1 ∆Λi(x
j
i ) = Λi(x

l
i)− Λi(x

0
i ) ≥ 0 for l = 1, . . . , Ni with equality for l = Ni.
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Commonly studied objectives are expected surplus and expected revenue, both of which are

linear in the interim expected values. Expected surplus Ex(
∑

i∈I Vi(xi)xi) is readily written

as V · x. Likewise, the upward binding incentive compatibility constraints (3) allow us to

rewrite expected revenue Ex(
∑

i ti(x)) as V ·MR, where the marginal revenues are defined

as

MRi(x
j
i ) = xji −

(
xj+1
i − xji

)1− Fi(xji )
fi(x

j
i )

(10)

and Fi(x
j
i ) =

∑j
l=1 fi(x

l
i). Hence, as an immediate corollary, Proposition 5 results in the

efficient and the revenue maximizing mechanisms for any social choice problems.

With the next example we illustrate that the support function approach can be im-

mediately extended to some environments with non-linear utilities and a continuous set of

alternatives.

Example 2. Consider an auction for a single perfectly-divisible good among I ≥ 1 ex

ante symmetric bidders. Bidders’ types are distributed according to a common probability

distribution f(·) with support X = {x1, . . . , xN} for some N ≥ 1. Suppose bidders have

diminishing marginal valuations, i.e. they value winning a fraction qi(x) at vi(x) = qi(x)1−γ

where 0 ≤ γ ≤ 1. The interim support function equals

Sinterim(W) = Ex

( I∑
i= 1

max(0,Wi(xi))
1/γ
)γ

For the surplus-maximizing allocation rule we do not need to majorize agent weights and

the optimal allocation equals

q∗i (x) =
x

1/γ
i∑I

j= 1 x
1/γ
j

and the payment rule is given by

t∗i (x) = xiq
∗
i (x)1−γ −

∑
xji <xi

(xj+1
i − xji )q∗i (x

j
i ,x−i)

1−γ
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Similarly, the revenue-maximizing allocation rule is13

q∗∗i (x) =
max(0,MR+(xi))

1/γ∑I
j= 1 max(0,MR+(xj))1/γ

and the optimal payments are similarly defined.14 When γ tends to one, the efficient al-

location rule assigns shares proportionally to bidders’ types while the optimal allocation

rule assigns shares proportionally to bidders’ marginal revenues. For intermediate values,

0 < γ < 1, the efficient and optimal allocation rules resemble “Tullock-type” success func-

tions. Finally, Myerson’s (1981) familiar result for the optimal auction is obtained in the

limit when γ tends to zero, which corresponds to a linear value function vi(x) = qi(x).

Now the efficient allocation rule is to assign all shares to the highest-type bidder while the

revenue-maximizing allocation rule assigns all shares to the bidder with the highest positive

marginal revenue (and assigns nothing if all marginal revenues are negative). �

4. Extensions and Applications

4.1. Optimal Mechanisms: Concave Objectives

General objectives that differ from pure profit and efficiency maximization are widespread.

Many governmental programs give preferences to some groups to alleviate their economic

and social disadvantages. For example, the US Federal Communications Commission gives

substantial bidding preferences to minority firms in the form of bidder-subsides (Ayres and

Crampton, 1996), i.e. by charging only a portion of a winning bid. In the same way, the

Department of Defense charges 50% bid penalty to foreign agents in US defense contracts.15

Many firms have also objectives that differ from pure profit maximization. European Civil

13Where we interpret 0/0 as 0.
14See Polishchuk and Tonis (2013) for results on optimal mechanisms in divisible good allocation problems.
15“Defense Federal Acquisition Regulation Supplement,” Part 225: Foreign Acquisition (2008),

http://www.acq.osd.mil/.
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Law countries such as France and Germany view big firms as “mini-societies” that take

into account the impact of their decisions on the welfare of their employers, consumers, and

suppliers (see, e.g. Tirole, 2001; and Magill, Quinzii, and Rochet, 2010).16

We analyze objectives that depend on both agent interim expected values and transfers.

To include interim expected transfers Ti(xi) into the support function we denote their cor-

responding weights as Zi(xi) for xi ∈ Xi, i = 1, ..., I. Since transfers are unrestricted the

support function that corresponds to their feasible set (not yet taking into account incen-

tive constraints) equals Ex

(
δ(Zi(xi) = 0, ∀xi,∀i), where we use the standard definition of

δ-function that equals 0 if its argument is true and +∞ otherwise. Combining this result

with Proposition 1 we obtain the expression for the support function of feasible expected

interim values and transfers

Sinterim(W,Z) = Ex

(
max
k∈K

∑
i∈I

akiWi(xi)
)

+ Ex

(
δ(Zi(xi) = 0, ∀xi,∀i)

)
(11)

Let the weights Zi(xi) correspond to the interim expected payoffs Ti(xi) and define

MRZi
(xji ) = xjiZi(x

j
i )−

xj+1
i − xji
fi(x

j
i )

∑
l>j

fi(x
l
i)Zi(x

l
i) (12)

for j = 1, ..., Ni and xNi+1
i = xNi

i . Note that for Zi(x
j
i ) ≡ 1 the latter expression reduces to

the standard formula for marginal revenues (10). Parallel to Proposition 4 we now obtain the

support function of feasible and incentive compatible interim expected values and transfers.

Proposition 6. The support function for the set of feasible interim expected values and

transfers that satisfy BIC (DIC) constraints is given by

SDIC(W,Z) = SBIC(W,Z) = Ex

(
max
k∈K

∑
i∈I

aki
(
Wi(xi) +MRZi

(xi)
)+
)

(13)

16See Ledyard and Palfrey (1999) for a discussion about general welfare objectives in public good provision
settings.
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O

O′ < O ∇S

(V∗,T∗) ∈ ∇S(∇O(V∗,T∗))

Figure 4 Maximizing concave objectives using the geometric approach. The optimal interim

expected values and transfers belong to the subdifferential of the support function at the vector of

weights equal to the gradient of the objective function at the optimal interim expected values and

transfers.

for any W ∈ IR
∑

i |Xi| and Z ∈ IR
∑

i |Xi|
+ .17

We now consider an increasing, concave, and differentiable objective18

O(V,T),

and extend the logic of Subsection 3.3 to characterize the maximimum of objective O over

the set of feasible and incentive compatible interim expected values and transfers.

To characterize the optimal point we use that concave objectives have convex indifference

curves. Therefore, the tangent line to objective O at the optimal point should separate the

indifference curve of the objective and the feasible and incentive compatible set. Proposition

5 then implies that the optimal point belongs to the subdifferential of the support function

at the vector of weights equal to the gradient of objective O at the optimal point (see Figure

4). As a result the following proposition follows.

17We consider ex post and interim individually rationality constraints as a part of DIC and BIC constraints
respectively. See the discussion in the beginning of Subsection 3.2.

18This class of objectives does not include functions that are decreasing in agent payments, like objectives
increasing in agent utilities. We consider this important class of objectives in a companion paper Goeree
and Kushnir (2013a).
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Proposition 7. For any social choice problem and for any increasing, concave, and differ-

entiable objective O(V,T) the interim expected values and transfers that correspond to an

optimal mechanism satisfy1920

(V∗,T∗) ∈ ∇SBIC(∇O(V∗,T∗)) (14)

We finally note that for increasing and concave objectives only the optimal values V∗ need

to be determined by the fixed-point equation (14). The optimal values V∗ in turn uniquely

determine the optimal payments. To understand this, we note that expression (13) links the

partial derivatives of the support function with respect to Wi(xi) and the partial derivatives

of the support function with respect to Zi(xi). Using the fixed point equation (14) we then

substitute the partial derivatives in this link with agent values V∗ and transfers T∗. As a

consequence we obtain the following

T ∗i (xi) = V ∗i (xi)xi −
∑
xki<xi

V ∗i (xki )(x
k+1
i − xki )

This expression is analogous to formula (9) for the ex post optimal payments. The ex post

optimal payments in (9), however, can be chosen with some flexibility. In contrast, when

the objective is increasing in both agent values and transfers the optimal values determine

the optimal payments uniquely. In this sense, the above expression is close to the seminal

envelope theorem (e.g. Milgrom and Segal, 2002).

4.2. Reduced Form Implementation for General Social Choice Problems

In Subsection 3.1 we show how the geometric approach extends the reduced form auctions to

social choice problems for models with private values and independently distributed types.

19We consider a differentiable objective function only for ∇O(V∗,T∗) be a singleton. Otherwise, the
optimal mechanism belongs to the subdifferential of the support function at some point in ∇O(V∗,T∗).

20With some abuse of notation we consider the gradient ∇ for the support function that takes into account
the probability weighted inner product.
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Here, we further develop this extension both to the problems with correlated and multi-

dimensional types see, which is known to the literature (see Border, 2007), and to the case

when agents have interdependent values, which is novel to the literature.

We consider settings with multi-dimensional types. Agent i’s type is Ti-dimensional and

the profile of agent types is x = (x1
1, . . . , x

T1
1 , . . . , x

1
I , . . . , x

TI
I ). We denote Xi =

∏Ti
j=1Xij,

where each Xij = {x1
ij, . . . , x

Nij

ij }, and X =
∏

iXi. We allow for correlation in types and

denote their joint probability distribution as f(x). Agent values are interdependent: when

alternative k is selected and the profile of agent types is x agent i’s value equals vki (x).

We denote agent i’s ex post and interim expected value as vi(x) =
∑

k∈K v
k
i (x)qk(x) and

Vi(xi) =
∑

x−i
f−i(x−i)vi(x) respectively.

This setup relaxes all assumptions of the main model: the values vki can be non-linear

functions of the types, the values are not private since they depend on others’ types, and

types are correlated and multi-dimensional. While the setup is much more general, the

derivation of the ex post and interim support functions parallels that of Proposition 1.

Proposition 8. The support function for the feasible interim values is

Sinterim(W) = Ex

(
max
k∈K

∑
i∈I

vki (x)Wi(xi)
)

and the feasible interim values V satisfy V ·W ≤ Sinterim(W) for all W ∈ IR
∑

i |Xi|.

Proposition 8 extends the reduced form implementation to the environments with inter-

dependent values by providing the explicit formula for the support function for the set of

agent feasible values. Yet this support function does not include incentive constraints. For

the general model, determining the consequences of incentive constraints is complicated and

requires more than comparing adjacent types only. We leave a complete analysis to future

research but illustrate in the next subsection how our methodology applies to the case of
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linear interdependencies for which adjacent comparisons are sufficient.

4.3. Interdependent Values: Second-Best Mechanisms

For the environments with interdependent values a natural analog of dominant strategy

incentive compatibility (DIC) is the notion of ex post incentive compatibility (EPIC), which

requires that, for each type profile, agents prefer to report their types truthfully when others

do. EPIC and DIC coincide if agent types are private and independent (Bergemann and

Moris, 2005). Unlike DIC, however, EPIC does not depend on agents’ beliefs when there are

value interdependencies.

In this section we illustrate how the geometric approach can be applied to environments

with interdependent values. For these environments we consider settings when the maximum

social surplus, i.e. first-best, is not achievable and derive its second-best level, i.e. the

maximum level of social surplus under Bayesian incentive compatible (BIC) and interim

individually rational (INIR) constraints. We also provide a condition when the second-best

level can be implemented with EPIC and ex post individually rational (EXIR) mechanism.

Consider a single-unit auction with two bidders. Agent types are positive and indepen-

dently distributed. There are only three possible social alternatives. Alternative i corre-

sponds to the event that bidder i wins the unit, and alternative 0 to the event that the seller

keeps the unit. The utility of agent i equals xi + αxj if he wins the object and 0 otherwise.

Hence, the expected interim value of agent i is

Vi(xi) = xiQi(xi) + αExj(xjq
i(xi, xj)),

where Qi(xi) = Exj(q
i(xi, xj)) is bidder i’s interim expected chance of winning. In this envi-

ronment, the incentive compatibility constraints reduce to monotonicity constraints on the

allocation rule.

Proposition 9. If mechanism (q, t) is BIC (EPIC) then Qi(xi) (qi(xi,x−i)) is non-
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decreasing function of xi for each i ∈ I. Conversely, for any allocation rule q such that

Qi(xi) (qi(xi,x−i)) is non-decreasing function of xi for each i ∈ I there exist transfers t

such that mechanism (q, t) is BIC (EPIC).

Given the above monotonicity conditions the support function for the set of interim expected

values that can be achieved with some BIC and INIR mechanism equals

SBIC(W) = inf
Λi(xi)≥0

Ex max
i 6=j

(
0, (xi + αxj)Wi(xi)−

∆Λi(xi)

fi(xi)

)
Similarly the support function for the set of interim expected values that can be achieved

with some EPIC and EXIR mechanism equals

SEPIC(W) = inf
λi(x)≥0

Ex max
i 6=j

(
0, (xi + αxj)Wi(xi)−

∆λi(x)

fi(xi)

)
Maskin (1992) show for a continuous-type version of this example that the first-best social

surplus cannot be implemented with BIC and INIR (and, hence, EPIC and EXIR) mechanism

when α > 1. We now provide conditions when the second-best level of social surplus, which

equals the value of support function at unit weights SBIC(1), can be implemented with some

EPIC and EXIR mechanism. We first approach this question when the unit has to be always

allocated to the agents(see also Proposition 2 in Hernando-Veciana and Michelucci, 2011),

and, hence, there are no zeros in the support function expressions.

Proposition 10. If the unit has to be always allocated to the agents and α > 1 the second-

best level of social surplus can be implemented with some EPIC and EXIR mechanism and

equals

SEPIC(1) = SBIC(1) = max
i∈I

(Ei(xi)) + αmin
i∈I

(Ei(xi))

We now identify a condition on α when one of the bidders always get the unit at the second-

best allocation, even though the auctioneer can keep the unit (see also Proposition 6 in

Hernando-Veciana and Michelucci, 2009). In this case the second-best level of social surplus
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can be again implemented with some EPIC and EXIR mechanism.

Proposition 11. Consider the case when the auctioneer can keep the unit. The second-best

level of social surplus can be implemented with some EPIC and EXIR mechanism if

1 < α ≤ maxi∈I(
Ei(xi)

Ei(xi)−
∑

j∈I x
1
j

)

where Ei(xi) denotes the expected type of agent i.

We finally illustrate our results with a simple example of a single-unit auction with two

symmetric bidders and two equally likely and independent types, x = 1 and x = 10. We

compare the sets of feasible outcomes that satisfy BIC and EPIC constraints respectively.

Since the bidders are ex ante symmetric, the allocation rule has no agent specific subscript

and can be represented by a matrix

q =
( q(x, x) q(x, x)

q(x, x) q(x, x)

)

where the rows correspond to (say) agent 1’s type and the columns to agent 2’s type, and the

entries correspond to the probabilities that the object is assigned to agent 1. The probability

that object is assigned to agent 2 can be obtained by the transposition of the matrix.

Figure 5 shows the sets of interim values that result when α = 0 (left panel), α = 1.2

(middle panel), and α = 2 (right panel). In each of the panels, the light area corresponds to

the set of feasible values without any incentive constraints imposed, the medium dark area

to the BIC values, and the dark area to the EPIC values. In case of pure private values,

i.e. α = 0, the latter two sets coincide as shown by the left panel. However, the equivalence

between Bayesian and ex post implementation generally fails when α > 0 as shown by the

middle and right panels.

The easiest way to describe the different sets is by their vertices.21 For instance, the set

21The vertices follow from the gradient of the support function at points of differentiability. The five
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Figure 5. Application of the geometric approach to the environments with interdependent values.

Shown are the feasible outcomes with no incentive constraints imposed (light), Bayesian incentive

compatible outcomes (medium dark), and ex post incentive compatible outcomes (dark) for α = 0

(left panel), α = 1.2 (middle panel), and α = 2 (right panel). The largest blue dot indicates the

first-best outcome, the medium-sized blue dot the second-best outcome under BIC, and the smallest

blue dot indicates the allocation that delivers the maximum level of social surplus under EPIC.

of EPIC outcomes can be described by five vertices, which (clockwise starting at the origin)

correspond to the following allocation rules

qEPIC =
( 0 0

0 0

)
,
( 0 0

1 1
2

)
,
( 1

2
0

1 1
2

)
,
( 1

2
1
2

1
2

1
2

)
,
( 0 1

2

0 1
2

)

Likewise, for the BIC outcomes the six vertices correspond to the allocation rules

qBIC =
( 0 0

0 0

)
,
( 0 0

1 1
2

)
,
( 1

2
0

1 1
2

)
,
( 1

2
1
2

1
2

1
2

)
,
( 0 3

4

1
4

1
2

)
,
( 0 1

2

1
2

0

)

Bayesian incentive compatibility requires that the sum of entries in the top row does not

exceed the sum of entries in the bottom row. In contrast, ex post incentive compatibility

requires that the entries in the top row do not exceed the entries in the bottom row for

both columns (see Proposition 9). Notice that the final two BIC matrices violate this more

stringent condition.

EPIC vertices (0, 0), (0, 152 + 3α), ( 1
4 + 1

4α,
15
2 + 3α), ( 1

2 + 11
4 α, 5 + 11

4 α), ( 1
4 + 5

2α,
5
2 + 5

2α). The first four plus
( 3
8 + 15

4 α,
15
4 + 21

8 α), ( 1
4 + 5

2α,
5
2 + 1

4α) constitute the six BIC vertices.
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The blue dots in Figure 5 indicate the optimal outcomes: the largest blue dot indicates

the first-best outcome, the medium-sized blue dot indicates the second-best outcome under

BIC, and the smallest blue dot indicates the allocation that delivers the maximum level

of social surplus under EPIC. For α ≤ 1, the first-best outcome can be implemented with

EPIC mechanism and correspond to the third EPIC matrix. When 1 < α ≤ E(x)
E(x)−2x

= 11
7

the

first-best cannot be achieved, but the second-best outcome can be implemented with EPIC

mechanisms and correspond to the penultimate EPIC matrix. If α > 11
7

the second-best

outcome can be implemented only with BIC mechanism, and correspond to the penultimate

BIC matrix. In this case BIC implementation leads to more social surplus than EPIC.

5. Conclusions

This paper develops a novel geometric approach to mechanism design based on the duality

between a convex closed set and its support function. Using this duality, we first extend

the literature on reduced form auctions to social choice problems with interdependent val-

ues. Second, we show that the “ironing” procedure (Mussa and Rosen, 1978; and Myerson,

1981) can be reinterpreted in terms of majorization theory (Hardy, Littlewood, and Pólya,

1929). We also provide a simple proof that the feasible sets of interim expected values and

transfers that remain after imposing Bayesian and dominant strategy incentive compatibil-

ity constraints coincide (see Gershkov et. al, 2013). Third, the knowledge of the support

function admits the direct derivation of the optimal mechanism using standard tools such

as Hotelling’s lemma. We determine the optimal mechanism for any social choice problem

and any linear objective, including revenue and surplus maximization. We also provide a

fixed point equation that characterizes an optimal mechanism for general concave objectives.

Finally, for environments with linear value interdependencies we provide a condition when

the second-best allocation is ex post incentive compatible.

Importantly, our geometric approach applies to questions that go beyond the scope of

26



this paper. The geometric interpretation of the incentive compatibility constraints extend

to other types of constraints, such as capacity constraints and budget balance. For instance,

we consider the maximization of general concave welfare objectives when agent transfers

needs to be budget balanced in a companion paper Goeree and Kushnir (2013a). Next, the

geometric approach can be immediately adapted to continuous type spaces. An analog of

support functions for infinite-dimensional type-spaces are support functionals. They possess

the same properties as support functions with respect to additions, intersections, and linear

transformations, as well as there is an analog of Hotelling’s lemma for continuous type-

spaces (see Chapter 7.10 in Aliprantis and Border, 2006). Moreover, the geometric approach

can be readily applied to the environments with multi-dimensional types and non-linear

utilities. For these environments the incentive compatibility constraints are equivalent to

cycle-monotonicity conditions (Rochet, 1987), which can be incorporated into the support

function (Goeree and Kushnir, 2013b).

To summarize, our geometric approach applies to a wide spectrum economic problems. As

such it may provide a powerful tool to study mechanism design problems that have hitherto

resisted thorough analysis because of analytical intractability. We leave this exciting prospect

as a topic for future research.
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A. Appendix

Proof of Proposition 2. Necessity of the inequalities follows from the definition of the

support function. Sufficiency also follows easily from our approach by interpreting (2) in

terms of hyperplanes that bound the interim expected probability set. Any boundary point

of the interim expected probability set, i.e. any Q that satisfies Q ·W = S(W) for some W,

can be written as Q = ∇S(W) at points of differentiability of the support function from the

envelope theorem.22 Furthermore, if S(W) is not differentiable at W then the subdifferential

∇S(W) produces a face on the boundary. For any Q 6= Q′ that belong to such a face we

have

(Q−Q′) ·W = S(W)− S(W) = 0.

Each point of non-differentiability, W, therefore defines a normal vector to the face of

the polyhedron, formed by ∇S(W). For the support function (1) the points of non-

differentiability are weight vectors with several equal entries, and those equal entries are

the largest entries for some profile of types x. Since non-maximum entries does not change

the value of the support function we can consider only such weights where these entries are 0.

Since the support function is homogeneous of degree one we can restrict ourselves to weights

with only 1 and 0 entries. Then considering all non-trivial W ∈ {0, 1}
∑

iXi exhausts all hy-

perplanes that contain one of the faces of the boundary of the interim expected probability

set. �

Lemma A1. For any σ sequence σ+ is well defined and ς = σ+ solves

min
σ�p ς

n∑
j= 1

pjg(ςj) (A.1)

for any convex function g : IR→ IR.

Proof: We first show that sequence σ+ is well defined. For this purpose let us define for

any non-decreasing sequence ς ∈ IRn function fl(ς) =
∑l

j=1 pjςj and αl = supσ�pς fl(ς), l =

22We consider the gradient ∇ that takes into account the probability weighted inner product.
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1, .., n, where the supremum is taken only over non-decreasing sequences. Define now se-

quence σ+ as σ+
l = (αl − αl−1)/pl, where α0 = 0. Clearly, we have σ �p σ+. To prove that

σ+ is non-decreasing notice that

fl(ς)
pl

+ fl−2(ς)

pl−1
≥ ( 1

pl
+ 1

pl−1
)fl−1(ς)

for any non-decreasing ς and l = 2, ..., n. Therefore,

sup
σ�pς

(fl(ς)
pl

+ fl−2(ς)

pl−1

)
≥ ( 1

pl
+ 1

pl−1
) sup
σ�pς

fl−1(ς)

where the supremums are taken over only non-decreasing sequences. Hence, (αl−αl−1)/pl ≥
(αl−1 − αl−2)/pl−1.

We now consider minimization problem (A.1). We show that, without loss of generality,

we can restrict attention to non-decreasing sequences ς. Suppose not and ςl > ςk for l < k.

Then define the sequence ς̃ with elements ς̃l = ςl − ε(ςl − ςk)/pl and ς̃k = ςk + ε(ςl − ςk)/pk
while ς̃j = ςj for j 6= l, k. The sequence ς̃ also satisfies σ �p ς̃. Since g(·) is convex we have

plg(ς̃l) + pkg(ς̃k) ≤ plg(ςl) + pkg(ςk)

and, hence,
∑n

j= 1 pjg(ς̃j) ≤
∑n

j= 1 pjg(ςj). Repeatedly applying this procedure results in a

non-decreasing sequence ς̃ that satisfies σ �p ς̃. But any such sequence is p-majorized by

σ+. Hence, the statement of the lemma follows from Lemma 1. �

Proof of Proposition 4. The statement of the proposition follows from a more general re-

sult established in Proposition 6 that also incorporates transfers into the support function.�

Proof of Proposition 5. Using Proposition 4 and the definition of the interim support

function we have

SDIC(Ω) = Sinterim(Ω+) = max
{∑
k∈K

Ex

(
qk(x)

∑
i∈I

aki Ω
+
i (xi)

)
|q is feasible

}
.
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This establishes the optimality of the allocation rule in equation (8). To derive the payments

that are ex post individually rational and implement allocation (8) in dominant strategies we

consider constraints (3). Considering the payments binding the upward incentive constraints

and the ex post individually rationality constraint for the lowest type we recursively calculate

ti(x) = vi(x)−
∑
xji <xi

(
xj+1
i − xji

)
vi(x

j
i ,x−i)

for x ∈ X and i ∈ I. This establishes the claim of the proposition. �

Proof of Proposition 6. Let us first derive the support function of feasible interim expected

values and transfers that also satisfy Bayesian incentive compatibility (BIC) constraints (4)

and interim individual rationality (INIR) constraints. For convenience we rewrite these

constraints as

Ti(x
j
i )− Ti(x

j−1
i ) ≥ xj−1

i

(
Vi(x

j
i )− Vi(x

j−1
i )

)
(A.2)

Ti(x
j
i )− Ti(x

j−1
i ) ≤ xji

(
Vi(x

j
i )− Vi(x

j−1
i )

)
(A.3)

Ti(x
j
i ) ≤ xjiVi(x

j
i ) (A.4)

The support function of the intersection of non-empty closed convex sets is the convolution

of the support functions of these sets (see Rockafelar, 1970). When some sets are half spaces

the support function of the intersection can be calculated using formula (5) and, hence, we

obtain

SBIC(W,Z) = inf
Λ,γ,µ≥0

Ex

(
max
k∈K

∑
i

aki Ŵi(xi)
)

+ Ex

(
δ(Ẑi(xi) = 0, ∀xi,∀i)

)
(A.5)

where

Ŵi(x
j
i ) = Wi(x

j
i ) + 1

fi(x
j
i )

(−xj−1
i Λi(x

j−1
i ) + xjiΛi(x

j
i ) + xjiγi(x

j
i )− x

j+1
i γi(x

j+1
i ) + xjiµi(x

j
i ))

Ẑi(x
j
i ) = Zi(x

j
i ) + 1

fi(x
j
i )

(Λi(x
j−1
i )− Λi(x

j
i )− γi(x

j
i ) + γi(x

j+1
i )− µi(xji ))
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and parameters Λi(x
j−1
i ), γi(x

j
i ), µi(x

j
i ) correspond to constraints (A.2), (A.3), and (A.4)

respectively. Note that our convention is that Λi(x
0
i ) = Λi(x

Ni
i ) = 0 and γi(x

1
i ) = γi(x

Ni+1
i ) =

0. Since agents’ utilities satisfy the single crossing condition with respect to xi and Vi(xi)

the INIR constraints are binding only for the lowest type, i.e. µi(x
j
i ) = 0 for j = 2, ..., Ni.

Using this fact and that (Ẑi(xi) = 0, ∀xi,∀i) we deduce

µi(x
1
i ) =

Ni∑
l=1

Zi(x
l
i)fi(x

l
i),

γi(x
j
i ) =

Ni∑
l=j

Zi(x
l
i)fi(x

l
i) + Λi(x

j−1
i ) for j = 2, ..., Ni

Note that constraints µi(x
1
i ) ≥ 0 and γi(x

j
i ) ≥ 0 are satisfied for any vector Z ∈ IR

∑
i |Xi|

+ .

With some abuse of notation we replace (xj+1
i − xji )Λi(x

j
i ) with Λi(x

j
i ). Substituting the

above expressions in the formula (A.5) the support function for the set of feasible interim

expected values and transfers that satisfy BIC and INIR constraints reduces to

SBICinterim(W,Z) = inf
0≤Λi(xi)

Ex

(
max
k∈K

∑
i∈I

aki
(
Wi(xi) +MRZi

(xi)−
∆Λi(xi)

fi(xi)

))

Let us now define shifted weights

Ŵi(xi) = Wi(xi) +MRZi
(xi)−

∆Λi(xi)

fi(xi)

It is straightforward to verify that Wi + MRZi
�fi Ŵi for all i ∈ I.23 Therefore, Lemma A1

implies that (Wi + MRZi
)+ delivers the minimum to the above expression, which establishes

the claim of the proposition for the BIC support function.

We now show that the introduction of the dominant strategy incentive compatibility

23Note that
∑l

j=1 ∆Λi(x
j
i ) = Λi(x

l
i)− Λi(x

0
i ) ≥ 0 for l = 1, . . . , Ni with equality for l = Ni.
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(DIC) constraints

ti(x
j
i ,x−i)− ti(x

j−1
i ,x−i) ≥ xj−1

i

(
vi(x

j
i ,x−i)− vi(x

j−1
i ,x−i)

)
(A.6)

ti(x
j
i ,x−i)− ti(x

j−1
i ,x−i) ≤ xji

(
vi(x

j
i ,x−i)− vi(x

j−1
i ,x−i)

)
, (A.7)

and ex post individual rationality (EXIR) constraints

ti(x
j
i ,x−i) ≤ xjivi(x

j
i ,x−i) (A.8)

lead to the same support function as the introduction of BIC and INIR constraints. To

accomplish this we use the geometric interpretation of incentive constraints: the support

function minimization problem corresponds to the intersection of the feasible set with the

corresponding incentive constraint. Hence, we can include the constraints to support function

(11) for one agent at a time.

Using arguments similar to the BIC support function we first include agent 1’s DIC and

EXIR constraints to the support function. Therefore,

SDICagent1
(W,Z) = inf

0≤λ1(x)
Ex

(
max
k∈K

( ak1(W1(x1) +MRZ1(x1)− ∆λ1(x)
f1(x1)

) +

∑
i 6=1 a

k
i

(
Wi(xi) +MRZi

(xi)
))

where parameters λ1(xj−1
1 ,x−1) correspond to constraints (A.6), λ1(x0

1,x−1) = λ1(xN1
1 ,x−1) =

0, and ∆λ1(xj1,x−1) = λ1(xj1,x−1)− λ1(xj−1
1 ,x−1). We again consider the shifted weights

Ŵ1(x) = W1(x1) +MRZ1(x1)− ∆λ1(x)
f1(x1)

For each x−1 vector Ŵ1(·,x−1) satisfies W1 + MRZ1 �f1 Ŵ1(·,x−1) and the above mini-

mization problem can be rewritten as

∑
x−1

inf
W1+MRZ1

�f1
Ŵ1(·,x−1)

∑
x1

f1(x1)g1(Ŵ1(x1,x−1))

where g1(y) = f−1(x−1) maxk∈K
(
ak1y +

∑
j 6=1 a

k
j

(
Wj(xj) + MRZj

(xj)
)

is a convex function
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of y. Lemma A1 asserts that Ŵ1(·,x−1) = (W1 + MRZ1)+ for each x−1 solves the above

minimization problem.

Let us now assume that we have introduced the constraints of i − 1 agents. The mini-

mization problem that corresponds to the introduction of the constraints of agent i is

∑
x−i

inf
Wi+MRZi

�fi
Ŵi(·,x−i)

∑
xi

fi(xi)gi(Ŵi(xi,x−i))

where

Ŵi(x) = Wi(xi) +MRZi
(xi)− ∆λi(x)

fi(xi)

and function

gi(y) = f−i(x−i) max
k∈K

(∑
j<i

akj
(
Wj(xj) +MRZj

(xj)
)+

+ aki y +
∑
j>i

akj
(
Wj(xj) +MRZj

(xj)
))

is a convex function of y. Lemma A1 again asserts that Ŵi(·,x−i) = (Wi + MRZi
)+ for

each x−i solves the above minimization problem. Proceeding in this way for all agents, we

finally obtain that the support function for the feasible set of agent interim expected values

and transfers that satisfies the DIC and EXIR constraints coincides with SBIC(W,Z). �

Proof of Proposition 7. Vector (V∗,T∗) belongs to ∇SBIC(∇O(V∗,T∗)) if and only if

(see Theorem 23.5 in Rockafellar, 1970)

(V∗,T∗) ∈ argmax((V,T) ◦ ∇O(V∗,T∗) | (V,T) ∈ C)

where C is the set of feasible incentive compatible and individually rational interim expected

values and transfers. This is equivalent to ∇O(V∗,T∗) be tangent to set C at (V∗,T∗) (see

p. 15, Rockafellar, 1997). Finally, Theorem 27.4 in Rochafellar (1997) establishes that this

is equivalent to (V∗,T∗) be a vector where maximum of O(V,T) relative to C is attained. �
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Proof of Proposition 8. We show in Subsection 3.1 that the support function for allocation

probabilities qk(x) equals

S(w) =
∑
x∈X

max
k∈K

wk(x)

Taking into account how the support function changes under a linear transformation (see

Subsection 3.1) we derive the support function for ex post agent values vi(x) =
∑

k v
k
i (x)qk(x):

Sex post(w) =
∑
x∈X

max
k∈K

∑
i∈I

vki (x)wi(x)

The interim expected values are given by Vi(xi) =
∑

x−i
f(x|xi)vi(x), where f(x|xi) denotes

the conditional distribution of agent types. Therefore,

Sinterim(W) = Ex

(
max
k∈K

∑
i∈I

vki (x)Wi(xi)
)

where, as before, we multiplied by fi(xi), i.e. we used the probability weighted inner product

to define the set of interim expected values. �

Proof of Proposition 9. The statement for BIC mechanisms directly follows from Theo-

rem 3.1 in Jehiel and Moldovanu (2001). The extension to EPIC mechanisms is immediate. �

Proof of Proposition 10. The second-best level of social surplus equals the value of

support function at unit weights SBIC(1). If the auctioneer has to always allocate the unit

we have

SBIC(1) = α
(
Ei(xi) + Ej(xj)

)
+ inf

Λi≥0
Ex max

i 6=j

(
(1− α)xi −

∆Λi(xi)

fi(xi)

)

If we denote the shifted weights Ŵi(xi) = (1 − α)xi − ∆Λi(xi)
fi(xi)

Lemma A1 establishes that

f-majorized values ((1−α)xi)
+ = (1−α)Ei(xi) deliver the minimum to the above expression.
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After some rearrangement the second-best level of social surplus equals

SBIC(1) = max
i
Ei(xi) + αmin

i
Ei(xi)

The expression of SEPIC(1) can be written similarly. The only differences is that the

minimization takes place over λi(x) ≥ 0 that depend on the whole vector of agent types.

The argument of Proposition 6 establishes that ((1 − α)xi)
+ delivers also the minimum to

support function SEPIC(1) with the same optimal value. Hence, the second-best allocation

can be implemented with some EPIC and EXIR mechanism mechanism. �

Proof of Proposition 11. If the auctioneer can keep the unit the value of support function

at unit weights equals

SBIC(1) = α
(
Ei(xi) + Ej(xj)

)
+ inf

Λi≥0
Ex max

i 6=j

(
−α(xi + xj), ((1− α)xi −

∆Λi(xi)

fi(xi)

)
Given the condition on α stated in the proposition and that agent types are positive we have

((1− α)xi)
+ = (1− α)Ei(xi) > −α(xi + xj)

for each realization of xi and xj for at least some i 6= j = 1, 2. Hence, the shifted weights

Ŵi(xi) = ((1 − α)xi)
+ identified in Proposition 10 still deliver the minimum to the mini-

mization problem for SBIC(1). The same argument applies to SDIC(1). �

35



References

Alaei, Saeed, Hu Fu, Nima Haghpanah, Jason Hartline, and Azarakhsh Malekian (2012)

“Bayesian Optimal Auctions via Multi- to Single-agent Reduction,” Working Paper.

Aliprantis, Charalambos D. and Kim C. Border (2006) “Infinite Dimensional Analysis: A

Hitchhiker’s Guide,” Springer, Berlin.

Armstrong, Mark. (2000) “Optimal Multi-Object Auctions,” Review of Economic Studies,

67, 455–481.

Asker, John and Estelle Cantillon (2010) “Procurement when price and quality matter,” The

RAND Journal of Economics, 41, 1–34.

Ayres, Ian and Peter Crampton (1996) “Deficit Reduction Through Diversity: How Affirma-

tive Action at the FCC Increased Auction Competition,” Stanford Law Review, 48,

761-815.

Baldwin, Elizabeth and Paul Klemperer (2012) “Tropical Geometry to Analyse Demand,”

Working paper, Oxford University.

Bapat, R. B. (1991) “Majorization and Singular Values III, ” Linear Algebra and its Appli-

cations, 145, 59–70.

Belloni, Alexandre, Giuseppe Lopomo, and Shouqiang Wang (2010) “Multidimensional

Mechanism Design: Finite-Dimensional Approximations and Efficient Computation,”

Operations Research, 58, 1079–1089.

Bergemann, D. and Morris, S. (2005): “Robust Mechanism Design,” Econometrica, 73, 1771-

1813.

Border, Kim C. (1991) “Implementation of Reduced Form Auctions: A Geometric Ap-

proach,” Econometrica, 59, 1175–1187.

Border, Kim C. (2007) “Reduced Form Auctions Revisited,” Economic Theory, 31, 167–181.

Brusco, Sandro and Giuseppe Lopomo (2002) “Collusion via Signalling in Simultaneous

Ascending Bid Auctions with Heterogeneous Objects, with and without Complemen-

tarities,” The Review of Economic Studies, 69, 407–436.

Cai, Yang, Constantinos Daskalakis, and Matt Weinberg (2012a) “An Algorithmic Char-

acterization of Multi-Dimensional Mechanisms,” in the 44th ACM Symposium on

Theory of Computing.

Cai, Yang, Constantinos Daskalakis, and Matt Weinberg (2012b) “Optimal Multi-

36



Dimensional Mechanism Desgin: Reducing Revenue to Welfare Maximization,” in

the 53rd Annual IEEE Symposium on Foundations of Computer Science.

Che, Yeon-Koo, Daniele Condorelli, and Jinwoo Kim (2010) “Weak Cartels and Collusion-

Proof Auctions,” Working paper, Columbia University.

Che, Yeon-Koo, Jinwoo Kim, and Konrad Mierendorff (2011) “Generalized Reduced-Form

Auctions: A Network-Flow Approach,” Working paper, University of Zürich.
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