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Abstract

The paper analyzes dynamic principal-agent models with short period lengths.
The two main contributions are: (i) an analytic characterization of the values of
optimal contracts in the limit as the period length goes to 0, and (ii) the construc-
tion of relatively simple (almost) optimal contracts for fixed period lengths. Our
setting is flexible and includes the pure hidden action or pure hidden information
models as special cases. We show how such details of the underlying information
structure affect the optimal provision of incentives and the value of the contracts.
The dependence is very tractable and we obtain sharp comparative statics results.
The results are derived with a novel method that uses a quadratic approximation
of the Pareto boundary of the equilibrium value set.

1 Introduction

We consider dynamic contracting problems in which a risk neutral principal interacts
repeatedly with a risk averse agent under asymmetric information. These are benchmark
models in labor economics, corporate finance (CEO compensation and optimal capital
structure), and the literatures on optimal dynamic insurance and taxation. The questions
of the optimal dynamic incentive design in those situations are central to both economic
theory and the applications. In the paper we develop a novel discrete-time method that
allows us to solve such problems analytically for a range of contracting environments.

We focus on settings with frequent decisions and information arrival (“short period
length”). Importantly, the class of models we consider is permissive regarding the precise
nature of information structure in each period. It embraces models in which the agent has
private information about his own action only, as when devoting costly effort to develop
a risky project (pure hidden action), models in which the agent also has some partial
information about the environment, for example own stochastic productivity (private
information), and models when the agent acts after all the uncertainty is resolved, as
when diverting funds from the realized cash flows (pure hidden information). Aside from
the degree of private information, models differ in distributions of signals and the effects
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of agent’s action. On the one hand, this flexibility is crucial for applications; on the
other, the details of the information structure are known to be paramount for the design
of incentives.

Existing characterizations of optimal contracts for discrete time models do not pro-
vide manageable methods for explicitly constructing optimal contracts, or for perform-
ing comparative static analysis. In a pathbreaking paper, Sannikov [2008] introduced a
continuous time agency model that is very tractable and can be solved with standard
stochastic calculus techniques. However, the continuous time method cannot reflect any
of the details of information structure mentioned above. It is an open question whether
the continuous time solution provides a good approximate solution for any (or all) of
those contracting situations in a standard, discrete time setting.

In the paper, for each information structure, we look at a sequence of discrete time
models with shrinking period length. We develop a quadratic approximation method that
allows us to solve each of those problems when the period length is short. More precisely,
first, for any type of information structure we characterize the limit of the Pareto frontier
of value sets achievable by incentive compatible contracts, as the period length shrinks.
Second, we construct relatively simple suboptimal contracts, whose values converge to the
Pareto frontier as the period length shrinks. While the details of information structure
matter for the solutions, we show that they can all be summarized in a single function,
the variance of continuation values (VCV) function. The VCV function is a parameter in
the equation characterizing the limit values achievable by optimal contracts. Moreover,
the solution of the static optimization problem that defines the VCV function contains
the key information needed to design (almost) optimal discrete time contracts.

The method yields rich results about the incentive design, which we put here in three
broad categories. First, Muller [2000] and Fudenberg and Levine [2009] demonstrated
(in different settings) that no matter how short the period length, the solutions of dis-
crete time models may depend on the details of the underlying information structure.
We go beyond this result in our principal-agent framework and pin down exactly the
relevant parameters. For example, restricting attention to pure hidden action models,
the value of optimal contracts depends on a single parameter of the distribution of public
signal, the Fisher information quantity, which measures its informativeness about the
agent’s action. The relevance of the Fisher information for the incentive design is, to
the best of our knowledge, new. With private information the value depends also on pa-
rameters measuring cross-correlation of likelihood ratios of public signals given different
private signals (see Example 3). As regards to the contracts, we prove an extreme result
that there is no single contract that can “work” for two essentially different information
structures (Proposition 3).

Second and crucially, despite this sensitivity, our uniform method yields the solutions
for each information structure. In particular, it is to our knowledge the first method that
allows constructing (almost) optimal discrete time contracts without strict parametric
assumptions on the primitives (see Literature Review below). The contracts are fully
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dynamic, based on the agent’s continuation value as a state variable. For example, in
the pure hidden action case the continuation value evolves linearly in the likelihood ratio
of the public signal (see Lemma 3).

Third, the dependence of the results on the information structure is particularly
tractable, yielding a relatively easy comparative statics analysis. The analysis is reduced
to the analysis of the novel VCV function. The problem is a simplified version of the
static principal agent problem for the agent with mean-variance utility function, the
simplest utility function exhibiting risk aversion.

We also believe our method sheds light on the continuous time approach. In par-
ticlar, we are able to provide two discrete time justifications (convergence results) for the
optimal continuous time contracts. We show that for pure hidden action models with a
particular value of the Fisher information quantity, as for the normal distribution, the
optimal contracts converge in distribution to the optimal continuous time contract, and
the same is true for their values. For “most” information structures the limits of values
are different.1 However, for a fixed variance of public signal, we show that the value
of optimal continuous time contract is the lower bound on the limit of values for any
information structure.

Let us outline our method of solving the contracting problems. It consists of two steps.
Following standard dynamic programming methods (see Abreu, Pearce, and Stacchetti
[1986, 1990] and Spear and Srivastava [1987]), the contracts can be described with the
agent’s continuation value as a state variable. The continuation value promised last
period fully determines the current period effort scheme (as a function of private signal),
as well as consumption and the new continuation value, contingent on revenue. In order
to provide incentives to exert costly effort, the consumption and continuation value must
respond to revenue and reward the agent for good outcomes. On the other hand, such
volatility is inefficient and imposes a “cost of incentives”, given the agent’s risk aversion.

The first step consists in solving a family of static optimization problems and addresses
exactly this issue. Given a mean effort and mean cost of effort, roughly, we look for an
action scheme with those parameters and a continuation value function with minimal
variance, which provides local (first-order) incentives for exerting effort. For a short
period length, it turns out that the (appropriately rescaled) solutions to this problem are
the optimal way of incentivizing the agent in each period of a dynamic contract. The
solutions, and in particular the variance of continuation values, depend on the information
structure: variance is low in the case when the public signal is statistically informative
of the agent’s effort.

The second step consists in solving a differential equation, with the variance of con-
tinuation values as a parameter. Its solution F (w) is the limit of principal’s values for
the optimal dynamic contracts (as period shrinks to 0) that deliver a given value w to
the agent. Overall, it is the first step that is peculiar to the contracting environment. It

1While the limits of values are always well defined, constructing the limits of contracts for models
other than pure hidden action is much more delicate.
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lets us reduce the principal’s problem to a standard dynamic optimal control problem, in
which incentive compatibility constraint is reduced to a condition on the law of motion
of the state variable (continuation value). The differential equation of the second step
is the standard HJB equation associated with this dynamic optimal control problem.2

We also note that the condition replacing incentive compatibility is very different than
the analogous one for the model phrased directly in continuous time: it reduces to this
continuous time condition only for the pure hidden actions models and an additional
constraint of linearity of continuation values in public signal.

Literature Review. As mentioned above, our results rely on the parametrization of
the dynamic contract by the agent’s continuation value (Abreu, Pearce, and Stacchetti
[1986, 1990], Spear and Srivastava [1987]). This insight leads to a method for computing
the optimal contracts, or more generally Pareto efficient Perfect Public Equilibria, for
models with a fixed period length based on the value iteration technique. Phelan and
Townsend [1991] show a related method to compute optimal contracts based on the
iteration of a linear programming problem. While those approaches are flexible and
applicable to a wide variety of problems, they are computationally intense and do not
yield analytical solutions.

One way to restore analytical tractability is to focus on models with patient play-
ers (Radner [1985], Fudenberg, Holmstrom, and Milgrom [1990]). This is equivalent to
considering models with short period length, where the period length does not affect the
information structure. While this simplifies the analysis, as the period length shrinks
the informational frictions disappear (“Folk Theorem”). Abreu, Milgrom, and Pearce
[1991] suggest a more realistic approach where increasing the frequency of actions also
affects the information structure. In our case, as in the continuous time models, short
periods come with high variance of public signal, which in particular exacerbates the
informational problems and prevents the first-best outcome from being achieved in the
limit.

On a technical level, Matsushima [1989] established efficiency results and Fudenberg,
Levine, and Maskin [1994] the full Folk Theorem for patient players by decomposing
continuation values on hyperplanes tangent to the (Pareto frontier of the) set of achievable
values. Our method bears a close resemblance to this approach, where we use quadratic
instead of the linear approximation of the frontier. The more precise approximation is
required by the richer class of processes of public signals we consider. Moreover, the
curvature of the boundary is proportional to the efficiency cost of incentives; when the
process of signals is such that the linear approximation is appropriate, we recover as
the special case the Folk Theorem result, for our restricted setting of principal-agent

2The sensitivity of solutions with respect to the information structure is inherent in the first step:
even though two sequences of models converge, the laws of motions for the state variable (continuation
value) in the corresponding reduced problems need not. In particular, for dynamic decision problems
(such as portfolio selection) or dynamic arbitrage pricing equations, where the law of motion of a state
variable (e.g. price of a risky asset) is exogenous, it follows from the standard results on dynamic
programming that weak convergence of models typically guarantees convergence of the solutions.
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problems (see Section 3.1).
Application of our method yields two justifications, in the form of upper hemicontinu-

ity results, for the existing solution of the continuous time model. Hellwig and Schmidt
[2002] is among the first papers to provide such a result for the continuous-time principal-
agent model by Holmstrom and Milgrom [1987], in which the agent has CARA utility
function, is compensated only at the end of the employment period and the “full di-
mension” assumption is satisfied. Biais, Mariotti, Plantin, and Rochet [2007] established
upper hemicontinuity for the principal-agent model of diverting cash-flows by DeMarzo
and Sannikov [2006], in which the agent is risk-neutral and the efficiency cost from divert-
ing funds is linear. Sannikov and Skrzypacz [2007] considers a more general framework
of games and limit processes that are an arbitrary mixture of Brownian Diffusion and
Poisson processes, and show convergence for games with normal noise and pure hidden
action structure, in the case of arbitrarily patient players. Our method lets us obtain
general results, making no recourse to CARA, infinite patience, or risk neutrality of the
agent.

Earlier results established that the limits of the discrete time models might differ
from the continuous time solutions and be sensitive to the information structure. Muller
[2000] illustrated this in the context of the model by Holmstrom and Milgrom [1987], and
Fudenberg and Levine [2009] did so for a reputation game with one long-lived player. In
our setting, we establish not only that “details matter” but exactly what details matter.
More importantly, our focus is not to point out the sensitivity but to deliver a uniform
method for finding optimal dynamic contracts in the face of it, for a range of well known
contracting settings. Also, while the solution techniques for the case of a single long
lived player (when the Pareto frontier is a point and optimal policy stationary) seem
to be particular to this setting, we expect that our quadratic approximation method is
applicable in the general settings with multidimensional Pareto frontier and fully dynamic
policies.

2 Model

2.1 The Agency Problem

A risk neutral principal contracts with a risk-averse agent. The principal offers the agent
a contract specifying a contingent payment for each period as a function of the public
history (of reports by the agent and of outputs in previous periods). If the agent accepts
it, the contract becomes legally binding and cannot be terminated by either party. In
every period of length ∆, the timing is as follows. The agent observes a private signal
about the output’s random shock in the current period, and then sends a report to
the principal and chooses an action (effort). The agent’s action and the random shock
determine the output, which is realized at the end of the period. The principal pays the
agent after observing the output and the agent consumes his compensation (the agent
can’t save or borrow). Note that both the agent’s signal and action are his private
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information, whereas output and the agent’s report are publicly observed. Though the
agent’s actions are unobservable, the principal and the agent also implicitly agree to a
full contingent action plan for the agent.

The agent’s per period utility is given by ∆[u(c) − h(a)], where a ∈ A and c ≥ 0
denotes his consumption. The agent’s action and consumption are stated in flow units.3

The consumption utility function u : R+ → R is twice continuously differentiable, strictly
increasing and strictly concave, with u(0) = 0 and limc→∞ u(c) = ū < ∞. The agent’s
action space is a closed interval A =[0, A]. The cost of effort function h : A → R is
strictly increasing, strictly convex and twice continuously differentiable, and we normalize
h(a) = 0. We also assume that there exists γ > 0 such that h(a) ≥ γa for all a ∈ A. In
addition, we assume that h′(0+) < u′(0), so absent asymmetric information it is efficient
to have the agent exert positive effort.

The principal’s per period payoff is ∆[x+ a− c], where x is a random shock, a is the
agent’s action and c is the agent’s compensation, again in flow units. We will interpret
y = ∆[x+ a] as the output realization. Both the principal and the agent discount future
payoffs by the common discount factor e−r∆, where r > 0 is the discount rate.

Let zn denote the agent’s private signal realization in period n. We assume that
(xn, zn) are randomly distributed with a joint distribution G∆ (xn, zn) and {(xn, zn)}
are i.i.d across periods. We also assume that E∆[xn] = 0 and V∆[xn] = σ2/∆. The
length of the period ∆ parametrizes these densities because we assume that the quality
of the signals (the inverse of their variances) increases with ∆. Later we make precise
assumptions on how these distributions vary with ∆.

An example of a signal structure is a “hidden action” agency model in which zn is
completely uninformative about xn. In a different example agent has private information
about the noise when taking an action: say, agent observes mean of a noise distribution.
Private information can be interpreted either as the additional information about the
environment, firm or market conditions, or as the private information about the agent’s
productivity shock (mean level of revenue produced with no additional effort, see e.g.
Laffont and Tirole [1993], Chapter 2). In Section 4 we show that the results easily
generalize to other specifications of private information about cost or productivity of
effort, in which shock also affects marginal values. We also extend the results to the
“pure hidden information” model where the agent knows the “noise” realization before
taking an action (zt ≡ xt), while the cost of effort may be expressed in monetary terms,
as in the cash-flow diversion or dynamic insurance models.

3While our interpretation that consumption, which in principle depends also on the current period’s
output, flows during the duration of the period seems inconsistent, it is an indirect corollary to our
results that consumption independent of current output is with no loss of generality when the period
length is small - see the next Section.
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2.2 The Principal’s Problem and Important Curves

A contract is a process {cn} that for each period n specifies the agent’s compensation
cn as a function of the public history, i.e., the history of reported signals and outputs
(ẑ0, y0, . . . , ẑn, yn)4. A reporting plan {ẑn} and an action plan {an} for the agent are
processes that specify the agent’s report of private signal and agent’s action (“effort”)
in each period n as a function of the private history (z0, ẑ0, y0, . . . , zn−1, ẑn−1, yn−1, zn).
Since the principal’s contract does not depend on the agent’s private signals and signals
across periods are independent, there is no loss of generality in restricting the plans so
that ẑn and an depend only on (ẑ0, y0, . . . , ẑn−1, yn−1, zn) and not on (z0, . . . , zn−1).

The principal’s expected discounted revenue for a contract-plans triple ({cn}, {ẑn}, {an})
is

Π({cn}, {ẑn}, {an}) = r̃E∆

[
∞∑
n=0

e−r∆n (yn −∆cn)

]
= r̃∆E∆

[
∞∑
n=0

e−r∆n (an − cn)

]
,

while the agent’s expected discounted utility is

U({cn}, {ẑn}, {an}) = r̃∆E∆

[
∞∑
n=0

e−r∆n (u (cn)− h (an))

]
,

where the factor r̃ is such that r̃∆ = 1 − e−r∆, and normalizes the sums so that
r̃∆
∑
e−r∆n = 1.5

Let {ẑ∗n} be the truthful reporting plan, in which the agent honestly reveals his pri-
vate signal. The action plan {an} is incentive compatible (IC) for the contract {cn} if
({an}, {ẑ∗n}) maximizes the agent’s utility: for any other plan ({a′n}, {ẑ′n}), any N and
any realization (ẑ0, y0, . . . , ẑN−1, yN−1, zN),

E∆

[
∞∑
n=N

e−r∆n (u (cn)− h (an))
∣∣∣(ẑ0, y0, . . . , ẑN−1, yN−1, zN), {an}, {ẑ∗n}

]

≥ E∆

[
∞∑
n=N

e−r∆n (u (cn)− h (a′n))
∣∣∣(ẑ0, y0, . . . , ẑN−1, yN−1, zN), {a′n}, {ẑ′n}

]
.

For a given agent’s reservation utility w, the principal’s problem consists of finding a
contract-action plan ({cn}, {an}) that maximizes his expected discounted revenue among
all the incentive compatible plans that deliver an expected discounted utility w to the
agent. For any w ∈ [0, ū), let F∆(w) be the principal’s value from an optimal IC contract-
action plan,

F∆(w) = sup {Π({cn}, {ẑ∗n}, {an}) | {an} is IC for {cn}, U({cn}, {ẑ∗n}, {an}) = w}.
4We invoke the revelation principle and restrict the set of reports to be the same as the set of signals.
5Note that r̃ → r as ∆ ↓ 0.
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We also define F (w) as the principal’s value for an optimal feasible (“first best”)
contract-action plan (not necessarily IC). It is easy to see that such a plan is stationary,
and so F (w) is just equal to the value of an optimal feasible one period contract-action
pair:

F (w) = max
a,c
{a− c | a ∈ A, c ≥ 0, u (c)− h (a) = w}.

One can show that F satisfies the following ODE:

F (w) = max
a,c
{(a− c) + F

′
(w) (w + h (a)− u (c))}. (1)

The main theorems of the paper will feature a very related ODE, which will involve an
additional term capturing “cost of incentives” (see (5)).

Finally, let F : [0, u)→ R be the retirement curve. That is,

F (w) = −u−1 (w) .

Continuation values (w,F (w)) with w ∈ [0, ū) are attained by wage contracts that pay
the same cn = F (w) in every period (regardless of history), when the agent chooses action
an = 0 in every period. Since such wage contract-action plan is IC, F∆ ≥ F .

A

P

wsp
D wsp

F

FD

F

Figure 1: Value functions.

Notice that F∆ (0) = 0. This follows from the limited liability constraint c ≥ 0 and
u (0) = h (0) = 0: since the agent can always deviate to exerting no effort, the only way
for the agent to receive an expected discounted utility of zero is for the contract to pay
zero in every period.6 Also, there exists wsp ∈ [0, ū) such that F (wsp) = F (wsp) and

6Assumption (A2) below guarantees that if the agent gets a strictly positive expected continuation
value when taking a strictly positive effort (which compensates him for the cost of effort), then he would
also get a strictly positive expected continuation value from no effort.
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F (w) > F (w) for all w < wsp. This is because if the agent must receive high expected
utility, exerting any positive effort by the agent is too costly for the principal (see Spear
and Srivastava [1987], Sannikov [2008]).7

Altogether, for any ∆ > 0 we have F ≤ F∆ ≤ F (see Figure 1). In particular, this
implies that there exist a minimal agent’s value w∆

sp, 0 ≤ w∆
sp ≤ wsp, such that:

F∆(w∆
sp) = F (w∆

sp).

2.3 Frequent Actions: Parameterization and Assumptions

We are interested in solving the principal’s problem when the period length ∆ is small.
We assume that while ∆ decreases, (Z,X) are normalized signals generated by a fixed
distribution (independent of ∆):

(A1) There exists a distribution function G(x, z) with E[x] = 0 and V[x] = σ2, such that
for each ∆ > 0,

G∆(x, z) = G(x
√

∆, z
√

∆).

Note that E∆[x] = 0, and V∆[x] = σ2/∆. Consequently, the linear interpolation of
the process {Xk∆}k∈N where Xk∆ = ∆

σ

∑k
n=1 xn, xn ∼ G∆

X , converges in distribution to a
Brownian Motion as ∆→ 0 (Invariance Principle, see e.g. Theorem 4.20 in Karatzas and
Shreve [1991]). This also implies that for yn = ∆[xn + a(zn)] and Bk∆ = 1

σ

∑k
n=1(yn −

∆E∆[a(zn)]), (xn, zn) ∼ G∆, the linear interpolation of the process {Bk∆}k∈N converges
in distribution to the Brownian Motion as ∆ → 0 (see Whitt [1980])8. In other words,
the linear interpolations of revenue processes converge in distribution to the continuous
time process {Yt} satisfying

dYt = E∆[at]dt+ σdBt,

where {Bt} is a Brownian Motion.
We also make some assumptions on the distribution of noise:

(A2) Z has a finite support Z and for any z ∈ Z the distribution of X conditional on
[Z = z] has density function g (x|z). There exist δ̄, M̄ > 0 such that for all z, z′ ∈ Z and
δ : R→[0, δ̄], the three integrals∫

R

g′ (x− δ (x) |z)2

g (x|z)
dx,

∫
R

g (x− δ (x) |z′)2

g (x|z)
dx and

∫
R
|g′′ (x− δ (x) |z)| dx

are bounded above by M̄ .

7Formally, marginal cost of effort is bounded below by γ > 0 for positive actions while marginal
utility of consumption converges to zero as consumption increases. This excludes any interior solution
for F (w) for sufficiently high w since such solution must satisfy h′(a) = u′(c), for c > u−1 (w) such that
u(c)− h(a) = w.

8We have Bk∆ = ∆
σ

∑k
n=1(xn + ξn), with ξn = a(zn)− E∆[a(zn)], and so each process {Bk∆}k∈N is

the sum of two continuous path processes, one converging weakly to the Brownian Motion and the other
to the process identically equal to zero.
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3 Results

3.1 Solution to the Principal’s Problem: Values

We now present a heuristic derivation of our results. The proofs of the corresponding
lemmas, which in particular justify all the assumptions and simplifications made here, are
postponed until Section A. Also, in this section we focus on calculating the principal’s
value for the optimal contract-action plan as the period length ∆ shrinks to 0. The
construction of the incentive compatible contract-action plans that achieve those values
is postponed until Appendix 3.3.

Let I = [0, ū) and fix a period length ∆ > 0. Suppose that f : I → R represents a
set of feasible continuation values in period 1. That is, for any w+ ∈ I in period 1, there
is some incentive compatible contract-action plan with value w+ for the agent and value
f(w+) for the principal. Consider now the principal’s problem in period 0, when he is
constrained to deliver expected discounted utility w ∈ I to the agent. The value of this
problem is9

T∆
I f(w) = sup

a,c,W
E∆
[
r̃∆[a(z)− c(∆[x+ a(z)], z)] + e−r∆f(W (∆[x+ a(z)], z))

]
(2)

subject to

a(z) ∈ A ∀z, c(y, z) ≥ 0 and W (y, z) ∈ I ∀y, z

w = E∆
[
r̃∆[u(c(∆[x+ a(z)], z))− h(a(z))] + e−r∆W (∆[x+ a(z)], z)

]
(PK)

(z, a(z)) ∈ arg max
ẑ∈Z,â∈A

E∆
[
r̃∆[u(c(∆[x+ â], ẑ))− h(â)] + e−r∆W (∆[x+ â], ẑ) | z

]
(IC)

Thus, computing the value T∆
I f(w) boils down to the optimal choice of three functions

a, c and W , with reported signal ẑ and observed revenue y as arguments. a(ẑ) is the
recommended action and c(y, ẑ) is the agent’s consumption in period 0, while W (y, ẑ)
is the agent’s continuation value from period 1 onward. The promise keeping constraint
(PK) in (2) requires that the expected discounted utility in period 0 is indeed w. The
incentive compatibility constraint (IC) requires that it is optimal in period 0 for the agent
to report truthfully and then take the recommended action a(z).

Our results below crucially depend on the fact that F∆ is the largest fixed point of
the operator T∆

I bounded above by F (see Abreu, Pearce, and Stacchetti [1986, 1990]
and Spear and Srivastava [1987]).

In the paper we show that when the period length ∆ is short, both the objective
function and the constraints of (2) can be simplified in several ways, only slightly altering
the value of the problem (by the small order o (∆))10. First, we only consider constant
consumption functions c (y, ẑ) ≡ c. In particular, this implies that incentives for the
agent are provided by the continuation value function W alone (see Lemma 15).

9In the preceding discussion we have assumed that I = [0, ū), but later we will consider arbitrary
intervals I for the definition of T∆

I .
10Throughout the paper we use the standard notation O(∆) and o(∆) to denote arbitrary functions
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Incentive compatibility. For incentive compatibility, given any signal z, it is suf-
ficient to provide only local incentives for a (z), together with incentives for truthtelling
(Lemma 14). With a constant consumption function the constraints become:11∫

R
W (∆ (x+ a (z)) , z)g∆(x|z)dx ≥

∫
R
W (∆ (x+ a′) , z′)g∆(x|z)dx ∀z, z′, a′,

−r̃∆h′(a (z)) = e−r∆
∫
R
W (∆ (x+ a (z)) , z)g∆′(x|z)dx ∀z

Moreover, for small ∆ > 0, e−r∆ ≈ 1, and since V∆[x] = σ2/∆ is very large, the
arguments “x+ a (z)” and “x+ a′” can be approximated by simply “x”:∫

R
W (∆x, z)g∆(x|z)dx ≥

∫
R
W (∆x, z′)g∆(x|z)dx ∀z, z′

−r̃∆h′(a (z)) =

∫
R
W (∆x, z)g∆′(x|z)dx ∀z

Finally, let us introduce a new function v (x, z) = W (x
√

∆, z/
√

∆)/r̃
√

∆. Using the
definition of G∆ and a change of variables the constraints take the form:∫

R
v(x, z)g(x|z)dx ≥

∫
R
v(x, z′)g(x|z)dx ∀z, z′, (TR)

−h′(a (z)) =

∫
R
v (x, z) g′(x|z)dx ∀z (FOC)

Objective function. A short period length also allow us to carry out several sim-
plifications of the objective function. First, as above, the arguments “x + a (z)” can be
approximated by “x”. Second, the function f can be approximated by its second-order
Taylor expansion around w. Third, the feasibility constraint W (y, ẑ) ∈ I can be dropped
(see Lemma 13). Then, the principal’s problem is approximated by:

sup
a,c,W

E∆
[
r̃∆[a(z)− c] + e−r∆[f (w) + f ′ (w) (W (∆x)− w) +

f ′′ (w)

2
(W (∆x)− w)2]

]
s.t. a(z) ∈ A, c ≥ 0, W (y, z) ∈ R, (TR), (FOC) and (PK).

Given the quadratic approximation of f it is only the first two moments of W that matter
to the principal. However, the first moment is fully pinned down by the promise keeping

α(∆) and β(∆), respectively, such that

lim
∆→0

∣∣∣∣α(∆)

∆

∣∣∣∣ <∞ and lim
∆→0

β(∆)

∆
= 0.

11In case a (z) = 0 set h′ (0) = 0.
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constraint (for a given choice of c and function a). Substituting this value, the objective
function becomes:

E∆
[
r̃∆[a(z)− c] + f ′ (w) (w − (u (c)− h (a (z)))

]
+ e−r∆

[f ′′ (w)

2
V∆[(W (∆x)] + f (w)

]
.

The simplified objective function only depends on the second moment of the continuation
value function. Assuming that f ′′ < 0, the principal would like to minimize it.

Finally, we split the principal’s problem in two steps. First, he chooses an expected
effort ā, an expected cost of effort h̄ and consumption c. Second, he chooses an action
scheme a such that E∆ [a (z)] = ā, E∆ [h (a (z))] = h̄, and continuation value function
W with minimal variance among those satisfying (TR) and (FOC). We will see that in
the relevant range of continuation values we may assume ā > 0. Changing variables and
replacing v (x, z) as above, T∆

I f (w) is approximately equal to

f(w) + sup
ā>0,h̄,c

r̃∆

{
(ā− c) + f ′ (w)

(
w − (u (c)− h̄

) ]
+
r̃f ′′ (w)

2
Θ
(
ā, h̄
)
− f (w)

}
(3)

where

Θ(ā, h̄) = inf
a,v

E
[
v(x, z)2

]
(4)

s.t. ā = E[a(z)], h̄ = E[h(a(z))],∫
R
v(x, z)g(x|z)dx ≥

∫
R
v(x, ẑ)g(x|z)dx ∀z, ẑ (TRΘ)

h′(a(z)) = −
∫
R
v(x, z)g′(x|z)dx ∀z. (FOCΘ)

We call Θ the Variance of Continuation Values (VCV) function.
Largest fixed point. Suppose that the function F is the solution to the following

equation:

F (w) = sup
ā>0,h̄,c

{
(ā− c) + F ′(w)

(
w + h̄− u(c)

)
+

1

2
F ′′(w)rΘ(ā, h̄)

}
. (5)

Comparing (5) with (3), it is clear that F is “almost” (up to o (∆)) a fixed point of the
Bellman operator T∆

I . Using the fact that T∆
I is a contraction over the space of bounded

functions, this implies that its fixed point F∆ is “close” to F , and indeed F∆ converges
to F as period length ∆ shrinks to zero (see Proposition 5 and Lemma 6).

More precisely, consider the HJB equation (5) with the boundary conditions:

F (0) = 0 (6)

and F ′(0) equal to the largest slope such that for some wsp > 0

F (wsp) = F (wsp) and F ′ (wsp) = F ′ (wsp) . (7)

12



The first two conditions are analogous to the conditions that must be satisfied by F∆

(see the end of Section 2.2); the last is the smooth pasting condition.
The following is the first main result of the paper. The proof of Theorem 1 is in

Section A.

Theorem 1 Equation (5) with the boundary conditions (6) and (7) has a unique solution
F . For any agent’s promised value w ∈ [0, wsp], F (w) is the limit of the principal’s value
from optimal contract as the period length ∆ shrinks to zero:

lim
∆→0

sup
w∈[0,wsp]

(F (w)− F∆ (w)) = 0,

while for w > wsp, F (w) provides an upper bound:

F (w) ≥ lim
∆→0

F∆(w) for all w > wsp.

Theorem 1 shows that the limit of values from optimal contracts, as ∆ shrinks to
zero, can be characterized analytically using a two step solution procedure. In the first
step one solves a family of static problems (4), parametrized by a pair

(
ā, h̄
)
. In the

second step one solves the differential equation (5).
The second step is relatively standard for characterizing the value function of a

continuous-time optimal control problem. In fact, equation (5) is the Hamilton-Belman-
Jacobi (HJB) equation for the optimal value function of the following problem:

F (w) = sup
{āt>0,h̄t,ct}

E
[∫ ∞

0

r[āt(Wt)− ct(Wt)]e
−rtdt

]
(8)

s.t. dWt = r
[
Wt − u(ct(Wt)) + h̄t(Wt)

]
dt+ r

√
Θ(āt(Wt), h̄t(Wt)) dBt, W0 = w.

(with appropriate boundary conditions.)
The above is an unconstrained maximization problem of the principal. Intuitively,

the constraint of incentive compatibility is reduced to deriving the VCV function Θ, i.e.
the first step in the procedure. Value Θ(ā, h̄) is (proportional to) the minimal per period
variance of the continuation value function that incentivizes agent to exert expected effort
ā and expected cost of effort h̄. Since agent is risk averse high variance is costly (F ′′ < 0
in (5)), and Θ(ā, h̄) can be interpreted as a measure of efficiency loss due to asymetric
information. We provide examples where we solve Θ(ā, h̄) in Section 3.2. Here we want
to emphasize a couple of its properties.

First, notice that the VCV function Θ depends on the distribution G. Thus, different
distributions of private signals z and/or “noise” x involve different costs of incentive
provision. Second, Θ(ā, h̄) depends not only on the expected effort but also on the
expected cost of effort. In the pure hidden action model, when z takes only one value,
the only feasible choice of h̄ is h (ā). When agent has some private information, however,
the variance might decrease for action schemes that condition on private signal, for which

13



h̄ > h (ā) (see Section 3.2). Third, we want to stress that solving Θ(ā, h̄) is a purely
static, and a fairly easy optimization problem. To wit, it is related to a static problem of
incentive provision for the agent with a fixed reservation value and mean-variance utility
of consumption function - possibly the simplest utility function exhibiting risk aversion.12

Lastly,
√

Θ(ā, h̄) is the counterpart of the diffusion coefficient of the continuation
value process in the continuous time models. One difference is crucial: in continuous
time models, it is a direct consequence of the Martingale Representation Theorem that
the continuation value increments must be linear in “noise”. In our case, this would
correspond to an additional restriction in problem (4) that v is a linear function. Thus,
in the pure hidden action model, the (FOCΘ) pins down Θ(ā, h (ā)) = [h′ (ā)σ]2 (see
Example 1). In our case we do not and cannot impose linearity restriction: the principal
typically can do better by using nonlinear continuation value functions.

That Θ captures all the relevant information of the distribution G(x, z) facilitates the
comparative statics analysis of how the information structure affects the optimal values,
as we illustrate in the next section. The following result is important for our analysis
(the proof is in the online Appendix D). For an arbitrary function Θ : R2

+ → R+ ∪ {∞}
define DΘ

+ = {(ā, h̄) | ā > 0,Θ(ā, h̄) <∞}.

Proposition 1 Consider Θ, Θ, and let FΘ and FΘ be corresponding solutions to (5)
with the boundary conditions (6) and (7).

(i) If Θ ≥DΘ
+

Θ then FΘ(w) ≤ FΘ(w) for all w ∈ [0, wΘ
sp].

(ii) If Θ >DΘ
+

Θ then FΘ(w) < FΘ(w) for all w ∈ (0, wΘ
sp).

Recall that F is the value of an optimal feasible (first best) one period contract-action
pair. For w > 0, the function F solves (1), which is the HJB equation (5) without the last
term (with rΘ ≡ 0), but F does not satisfy the boundary condition (6), as F (0) 6= 0. The
following proposition shows that when rΘ converges to zero, the function F in Theorem
1 converges to F for w > 0. In other words, the first best value F is achievable by
the optimal contracts with short period length, when either the cost of incentives or the
discount rate vanishes (see Figure 2; the proof is in the online Appendix D).

Proposition 2 Let F be a solution to (5) with the boundary conditions (6) and (7).
Then for every δ > 0 there is ε > 0 such that if rΘ ≤ ε then

F ≥ F (w)− δ for all w ∈ [δ, wsp].

3.2 Examples and Comparative Statics

The following example shows that the value of the optimal contract-action plan formu-
lated directly in continuous time (Sannikov [2008]) agrees with the limit of values of
discrete time optimal action-plans for a particular signal structure.

12The difference is due to our assuming the sufficiency of local incentives and approximating the
arguments “x+ a (z)” by “x”, further simplifying the problem.

14



A

P

∆

∆
F

F

F

Figure 2: Proposition 3.

Example 1 Consider the pure hidden action case when X is normally distributed with
mean 0 and variance σ2. For any ā > 0,13

Θ(ā, h(ā)) = min
v

∫
v(x)2g(x)dx, (9)

s.t. h′(ā) = −
∫
R
v(x)g′(x)dx

The optimal solution of this problem is v(x) = h′(ā)x and Θ(ā, h(ā)) = [h′(ā)σ]2. Also,
Θ(ā, h̄) =∞ for all h̄ 6= h(ā). Therefore the HJB equation (5) becomes

F (w) = sup
ā>0,c

{
(ā− c) + F ′(w)(w + h(ā)− u(c)) +

1

2
F ′′(w)rσ2h′(ā)2

}
,

which is exactly Sannikov’s equation (5).

The example shows that in the case of pure hidden action models with normal noise
the value of the optimal contract depends on the single parameter of the distribution of
noise, its variance. We generalize the example in the following way.

Lemma 1 Consider a pure hidden action model with density gX(x). Then, for all ā > 0,
Θ(ā, h̄) =∞ if h̄ 6= h(ā) and

Θ(ā, h(ā)) =
h′(ā)2

Ig
,

where

Ig =

∫
g′(x)2

g(x)
dx.

13In a pure hidden information model, when Z = {z}, we write simply “g (x)” instead of “g (x|z)”.
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Proof. That Θ(ā, h̄) =∞ for all h̄ 6= h(ā) is clear. Just as in Example 1, the solution of
problem (9) for ā > 0, as characterized by the necessary first order conditions, is v(x) =

C g′(x)
g(x)

, where incentive compatibility constraint implies that C = −h′(ā)
Ig . Consequently,

Θ(ā, h(ā)) = h′(ā)2

Ig , when ā > 0.

The Lemma establishes that the variance of incentive transfers, and thus the value
of optimal contract-action plans (when ∆ shrinks to 0) depends on the single parameter
Ig of the underlying noise distribution. The parameter Ig is the well known Fisher
information quantity in Bayesian statistics. The relevance of the Fisher information
quantity for contracting is, to the best of our knowledge, new. Yet the intuition behind
its relevance is straightforward: it is a measure of informativeness of the public signal
about the action of the agent. Its high value diminishes the information asymetry between
the principal and the agent, and allows for the incentives to be provided more efficiently
(by transfers with lower variance).

Consider the following example.

Example 2 We study pure hidden action models for three cases of noise distribution,
each with variance σ2: (i) normal distribution, (ii) double exponential distribution and
(iii) “linear” distribution, with corresponding densities:14

gn(x) =
1

σ
√

2π
e−[ x2σ ]

2

, x ∈ R

g2e(x) =
λ

2
e−λ|x|, x ∈ R

gl(x) = c− c2|x|, |x| ≤ 1/c,

for λ =
√

2
σ

and c = 1
σ
√

6
. The corresponding Fisher information quantities are:

Ign = 1/σ2, Ig2e = 2/σ2, and Igl =∞.

In particular, in the “linear” distribution case the incentives are costless and the first-
best is achievable (Proposition 2). Intuitively, with bounded support of the noise, agent’s
defection from the prescribed action plan gives rise to signals that would not occur oth-
erwise, and those signals have sufficiently high probability (density has sufficient mass at
the extremes).

A direct consequence of Lemma 1 and Proposition 1 is the following:

Corollary 1 In the pure hidden action model with density g(x), the limit value of the
optimal contract-action plans as ∆ shrinks to zero is increasing in the Fisher information
quantity Ig.

14Formally, the “linear” distribution does not satisfy our assumption (A2) as it results in infinite Fisher
information quantity. But one may consider approximations with the density at the extremes of the
support changed to, say, quadratic functions, resulting in finite but arbitrarily large Fisher information
quantities.
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Let us now consider a settings in which the agent has some private information about
the environment.

Example 3 Consider the case when the agent privately observes the mean of a normally
distributed random component in revenue, and the private signal takes two values with
equal probability. Formally, Z = {l, h} ∈ R, l < h, X|Z ∼ N (Z, 1), and P (Z = l) =
P (Z = h) = 1/2. We claim that

Θ(ā, h̄) = min
al,ah

h′ (ah)
2 + Ch′ (al)

2

2
s.t. ā =

al + ah
2

and h̄ =
h (al) + h (ah)

2
,

where C = 1+e(h−l)
2

1+e(h−l)
2−(h−l)2 > 1.

Indeed, consider the auxiliary problem:

Θ̂(al, ah) = inf
v

1

2

{∫
R
v(x, h)2g(x|h)dx+

∫
R
v(x, l)2g(x|l)dx

}
s.t. h′(az) = −

∫
R
v(x, z)g′(x|z)dx z = l, h

0 =

∫
R

(v(x, h)− v (x, l)) g(x|h)dx.

The auxiliary problem assumes that the “downward constraint” of (TRΘ) is binding and
the “upward constraint ” of (TRΘ) is redundant, which can be easily verified.

The optimal solution to the auxiliary problem is

v (x, l) = λl
g′ (x|l)
g (x|l)

+ λ
g (x|h)

g (x|l)
and v (x, h) = λh

g′ (x|h)

g (x|h)
− λ,

where (λl, λh, λ) are Lagrange multipliers for the corresponding constraints. Solving the
system of three equations for (λl, λh, λ) and substituting into the value function yields the
result.15

15Since∫
g′ (x|z)2

g (x|z)
= 1 for z = l, h,

∫
g′ (x|l)
g (x|l)

g (x|h) = −(h− l) and

∫
g (x|h)

2

g (x|l)
= e−(h−l)2 ,

substituting the solution into the constraints, the Lagrange multipliers must satisfy

λl − λ(h− l) = −h′ (al) , λh = −h′ (ah) and − λ+ λl(h− l)− λe−(h−l)2 = 0.

Therefore,

λ = λl
(h− l)

1 + e(h−l)2
, λl = −h′ (al)

1 + e(h−l)2

1 + e(h−l)2 − (h− l)2 , λh = −h′ (ah)
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In the example above, for a fixed expected cost of effort ā, the function Θ(ā, h̄) is
minimized for h̄ > h (ā), i.e. when al 6= ah.

16. Thus, the example illustrates that in a
model with private information, in any period, for a fixed mean effort ā there arises a
nontrivial tradeoff between two sorts of implementation costs (see HJB equation (5)).
The first is the direct cost of effort, which is proportional to h̄ = E [h (a (z))], and the
second is the cost of incentives, which is proportional to Θ(ā, h̄). On one hand, given
a convex cost function, a “flat” effort scheme a (z) ≡ ā minimizes the direct cost. On
the other hand, the cost of incentives might be minimized by the effort scheme that uses
private information and does not satisfy a (z) ≡ ā, which implies that h̄ > h (ā). How
this is resolved depends on the relative “prices” of each cost in the differential equation
(5), given by F ′ and F ′′ respectively. The tradeoff is implicit in the HJB equation (5),
and absent in the continuous time counterpart (see Example 1).

Example 1 provides one justification for Sannikov’s continuous-time model: its op-
timal value function F agrees with the limit of F∆ (as ∆ shrinks to zero) for a pure
hidden action model with normal distribution. The following Lemma provides a different
justification: F is the lower bound of the limit of F∆ for any model with an arbitrary
information structure that has the same variance of noise.

Lemma 2 Let G(x, z) be any distribution such that V[x] = σ2. Let Θ be its corresponding
VCV function, and let Θn be the VCV function of the pure hidden action model with
normal noise and V[x] = σ2. Then Θ ≤ Θn and FΘn ≤ FΘ.

Proof. The optimal policy function for Θ (ā, h (ā)) with ā > 0 in the pure hidden action
case with normal distribution has a linear incentive transfer function v(x) = h′(ā)x,
and Θ (ā, h (ā)) = [h′ (ā)σ]2 (Example 1). This transfer function provides not only “ex-
ante”, but also “ex-post” incentives, thus inducing the agent to a constant effort scheme
a (z) = ā under any distribution of signals. As long as the variance of noise X is σ2,
the variance of incentive transfers is [h′ (ā)σ]2. Thus Θ ≤ Θn and so the Lemma follows
from Proposition 1, part (i).

3.3 Solution to the Principal’s Problem: Contract-Action Plans

In this section we show how to construct contract-action plans that are relatively simple
yet approximately optimal as the period length is short.

Recall first the construction of fully optimal contract-action plan using agent’s con-
tinuation value as a state variable (Abreu, Pearce, and Stacchetti [1986, 1990] and Spear
and Srivastava [1987]). Fix period length ∆, and for each w ∈ I = [0, ū), let (aw, cw,Ww)
be an optimal policy for the problem T∆

I F
∆(w). Starting with the exogenous reservation

utility of the agent w0 as an initial state variable, in any period n, the agent’s compen-
sation is given by cwn(yn, ẑn), he takes action awn(zn), while the law of motion of the

16Note that ∂
∂ah

h′(ah)2+Ch′(2ā−ah)2

2

∣∣∣
ah=ā

= h′ (ā)h′′ (ā) (1− C) < 0.
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state variable is given by Wwn(yn, ẑn), i.e., wn+1 =Wwn(yn, ẑn). Iterating, for any reser-
vation utility w0, the family of optimal policies generates a contract-action plan, which
is incentive compatible and optimal, and generates utility w0 for the agent.

Our approximately optimal contract-action plans are also generated by a family of
policies. Instead of using optimal policies for T∆

I F
∆(w) as above, we use simple policies

(Definition 1 below). Simple policies are based on optimal policies for the approximate
problem (3) (see Section 3.1), in the following sense. For any w, let (āw, h̄w, c̄w) be an
optimizer of the HJB equation, and let (αw, vw) be an optimal solution of Θ(āw, h̄w).
Define the policy (aw, cw,Ww) by aw(z) = αw(z

√
∆), cw(y, ẑ) ≡ c̄w and Ww(y, ẑ) =

C1 +C2

√
∆×v(y/

√
∆, z
√

∆). Roughly, this is a feasible policy. However, a simple policy
must “truncate” Ww, to justify the quadratic approximation and the range constraint
on continuation values. Also, (aw, cw,Ww) does not satisfy the incentive compatibility
constraint, and so a simple policy must be modified sligthly.

We will need the following, stronger version of the VCV function. For any ε > 0,
define the function Θε(ā, h̄) just as in (4), but with the (TRΘ) strengthened to∫

R
v(x, z)g(x|z)dx ≥

∫
R
v(x, z′)g(x|z)dx+ 3ε ∀z 6= z′ (TRΘ,ε).

In the definition below, we consider simple policies that are associated with a solution
F of (5) in an arbitrary interval I. Moreover, though I may be different from [0, ū), we
still define a simple policy for each w ∈ [0, ū).

More precisely, for I = [w,w] and ∆ > 0 (small), let I∆ =
[
w + ∆1/3, w −∆1/3

]
.

Definition 1 Fix an interval I ⊂ R, a period length ∆ > 0 and an approximation error
ε > 0, and let F be a solution (5) on the interval I. For any agent’s promised value
w ∈ [0, ū) we define a simple policy (a, c,W ) as follows. Let (ā, h̄, c) be an ε-suboptimal
policy of the HJB equation (5) at w, and let (α, v) be an ε-suboptimal policy for the
corresponding problem Θε(ā, h̄).

If w ∈ I∆ let (see Figure 3)

c(y, z) = c, (10)

W (y, z) = C +
√

∆r̃er∆ × v(y/
√

∆, z
√

∆)1|v|≤M ,

a(z) is an action that satisfies the (IC) constraint in (2),

where M is a (large) constant that depends only on ε (see Definition 3 in Appendix B)
and C is chosen so that the promise keeping (PK) is satisfied.

If w /∈ I∆ let

c(y) = u−1 (w) , (11)

W (y) = w,

a(z) = 0.

For any reservation utility w ∈ [0, ū) for the agent, a simple contract-action plan is that
generated by the set of simple policies.
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Figure 3: Continuation value function, where k = r̃er∆.

Lemma 14 in Section A shows that in the definition of the action scheme a above,
the global incentive constraint (IC) can be replaced by the local incentive constraint, for
all z.

Note that a simple policy depends on I, F , ε, ∆ and w. A simple policy satisfies the
(PK) by construction, and if w ∈ I∆ then W (y) ∈ I for all y, if the period length ∆ is
small enough. Note also that if truthful reporting is incentive compatible, then a simple
policy is fully incentive compatible (satisfies (IC)), and so it is a feasible policy for the
problem (2). Finally, note that even for fixed parameters F , ε, ∆ and w there are many
simple policies, each corresponding to some ε-suboptimal policies for the problem Θε and
the HJB equation (5).17

In a simple contract-action plan, as long as it stays within I∆, the agents continution
value changes from period to period, driven by the public signals and reports. Once it
falls outside of I∆, the plan becomes stationary and pays the agent in every period a
fixed wage u−1 (w) and requires no effort, delivering a continuation value w to the agent
(and F (w) to the principal).

The following Theorem is the second main result of the paper. It shows that for
small approximation error and short period length any simple contract-action plan is
fully incentive compatible and almost optimal (proof is in Appendix A).

Theorem 2 Fix I = [0, ū), a period length ∆, an approximation error ε > 0 and let F
be as in Theorem 1. For sufficiently small ∆ and ε, for any agent’s reservation utility
w ∈ I, a corresponding simple contract-action plan for w is incentive compatible and
[O (ε) +O(∆1/3)]-suboptimal.

In the case of pure hidden action, we follow up on Lemma 1 and Example 2 from the
previous section but now in the context of contract-action plans. We saw there that the
solution of Θ(ā, h(ā)) is a function v that is linear in the likelihood ratio of the density.
Therefore, in simple policies, the continuation value function will be a truncated linear
function of the likelihood ratio.

17Without additional assumptions, optimal policies for the two problems need not exist.
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Lemma 3 Consider a pure hidden action model with density g(x). Then, for each w ∈
[0, wsp]

∆, a corresponding simple policy (a, c,W ) is such that

W (y) = C −
√

∆r̃er∆λ(y)× 1|λ(y)|≤Mε where λ(y) =
h′(ā)

Ig
× g′(y/

√
∆)

g(y/
√

∆)

and ā and C are as in Definition (1).

Example 4 Consider again pure hidden action models for normal, double exponential
and “linear” distribution, all with variance σ2. Then, by Lemma 3, simple contract-action
plans have continuation values processes given by

W n (y) = C1 + C2 × y × 1|y|≤C3 ,

W 2e (y) =

{
C, when y ≥ 0
C, when y < 0

,

W l (y) = C1 + C2 ×
sgn (y)

(1− |y|)
× 1(1−|y|)−1≤C3

,

for appropriate constants, as in Lemma 3.

In the following we ask the question whether, as the period length shrinks, the de-
tails of the signal structure matter for the design of approximately optimal contracts.
Recall that in the case of values (Theorem 1) the dependence was fully captured by the
VCV function Θ. However, note that the simple contract-action plans in Lemma 3 and
Example 4 look very different for different noise distributions, even if they share the
same function Θ: e.g. the case of the normal distribution with variance 1 and a double-
exponential distribution with variance 2 (Theorem 1 and Example 4). It is not difficult
to establish that, in the pure hidden action model, the contract-action plans must be
based on continuation value processes that are close to linear in likelihood ratios, as in
Lemma 3. Thus, for example, while continuation values linear in revenue will work for
the normal noise, they will be very suboptimal when the noise is double-exponential.
One would like to conclude from this that there is no single contract that will work for
two pure hidden action models with different noise structures.

The following Proposition establishes that this conclusion is in fact correct. We note
that the conclusion requires a more elaborate argument than the discussion above sug-
gests, as the continuation value process is defined endogenously, relative to the noise
structure (the same contract gives rise to different processes, for different noise struc-
tures).

Consider two noise distributions with densities g and γ that have the same Fisher
information quantity but linearly independent likelihood ratios:

Ig = Iγ, inf
C

∫ [
g′ (xg)

g (xg)
− Cγ

′ (xγ)

γ (xγ)

]2

g (xg) γ (xγ) dxgdxγ > 0. (12)
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Proposition 3 For any ∆ > 0 consider two pure hidden action models with noise den-
sities gX and γX that satisfy (12). For every wg, wγ ∈ (0, wsp) there exists δ > 0, such
that for sufficiently small ∆ there is no contract {cn} that is δ-suboptimal for the two
distributions and delivers values wg and wγ.

The proof is in the online Appendix E. The Proposition compares the contracts for
the special case of signal structures with pure hidden action and the same values of the
optimal contracts (as period length shrinks). While this is the most relevant case, as this
is exactly when one would suspect the same contract to work, we also comment in the
Appendix how to extend the proof to the case of arbitrary two signal structures.

A different way to interpret the result is to say that knowing the optimal continuous-
time contract provides little guidance as to how the (close to) optimal discrete time
contracts look like, no matter how short is the period length. Such contracts must
depend on the distribution of noise in the discrete-time models, as in Theorem 2.

On the other hand, in the context of pure hidden action models with the same Fisher
information quantities, the simple contract-action plans converge in Distribution to a
unique continuous-time contract, as we argue below. For any continuous time Brownian
Motion process {Bt} and Ig > 0, w ∈ [0, ū) consider a continuous time process {Wt}
that starts at w and satisfies the stochastic differential equation:

dWt = r (Wt − u (c (Wt)) + h (a (Wt))) dt+ r
h′ (a (Wt))√

Ig
dBt, (13)

where c (Wt) and a (Wt) are the minimizers18 in the solution of (5) with the boundary
conditions (6) and (7), together with:

Wt = Wτ , for t ≥ τ ,

where τ is a random time when Wt hits 0 or wsp. This process generates a pair of con-
tinuous time processes ({ct}, {at}):

at =

{
a (Wt), for t < τ
0, for t ≥ τ

and ct =

{
c (Wt), for t < τ
−F (Wτ ), for t ≥ τ .

(14)

In the case when Ig = 1, for any promised value to the agent w ∈ [0, ū), the pair
({ct}, {at}) is the optimal continuous-time contract derived in Sannikov [2008].19 The
proof follows from the Invariance Principle (see e.g. Theorem 4.20 in Karatzas and Shreve
[1991]).

18Part (ii) of Lemma 19 shows that there is γ > 0 such that for any w ∈ (0, wsp), the constraint ā > 0
in (5) can be replaced by ā ≥ γ without loss of generality. The existence of the minimizers thus follows
from the compactness of [γ,A] and

[
0, u−1 (wsp)

]
and the continuity of the right hand side of (5) in a

and c, for the case when h = h (a).
19We identify two processes that agree in distribution;
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Lemma 4 Consider a pure hidden action model with noise density gX . For any ε, ∆ > 0
and w ∈ [0, ū), let ({c∆,ε

n }, {a∆,ε
n }) be a simple contract-action plan for F solving (5) with

the boundary conditions (6) and (7). Then

lim
ε→0

lim
∆→0

({c∆,ε
t }, {a

∆,ε
t }) = ({ct}, {at}),

where ({ct}, {at}) is the process defined by (13) and (14) for w, ({c∆,ε
t }, {a

∆,ε
t }) is the

linear interpolation of ({c∆,ε
n }, {a∆,ε

n }), and the convergence is in distribution.

4 Extensions

4.1 Changing signal structure

Suppose now that for a period length ∆ the private signal z is distributed with cdf
G∆
Z , while given the private signal z and action a, the revenue y is distributed with

cdf G∆
Y (y|z, a). This extends the model in the paper along two dimensions. First, it

generalizes the way the period length ∆ parametrizes the distribution of signals. Second,
it generalizes the way the agent’s effort affects the distribution of public signal.

For any a and h ≥ h (a), as well as M > 0 and ∆ > 0, consider the following problem:

Θ∆
M(a, h) = inf

a,|v|≤M
√

∆

∫
v2(y, z)G∆

Y (dy|z, a(z))G∆
Z (dz), (15)

ā =

∫
a(z)G∆

Z (dz), h̄ =

∫
h(a(z))G∆

Z (dz)

(z, a(z)) ∈ arg max
ẑ∈Z,â∈A

{
−r∆h(â) + e−r∆

∫
R
v(y, ẑ)G∆

Y (dy|z, â)

}
∀z.

Suppose that

lim
∆→0,M→∞

Θ∆
M(ā, h̄)

∆
= Θ(ā, h̄) (16)

uniformly in (ā, h̄) for some function Θ. Then our results can be extended to this general
case, in the following sense.

Unlike the case analyzed in the previous sections, when (A2) was satisfied, now there
need not exist a unique solution to the HJB differential equation (5) with boundary
conditions (6) and (7).20 However, we can get around this problem by analyzing a
perturbed equation, which always has a unique solution and that provides an arbitrarily
good approximation to the solution of the principal’s problem. For any ζ > 0 consider
the following differential equation:

20Formally, under (A2) the function Θ was bounded away from zero in the relevant domain (see Lemma
16). This guaranteed that the HJB equation is uniformly elliptic, and therefore has a unique solution.
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Fζ(w) = sup
ā,h̄,c

{
(ā− c) + F ′ζ(w)(w + h̄− u(c)) +

1

2
F ′′ζ (w)rmax {ζ,Θ(ā, h̄)}

}
, (17)

with the boundary conditions (6) and (7), where wsp,ζ denotes now the point where Fζ
satisfies (7).

For Fζ solving the HJB equation (17) on an interval I with F ′′ζ < 0, it is straightfor-
ward to show that |T∆

I Fζ − Fζ |I∆ = o(∆) + O (ζ∆) (compare Proposition 6). Lemma 6
establishes then the following.21

Theorem 3 For any ζ > 0, equation (17) with the boundary conditions (6) and (7) has
a unique solution Fζ. The value wsp = limζ→0wsp,ζ and the function F = limζ→0 Fζ exist.
For any agent’s promised value w ∈ [0, wsp], F (w) is the limit of the principal’s value of
an optimal contract as the period length ∆ shrinks to zero:

lim
∆→0

∣∣F − F∆
∣∣
[0,wsp]

= 0,

while for w > wsp, F (w) provides an upper bound:

F (w) ≥ lim
∆→0

F∆(w) for all w > wsp.

More precisely, for fixed ζ we have∣∣Fζ − F∆
∣∣+
[0,wsp,ζ ]

= O(ζ) +
o(∆))

∆
and

∣∣F∆ − Fζ
∣∣+
[0,ū]

= O(ζ) +
o(∆)

∆
.

Below we provide several examples, in which Θ is defined expliciltly by a single class
of optimization problems. We also show how the (almost) optimal policies can be used
to construct (almost) optimal discrete time contracts, analogously to Theorem 2.

4.1.1 Pure hidden information

We may investigate the version of the model in which the agent knows the noise realization
before taking an action (see also Section 4.2). In this case we assume that the agent’s
actions are unbounded from below.22 Formally, we replace assumphion (A2) with:

(A2’) X ≡ Z and X has a density function g(x). The set of available actions is A =
(−∞, A] for some A ∈ R+, and h (a) = 0 for a < 0.

21The existence, uniqueness and strict concavity of solutions Fζ in Theorem 3 follow in exactly the
same way as for functions F in Theorem 1 (see section D). The existence of wsp = limζ→0 wsp,ζ
and F = limζ→0 Fζ follows immediately from the monotonicity in ζ: ζ < (≤)ζ ′ implies Fζ > (≥)Fζ′

(Proposition 1).
22In a separate note we show that a pure hidden action model with compact action set results in the

first best contracts as the period length shrinks to zero.
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It is shown in Section 4.1.1 of the Online Appendix that the VCV function can be
defined explicitly as:

Θ(ā, h̄) = inf
a,v

E
[
v(x)2

]
(18)

s.t. ā = E[a(z)], h̄ = E[h(a(z))],

h′(a(x)) = v′(x) ∀x (FOCΘ-PHI)

where the infimum is over piecewise continuously differentiable functions a(·) and con-
tinuous functions v(·), and the (FOCΘ-PHI) condition is required everywhere except for
finitely many points of discontinuity of a(·). Notice two differences relative to the origi-
nal definition: first, the transfer function v has only one argument and so the reporting
of the signal is not necessary, and second, the marginal benefit of effort in the incen-
tive constraint is simply the derivative of the transfer function (or, continuation value
function).

Section 4.1.1 also provides the corresponding definition of simple contract-action plans
and shows that they are approximately optimal.

Finally, the following result allows us to rank the distributions of noise in terms
of the cost of incentives that they impose, and thus, due to Proposition 1, the values
of the optimal contracts (analogously to the ordering of Fisher information quantities
in the pure hidden action case). The condition is a strong form of ranking of signal’s
dispersion.23

Lemma 5 Consider two signal distributions G and G of noise for the pure hidden in-
formation case, with corresponding strictly positive densities g and g. Suppose that:

G (x) = G (x′) =⇒ g (x) ≥ g (x′) , ∀x, x′

Then, for the corresponding VCV functions ΘG and ΘG,

ΘG ≥ ΘG.

4.1.2 Additional private information

We may generalize the basic model by allowing the agent to have private information
about his cost function and the efficiency of effort. Effect of effort might also depend on
the noise. Thus, for example, if we interpret private signal as reflecting productivity, the
base model could deal with a case of production functions parametrized by a “benchmark”
level of revenue requiring no effort and identical functions parametrizing any additional
improvement (see e.g. Laffont and Tirole [1993], Chapter 2). Current model allows
productivity to also affect cost/efficiency of marginal effort.

23The condition implies lower variance, but is incomparable to SOSD: a SOS inferior distribution can
either dominate or be dominated in terms of our ranking.
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In particular, fix a twice continuously differentiable, bounded function φ and for any
period length ∆ > 0 let

y = ∆[x+ φ(a, x
√

∆, z
√

∆)],

where the distribution of noise X and the private signal Z satisfy the assumptions in
(A2). Also, let the cost of effort be h(a, z

√
∆), where each h(·, z

√
∆) is as in the previous

sections. With just slight changes in notation in the proofs one establishes that

Θ(ā, h̄) = inf
a,v

E
[
v(x, z)2

]
s.t. ā = E[φ(a(z), x, z)], h̄ = E[h(a(z), z)],∫

R
v(x, z)g(x|z)dx ≥

∫
R
v(x, z′)g(x|z)dx ∀z, z′.

h1(a(z), z) = −
∫
R
v(x, z)g′(x|z)φ1(a, x, z)dx ∀z

4.1.3 Folk Theorem

Consider now the model in which for every period length ∆ we have y = ∆s, where s
is a (public) signal with distribution that depends on action a and is independent of ∆.
The analysis in this case coincides with the analysis of a discrete time model with fixed
period length 1 and a fixed distribution of signals GS, in which the per period discount
factor converges to one. For simplicity let us consider the pure hidden action case and
assume that the sets of available actions A is finite, with conditional densities g (s|a).

In our principal-agent model the standard identifiability assumptions (see Fudenberg,
Levine, and Maskin [1994]) reduce to {g (·|a)}a∈A being linearly independent, which
implies that for any a ∈ A there exists a bounded function va such that:∫

va (s) g (s|a) ds = 0, (19)∫
va (s) g (s|a′) ds ≤ err [h (a′)− h (a)] ∀a′ 6= a.

In other words, for the period length 1 the policy (a, va) satisfies the constraints of the
problem (15) for (a, h) = (a, h (a)) and so for M big enough Θ1

M(a, h (a)) ≤ Ea[va (s)2].
For the period length ∆ > 0, it is easy to verify that the functions v∆

a (y) = ∆e−r

e−r∆
va
(
y
∆

)
satisfy the constraints of the problem (15) for (a, h) = (a, h (a)), and so Θ∆

M(a, h (a)) ≤
∆2e−2r(1−∆)Θ1

M(a, h (a)) = o (∆). Consequently, due to Proposition 2, in the limit the
first best outcome is achievable. In other words, we recover the Folk Theorem result for
the principal agent setting.

More generally, in a pure moral hazard model with finitely many actions, whenever
the conditional density g∆ (y|a) can be written as ∆αg (y∆α|a) for some α and conditional
densities {g (·|a)}a∈A that are linearly independent, the first best outcome is achievable
in the limit. The above Folk Theorem result provides an example with α = −1. In a
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different example agent’s action a determines the volatility of the revenue process: for
any period length ∆ the revenue is, say, normally distributed with mean 0 and variance
∆ (1− a).24 In this case the conditional density g∆ (y|a) can be written as ∆αg (y∆α|a)
with α = −1/2 and again the first best is achievable.

4.2 Changing payoff structure

The method can be used to tackle different payoff structures. For brevity we will focus
on a particular model, in which the cost of effort to the agent is not independent of
consumption, but is in fact expressed directly in monetary terms. An application is the
problem of incentives to prevent cash-flow diversion (see DeMarzo and Fishman [2007],
DeMarzo and Sannikov [2006], Biais, Mariotti, Plantin, and Rochet [2007]). Since our
method allows for the risk averse agent, it can be more broadly applied to the insurance
problems.25

The action a ∈ A = [0,∞) of the agent will be interpreted as the amount of money
diverted from the privately observed cash-flow (or income). Agent’s benefit, in monetary
terms, from withholding a is h (a), where h is a concave function such that h′ ≤ 1 and
h′ (a) = γ for a ≥ A. For any ∆ the stage game payoffs are thus:

uP (a, c) = ∆ (drift− a− c) + noise,

uA (a, c) = ∆u (c+ h (a)) .

We thus go beyond the “linear” approach in the literature and allow the h function to
be nonlinear as well as agent to be risk averse.

As in the literature, we assume that in every period after observing the public signal
the principal can break the contract, which will result in a continuation payoffs wP , wA >
0 for the principal and the agent.26 One can show that the payoffs to the principal and
the agent cannot fall below wP and wA (see DeMarzo and Fishman [2007], DeMarzo and
Sannikov [2006], Biais, Mariotti, Plantin, and Rochet [2007]). Using arguments as in the
proofs for Section 4.1.1, one shows that the values of the optimal contracts converge to
F , where F is the maximal function that solves

F (w) = max
ā,ū,c

{
drift− (ā+ c) + F ′ (w) (w − ū) +

rF ′′ (w)

2
Θ (ā, ū, c)

}
,

F (wA) = wP , F ≤ F ,

24The model is trivial in the case when the Principal is risk neutral. If we assume that the Principal
has mean-variance preferences up (Fy) = E [y]− V ar [y], his per period utility is equal to ∆ (1− a− c),
and so (up to a constant) the same as considered in the paper.

25Existing cash-flow divesion models allow only for risk neutral agent, in which case the pure hidden
information model can be formulated directly in continuous time.

26Interpreted as the insurance problem, the principal might decide to implement a costly perfect mon-
itoring scheme so that the parties get the first best minus an exogenously determined cost of monitoring.
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where

Θ(ā, ū, c) = inf
a,v

∫
v2(x)g(x)dx,

s.t. ā =

∫
a(x)g(x)dx

ū =

∫
u(c+ h(a(x)))g(x)dx

v′ (x) = u′(c+ h(a(x)))h′(a(x)).

5 Conclusions

We study a rich family of dynamic agency problems that includes the standard hidden
action and hidden information models as special cases. We develop a quadratic approx-
imation method that, when the period length is short, allows us to characterize the
upper boundary of the equilibrium value set by a differential equation, and to construct
contracts that are both relatively simple and almost optimal. The quadratic approxima-
tion method developed here should be useful in many dynamic settings with asymmetric
information (for example repeated partnerships and oligopoly games).

The solutions we derive depend on the information structure, including the corre-
sponding densities of signals. Nevertheless our method is very tractable as it involves
solving a family of simple static problems and a differential equation. The upper bound-
ary of the equilibrium value set depends on a single parameter of the information struc-
ture, the variance of incentive transfers. The simple contracts are built from the optimal
solutions of the static problems, which are functions of the likelihood ratios of public
signals familiar from the static contracting literature.

In particular, while easy to construct, the contracts are sensitive to the details of
the information structure, for any period length. The upper boundary of the value set
of the continuous time model is the limit, as the period length shrinks to 0, of the
boundaries for the discrete time models with particular information structures, whereas
the optimal continuous time contract does not provide enough information to construct
(approximately) optimal discrete time contracts.

A Proof of Theorems 1 and 2

In Section D in the Online Appendix we establish several properties of the differential
equation (5). In particular, Corollary 2 establishes existence, uniqueness, and Lemma 18
strict concavity of the solution F in the statement of the Theorem 1. Moreover, Lemma
19 shows that F satisfies

F (w) = sup
ā,h̄,c

{
(ā− c) + F ′(w)

(
w + h̄− u(c)

)
+

1

2
F ′′(w)rΘ(ā, h̄)

}
, (20)
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which differs from (5) only in that the additional constraint “ā > 0” has been dropped.
For the remaining main part of the proofs recall the Bellman operator T∆

I associated
with the principal’s problem, i.e. the stage-game maximization problem parametrized
by the agent’s continuation value, defined in (2). In particular, T∆

[0,ū) is the Bellman
operator associated with the principal’s optimization problem. The following Proposition
is a direct consequence of self-generation.

Proposition 4 F∆ is the largest fixed point f of T∆
[0,ū) such that f ≤ F .

More generally, for any interval I ⊂ R, let F∆
I be the largest fixed point f of T∆

I such
that f ≤ F .27 Note that if f : I → R and J ⊂ I then T∆

I f ≥ T∆
J f .

Proposition 5 Let I ⊂ R be any interval. Then for any two bounded functions f1, f2 :
I → R, |T∆

I f1 − T∆
I f2|+I ≤ e−r∆|f1 − f2|+I .

Proof. The proof is analogous to that of the Blackwell’s theorem (Blackwell [1965]).

The rest of the proof follows from the crucial Proposition 6 and Lemma 6 below.
Proposition 6 establishes that, roughly, F in the statement of the Theorem 1 is close to
being a fixed point of the T∆

I operator, and that the simple policies are almost optimal
in the problem T∆

I F . Lemma 6 establishes that if a function F is close to a fixed point of
T∆
I then the largest fixed point must be close to F , and that the almost optimal policies

for T∆
I F are almost optimal in the full dynamic programming problem.28 To simplify

notation, below Φ∆(a, c,W ; f, w) denotes the objective function in the problem T∆
I f(w)

(see equation (2)).
The proof of the following proposition is in Section B.

Proposition 6 Let F solve the HJB equation (20) on an interval I with F ′′ < 0. Then
|T∆
I F −F |I∆ = o(∆). Moreover, for ∆, ε > 0 and w ∈ I∆ let (a, c,W ) be a simple policy

defined for (F, ε,∆, w) by (10) and (11). If ∆, ε are sufficiently small, then (a, c,W )
satisfies the (IC) constraint, and Φ∆(a, c,W ;F,w) ≥ F (w)−O(ε∆).

For ∆ > 0, an interval I and a set of feasible policies p = {(aw, cw,Ww)}w∈I for the

Bellman operator T∆
I , let T∆,p

I be the operator defined as T∆,p
I f(w) = Φ∆(aw, cw,Ww; f, w)

and F∆,p
I be the value function associated with the contract-action plans generated by

the policies p. Note that F∆,p
I is a fixed point of T∆,p

I .

Lemma 6 Consider a function f : I → R, ε ≥ 0 and J ⊆ I. Then

(i)
∣∣T∆
I f − f

∣∣+
J

= o (∆) +O (ε∆) and
∣∣F∆

J − f
∣∣+
J
<∞ imply that∣∣F∆

J − f
∣∣+
J

= O (ε) + o (∆) /∆,

(ii)
∣∣f − T∆,p

I f
∣∣+
J

= o (∆) +O (ε∆) and
∣∣f − F∆,p

I

∣∣+
I
<∞ imply that∣∣f − F∆,p

I

∣∣+
I

= O (ε) +
∣∣f − F∆,p

I

∣∣+
I\J + o (∆) /∆.

27For a function f : I → R, we define |f |I = supw∈I |f(w)| and |f |+I = |max {0, f (w)}|I .
28See also the proof below Lemma 7 in Biais, Mariotti, Plantin, and Rochet [2007].
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Proof. (i) Fix ∆ > 0. We have∣∣F∆
J − f

∣∣+
J
≤

∣∣F∆
J − T∆

J F
∆
J

∣∣+
J

+
∣∣T∆
J F

∆
J − T∆

J f
∣∣+
J

+
∣∣T∆
J f − f

∣∣+
J

≤ e−r∆
∣∣F∆

J − f
∣∣+
J

+
∣∣T∆
J f − f

∣∣+
J
,

where
∣∣F∆

J − T∆
J F

∆
J

∣∣+
J

= 0 by Proposition 4 and
∣∣T∆
J F

∆
J − T∆

J f
∣∣+
J
≤ e−r∆

∣∣F∆
J − F

∣∣+
J

by

Proposition 5. Consequently, if
∣∣F∆

J − f
∣∣+
J
<∞

∣∣F∆
J − f

∣∣+
J
≤
∣∣T∆
J f − f

∣∣+
J

r∆
≤
∣∣T∆
I f − f

∣∣+
J

r∆
= O (ε) +

o (∆)

∆
,

where the second inequality follows because T∆
J f ≤ T∆

I f for J ⊆ I. This establishes the
first implication. The proof of part (ii) is analogous.

Given Proposition 6 and Lemma 6, the proof of Theorems 1 and 2 is as follows. For
any ∆ > 0, consider the interval I = [−∆1/3, ū + ∆1/3]. Let F be the solution on I of
the HJB equation (20) satisfying the boundary conditions (6) and (7). Since F ′′ < 0
(see Lemma 18 in Section D), Proposition 6 implies that |T∆

I F − F |[0,ū) = o(∆). Also∣∣F∆ − F
∣∣+
[0,ū)

=
∣∣F∆ − F

∣∣+
[0,wsp]

< ∞, and part (i) of Lemma 6 with J = [0, ū) implies

that ∣∣F∆ − F
∣∣+
[0,ū)

=
o (∆)

∆
.

On the other hand, let I = [0, wsp], ∆ > 0, ε > 0 be an approximation error, and
p = {(aw, cw,Ww)}w∈I be a set of simple policies for T∆

I . For F as above but restricted

to I = [0, wsp], by Proposition 6, we have that
∣∣F − T∆,p

I F
∣∣+
I∆ = o (∆) + O (ε∆) . Thus,

since
∣∣F − F∆,p

I

∣∣+
[0,wsp]

<∞, part (ii) of Lemma 6 implies that

∣∣F − F∆,p
I

∣∣+
I

= O (ε) +
∣∣F − F∆,p

I

∣∣+
I\I∆ +

o (∆)

∆
= O (ε) +

o (∆)

∆
.

The last equality follows from the continuity of F , F (0) = F∆,p
I (0) and F (wsp) =

F (wsp) ≤ F∆,p
I (wsp). This concludes the proof of both Theorems.

B Proof of Proposition 6

In order to prove Proposition 6 it will be useful to also consider other related Bellman
operators with a modified objective function and/or constraints. If we restrict the con-
sumption schedule c (y, z) to be constant, we obtain the operator T∆,c

I . We also consider
a modified Bellman operator T∆,q with a quadratic objective function and simplified
constraints: (i) the continuation value f(W (y, z)) in the objective function is replaced
by its quadratic approximation around the agent’s promised value w, (ii) the feasibility
constraint on continuation values is dropped, (iii) the consumption schedule is restricted
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to be constant, (iv) only first order conditions for effort choice are required, and (v) the
signal y = ∆[x+ a(z)] is approximated by just ∆x:29

T∆,qf(w) = sup
a,c,W

Φ∆,q(a, c,W ; f, w) (21)

s.t. a(z) ∈ A ∀z, c (y, z) ≥ 0, and W (y, z) ∈ R ∀y, z
w = E∆

[
r̃∆[u(c)− h(a(z))] + e−r∆W (∆x, z)

]
(PKq)∫

R
W (∆x, z)g∆(x|z)dx ≥

∫
R
W (∆x, z′)g∆(x|z)dx ∀z, z′ (TRq)

r̃h′(a(z)) = −e
−r∆

∆

∫
R
W (∆x, z)g∆′(x|z)dx ∀z (FOCq)

where

Φ∆,q(a, c,W ; f, w) = E∆
[
r̃∆[a(z)−c]+e−r∆[f(w)+f ′(w)(W (∆x, z)−w)+

f ′′(w)

2
(v−w)2]

]
,

The proof of Proposition 6 is established by a series of Lemmas that relate values of
Bellman operators applied to a function F solving HJB equation (20), as well as their
policy functions. Regarding the values, the line of argument can be illustrated as follows:

F ∼
Lemma 10

T∆,qF ∼
Lemma 13

T∆,c
I F ∼

Lemma 15
T∆
I F.

The following two Lemmas will be helpful in the rest of this section (the proofs are
in Section C). Lemma 7 says that for any period length ∆ > 0 and any of the Bellman
operators applied to a strictly concave function F , the continuation value policy function
must have variance at most proportional to ∆. Intuitively, this must be the case in
order to bound the efficiency loss, due to the high variance and strict concavity of F , by
potential per-period gains, which are of order ∆. Lemma 8 says that strengthening the
constraint associated with truthful reporting in the problem of minimizing variance of
incentive transfers (thus solving Θε instead of Θ) affects the problem in a negligible way.

Lemma 7 Let I = [w,w] and F : I → R be twice continuously differentiable with
F ′′ < 0. Let X be any of the Bellman operators T∆

I , T∆,c
I and T∆,q. Suppose that the

policy (a, c,W ) is ∆-suboptimal for the problem XF (w) , with w ≤ e−r∆w. Then for
some V that depends on F only we have V∆ [W (∆[x+ a(z)], z)] ≤ V∆.

Lemma 8 For any ε > 0 and (a, h), there exists (ã, h̃) such that |a−ã| = O (ε), |h−h̃| =
O (ε) and

Θε(ã, h̃) ≤ Θ(a, h) +O (ε)×
√

Θ(a, h) +O
(
ε2
)
.

29When a(z) = 0, the equalities in the IC constraints below should be replaced by the inequality
r̃h′(0+) ≥ r.h.s, and when a(z) = A, these equalities should be replaced by r̃h′(A−) ≤ r.h.s.
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Definition 2 For a twice differentiable function F : I →∞ with F ′′ < 0, ε > 0, w ∈ I,
∆ > 0 and ε-suboptimal policies

(
a, h, c

)
in (20) and (a, v) in the problem Θε

(
a, h
)
, a

quadratic simple policy (aq, cq,Wq) is defined as

cq = c. (22)

Wq (y, z) = w + r̃∆er∆[w + h̄− u(c)] + r̃
√

∆v(y/
√

∆,
√

∆z)

aq (z) = a(z
√

∆),

The following Lemma shows the connection between the Bellman operator T∆,q, for
short period length ∆, and the HJB equation (5). The intuition for the Lemma is as
discussed in Section 3.1.

Lemma 9 Consider any twice differentiable function F : I → ∞ with F ′′ < 0. Then,
T∆,qF (w) equals

e−r∆F (w)− r̃∆ sup
a,h,c

{
(ā− c) + F ′(w)[w + h̄− u(c)] + er∆

F ′′(w)

2
r̃Θ(ā, h̄)

}
+O

(
∆2
)
.

Moreover, for fixed ε > 0, w ∈ I and ∆ > 0, a quadratic simple policy is feasible and
O (ε∆)-suboptimal for T∆,qF (w).

Proof. Fix w ∈ I and any feasible policy (a, c,W ) for T∆,qF (w), let ā = E∆[a(z)],
h̄ = E∆[h(a(z))] and W̄ = E∆[W (∆x, z)]. The promise-keeping constraint (PKq) for
T∆,qF (w) implies that W̄ − w = r̃∆er∆[w + h̄− u(c)]. Therefore, T∆,qF (w) equals

= sup
a,c,W

{
r̃∆(ā− c) + e−∆rE∆

[
F (w) + F ′(w)(W (∆x, z)− w) +

F ′′(w)

2
(W (∆x, z)− w)2

]}
≈ r̃∆ sup

a,c,W

{
(ā− c) + F ′(w)[w + h̄− u(c)] + e−r∆

F ′′(w)

2r̃∆
V∆[W (∆x, z)]

}
+ e−r∆F (w)

= r̃∆ sup
a,h,c

{
(ā− c) + F ′(w)[w + h̄− u(c)] + er∆

F ′′(w)

2
r̃Θ(ā, h̄)

}
+ e−r∆F (w), (23)

where the approximation is of O(∆2) and the last line follows from the definition of
Θ(ā, h̄), as we argue below.

For a given (ā, h̄), since F ′′(w) < 0 and
∫
g∆′(x|z)dx = 0, the above optimization

problem involves the subproblem

inf
a,W0

E∆[V (x, z)2]

s.t. ā = E∆[a(z)], h̄ = E∆[h(a(z))], 0 = E∆[V (x, z)],∫
R
V (x, z)g∆(x|z)dx ≥

∫
R
V (x, z′)g∆(x|z)dx ∀z, z′ (TRq)

r̃h′ (a (z)) = −e
−r∆

∆

∫
V (x, z)g∆′(x|z)dx ∀z (FOCq)
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where V (x, z) = W (∆x, z) − W̄ . Note that the constraint 0 = E∆[V (x, z)] can be
dropped since it will be satisfied by a solution (or infimum sequence) of the relaxed
problem. Also recall that G∆

Z (z) = GZ(z
√

∆) and g∆(x|z) =
√

∆g(x
√

∆ | z
√

∆). Hence,
if v(x, z) = e−r∆V (x/

√
∆, z/

√
∆)/

[
r̃
√

∆
]

and ã(z) = a(z/
√

∆), the subproblem becomes

inf
a,v

r̃2∆e2r∆E[v(x, z)2]

s.t. ā = E[ã(z)], h̄ = E[h(ã(z))],∫
R
v(x, z)g(x|z)dx ≥

∫
R
v(x, z′)g(x|z)dx ∀z, z′ (TRΘ)

h′(ã(z)) = −
∫
v(x, z)g′(x|z)dx ∀z (FOCΘ)

The value of this last problem is by definition r̃2∆e2r∆Θ(ā, h̄). This justifies the substi-
tution of Θ(ā, h̄) in the equation above.

Lemma 8 establishes that substituting Θε for Θ in the expression (23) affects the
approximation by at most O (∆ε). This together with the changes of variables detailed
above prove that a quadratic simple policy defined in (22) is both feasible (in particular:
satisfies the constraint (TRq) corresponding to truthful reporting) andO (ε∆)-suboptimal
for T∆,qF (w).

The following Lemma follows easily from the previous result, establishing that F is
“almost” a fixed point of the Bellman operator T∆,q.

Lemma 10 Let F solve the HJB equation (20) on an interval I with F ′′ < 0. Then
|T∆,qF − F |I = o(∆). Moreover, for any ε,∆ > 0, w ∈ I and corresponding quadratic
simple policy (aq, cq,Wq), Φ∆,q(aq, cq,Wq;F,w) ≥ F (w)−O(∆ε), uniformly in I.

Proof. From Lemma 9 we have that T∆,qF (w)− F (w) is equal to

r̃∆

[
sup
a,h,c

{
(ā− c) + F ′(w)[w + h̄− u(c)] + er∆

F ′′(w)

2
r̃Θ(ā, h̄)

}
− F (w)

]
+O

(
∆2
)
.

Since F satisfies the HJB equation (20), it follows that |T∆,qF − F |I = O (∆2). Lemma
9 also yields that Φ∆,q(aq, cq,Wq;F,w) ≥ F (w)−O (∆2)−O (∆ε).

The following two technical Lemmas (proved in Section C) are crucial for the proofs
of Lemmas 13 and 14. Lemma 11 will imply that the incentives provided by the tails
of the continuation values are negligible, for short period length. Lemma 12 will imply
in particular that the marginal benefit of action is almost constant in action, for short
period length. This will be used to show the strict convexity of the agent’s problem,
and therefore that local incentives are sufficient, as well as that approximating the public
signal by ∆x hardly affects the incentives, and so agent’s action.

33



Lemma 11 For any ε > 0 there exist M such that for all v : R2 → R with E∆
[
v (x, z)2] ≤

1 the following inequalities hold

(i) PZ
[∣∣∣∣∫

|v|>M
v (x, z) g′ (x|z) dx

∣∣∣∣ ≤ ε

]
≥ 1− ε,

(ii) PZ
[∣∣∣∣∫

|v|>M
v (x, z) g (x|z′) dx

∣∣∣∣ ≤ ε, ∀z′
]
≥ 1− ε.

Note that the Lemma is somewhat more general than needed for our results as it does
not restrict Z to have finite support. With finite support when ε is sufficiently small the
probabilistic statements can be replaced by “for every z”.

Lemma 12 For any ε > 0 and M there exists δ̂ > 0 such that for all δ (·) with 0 ≤
δ (·) ≤ δ̂ and v : R2 → R the following holds

(i)

∣∣∣∣∫
|v|≤M

[v (x, z)− v (x+ δ(z), z)]g′ (x|z) dx

∣∣∣∣ ≤ ε ∀z (24)

(ii)

∣∣∣∣∫
|v|≤M

[v (x, z)− v (x+ δ(z), z)]g (x|z′) dx
∣∣∣∣ ≤ ε ∀z, z′

(iii)

∣∣∣∣∫
|v|≤M

[v (x, z)2 − v (x+ δ(z), z)2]g (x|z) dx

∣∣∣∣ ≤ ε ∀z.

The next lemma shows that the effect of simplifications implicit in the definition of
T∆,q - quadratic approximation of F , possibly unbounded values ofW , only local incentive
constraints for the effort choice, approximating public signal with just ∆x - is negligible
when the period length ∆ is short. (We deal with constant consumption in Lemma 15.)
Simple policies (Definitions 1 and 3) differ from quadratic simple policies (Definition 2)
in that, essentially, they undo those simplifications: the tails of the continuation values
are truncated, the local IC implicit in the quadratic simple policies is replaced by the
global IC and the public signal is ∆[x+ a (z)].

Definition 3 For a twice differentiable function F : I →∞ with F ′′ < 0, ε > 0, ∆ > 0,
w ∈ I∆ and quadratic simple policies (aq, cq,Wq) in the problem T∆,qF (w) based on

(a, v), define the simple policy (a, c,W ) for T∆,c
I F (w) as

c = cq,

W (y, z) = C +Wq(y, z)1|Wq(y,z)−E∆[Wq(∆x,z)]|≤
√

∆M (AC)

a(z) is an action that satisfies the (IC) constraint in (2),

where M is the constant that depends only on ε defined in Lemma 1130.

30We assume, without loss of generality, that VX [v(x)]] ≤ 1 - else work with rescaled v (see Lemma
7).
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Note that in the case when F solves the HJB equation (5) the above definition of a
simple policy agrees with the one in Definition 1.

Simple policies achieve similar values to quadratic simple policies for the following
reasons. First, the truncation of continuation values has little effect on the incentives.
Given that F ′′ is negative and bounded away from zero, using W far away from its mean
is costly. Under assumption (A2), there are hardly any revenue realizations that are so
informative of agent’s effort to be worth the cost of such extreme continuation values.
Thus the truncation affects agents incentives only slightly.31 On the other hand, given
the truncation, the quadratic approximation of F has little effect on the value of the
problem and continuation values are included in I.

Second, since the effect of the agent’s effort on the distribution of public signal is small,
the optimal incentivizing scheme W under local IC for action choice only is such that
the agent faces incentives almost constant in his own action (the expected continuation
value is almost linear in his own action). Given strict convexity of the cost of effort, the
agent’s problem is strictly convex and local incentives are sufficient. Also, approximating
public signal by just ∆x affects incentives, and so the agent’s action only slightly.

Lemma 13 Let F : I → R be twice continuously differentiable with F ′′ < 0. Then
|T∆,c
I F − T∆,qF |I∆ = o(∆). Moreover, for fixed ε > 0 consider quadratic simple policies

(aq, cq,Wq) for T∆,qF (w), ∆ > 0, w ∈ I∆. Then for ∆ and ε sufficiently small cor-
responding simple policies (a, c,W ) satisfy the (IC) constraint and Φ∆(a, c,W ;F,w) ≥
Φ∆,q(aq, cq,Wq;F,w)−O(ε∆), uniformly in w.

Proof. Fix ε > 0 such that PZ (z) > ε, for each z, ∆ > 0 such that
√

∆ < δ/A, for δ as in
Lemma 12 and w ∈ I∆. Fix a quadratic simple policy (aq, cq,Wq) and the corresponding
simple policy (a, c,W ).

Step 1: In this step we show that the simple policy (a, c,W ) satisfies the incentive
constraint for truthful reporting, and so the full (IC).

Recall that W∆
q (y, z) = Const + r̃

√
∆v(y/

√
∆, z
√

∆) for a function v that satisfies
(TRΘ), i.e., ∫

v(x, z)g(x|z)dx ≥
∫
v(x, z′)g(x|z)dx+ 3ε ∀z 6= z′

or∫ √
∆v(
√

∆x,
√

∆z)g∆(x|z)dx ≥
∫ √

∆v(
√

∆x,
√

∆z′)g∆(x|z)dx+ 3
√

∆ε ∀z 6= z′.

(25)

Lemma 7 implies that V∆
[√

∆v(
√

∆x,
√

∆z)
]
≤ V∆, or V [v(x, z)] ≤ V , and so Lemma

11 applied to v(x) yields that for sufficiently large M that depends only on ε∣∣∣∣∫
|v|>M

√
∆v(
√

∆x,
√

∆z′)g∆(x|z)dx

∣∣∣∣ =
√

∆

∣∣∣∣∫
|v|>M

v(x, z′)g(x|z)dx

∣∣∣∣ ≤ √∆ε ∀z, z′.

31See also Sannikov and Skrzypacz [2007].
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On the other hand, by Lemma 12 it follows that for small ∆ > 0 and every z, z′ and a∣∣∣∣∫
|v|≤M

√
∆
[
v(
√

∆x,
√

∆z′)− v(
√

∆[x+ a],
√

∆z′)
]
g∆(x|z)dx

∣∣∣∣
=

∣∣∣∣∫
|v|≤M

√
∆
[
v(x, z′)− v(x+

√
∆a, z′)

]
g(x|z)dx

∣∣∣∣ ≤ √∆ε.

The last three inequalities together imply that∫
|v|≤M

√
∆v(
√

∆[x+ a (z)],
√

∆z)g∆(x|z)dx

≥
∫
|v|≤M

√
∆v(
√

∆[x+ a],
√

∆z′)g∆(x|z)dx ∀z 6= z′, ∀a,

and so the agent has incentives to report his signal truthfully. This, together with the
definition of the effort function a implies that the simple policy (a, c,W ) satisfies the
(IC) constraint.

Step 2: In this step we show that Φ∆(a, c,W ;F,w) ≥ Φ∆,q(aq, cq,Wq;F,w)−O(ε∆),
uniformly in w. Since ε is arbitrary, in view of Lemma 9, this establishes that |T∆,qF −
T∆,d
I F |+

I∆ = o(∆).
By Taylor series expansion

F (W (y, z)) = F (w)+F ′ (w) (W (y, z)− w)+
1

2
F ′′ (w) (W (y, z)− w)2+o([W (y, z)−w]2).

(PK) implies that w − E∆[W (y, z)] = O(∆) and
∣∣W (y, z)− E∆[W (y, z)]

∣∣ = O(
√

∆) by

construction. Hence |w −W (y, z)| = O(
√

∆) for all y. Therefore, for ∆ small enough,
the policy (a, c,W ) is feasible when w ∈ I∆ and

Φ∆(a, c,W ;F,w) ≥ r̃∆(E∆ [a(z)]− c) + e−r∆
[
F (w) + F ′(w)E∆[W (y, z)− w]

+
F ′′(w)

2
E∆[(W (y, z)− w)2]

]
+ o (∆) (26)

Let us bound from below the terms in the second line of the above expression by the
corresponding terms in Φ∆,q(aq, cq,Wq;F,w).

Given the definition of W , the necessary local version of (IC) takes the following form:

−h′(a(z)) =
e−r∆

r̃∆

∫
R
W (∆[x+ a (z)], z)g∆′(x|z)dx

=
e−r∆

∆

∫
|v|≤Mε

√
∆v(
√

∆[x+ a(z)],
√

∆z)g∆′(x|z)dx, (27)

whereas the definition of Wq and (FOCq) imply

−h′(aq(z)) =
e−r∆

r̃∆

∫
R
W (∆x, z)g∆′(x|z)dx =

e−r∆

∆

∫
R

√
∆v(
√

∆x,
√

∆z)g∆′(x|z)dx.
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As in step 1, Lemma 7 implies that V∆
[√

∆v(
√

∆x,
√

∆z)
]
≤ V∆, or V [v(x, z)] ≤ V ,

and so Lemma 11 applied to v(x) yields that for every z

1

∆

∣∣∣∣∫
|v|>M

√
∆v(
√

∆x,
√

∆z)g∆′(x|z)dx

∣∣∣∣ =

∣∣∣∣∫
|v|>M

v(x, z)g′(x|z)dx

∣∣∣∣ ≤ ε.

On the other hand, from Lemma 12 it follows that for sufficiently small ∆ and every z

1

∆

∣∣∣∣∫
|v|≤M

√
∆
[
v(
√

∆x,
√

∆z)− v(
√

∆[x+ a (z)],
√

∆z)
]
g∆′(x|z)dx

∣∣∣∣
=

∣∣∣∣∫
|v|≤M

[
v(x, z)− v(x+

√
∆a(z), z)

]
g′(x|z)dx

∣∣∣∣ ≤ ε.

Consequently, for every z, |h′(aq(z)− h′ (a(z)) | ≤ 2ε, and so

|aq(z)− a(z)| ≤ |h
′(aq(z)− h′(a(z))|

inf h′′
≤ 2ε

inf h′′
. (28)

Since also c(y, z) ≡ cq we have

r̃∆
∣∣(E∆ [aq(z)]− cq)− (E∆ [a(z)]− c)

∣∣ = O(ε∆). (29)

Subtracting (PKq) for problem T∆,qF from (PK) for problem T∆,dF and using (28), we
obtain

e−r∆F ′(w)
∣∣E∆ [W (y, z)]− E∆ [Wq(∆x, z)]

∣∣ = O(ε∆). (30)

Finally

E∆[(W (y, z)− w)2] = r̃2e2r∆E∆[∆v2(
√

∆[x+ a (z)],
√

∆z)1|v|≤M ] +O
(
∆2
)

≤ r̃2e2r∆E∆[∆v2(
√

∆x,
√

∆z)1|v|≤M ] +O (ε∆)

≤ r̃2e2r∆E∆[∆v2(
√

∆x,
√

∆z)] +O (ε∆)

= E∆[(Wq (∆x, z)− w)2] +O (ε∆) . (31)

The first inequality follows from Lemma 11. The equalities follow from the definitions of
Wq andW and the fact that E∆[W (∆[x+ a(z)], z)−w] = O(∆) and E∆[Wq (∆x, z)−w] =
O(∆), from (PK) and (PKq). Inequalities (29)–(31) together with (26) establish the proof
of this step.

Step 3: In this step we show that |T∆
I F (w) − T∆,qF (w)|+

I∆ = o(∆). The proof is
almost analogous to the previous steps. First, for a policy (a, c,W ) that is ε∆-suboptimal
in the problem T∆

I F (w), given construction as in Lemma 8, one can assume that truthful
reporting is at least 3

√
∆ε more profitable than the best deviation (see equation 25).

Then, given (a, c,W ), define (aq, cq,Wq) as in Definition 1: cq = c, Wq (∆x, z) = C +
W (∆x, z) if

∣∣W (∆x, z)− E∆ [W (y, z)]
∣∣ ≤ √∆Mε and Wq (∆x, z) = C otherwise, while

37



aq (z) is defined by the (FOCq) condition and C is chosen to satisfy (PKq). As in step 1,
(aq, cq,Wq) satisfies the (TRq), and it satisfies (FOCq) by construction. We prove as in
step 2 that Φ∆,q(aq, cq,Wq;F,w) ≥ Φ∆(a, c,W ;F,w)−O(ε∆).

The next Lemma shows that the actions in the definition of simple policies are pinned
down by the local version of the (IC) only.

Lemma 14 Consider any simple policy (a, c,W ) defined in (10) for I,F, ε,∆, w. For
sufficiently small ∆, a (z) is the unique action that satisfies the local version of (IC), for
all z.

Proof. Fix w ∈ I and a simple policy (a, c,W ). Consider the necessary local version of
(IC) in (27). Since h is strictly convex, Lemma 12 implies that for sufficiently small ∆
and any z there is a unique solution a (z) to this equation.

The last Lemma needed to establish the proof of Proposition 6 shows that the re-
striction to wage contract-action schemes is without loss of generality. Intuitively, since
with short periods the signal about agent’s action is weak, in order to provide nonegli-
gible incentives the variation in utility from signal-contingent payments must be of high
order

√
∆. While the continuation value function may provide such incentives, the direct

money payments are only of order ∆. Thus, changing consumption to be constant affects
the incentives only slightly.

Lemma 15 Assume F : I → R is twice continuously differentiable and F ′′ < 0. Then∣∣∣T∆,c
I F − T∆

I F
∣∣∣
I∆

= o (∆) .

Proof. Fix ε,∆ > 0 and any w ∈ I∆, and let (a, c,W ) be a policy function that is
ε∆−suboptimal in the problem T∆

I F (w). Using Lemma 11 and arguments as in the
proof of Lemma 13, we may assume without loss of generality that for every public signal
y = ∆[x+ a (z)],

∣∣W (y, z)− E∆ [W (y, z)]
∣∣ = O(

√
∆), and that

Φ∆(a, c,W ;F ) = r̃∆(E∆[a(z)]− E∆[c(y)]) + e−r∆
[
F (w) (32)

+ F ′(w)
(
E∆[W (y, z)]− w

)
+
F ′′(w)

2
V∆[W (y, z)]

]
+ o(∆).

Let the policy (ac, cc,Wc) with constant consumption be defined so that ac ≡ a,
E∆ [u (c (y, z))] = u (cc) and

e−r∆Wc (y, z) = ∆r̃
[
u (c (y, z))− E∆ [u (c (y, z))]

]
+ e−r∆W (y, z) .

We will compare the terms in (32) with the analogous terms for the policy (ac, cc,Wc).
We have E∆ [a (z)] = E∆ [ac (z)], E∆ [W (y, z)] = E∆ [Wc (y, z)] and, from concavity of u,
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cc ≤ E∆ [c (y, z)]. Letting ζ (y, z) := r̃er∆ [u (c (y, z))− u (cc)], we have

V∆ [Wc (y, z)]− V∆ [W (y, z)]

= E∆[
(
W (y, z) + ∆ζ (y)− E∆ [W (y, z)]

)2
]− E∆[

(
W (y, z)− E∆ [W (y, z)]

)2
]

= ∆2E∆
[
ζ2 (y, z)

]
+ ∆E∆

[(
W (y, z)− E∆ [W (y, z)]

)
ζ (y, z)

]
≤ ∆2(r̃er∆u)2 + ∆3/2r̃er∆u = o (∆) .
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“Agency Models with Frequent Actions”

Tomasz Sadzik and Ennio Stacchetti

C Additional Proofs for Section B

Proof. (Lemma 7) In each of the above problems the policy (a, c,W ) = (0, 0, er∆w) is an
available policy that satisfies all the constraints and delivers a value of at least F (w) +
[minF ′]

(
er∆ − 1

)
w = F (w) + O(∆). Let ĥ = E∆[h(a(z))], û = E∆[u(c(∆[x + a(z)]))]

and Ŵ = E∆[W (∆[x+ a(z)], z)]. The promise-keeping constraint implies that

Ŵ − w = r̃∆er∆[w + ĥ− û] = O(∆),

since w ∈ [w,w], ĥ ∈ [0, h(A)] and û ∈ [0, ū]. Therefore, W (∆[x + a(z)], z) − w =
(W (∆[x+ a(z)], z)− Ŵ ) + (Ŵ − w) implies

E∆[(W (∆[x+ a(z)], z)− w)2] = V∆ [W (∆[x+ a(z)], z)] +O(∆2).

Consequently, for Y either Φ∆,q (a, c,W ;F,w) or Φ∆ (a, c,W ;F ) we have Y ≥ F (w) +
O (∆) and

Y ≤ r̃∆A+e−r∆
(
F (w)+r̃∆er∆F ′(w)[w+ĥ−û]+

maxF ′′

2
V∆ [W (∆[x+ a(z)], z)]

)
+O(∆2),

which after rearranging terms gives the result for an appropriate V .

Proof. (Lemma 8) Since GX(·|z) are linearly independent, let φz (x) be the functions
bounded by some B such that∫

φz (x) gX|Z (x|z) = 0,

∫
φz (x) gX|Z (x|z′) < −1. ∀z, z′

Fix some (a, h) and consder the optimal policy a (·) , v (·, ·) for the problem Θ(a, h). We
define v∗ (x, z) = v (x, z) + εφz (x) and let a∗ (·) be defined by the (FOCΘ). Note that for
all z ∫

R
2εφz (x) g′X|Z(x|z)dx = O (ε) ,

1



and so, from (FOCΘ), |a (z)− a∗ (z)| = O (ε). This implies that for ã = EZ [a∗ (z)] and

h̃ = EZ [h(a∗ (z))] |a− ã| ,
∣∣∣h− h̃∣∣∣ = O (ε). On the other hand,

E[|v∗(x, z)2 − v(x, z)2|] ≤ ε2M2 + 2E[|εφz (x) v(x, z)|] ≤

≤ ε2M2 + 2εM
√
E[v(x, z)2] = ε2M2 + 2εM

√
Θ(a, h).

Proof. (Lemma 11) (i) Fix ε > 0 and consider a function v that satisfies E[v (x, z)2] ≤ 1.
For any δ > 0 pick Mδ big enough so that (from Lebesgue’s Monotone Convergence
Theorem) ∫ [∫

|v|>Mδ

v2 (x, z) gX|Z (x|z) dx

]
dGZ (z) ≤ δ. (33)

From the Tschebyshev’s inequality,

PZ
[∫
|v|>Mδ

v2 (x, z) gX|Z (x|z) dx > γ

]
≤ δ

γ
. (34)

Therefore, for all z for which
∫
|v|>Mδ

v2 (x, z) gX|Z (x|z) dx ≤ γ,

∫
|v|>Mδ

∣∣v(x, z)g′X|Z(x|z)
∣∣ dx ≤ [∫

|v|>Mδ

v2(x, z)gX|Z(x|z)dx×
∫
g′X|Z(x|z)2

gX|Z(x|z)
dx

] 1
2

≤
√
γM̄.

The result thus follows by picking γ = ε2/M̄ and δ = εγ.
(ii) Let γ and δ be as in (i) and Mδ be such that (33) holds. For any z for which∫

|v|>Mδ
v2 (x, z) gX|Z (x|z) dx ≤ γ and any z′ we have

∫
|v|>Mδ

∣∣v(x, z)gX|Z(x|z′)
∣∣ dx ≤ [∫

|v|>Mδ

v2(x, z)gX|Z(x|z)dx×
∫
gX|Z(x|z′)2

gX|Z(x|z)
dx

] 1
2

≤
√
γM̄,

where the last inequality follows from the assumption (A3). The proof then follows from
(34).

Proof. (Lemma 12) (i) For every x and z, |g′X|Z(x|z) − g′X|Z(x − δ(z)|z)| ≤ δ|g′′X|Z(x −
ξ(x, z)|z)| for some ξ(x, z) ∈ [0, δ(z)] ⊂ [0, δ̂]. Therefore, with δ̄ and M̄ the constants in

(A2), for every δ ≤ min
{
δ̄, ε

MM̄

}
we have that∫

|v|≤M

∣∣v(x, z)
[
g′X|Z(x|z)− g′X|Z(x− δ(z)|z)

]∣∣ dx ≤ δM

∫
R

∣∣g′′X|Z(x− ξ(x, z)|z)
∣∣ dx

≤ δMM̄ ≤ ε,

2



which establishes (24). The proof of (ii) is analogous and is omitted.

(iii) Similarly, for any δ ≤ min{δ̄, ε/[M2
√
M̄ ]} we have that∫

R

∫
|v|≤M

∣∣v(x, z)2 (g(x, z)− g(x− a(z), z))
∣∣ dxdz

≤ δM2

∫
R

∫
R

∣∣g′X|Z(x− ξ(x, z)|z)gZ(z)
∣∣ dxdz

≤ δM2

∫
R

[∫
R

g′X|Z(x− ξ(x, z) | z)2

gX|Z(x|z)
dx

] 1
2

gZ(z)dz ≤ δM2
√
M̄ ≤ ε,

with the second inequality following from the Cauchy-Schwarz inequality, which estab-
lishes the Lemma.

D The HJB Equation

The following Lemma establishes a property of the variance of incentive transfers function
Θ that will be crucial to all the following results on the properties of the HJB equation.

Lemma 16 Suppose (A2) holds. Then variance of incentive transfers function is bounded
away from zero for strictly positive expected effort levels,

Θ
(
ā, h̄
)
≥ θ > 0. ∀ā > 0, h̄ (35)

Proof. Consider function Θn that is defined just as Θ except that the condition (TRΘ)
is dropped. On the one hand, trivially, Θ ≥ Θn. On the other hand, from Lemma 1 it
follows that

Θn ≥ γ2

minz IgX|Z(·|z)
≥ γ2

M̄
> 0,

where γ is such that h′ (a) ≥ γ for a > 0 and M̄ is from assumption (A2).
The following Lemma establishes some basic properties of the solution of the HJB

equation

Lemma 17 Suppose Θ
(
ā, h̄
)
≥ θ > 0.

(i) For any initial conditions F (w) and F ′(w) the HJB equation (5) has a unique
solution F in any interval [w, w̄] ⊂ R.

(ii) F is twice continuously differentiable and (F, F ′) depends continuously on the
initial conditions.

(iii) F ′ is monotone with respect to F ′(w). That is, if F1 and F2 are two solutions
of the HJB equation in an interval [w, w̄] ⊂ R with F1(w) = F2(w) and F ′1(w) > F ′2(w),
then F ′1(w) > F ′2(w) (and hence F1(w) > F2(w)) for all w > w.

3



Proof. See Sannikov [2008].

Corollary 2 The HJB equation (5) with the boundary conditions (6) and (7) has a
unique solution F .

The Corollary follows immediately from Lemma 17. Note also that the continuity
and monotonicity in the initial slope suggest the natural procedure for computing F .

Lemma 18 Suppose Θ
(
ā, h̄
)
≥ θ > 0. The solution F of the HJB equation (5) with the

boundary conditions (6) and (7) is strictly concave.

Proof. See Sannikov [2008].
Part (i) of the next Lemma establishes that the function F in the statement of the

Theorem 1 satisfies the HJB equation (20), with the constraint “ā > 0” dropped. Part
(ii) shows a related result for the general case from Section 4, which will be used in
Section F below.

Lemma 19
(i) The function F in Theorem 1 solves HJB equation (20).
(ii) For any [w,w] ⊂ (0, wsp) there exists γ > 0 such that for all sufficiently small

ζ, the Fζ as in Theorem 3 solves equation (17) on [w,w] with an additional constraint
ā ≥ γ.

Proof. (i) For any λ ∈ R let Hλ be the linear function tangent to the retirement curve
{(w,F (w)) : w ∈ [0, ū)} with the slope λ (if λ ≥ F ′(0), Hλ(w) = λw). On the one hand,
since F and F are concave and F ≥ F , for any w ∈ I we have F (w) ≥ HF ′(w)(w). On the
other hand, for any w ∈ I, the value of the maximization problem in the expression above
under constraint ā = 0 is at most maxc{−c+F ′(w)(w−u(c))} = F (w′)+F ′(w′)(w−w′) =
HF ′(w)(w), where w′ is such that either F ′(w′) = F ′(w) or w′ = 0 in case F ′(w) > F ′(0).
Consequently, choosing ā = 0 in the maximization problem above can never be strictly
optimal. Equivalently, since F satisfies the the HJB equation (5), it also satisfies the
equation (20) with the constraint “a > 0” dropped.

(ii) We may assume wsp > 0. Note also that for any ζ > 0 and Fζ as in Theorem 1
we have

F
′
(wsp) ≤ F ′ζ (w) ≤ F (w) /w,

for all w ∈ [w,w]. We will establish that there is α > 0 such that for any ζ and w ∈ [w,w],
Fζ(w) − HF ′ζ(w)(w) ≥ α. If not, then let {wn}, {w′n}, {ζn} and {αn} with wn ∈ [w,w],

w′n ≤ wsp, ζn ↓ 0, αn ↓ 0 be such that Fζn(wn) − HF ′ζn
(wn)(wn) ≤ αn (where w′n is such

that F ′(w′n) = F ′ζn(wn)). We consider three cases, and in each derive a contradiction.
(Case 1) Suppose that for some δ > 0 and all n, w′n ∈ [δ, wsp − δ]. The concavity of Fζn

and F imply that Fζn(wn)−HF ′ζn
(wn)(wn) ≥ Fζn(w′n)−HF ′ζn

(wn)(w
′
n) = Fζn(w′n)−F (w′n).
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But, since Fζn is increasing as ζn ↓ 0 (Proposition 1, part (i)), Fζn(w′n) − F (w′n) ≥
infw∈[δ,wsp−δ] Fζ1

(w)− F (w) > 0, a contradiction.
(Case 2) If w′n ↓ 0 (we might assume so by choosing a subsequence), then we would

have Fζn (wn)→ HF ′ζn
(wn) (wn)→ F ′ (0)× wn. By concavity of all Fζn this would imply

that, first, Fζn (w)→ F ′ (0)× w for all w ∈ [0, wn], and second, that there is a sequence
{w′′n}, w′′n ∈ [0, wn], such that F ′ζn (w′′n)→ F ′ (0) and F ′′ζn (w′′n)→ 0. But then

Fζn (w′′n) → max
a,c
{(a− c) + F ′ (0) (w′′n + h (a)− u (c))}

= max
a
{a+ F ′ (0) (w′′n + h (a))} > F ′ (0)w′′n,

where the equality follows from the fact that F ′ (0) = 1
u′(0)

and strict concavity of u, while

the inequality follows from h′+ (0) < u′ (0). This establishes the required contradiction.
(Case 3) If w′n ↑ wsp, we derive the contradiction in the analogous way as in case 2.
We have established that for all ζ and w ∈ [w,w], Fζ (w) −HF ′ζ(w)(w) ≥ α > 0. On

the other hand, for any ζ and w ∈ [w,w], if we restrict the policy on the right hand side
of equation (20) to satisfy ā ≤ γ, for sufficiently small γ > 0, then

sup
ā≤γ,h̄,c

{
(ā− c) + F ′ζ(w)

(
w + h̄− u(c)

)
+

1

2
F ′′ζ (w)rmax {ζ,Θ(ā, h̄)}

}
≤

max
c
{−c+ F ′ζ (w) (w − u (c)) +

1

2
F ′′ζ (w) rζ}+

α

2
≤ HF ′ζ(w) (w) +

α

2
≤ Fζ (w)− α

2
,

where the first inequality follows because F ′ζ are uniformly bounded on [w,w] and h̄ ≤
ā
A
h (A). This establishes the Lemma.

D.1 Proof of Proposition 1

The Proposition is based on the following “single crossing” lemma.

Lemma 20 Consider two functions Θ ≥DΘ
+

Θ ≥ 0, and suppose that FΘ, FΘ : I → R
solve the corresponding HJB equations (5) with FΘ′′ ≤ 0.

(i) If for some w, FΘ(w) = FΘ(w) and FΘ′(w′) > FΘ′(w′) in a right neighborhood of
w, then FΘ′(w′) > FΘ′(w′) for all w′ > w.

(ii) Assume Θ >DΘ
+

Θ. If for some w, FΘ(w) = FΘ(w) and FΘ′(w) ≥ FΘ′(w), then

FΘ′(w′) > FΘ′(w′) for all w′ > w.

Note that the precondition of part (i) is implied by (but is not equivalent to) FΘ (w) =
FΘ(w) and FΘ′(w) > FΘ′(w).

Proof. (Lemma 20) We prove only part (i) (the proof of part (ii) is analogous). First,
by assumption, FΘ′(w′) > FΘ′(w′) for all w′ > w sufficiently close to w. Suppose now
that there exists w′ > w with FΘ′(w′) ≤ FΘ′(w′) - we now assume that w′ is the smallest

5



with this property. Since FΘ′ >(w,w′) F
Θ′, we have that FΘ(w′) > FΘ(w′). Therefore, it

must be the case that FΘ′′(w′) > FΘ′′(w′): otherwise, since FΘ′′(w′) ≤ 0 and Θ ≥DΘ
+

Θ,

every policy (ā, h̄, c) would yield a weakly higher value of the right-hand side of HJB
equation (5) for FΘ(w′) than for FΘ(w′). But then FΘ′′(w′) > FΘ′′(w′) implies that
FΘ′(w′′) < FΘ′(w′′) for w′′ in a left neighborhood of w′, contradicting the minimality of
w′.

Given the Lemma, the proof of part (i) of Proposition 1 proceeds as follows. Applying
part (i) of Lemma 20 to w = 0, if FΘ′(0) > FΘ′(0) then FΘ′(w′) > FΘ′(w′) for all w′ > 0.
Therefore FΘ ≥ F would imply FΘ (w′) > F (w′) for all w′ > 0, violating the boundary
conditions for FΘ. Using the analogous argument, FΘ′ (w) ≥ FΘ′ (w) for all w ∈ [0, wΘ

sp],
and so FΘ (w) ≥ FΘ (w), for all w ∈ [0, wΘ

sp], establishing part (i) of the Proposition.
The proof of part (ii) is analogous.

We note that part (i) of the Proposition 1 is immediately applicable to the limit
values for the general case defined in Theorem 3 (as it is applicable to the functions
Fζ and weak inequalities are preserved in the limit). The following Lemma shows that
under an additional mild constraint part (ii), i.e., strict monotonicity, is applicable to
the general case as well.

Consider the following assumption:

(Cont) Θ
(
ā, h̄
)
≥ δ (ā) for a continuous δ with δ (ā) > 0 when ā > 0.

Lemma 21 Assume (Cont) holds. Then F as in Theorem 3 solves the HJB equation
(5) with boundary conditions (6) and (7).

Proof. (Lemma 21) Choose any [w,w] ⊂ (0, wsp). Part (ii) of Lemma 19 guarantees
that for sufficiently small ζ all Fζ satisfy the constraint ā ≥ γ on [w,w], for some γ > 0.
Therefore, for sufficiently small ζ all Fζ satisfy on [w,w]:

F ′′ (w) = inf
ā≥γ,h̄,c

{
F (w)− (ā− c)− F ′ (w)

(
w + h̄− u (c)

)
rΘ
(
ā, h̄
)
/2

}
,

with the right-hand side Lipschitz continuous in (w,F (w) , F ′ (w)), since Θ ≥ δ (γ) > 0
for ā ≥ γ.

Part (i) of Proposition 1 guarantees that Fζ converge in the supremum norm as ζ ↓ 0
to a function F . Since F ′ζ are uniformly bounded on [w,w], it follows that all F ′′ζ and F ′ζ
are Lipschitz continuous with the same Lipschitz constant, and so F ′ζ converge to F ′ not
only in L1 but in the supremum norm, by the Arzela-Ascoli Theorem. Uniform Lipschitz
continuity guarantees also that F ′ = d

dw
F , that F ′′ := limζ↓0 F

′′
ζ exists and F satisfies the

above equation (all on [w,w]). Since the set [w,w] is arbitrary, this proves that F solves
(5) in (0, wsp), and so establishes proof of the lemma.

6



D.2 Proof of Proposition 2

The proof follows from the following Lemma.

Lemma 22 For any δ > 0 there is ε > 0 sufficiently small and w̃ ∈ [0, wsp] such that
the following holds: If rΘ ≤ ε then the solution F of the HJB equation (5) with initial
conditions

F (w̃) = F (w̃)− δ, F ′ (w̃) = F
′
(w̃)

satisfies

F ′′ ≤[0,wsp] −
2δ

ε
.

Proof. For any λ ∈ [F
′
(wsp) ,∞) let Gλ be the linear function tangent to the first-best

frontier
{(
w,F (w)

)
: w ∈ [0, wsp]

}
with the slope λ. We will show that if for an arbitrary

w ∈ [0, wsp]
GF ′(w) (w)− F (w) ≥ δ, (36)

then F ′′ (w) ≤ −2δ
ε
. Note that then as long as −2δ

ε
≤ minw∈[0,wsp] F

′′
(w) the above

condition will be satisfied over the whole interval [0, wsp], which will establish the Lemma.
The HJB equation (5) takes the form

F ′′ (w) ≤ min
a,h,c

2

rΘ (a, h)
{F (w)− (a− c)− F ′ (w) (w + h− u (c))} . (37)

Let w′ be such that F ′ (w) = F
′
(w′) . For the policy (a (w′) , c (w′)) in the problem

(1) at w′ we have:

F (w)− (a (w′)− c (w′))− F ′ (w) (w + h (a (w′))− u (c (w′))) =

F (w′)− (a (w′)− c (w′))− F ′ (w′) (w′ + h (a (w′))− u (c (w′)))

+
[
F (w)− F (w′) + F ′ζ (w) (w′ − w)

]
=
[
F (w)− F (w′) + F ′ (w) (w′ − w)

]
≤ −δ,

where the last equality follows from (1), while the last inequality follows from (36).
Since (a(w′), h(a(w′)), c(w′)) is an available policy in the problem (37) and rΘ ≤ ε, this
establishes that F ′′ (w) ≤ −2δ

ε
.

Given the Lemma, for any δ > 0 and sufficiently small ζ > 0 the solution F of the HJB
equation (5) with initial conditions F (w̃) = F (w̃)− δ, F ′ (w̃) = F

′
(w̃) with w̃ ∈ [δ, wsp]

will satisfy F (w) = F (w) and F (w) = F (w) for some 0 < w < w < wsp. This together
with Proposition 6 and part (ii) of Lemma 6 establishes the proof of the Proposition.

E Proof of Proposition 3

Fix period length ∆ > 0, densities gX and γX satisfying (12) and any wg, wγ ∈ [0, ū).
Consider the problem of finding a contract {cn} and action plans {ag,n} , {aγ,n} that

7



maximize the sum of principal’s expected discounted revenues under noise densities gX
and γX , such that {cn} , {ag,n} is incentive compatible under gX and {cn} , {aγ,n} is
incentive compatible under γX , and they deliver expected discounted utilities wg and wγ
to the agent. Let F∆

g,γ (wg, wγ) be the value to the principal from the optimal contract:

F∆
g,γ (wg, wγ) = sup

{
Πg({cn}, {ag,n}) + Πγ({cn}, {aγ,n})

∣∣∣
{ag,n} is IC for {cn}, Ug({cn}, {ag,n}) = w under density gX ,

{aγ,n} is IC for {cn}, Uγ({cn}, {aγ,n}) = w under density γX

}
To establish the Proposition we show that if wg, wγ ∈ (0, wsp) then there is δ > 0 such
that for sufficiently small ∆ F∆

g,γ (wg, wγ) + δ ≤ F (wg) + F (wγ) =: F2 (wg, wγ), where F
is as in Theorem 1.

First, consider the following Bellman operator:

T∆
g,γf(wg, wγ) = sup

ag ,aγ ,c,Wg ,Wγ

Φ∆
g (ag, c,Wg; f) + Φ∆

γ (aγ, c,Wγ; f)

s.t. aφ ∈ A, c(y) ≥ 0 and Wφ(y) ∈ [0, ū) ∀y

wφ = E∆
φ

[
r̃∆[u(c(∆[x+ aφ]))− h(aφ)] + e−r∆Wφ(∆[x+ aφ])

]
(PK2)

aφ ∈ arg max
â∈A

E∆
φ

[
r̃∆[u(c(∆[x+ â]))− h(â)] + e−r∆Wφ(∆[x+ â])

]
(IC2)

where the supremum is taken over measurable functions and and Φ∆
φ (a, c,W ; f) is as in

(??), for φ ∈ {g, γ}. The following is an analogue of Proposition 4:

Proposition 7 F∆
g,γ is the largest fixed point f of T∆

g,γ such that f(wg, wγ) ≤ F (wg) +

F (wγ).

For a set of feasible policies p = {(ag, aγ, c,Wg,Wγ)}(wg ,wγ)∈[0,ū)2 for the Bellman oper-

ator T∆
g,γ let T∆,p

g,γ be the operator defined as T∆,p
g,γ f(w) = Φ∆

g (ag, c,Wg; f)+Φ∆
γ (aγ, c,Wγ; f),

and let F∆,p
g,γ be the value achieved by the policies p. Note that F∆,p

g,γ is a fixed point of
T∆,p
g,γ . Also, policies p together with an initial point (wg, wγ) = (wpg,0, w

p
γ,0) determine a

stochastic process
{(
wpg,n, w

p
γ,n

)}
of continuation values.

For the proof of the Proposition we use the following five claims. Claim 1 is related
to Lemma 6. It shows that for a fixed set of policies p for the Bellman operator T∆

g,γ,
how far the value of the contract built up recursively from those policies falls short of
F2 (F2 − F∆,p

g,γ ) can be expressed as a discounted expected sum of how far each policy
applied to F2 falls short of F2 (F2 − T∆,p

g,γ F2).
The idea behind the construction in the remaining four claims is as follows. For any

ε > 0 consider the set Sε = {(wg, wγ) ∈ [ε, wsp − ε]2 : |wg − wγ| > ε,max {wg, wγ} >
w0 + ε}, where w0 is such that F ′ (w0) = F ′ (0) = − 1

u′(0)
. Claim 2 shows that once the

two continuation values are in the set, F2− T∆,p
g,γ F2 must be negative: The reason is that

8



to achieve F2 (wg, wγ) = F (wg) + F (wγ) the wages paid in the separate two optimal
policies for each continuation value must be different (such that −1/u′ (cg) = F ′ (wg),
and −1/u′ (cγ) = F ′ (wγ)), whereas T∆,p

g,γ restricts the wage to be the same.
Claim 3 shows that if F2 − T∆,p

g,γ F2 is to remain small, it must be that the variances
of continuation values Wg, Wγ and Wg − Wγ must be bounded away from zero, and
not too big. This follows from the results in the paper: for the policy p to fare well,
the continuation values for each noise must be approximately linear in likelihod ratio.
Also, since the likelihood ratios are linearly independent by assumption, Wg −Wγ can’t
be too small. Using Claim 3, Claim 4 shows that under policies p once the process of
continuation values (wg, wγ) enters set Sε, it must stay there for a while with nonnegligible
probability; Claim 5 shows that starting at any interior point of continuation values the
process enters Sε in finite time with nonnegligible probabilities. Those results, together
with Claim 2 establish the Proposition.

Fix a set of policies p for the Bellman operator T∆
g,γ.

Claim 1 Consider function F : [0, ū)2 → R and (wpg,0, w
p
γ,0) ∈ [0, ū)2. Then for any

N ∈ N

F2 (wg, wγ)− F∆,p
g,γ (wg, wγ) = E∆

g,γ

[ N∑
n=0

e−rn∆(F2(wpg,n, w
p
γ,n)− T∆,p

g,γ F2(wpg,n, w
p
γ,n)) +

e−r(N+1)∆(F2(wpg,N+1, w
p
γ,N+1)− F∆,p

g,γ (wpg,N+1, w
p
γ,N+1))

]
.

Proof. For any (wg, wγ) ∈ [0, ū)2 we have

F2 (wg, wγ)− F∆,p
g,γ (wg, wγ) = F2 (wg, wγ)− T∆,p

g,γ F
∆,p
g,γ (wg, wγ) =

= F2 (wg, wγ)− T∆,p
g,γ F2 (wg, wγ) + T∆,p

g,γ F2 (wg, wγ)− T∆,p
g,γ F

∆,p
g,γ (wg, wγ)

= E∆
g,γ

[
F2 (wg, wγ)− T∆,p

g,γ F2 (wg, wγ) + e−r∆(F2(wpg,1, w
p
γ,1)− F∆,p

g,γ (wpg,1, w
p
γ,1))

]
,

and using the equality recursively yields the proof.

Claim 2 Fix ε > 0 and (wg, wγ) ∈ Sε. Then there is δ1 such that for sufficiently small
∆ > 0:

F2(wg, wγ)− T∆
g,γF2(wg, wγ) > δ1∆.

Proof. In analogy to T∆,q we also define a simplified “quadratic” operator T∆,q
g,γ :

T∆,q
g,γ f(wg, wγ) = sup

ag ,aγ ,c,Wg ,Wγ

Φ∆,q
g (ag, c,Wg; f, wg) + Φ∆,q

γ (aγ, c,Wγ; f, wγ)

s.t. aφ(z) ∈ A, c ≥ 0, and Wφ(y) ∈ R ∀y

wφ = E∆
φ

[
r̃∆[u(c(∆[x+ aφ]))− h(aφ)] + e−r∆Wφ(∆[x+ aφ])

]
(PK2q)

r̃h′(aφ) = −e
−r∆

∆

∫
R
W (∆x)φ∆′

X (x)dx (FOC2q-AC)
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where the supremum is taken over measurable functions and Φ∆,q
φ (a, c,W ; f, wφ) is defined

in (??), for φ ∈ {g, γ}. Using analogues to Lemmas 13 and 15 we establish:

|T∆,q
g,γ F2 − T∆

g,γF2|[0,ū)2 = o(∆).

Fix ε > 0 and (wg, wγ) ∈ [ε, wsp − ε]2 such that |wg − wγ| ≥ ε. In view of the above
bound, it is sufficient to establish that F2(wg, wγ) − T∆,q

g,γ F2(wg, wγ) > δ1∆, and so, due
to Proposition 6 and Lemmas 13 and 15, it is sufficient to show that

T∆,q
g F (wg) + T∆,q

γ F (wγ)− T∆,q
g,γ F2(wg, wγ) > δ1∆,

where T∆,q
g and T∆,q

γ stand for operator T∆,q under the respective noise densities.
We have

T∆,q
φ F (wφ) = sup

c
−r̃∆ {c+ F ′ (wφ)u (c)}+ sup

a,W
Ψ∆
φ (a,W ;F,wφ) ,

T∆,q
g,γ F2(wg, wγ) = sup

c
−r̃∆ {2c+ F ′ (wg)u (c) + F ′ (wγ)u (c)}+

sup
ag ,Wg

Ψ∆
g (ag,Wg;F,wg) + sup

aγ ,Wγ

Ψ∆
γ (aγ,Wγ;F,wγ) ,

where

Ψ∆
φ (a,W ;F,wφ) = e−∆rF (wφ) + r̃∆ {a+ F ′(wφ)[wφ + h (aφ)]}

+ e−∆rE∆
φ [

1

2
F ′′ (wφ) (W (∆x)− wφ)2],

φ ∈ {g, γ}. The proof follows from the fact that F ′′ is bounded away from 0 on [0, wsp)
2

and so |F ′ (wg)− F ′ (wγ)| > ε1 for some ε1 > 0, which implies that for some δ1:

sup
c
−{c+ F ′ (wg)u (c)}+ sup

c
−{c+ F ′ (wγ)u (c)}

> sup
c
−{2c+ F ′ (wg)u (c) + F ′ (wγ)u (c)}+ δ1.

Claim 3 Fix ε > 0 and (wg, wγ) ∈ [ε, wsp − ε]2. Then there is δ2 > 0 such that for
sufficiently small ∆ and any feasible policy (ag, aγ, c,Wg,Wγ) for T∆

g,γF2(wg, wγ) if

Φ∆
g (ag, c,Wg;F2) + Φ∆

γ (aγ, c,Wγ;F2) > F2(wg, wγ)− δ2∆

then

V∆
g [Wg (∆(xg + ag))],V∆

γ [Wγ (∆(xγ + aγ))] > δ2∆,

V∆
g,γ[Wg (∆(xg + ag))−Wγ (∆(xγ + aγ))] > δ2∆.

On the other hand,

F2(wg, wγ)− Φ∆
g (ag, c,Wg;F2) + Φ∆

γ (aγ, c,Wγ;F2)

> δ2

(
V∆
g [Wg(∆(xg + ag))]−∆

(rh′(A))2

IgX

)
+ δ2

(
V∆
γ [Wγ (∆(xγ + aγ))]−∆

(rh′(A))2

IγX

)
10



Proof. Lemmas 21 part (i) and 9 imply that for certain δ2 > 0 and sufficiently small
∆ if Φ∆

g (ag, c,Wg;F2) + Φ∆
γ (aγ, c,Wγ;F2) > F2(wg, wγ)− δ2∆, then ag, aγ > γ > 0. But

then Lemmas 9 and 1 imply that V∆
φ [Wφ (∆(xφ + aφ))] ≈ ∆

(rh′(aφ))2

IφX
, for φ ∈ {g, γ},

which yields the first inequality. The same Lemmas imply that Wφ (∆(xφ + aφ)) ≈
E∆
φ [Wφ (∆(xφ + aφ))]+

√
∆D

g′(xφ)
g(xφ)

(in L1

(
φ∆
X

)
), for φ ∈ {g, γ}, and so the second inequal-

ity follows from the linear independence of likelihood ratios (12). Finally, F ′′ bounded
away from zero immediately implies the third inequality.

Fix a set of policies p for the Bellman operator T∆
g,γ, T > 0, ε1 > ε2 > 0.

Claim 4 Fix an initial point (wg, wγ) ∈ Sε. Then there are δ3, T > 0 such that for
sufficiently small ∆

E∆
g,γ

[ T/∆∑
n=0

e−rn∆(F2(wpg,n, w
p
γ,n)− T∆,p

g,γ F2(wpg,n, w
p
γ,n))

]
≤ δ3

implies
P∆
g,γ[(w

p
g,n, w

p
γ,n) ∈ Sε/2, n = 0, ..., T/∆] > δ3.

Proof. If the precondition is satisfied, then Claim 3 implies that, for φ ∈ {g, γ},

V∆
φ [(wpφ,t − w

p
φ,0)] ≤ T

(rh′ (A))2

IgX
+ δ/δ′ =: CT,δ, for t ≤ T/∆,

E∆
φ [V∆

φ [(wpφ,T/∆ − w
p
φ,t)]|w

p
φ,0] ≤ CT,δ, for t ≤ T/∆,

with CT,δ → 0 as T, δ → 0. We also have

E∆
φ [(wpφ,t − w

p
φ,t′)]|w

p
φ,t′ ] ≤ DT,δ, for t′ < t′ ≤ T/∆,

with DT,δ → 0 as T, δ → 0. It therefore follows that for α = ε
4
> 0 and τ the stopping

time of reaching the set [α,∞)

P∆
φ [ max
t≤T/∆

{wpφ,t − w
p
φ,0} ≥ α]

= P∆
φ [ max
t≤T/∆

{wpφ,t − w
p
φ,0} ≥ α,wpφ,T/∆ − w

p
φ,0 ≥ α/2] +

P∆
φ [ max
t≤T/∆

{wpφ,t − w
p
φ,0} ≥ α,wpφ,T/∆ − w

p
φ,0 < α/2]

≤ P∆
φ [wpφ,T/∆ − w

p
φ,0 ≥ α/2] + P∆

φ [wpφ,T/∆ − w
p
φ,τ < −α/2] ≤ 2

CT,δ
(α/2−DT,δ)2

→ 0,

as T, δ → 0. This establishes the proof.
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Claim 5 Fix an initial point (wg, wγ) ∈ [ε, wsp − ε]2. Then there are δ4, T > 0 such that
for sufficiently small ∆

E∆
g,γ

[ T/∆∑
n=0

e−rn∆(F2(wpg,n, w
p
γ,n)− T∆,p

g,γ F2(wpg,n, w
p
γ,n))

]
≤ δ4

implies
Pg,γ[(wpg,T/∆+1, w

p
γ,T/∆+1) ∈ Sε] > δ4.

Proof. The proof is similar to the proof of the previous claim and so is omitted.

Given the claims, the rest of the proof is as follows. If (wg, wγ) ∈ Sε then for the
constants as in the claims

F2 (wg, wγ)− F∆,p
g,γ (wg, wγ) ≥ E∆

g,γ

[ T/∆∑
n=0

e−rn∆(F2(wpg,n, w
p
γ,n)− T∆,p

g,γ F2(wpg,n, w
p
γ,n))

]
≥ min

{
δ3,

1− e−rT

1− e−r∆
δ3δ1

}
,

where the first inequality follows from Claim 1 and the second inequality follows from
Claims 2 and 4.

If on the other hand (wg, wγ) ∈ [ε1, wsp − ε]2 \Sε then

F2 (wg, wγ)− F∆,p
g,γ (wg, wγ) ≥ E∆

g,γ

[ T/∆∑
n=0

e−rn∆(F2(wpg,n, w
p
γ,n)− T∆,p

g,γ F2(wpg,n, w
p
γ,n))

+ e−r(T+∆)(F2(wpg,T/∆+1, w
p
γ,T/∆+1)− T∆,p

g,γ F2(wpg,T/∆+1, w
p
γ,T/∆+1))

]
≥ min

{
δ4, e

−r(T+∆)δ4 min

{
δ3,

1− e−r(T+∆)

1− e−r∆
δ3δ1

}}
,

where the first inequality follows from Claim 1 and the second inequality follows from
Claim 5 and the inequalities above. This establishes the proof of the Proposition.

We note that the proof can be extended beyond the pure hidden action case and
IgX = IγX . As regards the equality of Fisher information quantities, this guaranteed
that the limits of the values of contracts Fg and Fγ for two noise distributions are the
same function F (Lemma 1). Because of that, as long as the continuation values wg and
wγ are not the same the derivatives F ′g (wg) and F ′γ (wγ) differ as well, which is crucial
for Claim 2. Dropping the assumption IgX = IγX the proof would be analogous, yet the
computation of the set of continuation values (wg, wγ) for which F ′g (wg) 6= F ′γ (wγ) would
be cumbersome.

On the other hand, the assumption of pure hidden action models was also not crucial
for the proof: For two different information structures the proof will work as long as,
roughly, the optimal policies in the problem of minimizing variance of incentive transfers
are sufficiently different (see Claim 3).
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F Proofs for Section 4.1.1

Throughout this section we assume that the following assumption holds:
(A2’) X ≡ Z and X has a density function gX(x). The set of available actions is

A = (−∞, A] for some A ∈ R+.

In this section we establish Theorem 3 and the analogue of Theorem 2, which takes
the following form (see the definition of simple contract action plan below):

Theorem 4 For ζ > 0 let Fζ be as in Theorem 3 and fix period length ∆, agent’s
promised value w ∈ [0, ū) and an approximation error ε > 0. A corresponding simple
contract-action plan is incentive compatible by construction and [O (ε)+O(∆1/3)+O (ζ)]-
suboptimal.

The proof of the theorems follows just as in Section A from Lemma 6 and the following
version of Proposition 6, which is proven in Section F.1.

Proposition 8 Fix ζ ≥ 0 and Fζ solving the HJB equation (17) on an interval I with
F ′′ζ < 0. Then |T∆

I Fζ − Fζ |I∆ = o(∆) + O (ζ∆). Moreover, for any ε > 0, ∆ > 0 and
w ∈ I∆, Φ∆(a, c,W ;Fζ) ≥ Fζ(w) − O(ε∆) − O (ζ∆), where (a, c,W ) is a simple policy
defined for (Fζ , ε,∆, w) by (10) and (11).

The simple contract-action plans are defined almost analogously as in Section 3.3, in
the following way. First, let us define the appropriate Bellman operators, as in Section
3.3. For interval I ⊂ R and any function f : I → R, define the new function T∆

I f : I → R
by

T∆
I f(w) = sup

a,c,W
Φ∆(a, c,W ; f) (38)

s.t. a(z) ∈ A ∀z, c(y) ≥ 0 and W (y) ∈ I ∀y

w = E∆
[
r̃∆[u(c(∆[x+ a(z)]))− h(a(z))] + e−r∆W (∆[x+ a(z)])

]
(PK)

(x, a(x)) ∈ arg max
ẑ∈supp(Z),â∈A

r̃∆
[
u(c(∆[x+ â]))− h(â)

]
+ e−r∆W (∆[x+ â]) (IC-PHI)

We note that the Belman operator T∆
I excludes reporting by the agent. However, in

the pure hidden information case this is without loss of generality: With reporting, there
may not exist two different noise realizations resulting in the same signal in equilibrium
(as incentive compatibility would be violated). Thus, reporting is redundant.

Consider the following definition of simple policies (compare Definitions 1 and 3).

Definition 4 For any ζ ≥ 0 and Fζ solving (17) on an interval I, period length ∆ > 0,
agent’s promised value w ∈ I and an approximation error ε > 0, define a simple policy

13



(a, c,W ) as follows. Let (ā, h̄, c) be an ε-suboptimal policy of (17) at w, and for the
corresponding (ā, h̄), let (a, v) be an ε-suboptimal policy of (18).

If w ∈ I∆ let

c(y) = c,

W (y) = C +
√

∆r̃er∆ ×


v(−M) if y/

√
∆ < −M

v(y/
√

∆) if |y/
√

∆)| ≤M

v(M) if y/
√

∆ > M

,

a(z) is an action that satisfies the (IC) constraint in (38),

where M is such that PX([−M,M ]) ≥ 1−ε and C is chosen to satisfy the (PK) constraint
in (38). If w /∈ I∆ define the policy as in (11).

The definition differs from the one in Section 3.3 in that: (i) argumnet function is Fζ
not F , (ii) reporting is ignored, (iii) continuation value function must be non-decreasing,
(iv) range of signals for which incentives are provided (or Mε) is readjusted. Given the
above definition, simple contract-action plans are defined as in Definition 1.

Notice that, unlike in the model analyzed in the paper, there is no additional incen-
tive compatibility constraint associated with truthful reporting, and so, by construction,
simple policies are fully incentive compatible. Also, as before, (PK) is satisfied by con-
struction, and W (y) ∈ I if ∆ is sufficiently small. Thus, simple policies are feasible for
the problem (38), and so Proposition 8 verifies only that they are close to optimal.

F.1 Proof of Proposition 8

As in the paper, define T∆,c
I by restricting the consumption schedule c (y) to be constant.

Let us also define T∆,d
I f(w) as T∆,c

I f(w) with the additional constraints that a(·) is piece-
wise continuously differentiable and W (·) is continuous. Finally, we define the simplified
operator T∆,q analogously to (21) and (??):32

T∆,qf(w) = sup
a,c,W

Φ∆,q(a, c,W ; f, w)

s.t. a(z) ∈ A ∀z, c ≥ 0, and W (y) ∈ R ∀y
w = E∆

[
r̃∆[u(c)− h(a(z))] + e−r∆W (∆x, z)

]
(PKq)

r̃h′(a(x)) = e−r∆W ′(∆x), ∀x (FOCq-PHI),

where

Q(v; f, w) = f(w) + f ′(w)(v − w) +
f ′′(w)

2
(v − w)2 and

Φ∆,q(a, c,W ; f, w) = E∆
[
r̃∆[a(z)− c] + e−r∆Q(W (∆x); f, w)]

]
,

32When a(z) = 0 or a(z) = A, at an optimum the inequalities in the (IC) constraint are attained with
equality (see e.g. Edmans and Gabaix [2011]).
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The proof of Proposition 8 is established by a sequence of Lemmas, similar as in
Section A. Regarding the values, the line of the argument can be illustrated as follows:

F ∼
Lemma 23

T∆,qF ∼
Lemma 24

T∆,d
I F ∼

Lemma 26
T∆,c
I F ∼

Lemma 15
T∆
I F.

Note that the last equivalence follows form the same Lemma as in the paper. Here
we focus on the other three.

First, the Lemma 9 extend readily to the current pure hidden information case. Like-
wise, we extend the definition of quadratic simple.policies (see Definition 2)33

Remark 1 In the pure hidden information case, the v in the definition of a quadratic
simple policy at w is continuous and piecewise twice continuously differentriable (see the
definition of Θ). We assume that for any ε > 0, there is a common finite set D such that
the set of functions v′′ for all w ∈ I are equicontinuous outside of D, which is without
loss of generality.

The following is essentially a corollary of Lemma 9.

Lemma 23 Fix ζ ≥ 0 and Fζ solving the HJB equation (17) on an interval I with
F ′′ζ < 0. Then |T∆,qFζ − Fζ |I = o(∆) + O (ζ∆). Moreover, for any ε,∆ > 0, w ∈ I
and corresponding quadratic simple policy (aq, cq,Wq), Φ∆,q(aq, cq,Wq;Fζ , w) ≥ Fζ(w) −
O(∆ε)−O (ζ∆), uniformly in I.

Proof. From Lemma 9 we have

T∆,qFζ(w)− Fζ (w)

= sup
a,h,c

r̃∆

{
(ā− c) + F ′ζ(w)[w + h̄− u(c)] + er∆

F ′′ζ (w)

2
r̃Θ(ā, h̄)− Fζ(w)

}
+O

(
∆2
)

= O (ζ∆) +O
(
∆2
)
.

The last equality follows because Fζ satisfies the HJB equation (17). Lemma 9 also yields
that Φ∆,q(aq, cq,Wq;Fζ , w) ≥ Fζ(w)−O (∆2)−O (∆ε)−O (ζ∆), establishing the proof.

We establish now the crucial Lemma 24. First, we extend the general definition of
simple policies to the pure hidden information case (compare Definition 3 in the paper).

Definition 5 For a twice differentiable function F : I →∞ with F ′′ < 0, ε > 0, ∆ > 0,
w ∈ I∆ and quadratic simple policies (aq, cq,Wq) in the problem T∆,qF (w) based on

33Note that since the reporting is suppressed, the continuation value functions v in the definition of
Θ and W q

∆ in the definition of quadratic simple policies depend only on a single variable y.
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(a, v), define the simple policy (a, c,W ) for T∆,c
I F (w) as

c = cq,

W (y) = C +


Wq(−

√
∆Mε) if ∆x < −

√
∆Mε

Wq(∆x) if |∆x| ≤
√

∆Mε

Wq(
√

∆Mε) if ∆x >
√

∆Mε

,

a(z) is an action that satisfies the (IC) constraint in (38).

where Mε is such that PX([−Mε,Mε]) ≥ 1 − ε and C is chosen to satisfy the (PK)
constraint in (38).

Lemma 24 Let F : I → R be twice continuously differentiable with F ′′ < 0. Then
|T∆,c
I F − T∆,qF |I∆ = o(∆). Moreover, for fixed ε > 0 consider quadratic simple policies

(aq, cq,Wq) for T∆,qF (w), ∆ > 0, w ∈ I∆. Then for ∆ sufficiently small, w ∈ I∆ and the
corresponding simple policies (a, c,W ), Φ∆(a, c,W ;F ) ≥ Φ∆,q(aq, cq,Wq;F,w)−O(ε∆)−
o (∆), uniformly in w.

Proof. (Lemma 13) Fix ε > 0, ∆ > 0 such that
√

∆ < δ/A, for δ as in Lemma 12 (with
M = Mε), and w ∈ I∆.

Step 1: In this step we show that Φ∆(a, c,W ;F ) ≥ Φ∆,q(aq, cq,Wq;F,w) − O(ε∆),
uniformly in w. Since ε is arbitrary, in view of Lemma 9, this establishes |T∆,qF −
T∆,d
I F |+

I∆ = o(∆).
First, the inequality (26) holds by the same arguments as before. It will thus be

enough to establish (29), (30) and (31).
Given the definition of W , the necessary local version of (IC) take the following form:34

r̃h′(a(x)) = e−r∆W ′ (y) = r̃v′(
√

∆[x+ a (x)]), (39)

whereas, given the definition of Wq and (FOCq-PHI), we have

r̃h′(aq(x)) = e−r∆W ′
q (∆x) = r̃v′(

√
∆x).

Let D be the finite set of points such that each v in the definition of the policy is
twice continuously differentiable on R\D (see Remark 1) and consider the set

N∆
ε = [−Mε/

√
∆,Mε/

√
∆− A]\

⋃
d∈D

{d/
√

∆ + ζ : ζ ∈ [0, A]}.

For sufficiently small ∆, P∆
[
N∆
ε

]
≥ 1− ε. Moreover, for any x ∈ N∆

ε , v′ is continuously

differentiable on [
√

∆x,
√

∆[x+a(x)]]. Consequently, for all such x |h′(aq(x)−h′(a(x))| ≤√
∆ max v′′, where the maximum is taken over the set [−Mε,Mε], and hence

|aq (x)− a (x)| ≤
√

∆ max v′′

inf h′′
.

34Recall that the W function, just as Wq, is constant in the second argument.

16



Since P∆
[
N∆
ε

]
≥ 1 − ε, we have that the inequalities (29) and (30) hold. Moreover, by

taking the maximum over max v′′ over [−Mε,Mε] for all w (which is well defined, due to
the assumption of equicontinuity) we establish that the bounds in those inequalities are
uniform in w ∈ I∆. Finally, (31) follows from Lemma 11 just as in the previous case.
This establishes the proof.

Step 2: In this step we show that
∣∣∣T∆,d
I F (w)− T∆,qF (w)

∣∣∣+
I∆

= o(∆).

Case 2: X ≡ Z.35 For a policy (a, c,W ) that is ε∆-suboptimal in the problem
T∆,d
I F (w) define (aq, cq,Wq) as follows. Let cq = c, aq (x) = a (x) for x ∈ [−Mε/

√
∆ +

1,Mε/
√

∆ − 1], aq (x) = 0 for x /∈ [−Mε/
√

∆,Mε/
√

∆] and aq piecewise continuously
differentiable. Wq is constant in the second argument and is defined by the local IC
in (21), continuity and (PK). The policy (aq, cq,Wq) is feasible by construction, and we
must prove that Φ∆,q(aq, cq,Wq;F,w) ≥ Φ∆(a, c,W ;F )−O(ε∆).

On the one hand, P∆[aq(x) = a(x)] ≥ 1 − 2ε for sufficiently small ∆, which implies
the analogues of (29) and (30). On the other hand, for all x, x ∈ [−Mε/

√
∆,Mε/

√
∆]

Wq(∆x̄, z)−Wq(∆x, z) = r̃er∆
∫ x̄

x

∆h′(aq(x))dx = r̃er∆
∫ x̄

x

∆h′(a(x))dx

= r̃er∆
[ ∫ x

x

∆h′(a(x))(1 + a′(x))dx−∆(h(a(x))− h(a(x)))
]

= W (∆[x+ a(x)], x)−W (∆[x+ a(x)], x) +O(∆),

where the last inequality follows from the local neccesary version of (IC-PHI). Conse-

quently V∆[Wq(∆x, x)] ≤ V∆
[
W (∆[x+ a(x)], x)1|x|≤Mε/

√
∆

]
+ O(∆2). Moreover, since

V∆[W (∆[x + a(x)], x)] ≤ V∆ (Lemma 7) and W ′ ∈ [0, h′(A)], there is Kε such that for
any ∆, |x| ≤ Mε/

√
∆ implies y ∈ B, where B = {y | |W (y)− E∆[W (∆[x+ a(x)], x)]| ≤√

∆Kε}.
Altogether

Φ∆,q (aq, cq,Wq;F,w) = r̃∆(E∆[a(x)]− c) + e−r∆
[
F (w) + F ′(w)E∆[W (∆[x+ a(x)], x)− w] +

1

2
F ′′(w)V∆ [W (∆[x+ a(x)], x)1B]

]
+O (ε∆) ≤ Φ∆ (a, c,W ;F ) +O (ε∆) ,

which establishes the Lemma.

We move on to establish “T∆,d
I F ∼

26
T∆,c
I F”. The following Lemma 25 is related to

the standard results in the static mechanism design.

35In Step 1 we used the fact that the quadratic simple policies, for all ∆, are based on the same set of
v functions from the definition of Θ. In particular, the Wq functions have the same number of points of
discontinuity, for all ∆. In this Step, without additional proofs we cannot assume such uniformity, and
so the construction is different.
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Lemma 25 Suppose X ≡ Z. For any ∆ > 0 and w ∈ I∆, if (a, c,W ) satisfies (IC)
in T∆,c

I F (w) then x + a(x) is nondecreasing. Conversely, if (a, c,W ) satisfies the local
version of (IC) almost everywhere and x+ a(x) is nondecreasing, then (a, c,W ) satisfies
the IC.

Proof. The proof is standard, but we provide it for completeness. Suppose first that
(a, c,W ) is incentive compatible. Therefore for any x′ > x

−r̃h(a(x′)) + e−r∆W (∆[x′ + a(x′)], x′) ≥ −r̃h(a(x)− (x′ − x)) + e−r∆W (∆[x+ a(x)], x),

−r̃h(a(x)) + e−r∆W (∆[x+ a(x)], x) ≥ −r̃h(a(x′) + (x′ − x)) + e−r∆W (∆[x′ + a(x′)], x′).

Hence,
h(a(x′))− h(a(x)− (x′ − x)) ≤ h(a(x′) + (x′ − x))− h(a(x)).

Since h is convex, this implies that a(x′) ≥ a(x)− (x′ − x).
Conversely, we argue by contradiction. Assume that (a, c,W ) satisfies the local IC

and x+ a(x) is nondecreasing. Let

V (x, x′) = −r̃h(a(x′) + (x′ − x)) + er∆W (∆[x′ + a(x′)], x′).

By local IC, V2(x, x) = 0 for all x. Suppose that for some x′ > x we have 0 < V (x, x′)−
V (x, x). Then

0 <

∫ x′

x

V2(x, s)ds =

∫ x′

x

[V2(x, s))− V2(s, s)]ds = −
∫ x′

x

∫ s

x

V12(z, s)dzds.

But
V12(z, s) = r̃h′′(a(s) + (s− z))(1 + a′(s)) ≥ 0.

which is a contradiction. The case V (x, x′) > V (x, x) with x′ < x is analogous.

Lemma 26 Let Z = X, and let F : I → R be twice continuously differentiable with
F ′′ < 0. Then |T∆,d

I F = T∆,c
I F |I∆ = o(∆).

Proof. Fix ∆, ε > 0 and consider any ∆-suboptimal policy (a, c,W ) for T∆,cF (w). Let
Mε be such that P∆

X [[−Mε/
√

∆,Mε/
√

∆]] ≥ 1 − ε. We construct a policy (ad, cd,Wd)
as follows. Below the function ad(·) is derived from the function a(·) so that ad(·) is
piecewise continuously differentiable and x+ ad(x) is nondecreasing. Then we let cd = c,
and Wd be such that it satisfies the local version of (IC):

r̃h′(ad(x)) = e−r∆W ′
d(∆[x+ ad(x)]),

is continuous and the constant of integration is adjusted so that it satisfies the PK
condition. By Lemma 25, the policy (ad, cd,Wd) is feasible by construction.
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Below we will define ad so that ad (x) = 0 if x /∈ [−Mε/
√

∆,Mε/
√

∆ + A], x + ad(x)
is nondecreasing and∫ Mε/

√
∆

−Mε/
√

∆

|ad(x)− a(x)| dx ≤ ε and

∫ Mε/
√

∆

−Mε/
√

∆

|a′d(x)− a′(x)| dx ≤ ε. (40)

Recall that if f is nondecreasing, then f is differentiable a.e. and
∫ b
a
f ′(x)dx ≤ f(b) −

f(a).36 Since

h′(ad(x))(1 + a′d(x))− h′(a(x))(1 + a′(x))

= h′(ad(x))(a′d(x)− a′(x)) + (h′(ad(x))− h′(a(x)))(1 + a′(x)),

(40) implies that for any x, x ∈ [−Mε/
√

∆,Mε/
√

∆],

Wd(∆[x+ ad(x)])−Wd(∆[x+ ad(x)]) = r̃er∆∆

∫ x

x

h′(ad(x))(1 + a′d(x))dx

≤ W (∆[x+ a(x)])−W (∆[x+ a(x)]) + r̃er∆∆

[
h′(A)ε+ maxh′′

[
2Mε√

∆
+ a(x)− a(x)

]]
The rest of the proof will follow as in last step of Lemma 13 to establish that

Φ∆ (ad, cd,Wd;F ) ≥ Φ∆ (a, c,W ;F )−O (ε∆).
We now construct an ad satisfying (40) and x + ad(x) is nondecreasing. First, note

that since for any y > x we have a (x) ≥ a (y)− y−x
∆

, a may not discontinuously decrease.

Therefore, the set of points D ⊂ [−Mε/
√

∆,Mε/
√

∆] at which a may be discontinuous
is at most countable. Moreover, if J =

∑
x∈D(a(x+)− a(x−)), then

J +

∫ Mε/
√

∆

−Mε/
√

∆

(1 + a′(x))dx =
2Mε√

∆
+ a(x)− a(x) ≤ A+

2Mε√
∆
.

Since 1 + a′(x) ≥ 0, this implies that J ≤ A + 2Mε√
∆

. Let Df be a finite set of points

where a is discontinuous such that
∑

x∈Df (a(x+) − a(x−)) ≥ J − ε/2, and let δ =

minx∈Df (a(x+)− a(x−)).

For any n ∈ N and x ∈ [−Mε/
√

∆,Mε/
√

∆] let

a′n (x) =
n

2

∫ x+1/n

x−1/n

a′ (s) ds.

The function a′n is differentiable and for any x, a′n(x) ≥ −1 (since a′(x) ≥ −1). From

the Lebesgue’s Density Theorem it follows that for sufficiently large n,
∫Mε/

√
∆

−Mε/
√

∆
|a′n(x)−

a′(x)|dx ≤ δ.

36See, for example, Theorem 2 in Chapter 5 of Royden [1988].
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Finally, for Df = {d1, ..., ḋn}, d0 = −Mε/
√

∆, dn+1 = Mε/
√

∆, and for any x ∈
[di, di+1) let

ad (x) = a (di) +

∫ x

di

a′n (s) ds.

The function ad satisfies (40) and x + ad(x) is nondecreasing by construction, which
establishes the proof.

F.2 Proof of Lemma 5

Fix (ā, h̄) in the domain of ΘΓ, any ε > 0 and let (aΓ, vΓ) be an ε-suboptimal policy for
ΘΓ(ā, h̄). We may assume that EΓ [vΓ (x)] = 0. We will define a policy (aG, vG) that is
feasible for the problem ΘG(ā, h̄) and such that EG [v2

G (x)] ≤ ΘΓ(ā, h̄).
For any x let aG (x) = aΓ (x′) where x′ is such that G (x) = Γ (x′). Since both G and

Γ are strictly increasing between 0 and 1, aG is well defined. We have:∫
aG(x)g(x)dx =

∫
aG(G−1(Γ(x′)))γ(x′)dx′ =

∫
aΓ(x′)γ(x′)dx′,

where we have used the change of variables x = G−1(Γ(x′)), so dx
dx′

= γ(x′)
g(x)

. Similarly we

get that
∫
h(aG(x))g(x)dx =

∫
h(aΓ(x′))γ(x′)dx′.

The incentive transfer function vG is defined via the (FOCΘ-PHI) condition:

v′G(x) = h′(aG(x)),

except for the finitely many points of discontinuity of aG(x), where it is extended con-
tinuously, together with the condition EG[vG(x)] = 0. Choose any points x > x, x′ > x′

such that G(x) = Γ(x′) and G(x) = Γ(x′). We have:

vG(x)− vG(x) =

∫ x

x

h(aG(x))dx

=

∫ x′

x′
h(aΓ(x′))

γ(x′)

g(x)
dx′ ≤

∫ x′

x′
h(aΓ(x′))dx′ = vΓ(x′)− vΓ(x′).

This means that the random variable vG (X) , X ∼ G, is less dispersed than vΓ (X) ,
X ∼ Γ. Since EΓ [vΓ (x)] = EG [vG (x)] = 0, this implies that for the concave function
φ (x) = x2 we have EG [v2

G (x)] ≤ EΓ [v2
Γ (x)] ≤ ΘΓ(ā, h̄)+ε (see Theorem 3.B.2 in Shaked

and Shanthikumar [2007], which is taken from Landsberger and Meilijson [1994]). Since
ε > 0 is arbitrary, this concludes the proof.
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