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Abstract

In this paper we study the implementation challenge in an abstract common values model
and an arbitrary social welfare function. We design a mechanism that allows for approximate
optimal implementation in ex-post Nash equilibrium. If, furthermore, values are private then
the same mechanism is strategy proof. We cast our results onto two specific models: pricing
and facility location. The mechanism we design is optimal up to an additive factor of the order
of magnitude of the square root of the optimum and involves no utility transfer.

Underlying our mechanism is a lottery between two auxiliary mechanisms - with high
probability we actuate a random mechanism that reduces players influence on the choice of the
social alternative, while choosing the optimal outcome with high probability. With the com-
plementary probability we actuate a mechanism that is possibly sub-optimal but is incentive
compatible. The joint mechanism inherits the desired properties from both.
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1 Introduction

Mechanism design (see Mas-Colell, Whinston and Green [16]) deals with the implementation of
desired outcomes in a multi-agent system. The outcome of a mechanism may be a price for a
good, an allocation of goods to the agents, the decision on a provision of a public good, locating
public facilities, etc. The quality of the outcome is measured by some social welfare function. In
many instances the literature is concerned with the sum of the agents’ valuations for an outcome,
but it can take many other forms, such as the revenue of a seller in an auction setting, the social
inequality in a market setting and more.

The holy grail of the mechanism design challenge is to design mechanisms which exhibit dom-
inant strategies for the players, and furthermore, once players play their dominant strategies the
outcome of the mechanism coincides with maximizing the social welfare function. Without loss
of generality we can replace this with the challenge of designing truthful optimal mechanisms,
namely where being truthful is dominant, and truthfulness leads to optimality.

As it turns out, such powerful mechanisms do not exist in general. The famous Gibbard-
Satterthwaite theorem (Gibbard [12] and Satterthwaite [28]) tells us that for non-restricted settings
any non-trivial truthful mechanism is dictatorial. However, if we restrict attention to the social wel-
fare function that is simply the sum of the agents’ valuations, then this problem can be overcome
by introducing monetary payments. Indeed, in such cases the celebrated Vickrey-Clarke-Groves
mechanisms, discovered by Vickrey [33] and generalized by Clarke [6] and Groves [14], guarantee
that being truthful is a dominant strategy and the outcome is efficient. Unfortunately, Roberts [25]
showed that a similar mechanism cannot be obtained for other social welfare functions. This cul-
de-sac induced researchers to ‘lower the bar’ for mechanism design. One possibility for lowering
the bar is to replace the solution concept with a weaker one and a large body of literature on
Bayes-Nash implementation has developed (the reader is referred to Mas-Colell et al [16] for fur-
ther reading) . Another direction is that of approximate implementation where the quest replaces
accurate implementation with approximate implementation, while keeping the approximation in-
accuracy as low as possible.

The latter research agenda received much attention in recent years in the context of algorithmic
mechanism design. Interestingly, approximate implementation was initially motivated by the chal-
lenge of designing mechanisms that are computationally tractable (In fact, even the VCG mecha-
nism is not computationally tractable). It turns out that approximate implementation can lead to
positive results. In fact, such positive results have been recently provided for social welfare func-
tions other than the sum of agents’ valuations and in settings where no money is involved (e.g.,
Procaccia and Tennenholtz [23]).

The mechanism design literature has characterized functions that are truthfully implemented
without payments, and studied domains in which non-dictatorial functions can be implemented
(some examples are Moulin [20] and Schummer and Vohra [30, 31]). However, no general tech-
niques are known for designing mechanisms that are approximately optimal. Consider the facility
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location problem, as an example, where the social planner needs to locate some facilities, based on
agents’ reports of their own location. This problem has received extensive attention recently, yet
small changes in the model result in different techniques which seem tightly tailored to the specific
model assumptions (see Alon et al. [4], Procaccia and Tennenholtz [23] and Wang et al. [34]).
Furthermore, the approximation accuracy in many of these models leaves much to be desired.

1.1 Our Contribution

We introduce an abstract mechanism design model where agents have common values and pro-
vide a generic technique for approximate implementation of an arbitrary social welfare function.
More precisely, we bound the worst case difference between the optimal outcome (‘first best’) and

the expected outcome of our generic mechanism by O(
√

ln n
n

), where n the population size. In
addition, our generic construction does not involve utility transfer and money.

Our construction combines two very different random mechanisms:

• With high probability we deploy a mechanism that chooses social alternatives with a proba-
bility that is proportional to (the exponent of) the outcome of the social welfare function, as-
suming players are truthful. This mechanism exhibits two important properties. First, agents
have small influence on the outcome of the mechanism and consequently have little influence
on their own utility. As a result all strategies, including truthfulness, are ε-dominant. Second,
under the assumption that players are truthful, alternatives which are nearly optimal are most
likely to be chosen. The concrete construction we use follows the Exponential Mechanism
presented by McSherry and Talwar [19].

• With vanishing probability we deploy a mechanism which is designed with the goal of elic-
iting agents’ private information, while ignoring the social welfare function.

The combined mechanism inherits the truthfulness property of the second component and the ac-
curacy of the first component, resulting in an excellent approximation of the optimal outcome in
dominant strategies.1

Our technique is developed for an abstract setting where both the agents’ type space as well
as the set of social alternatives are discrete. In more concrete settings, however, our techniques
extend to continuous models. In particular, whenever the set of types and alternatives permits
a discrete and ’dense’ subset. We demonstrate our results and the aforementioned extension in
two specific settings: (1) Facility location problems, where the social planner is tasked with the
optimal location of K facilities in the most efficient way. In this setting we focus on minimizing

1In fact, as our model considers discrete type spaces, the results are obtained for strictly dominant strategies.
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the social cost which is the sum of agents’ distances from the nearest facility. (2) The digital goods
pricing model, where a monopolist needs to determine the price for a digital good (goods with zero
marginal cost for production) in order to maximize revenue.

Another contribution of our work is an extension of the classical social choice model. In the
classical model agents’ utilities are expressed as a function of the private information and a social
alternative. This modeling choice abstracts away the issue of how agents exploit the social choice
made. A novelty of our model is that it considers an additional stage where agents take an action
following the choice made by society, out of a given set of actions (hereinafter ‘reaction’). We
motivate this extension to the standard model with the following examples:

Facility Location: Consider a location problem, where the social planner is faced with the chal-
lenge of locating K similar facilities (e.g., schools) based on where the individuals are located.
The K locations are determined based on the individuals’ announced locations, and, in turn, agents
choose which of the K facilities to access (this is their reaction).

Monopolist pricing: A monopolist wants to maximize its revenue based on the demand curve
of the potential buyers. Buyers’ demand announcement is followed by a price set by the monopoly
(the social alternative). In return agents choose whether to buy the good at the set price or not (the
agents’ reaction).

Centralized Exchange Economy: Consider a population of n agents in a market, where each
agent is endowed with some initial bundle (supply) and a demand function for the goods. The
social planner determines a price vector (the social alternative), based on the announced demand
and supply. Once prices are announced agents can buy and sell according to the price vector (their
reaction).

Public Good: As part of its welfare policy the government plans to offer a portfolio of retraining
programs for career changes. Based on agents’ (announced) preferences a limited portfolio is of-
fered. Once this portfolio is determined agents can enroll into one program only (their ‘reaction’).
In an abstract sense this example is similar to the facility location problem.

Network Design: As a final example consider the problem of designing a communication or
transportation network, based on agents’ (privately known) needs. Once a network is built each
agent chooses which path in the network to use (its reaction).

The aforementioned examples demonstrate the prevalence of ‘reactions’ in a typical design
problem. Note that if we assume that the set of reactions is a singleton then we are back to the
classical model. An example where the set of reactions is a singleton is that of an election. Once
a candidate is elected agents utilities are determined (one could argue that even in this example,
agents can adapt behavior to the elected candidate). In our construction we allow for the mecha-
nism to restrict the reaction set (we refer to this as ‘imposition’).
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1.2 Related Work

Approximate Efficiency in Large Populations. The basic driving force underlying our con-
struction is ensuring that each agent has a vanishing influence on the outcome of the mechanism
as the population grows. In the limit, if players are non-influential, then they might as well be
truthful. This idea is not new and has been used by various authors to provide mechanisms that
approximate efficient outcomes when the population of players is large. Some examples of work
that hinge on a similar principle for large, yet finite populations, are Swinkels [32] who studies
auctions, Satterthwaite and Williams [29] and Rustichini, Satterthwaite and Williams [27] who
study double auctions, and Al-Najjar and Smorodinsky [3] who study an exchange market. The
same principle is even more enhanced in models with a continuum of players, where each agent
has no influence on the joint outcome (e.g., Roberts and Postlewaite [26] who study an exchange
economy). The mechanisms provided in these papers are designed for accomplishing efficiency,
and provide no value for alternative social welfare functions. In contrat, our results hold a for a
wide range of social welfare functions and are generic in nature.

Interestingly, a similar argument has also been instrumental to show inefficiency in large popu-
lation models. Rob [24] uses lack of influence to model the ‘tragedy of the commons’ and Mailath
and Postlewaite [15] use similar arguments to demonstrate ‘free-riding, in the context of the vol-
untary supply of a public good, which eventually leads to inefficiency.

Differential Privacy and Influence. Consider a (possibly random) function that maps a vector
of private inputs into an arbitrary domain. The ‘influence’ of a player is a measure of how much her
input can alter the outcome. In recent years this notion has been researched in two communities:
Economics (demonstrated above) and Computer Science.

In Computer Science, the cryptography community has been formalizing a discussion on pri-
vacy. The notion of differential privacy, introduced in Dwork, McSherry, Nissim and Smith [9]
and Dwork [7], captures the ‘influence’ of a single agent on the result of a computation. More
accurately, differential privacy stipulates that the influence of any contributor to the computation is
bounded in a very strict sense: any change in the input contributed by an individual translates to at
most a near-one multiplicative factor in the probability distribution over the set of outcomes. The
scope of computations that can be computed in a differentially private manner has grown signifi-
cantly since the introduction of the concept (the reader is referred to Dwork [8] for a recent survey).
In this strand of the literature computations (equivalently mechanisms) that preserve differential
privacy are referred to as ε-differentially private computations.

McSherry and Talwar [19] establish an inspiring connection between differential privacy and
mechanism design. They observe that participants (players) that contribute private information to
ε-differentially private computations have limited influence on the outcome of the computation,
and hence have a limited incentive to lie, even if their utility is derived from the joint outcome.
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Consequently, in mechanisms that are ε-differentially private truth-telling is approximately dom-
inant, regardless of the agent utility functions. McSherry and Talwar introduce the exponential
mechanism as a generic ε-differentially private mechanism. In addition, they show that whenever
agents are truthful the exponential mechanism chooses a social alternative which almost optimizes
the the social welfare function. They go on and demonstrate the power of this mechanism in the
context of Unlimited Supply Auctions, Attribute Auctions, and Constrained pricing.

The contribution of McSherry and Talwar, although inspiring, leaves much to be desired in
terms of mechanism design: (1) Truth telling is ε-dominant for the exponential mechanism. On
the one hand, lower values of ε imply higher compatibility with incentives. On the other hand,
lower values deteriorate the approximation results. What is the optimal choice for ε? How can
these countervailing forces be reconciled? It turns out that the McSherry and Talwar model and
results do not provide a framework for analyzing this. (2) McSherry and Talwar claim that truth
telling is approximately dominant. In fact, a closer look at their work reveals that all strategies
are approximately dominant, which suggests that truth telling has no intrinsic advantage over any
other strategy in their mechanism. (3) In fact, one can demonstrate that misreporting one’s private
information can actually dominate other strategies, truth-telling included. To make things worse,
such dominant strategies may lead to inferior results for the social planner. This is demonstrated
in an example provided in appendix A in the context of monopoly pricing.

Abstract formalizations of influence have also been studied in the economic literature. Fu-
denberg Levine and Pesendorfer [11] and Al-Najar and Smorodinsky [2], for example, define an
agents’ influence on a mechanism and provide on average influence and on the number of influ-
ential players. McLean and Postlewaite [17, 18] introduce the notion of informational smallness,
formalizing settings where one player’s information is insignificant with respect to the aggregated
information.

Facility Location. One of the concrete examples we investigate is the optimal location of facil-
ities. The facility location problem has already been tackled in the context of approximate mech-
anism design without money, and turned out to lead to interesting challenges. While the single
facility location problem exhibits preferences that are single-peaked and can be solved optimally
by selecting the median declaration, the 2-facility problem turns out to be non-trivial. Most recently
Wang et al [34] introduce a randomized 4-(multiplicative) approximation truthful mechanism for
the 2 facility location problem. The techniques introduced here provide much better approxima-
tions - in particular we provide an additive Õ(n−1/3) approximation to the average optimal distance
between the agents and the facilities.2

Following our formalization of the reaction set and of imposition, Fotakis and Tzamos [10]
exploit this even further for facility location. The authors use this idea in the context of previously
known mechanisms to improve implementation accuracy. The provide constant multiplicative ap-
proximation or logarithmic multiplicative approximation, albeit with fully imposing mechanisms.

2The notation Õ(n−1) is used to denote convergence to zero at a rate ln(n)
n .
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Non discriminatory Pricing of Digital Goods. Another concrete setting where we demonstrate
our generic results is a pricing application, where a monopolist sets a single price for goods with
zero marginal costs (”digital goods”) in order to maximize revenues. Pricing mechanisms for the
private values case have been studied by Goldberg et al [13] and Balcan et al [5]. Balcan et al [5]
demonstrate a mechanism that is O( 1√

n
)-approximately optimal (where n is the population size),

compared with our mechanism, which is inferior, and provides a Õ( 1
n1/3 )-approximation. Whereas

the mechanism of Balcan et al is ad-hoc, our mechanism is derived from general principles and
therefore more robust. In addition, our mechanism extends to some settings with common values.

Virtual implementation. Another strand of the literature that combines approximation into mech-
anism design is that of ‘virtual implementation’ due to Abreu and Matsushima [1]. A function is
virtually implementable if for any ε > 0 there exists a mechanism that ε-approximates the function
in equilibrium. Whereas, we focus on settings with asymmetric information among the agents the
literature on virtual implementation mainly looks at settings with on symmetric information, where
only the social planner is less informed.

2 Model

2.1 The Environment

Let N denote a set of n agents, S denotes a finite set of social alternatives and Ti, i = 1, . . . , n, is a
finite type space for agent i. We denote by T = ×n

i=1Ti the set of type tuples and by T−i = ×j 6=iTj .
Agent i’s type, ti ∈ Ti, is her private information and is known only to her. Let Ri be the set of
reactions available to i. Typically, once a social alternative, s ∈ S, is determined agents choose
a reaction ri ∈ Ri. The utility of an agent i is therefore a function of the vector of types, the
chosen social alternative and the chosen reaction. Formally, ui : T × S × Ri → [0, 1].3 A tuple
(T, S, R, u), where R = ×n

i=1Ri and u = (u1, . . . , un), is called an environment.

We say that an agent has private reactions if her optimal reaction of i depends only only on her
type and the social alternative. Formally, agent i has private reactions if argmaxri∈Ri

ui((ti, t−i), s, ri) =
argmaxri∈Ri

ui((ti, t
′
−i), s, ri), for all s, i, ti, t−i and t′−i. We will use ri(ti, s) to denote an arbitrary

optimal reaction (i.e., ri(ti, s) is an arbitrary function which image is in the set argmaxri∈Ri
ui(ti, s, ri)).

We say that an agent has private values if has private reactions and furthermore ui((ti, t−i), s, ri) =
ui((ti, t

′
−i), s, ri) for all s, i, ti, t−i and t′−i.

We say that an environment is non-trivial if for any pair of types there exists a social alternative
for which the optimal reactions are distinct. Formally, ∀i, ti 6= t̂i ∈ Ti and t−i there exists s ∈ S,

3Utilities are assumed to be bounded in the unit interval. This is without loss of generality, as long as there is some
uniform bound on the utility.
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denoted s(ti, t̂i, t−i), such that argmaxri∈Ri
ui((ti, t−i), s, ri) ∩ argmaxri∈Ri

ui((t̂i, t−i), s, ri) = ∅.
We say that s(ti, t̂i, t−i) separates between ti and t̂i at t−i. A set of social alternatives, S̃ ⊂ S is
called separating if for any i and ti 6= t̂i and t−i, there exists some s(ti, t̂i, t−i) ∈ S̃ that separates
between ti and t̂i at t−i.

2.2 The Social Welfare Function

A social planner, not knowing the vector of types, wants to maximize an arbitrary social welfare
function, F : T × S → [0, 1].4 We focus our attention on a class of functions for which individual
agents have a diminishing impact, as the population size grows:

Definition 1 (Sensitivity) The social welfare function F : T × S → [0, 1] is d-sensitive if ∀i, ti 6=
t̂i, t−i and s ∈ S, |F ((ti, t−i), s)− F ((t̂i, t−i), s)| ≤ d

n
, where n is the population size.

Note that this definition refers to unilateral changes in announcements, while keeping the social
alternative fixed. In particular d-sensitivity does not exclude the possibility of a radical change in
the optimal social alternative as a result of unilateral deviations, which, in turn, can radically
change the utility of the player. Thus, this definition is mute in the context of the influence of an
agent on her own utility.

One commonly used social welfare function which is 1-sensitive is the average utility, F (t, s) =P
i ui(t,s)

n
. Note that a d-sensitive function eliminates situations where any single agent has an

overwhelming impact on the value of the social welfare function, for a fixed social alternative s.
In fact, if a social welfare function is not d-sensitive, for any d, then in a large population this
function could be susceptible to minor faults in the system (e.g., noisy communication channels).
Most examples of social welfare function studied in the literature are d-sensitive.5

2.3 Mechanisms

Denote by Ri = 2Ri \ {∅} the set of all subsets of Ri, except for the empty set, and let R = ×iRi.

A (direct) mechanism randomly chooses, for any vector of inputs t a social alternative, and for
each agent i a subset of available reactions. Formally:

Definition 2 (Mechanism) A (direct) mechanism is a function M : T → ∆(S ×R).

4Bounding F within the unit interval is without loss of generality and can be replaced with any finite interval.
5A fabricated example of a function that is not d-sensitive is a parity based function such as setting F = 1 if the

number of some type is odd, and F = 0 when it is even.
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In addition to publicly announcing the social alternative the mechanism may reveal some in-
formation to agents about opponents’ announcements. In this paper we shall assume that the
mechanism discloses the true vector of announced types to all agents.6

We denote by MS(t) the marginal distribution of M(t) on S and by Mi(t) the marginal dis-
tribution on Ri. We say that the mechanism M is non-imposing if Mi(t)(Ri) = 1. That is, the
probability assigned to the grand set of reactions is one, for all i and t ∈ T . Put differently, the
mechanism never restricts the set of available reactions. M is ε-imposing if Mi(t)(Ri) ≥ 1− ε for
all i and t ∈ T . In words, with probability exceeding 1− ε the mechanism poses no restrictions.

2.4 Strategies and Solution Concepts

A mechanism induces the following game with incomplete information. In the first phase agents
announce their types simultaneously to the mechanism. Then the mechanism chooses a social al-
ternative and a subset of reactions for each agent. In the second stage of the game each agent,
knowing the the strategy tuple of all agents, the vector of announced types and the social alter-
native, must choose a reaction. As our analysis focuses on rational behavior we assume agents
choose some reaction in argmaxri∈Ri

ui((ti, W−i(t−i)), s, ri). Therefore we suppress the reference
to the choice of reaction in our notation of a strategy.

A (pure) strategy for i is a function W : Ti → Ti. Note that with this shorthand the action of
agents in the second stage, in case of opponents’ deviation, is derived from the original strategy
profile and ignores the deviation.

Given a vector of types, t, and a strategy tuple W , the mechanism M induces a probability
distribution, M(W (t)) over the set of social alternatives and reaction tuples. The expected utility
of i, at a vector of types t, is EM(W (t))ui(t, s, ri).

A strategy Wi is dominant for the mechanism M if for any i, any vector of types t ∈ T , any
alternative strategy Ŵi of i and any strategy profile W̄−i of i’s opponents, the following holds:
EM((Wi(ti),W̄−i(t−i)))ui(t, s, ri) ≥ EM((Ŵi(ti),W̄−i(t−i)))

ui(t, s, ri). In words, Wi is a strategy that
maximizes the expected payoff of i for any vector of types and any strategy used by her oppo-
nents. If for all i the strategy Wi(ti) = ti is dominant then M is called truthful (or incentive
compatible).7

A strategy Wi is strictly dominant if it is dominant and furthermore whenever W (ti) 6= Ŵ (ti)
then a strong inequality holds. If Wi(ti) = ti is strictly dominant then for all i then M is strictly
truthful.

Finally, a strategy tuple W is an ex-post Nash Equilibrium if for all i and t ∈ T and for any
strategy Ŵi of player i, EM(W (t))ui(t, s, ri) ≥ EM((Ŵi(ti),W−i(t−i)))

ui(t, s, ri). If {Wi(ti) = ti}n
i=1

is an ex-post Nash equilibrium then M is ex-post Nash truthful.
6If all agents have private reactions then the public announcement of the agents’ announcements is redundant.
7Note we do not require a strong inequality to hold on any instance.
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2.5 Implementation

Given a vector of types, t, the expected value of the social welfare function, F , at the strategy tuple
W is EM(W (t))[F (t, s)].

Definition 3 (β-implementation) We say that the mechanism M β-implements F in (strictly)
dominant strategies, for β > 0, if for any (strictly) dominant strategy tuple, W , for any t ∈ T ,
EM(W (t))[F (t, s)] ≥ maxs∈SF (t, s) − β. A mechanism M β-implements F in an ex-post Nash
equilibrium if for some ex-post Nash equilibrium strategy tuple, W , for any t ∈ T , EM(W (t))[F (t, s)] ≥
maxs∈SF (t, s)− β.

Main Theorem (informal statement): For any d-sensitive function F and 1 > β > 0 there
exists a number n0 and a mechanism M which β-implements F in an ex-post Nash equilibrium,
whenever the population has more than n0 agents. If, in addition, reactions are private then M
β-implements F in strictly dominant strategies.

In addition to a generic mechanism and result we study two specific models and cast our generic
results onto those settings. In both models, facility location and pricing, we derive new results.

3 A Framework of Approximate Implementation

In this section we present a general scheme for implementing arbitrary social welfare functions

in large societies. The convergence rate we demonstrate is of an order of magnitude of
√

ln(n)
n

.
Our scheme involves a lottery between two mechanisms: (1) The Exponential mechanism, a non-
imposing mechanism that randomly selects a social alternative in exponential proportion to the
value it induces on F ; and (2) The Commitment mechanism which is imposing but ignores agents’
announcements when (randomly) selecting a social alternative.

3.1 The Exponential Mechanism and Differential Privacy

Consider the following non-imposing mechanism, which we refer to as the Exponential mecha-
nism, originally introduced by McSherry and Talwar [19]:

M ε(t)(s) =
enεF (t,s)∑
s̄∈S enεF (t,s̄)

.

The Exponential mechanism has two notable properties, as we show below. First, it provides
ε-differential privacy, which is inspired by the literature on privacy. We follow Dwork et al [9] and
define:
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Definition 4 (ε-differential privacy) A mechanism, M , provides ε-differential privacy if it is non-
imposing and for any s ∈ S, any pair of type vectors t, t̂ ∈ T , which differ only on a single
coordinate, M(t)(s) ≤ eε ·M(t̂)(s).8

In words, a mechanism preserves ε-differential privacy if for any vector of announcements a uni-
lateral deviation changes the probabilities assigned to any social choice s ∈ S by a (multiplicative)
factor of eε, which approaches 1 as ε approaches zero.9

Lemma 1 (McSherry and Talwar [19]) If F is d-sensitive then M
ε
2d (t) preserves ε-differential

privacy

The proof is simple, and is provided for completeness:

Proof: Let t and t̂ be or two type vectors that differ on a single coordinate. Then for any s ∈ S,
F (t, s)− d

n
≤ F (t̂, s) ≤ F (t, s) + d

n
, hence,

M
ε
2d (t)(s)

M
ε
2d (t̂)(s)

=

e
nεF (t,s)

2dP
s̄∈S e

nεF (t,s̄)
2d

e
nεF (t̂,s)

2dP
s̄∈S e

nεF (t̂,s̄)
2d

≤

e
nεF (t,s)

2dP
s̄∈S e

nεF (t,s̄)
2d

e
nε(F (t,s)− d

n )

2dP
s̄∈S e

nε(F (t,s̄)+ d
n )

2d

= eε.

QED

The appeal of mechanisms that provide ε-differential privacy is that they induce near indiffer-
ence among some strategies, in the following sense:

Lemma 2 If M in non-imposing and provides ε-differential privacy, for some ε < 1, then for any
agent i, any type tuple t, any strategy tuple W and any alternative strategy for i, Ŵi the following
holds:

|EM(W (t))[ui(t, s, ri)]− EM(Ŵi(ti),W−i(t−i))
[ui(t, s, ri)]| < 2ε.

To see this note that (eε − 1) ≤ 2ε whenever ε < 1 and recall that ui returns values in [0, 1].

McSherry and Talwar [19] note in particular that in the case of private values truthfulness is
2ε-dominant, which is an immediate corollary of Lemma 2. They combine this with the following
observation to conclude that exponential mechanisms approximately implement F in ε- dominant
strategies:

8For non discrete sets the definition requires that M(t)(Ŝ)

M(t̂)(Ŝ)
≤ eε ∀Ŝ ⊂ S.

9The motivation underlying this definition of ε-differential privacy is that if a single agent’s input to a database
changes then a query on that database would result in (distributionally) similar results. This, in return, suggests that it
is difficult to learn new information about the agent from the query, thus preserving her privacy.
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Lemma 3 (McSherry and Talwar [19]) Let F : T n × S → [0, 1] be an arbitrary d-sensitive so-
cial welfare function and n > e2d

ε|S| . Then for any t, E
M

ε
2d (t)

[F (t, s)] ≥ maxs F (t, s)− 4d
nε

ln
(

nε|S|
2d

)
.

In particular, this suggests that limn→∞
4d
nε

ln
(

nε|S|
2d

)
= 0 whenever the parameters d, ε and |S|

are held fixed.10 Therefore, the exponential mechanism is almost optimal for a large and truthful
population. The proof is provided to completeness:

Proof: Let δ = 2d
nε

ln
(

nε|S|
2d

)
. As n > e2d

ε|S| we conclude that ln
(

nε|S|
2d

)
> e > 0 and, in

particular, δ > 0.

Fix a vector of types, t and denote by Ŝ = {ŝ ∈ S : F (t, ŝ) < maxs F (t, s) − δ}. For any
ŝ ∈ Ŝ the following holds:

M
ε
2d (t)(ŝ) =

e
nεF (t,ŝ)

2d∑
s′∈S e

nεF (t,s′)
2d

≤ e
nε(maxs F (t,s)−δ)

2d

e
nε maxs F (t,s)

2d

= e−
nε
2d

δ.

Therefore, M
ε
2d (t)(Ŝ) =

∑
ŝ∈Ŝ M

ε
2d (t)(ŝ) ≤ |Ŝ|e−nε

2d
δ ≤ |S|e−nε

2d
δ. Which, in turn, implies:

E
M

ε
2d (t)

[F (t, s)] ≥ (max
s

F (t, s)− δ)(1− |S|e−
nε
2d

δ) ≥ max
s

F (t, s)− δ − |S|e−
nε
2d

δ.

Substituting for δ we get that

E
M

ε
2d (t)

[F (t, s)] ≥ max
s

F (t, s)− 2d

nε
ln

(
nε|S|
2d

)
− 2d

nε
.

In addition, n > e2d
ε|S| which implies ln

(
nε|S|
2d

)
> ln(e) = 1, and hence 2d

nε
≤ 2d

nε
ln

(
nε|S|
2d

)
.

Plugging this into the previous inequality yields E
M

ε
2d (t)

[F (t, s)] ≥ maxs F (t, s) − 4d
nε

ln
(

nε|S|
2d

)
as desired.

QED

Remark: There are other mechanisms which exhibit the similar properties to those of the Expo-
nential Mechanism, namely ‘almost indifference’ and ‘approximate optimality’. The literature on
differential privacy is rich in techniques for establishing mechanism with such properties. Some
examples are the addition of noise calibrated to global sensitivity by Dwork et al. [9], the addition
of noise calibrated to smooth sensitivity and the sample and aggregate framework by Nissim et
al. [22]. The reader is further referred to the recent survey of Dwork [8].

10This limit also approaches zero if d, ε, |S| depend on n, as long as d/ε is sublinear in n and |S| is subexponential
in n.
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3.2 The Commitment Mechanism

We now consider an imposing mechanism that chooses s ∈ S randomly, while ignoring agents’
announcements. Once s is chosen the mechanism restricts the allowable reactions for i to those that
are optimal assuming all agents are truthful. Formally, if s is chosen according to the probability
distribution P , let MP denote the following mechanism: MP

S (t)(s) = P (s) and MP
i (t)(ri(t, s))|s) =

1. Players do not influence the choice of s in MP and so they are (weakly) better off being truthful.

We define the gap of the environment, γ = g(T, S, A, u), as:

γ = g(T, S, A, u) = min
i,ti 6=bi,t−i

max
s∈S

(ui(ti, s, ri(t, s))− ui(ti, s, ri((bi, t−i), s))) .

In words, γ is a lower bound for the loss incurred by misreporting in case of an adversarial choice
of s ∈ S. In non-trivial environments γ > 0. We say the a distribution P is separating if there
exists a separating set S̃ ⊂ S such that P (s̃) > 0 for all s̃ ∈ S̃. In this case we also say that MP is
a separating mechanism. In particular let p̃ = mins∈S̃ P (s). The following is straightforward:

Lemma 4 If the environment (T, S, A, u) is non-trivial and P is a separating distribution over S
then ∀bi 6= ti, t−i, EMP (ti,t−i)[ui(ti, s)] ≥ EMP (bi,t−i)[ui(ti, s)] + p̃γ .

Proof: For any pair bi 6= ti there exists some s = s(ti, bi) for which ui(ti, s, ri(ti, s)) ≥
ui(ti, s, ri(bi, s)) + γ. P is separating and so P (s) ≥ p̃. Therefore, for any i, any bi 6= ti ∈ Ti and
for any t−i, EMP (ti,t−i)[ui(ti, s)] ≥ EMP (bi,t−i)[ui(ti, s)] + p̃γ , as claimed.

QED

So it is optimal to be truthful. More accurately:

Corollary 1 If the environment (T, S, A, u) is non-trivial and P is a separating distribution over
S then

1. Truthfulness is an ex-post Nash equilibrium.

2. If agent i has private reactions then truthfulness is a strictly dominant strategy.

Unfortunately, truthfulness is not a dominant strategy whenever an agent does not have private
reactions. Recall that an agent’s strategy is composed of an announcement of a type followed
by a choice of reaction. The latter stage involves a unilateral decision problem which takes into
account the vector of strategies. If an agent deviates the other agents still take into the account her
original strategy when solving for the optimal reaction. Therefore, in case of a deviation agents
may mis-calculate the optimal reaction.

12



3.3 A Generic and Nearly Optimal Mechanism

Fix a non-trivial environment (T, S, A, u) with a gap γ, separating set S̃, a d-sensitive social wel-
fare function F and a separating commitment mechanism, MP , with p̃ = mins∈S̃ P (s).

Set M̄ ε
q (t) = (1− q)M

ε
2d (t) + qMP (t).

Theorem 1 If qp̃γ ≥ 2ε then the mechanism M̄ ε
q is ex-post Nash truthful. Furthermore, if agents

have private reactions then M̄ ε
q is strictly truthful.

Proof: Follows immediately from Lemma 2 (set W (ti) = ti ), Lemma 4 and Corollary 1.

QED

Set the parameters of the mechanism M̄ ε
q (t) as follows:

• ε =
√

p̃γd
n

√
ln

(
np̃γ|S|

2d

)
• q = 2ε

p̃γ

and consider populations of size n > n0, where n0 is the minimal integer satisfying n0 ≥
max{ 8d

p̃γ
ln

(
p̃γ|S|
2d

)
, 4e2d

p̃γ|S|2} and n0

ln(n0)
> 8d

p̃γ
.

Lemma 5 If n > n0 then

1. q = 2ε
p̃γ

< 1

2. ε < p̃γ

3. n > 2ed
ε|S|

Proof: Part (1): n
ln(n)

> n0

ln(n0)
≥ 8d

p̃γ
which implies n > 8d

p̃γ
ln(n). In addition, n > n0 >

8d
p̃γ

ln
(

p̃γ|S|
2d

)
. Therefore n > 4d

p̃γ
ln

(
p̃γ|S|
2d

)
+ 4d

p̃γ
ln(n) = 4d

p̃γ
ln

(
p̃γ|S|n

2d

)
=⇒ (p̃γ)2 > 4p̃γd

n
ln

(
p̃γ|S|n

2d

)
.

Taking the square root and substituting for ε on the right hand side yields p̃γ > 2ε and the claim
follows.

Part (2) follows directly from part (1)

Part (3): n > n0 ≥ 4e2d
p̃γ|S|2 =⇒

√
n > 2ed√

p̃γd|S| . In addition n > 4e2d
p̃γ|S| > 2de

p̃γ|S| which implies

1 < ln
(

p̃γ|S|n
2d

)
. Combining these two inequalities we get:

√
n > 2ed

√
p̃γd

q
ln( p̃γ|S|n

2d )|S|
. Multiplying

both sides by
√

n implies n > 2ed
√

n
√

p̃γd
q

ln( p̃γ|S|n
2d )|S|

= 2ed
ε|S| .

QED

Set M̂(t) = M̄ ε
q (t). Our main result is:
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Theorem 2 (Main Theorem) The mechanism M̂(t) is ex-post Nash truthful and, in addition,

it 6
√

d
p̃γn

√
ln

(
np̃γ|S|

2d

)
-implements F in ex-post Nash equilibrium, for n > n0. If agents have

private reactions the mechanism is strictly truthful and 6
√

d
p̃γn

√
ln

(
np̃γ|S|

2d

)
-implements F in

strictly dominant strategies.

Recall that for ex-post Nash implementation we only need to show that one ex-post Nash
equilibrium yields the desired outcome.

Proof: Given the choice of parameters ε and q then, Theorem 1 guarantees that M̂(t) is ex-post
Nash truthful (and truthful whenever reactions are private). Therefore, it is sufficient to show that
for any type vector t,

EM̂(t)(F (t, s)) ≥ max
s

F (t, s)− 6

√
d

p̃γn

√
ln

(
np̃γ|S|

2d

)
.

Note that as F is positive, EMP (t)[F (t, s)] ≥ 0 and so

EM̂(t)[F (t, s)] ≥ (1− q)E
M

ε
2d (t)

[F (t, s)].

By part (3) of Lemma 5 we are guaranteed that the condition on the size of of the population of
Lemma 3 holds and so we can apply Lemma 3 to conclude that:

EM̂(t)[F (t, s)] ≥ (1− q)

(
max

s
F (t, s)− 4d

nε
ln

(
nε|S|
2d

))
.

We substitute q with 2ε
p̃γ

and recall that maxs F (t, s) ≤ 1. In addition, part (1) of Lemma 5
asserts that 2ε

p̃γ
< 1. Therefore

EM̂(t)[F (t, s)] ≥ max
s

F (t, s)− 2ε

p̃γ
− 4d

nε
ln

(
nε|S|
2d

)
≥ max

s
F (t, s)− 2ε

p̃γ
− 4d

nε
ln

(
np̃γ|S|

2d

)
,

where the last inequality is based on the fact ε < p̃γ, which is guaranteed by part (2) of Lemma 5.

Substituting ε for
√

p̃γd
n

√
ln

(
np̃γ|S|

2d

)
we conclude that

EM̂(t)[F (t, s)] ≥ max
s

F (t, s)− 2

√
d

p̃γn

√
ln

(
np̃γ|S|

2d

)
− 4

√
d

p̃γn

√
ln

(
np̃γ|S|

2d

)
and the result follows.

QED

One particular case of interest is the commitment mechanism MU , where U is the uniform
distribution over the set S:
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Corollary 2 Let n0 be the minimal integer satisfying n0 ≥ max{8d̃|S|
γ

ln
(

γ
2d

)
, 4e2d

γ|S| } and n0

ln(n0)
>

8d|S|
γ

. Then the mechanism M̂U(t) 6
√

d|S|
γn

√
ln

(
nγ
2d

)
-implements F , ∀n > n0.

Proof: P = U implies that the minimal probability is p̃ = 1
|S| . Plugging this into Theorem 2

gives the result.

QED

Holding the parameters of the environment d, γ, |S| fixed the approximation inaccuracy of our

mechanism converges to zero at a rate of
√

ln(n)
n

. However, the dependence on the size of the
set of alternatives, S, may be different, as we take different commitment mechanisms. We take
advantage of this observation in the analysis of two applications.

4 Pricing Digital Goods

A monopolist producing digital goods, for which the marginal cost of production is zero, faces a
set of indistinguishable buyers. Each buyer has a unit demand with a valuation in the unit interval.
Each agent is a member of a (small) cohort of agents and all cohort members have the same
valuation. The private information of each agent is a signal that is correlated with this valuation.
The monopolist wants to set a uniform price in order to maximize her average revenue per user.

Assume there are N · D agents, with agents labeled (n, d) (the dth agent in the nth cohort).
The valuation of all agents is the nth cohort is the same and is denoted V n. Agent (n, d) receives a
signal (her type) Xn

d ∈ IR that is positively correlated with V n. Given the vector Xn = {Xn
d }D

d=1,
of all the signals of agents in the nth cohort, we denote the expected value of the good to agent
(n, d) by E(V n|Xn) (note that although we suppress the notation of the prior distribution over
the valuations and the signals, the conditional expectation refers to them). We assume that each
agent’s signal is informative in the sense that E(V n|Xn) > E(V n|X̂n) whenever Xn > X̂n (in
each coordinate a weak inequality holds and for at least one of the coordinates a strong inequality
holds). That is, whenever an individual’s signal increases the expected valuation increases.

Let Ri = {‘Buy’, ‘Not buy’}, be i’s set of reactions.

The (expected) utility of (n, d), given the vector of signals X = {Xn}N
n=1 = {{Xn

d }D
d=1}N

n=1,
and the price p, is

ui(X, p, ri) =

{
E(V n|Xn)− p if ri = ‘Buy’,

0 if ri = ‘Not buy’.
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We assume that all valuations are restricted to the unit interval, prices are restricted to some
finite grid S = SM = {0, 1

m
, 2

M
, . . . , 1} and Xn

d take on only finitely many values. We assume the
price grid is fine enough so that for any two vectors Xn > X̂n there exists some price p ∈ S such
that E(V n|Xn) > p + 2

m
> p > E(V n|X̂n). Therefore any vectors of announcements there exists

a maximal price for which optimal reaction is Buy. For that price, if an agent announces a lower
value then the best reaction would be Not Buy, which will yield a loss of 1

m
at least. Similarly,

there exists the lowest price for which the optimal reaction is Not Buy. Announcing a higher value
will result in the optimal reaction being Buy, which yields a loss of 1

m
at least. We conclude that

the gap is γ = 1
m

.

The monopolist wants to maximize the average revenue per buyer . Denote by F (t, p) =
p
n
· |{(n, d) : E(V n|Xn) > p}| and note that a unilateral change in the type of one agent may

change at most the buying behavior of d members in her cohort. Therefore, F is d-sensitive.

In this application the gap is equal 1
m

. To see this consider the case where an agent announces
some bn

d ≥ Xn
d + 1

m
. If ti < s ≤ bi then ui(ti, s, ri(ti, s))− ui(ti, s, ri(bi, s)) = 0− (ti − s) ≥ 1

m
.

Similarly, if ti ≥ bi +
1
m

then for bi < s ≤ ti, ui(ti, s, ri(ti, s))−ui(ti, s, ri(bi, s)) = (ti−s)−0 ≥
1
m

.

Let Mdg be a mechanism as in Corollary 2, where a Uniform Commitment mechanism is used:

Corollary 3 Mdg O(
√

M2

N
ln(N/2))-implements F in ex-post Nash equilibrium.

This technique can extend to valuations and prices that are not restricted to the grid but can take
any value in the unit interval. For this setting let M ′

dg be the mechanism Mdg applied to the rounded
announcements. That is we replace each announcement bi with the the largest value in the grid SM

not exceeding it and apply Mdg. The loss of M ′
dg is that of Mdg plus the effect of discretization,

which adds to F at most 1
M

, and hence we get that M ′
dg is an (

√
M2

N
ln(N/2)+ 1

M
)-implementation.

Setting M = (N/ ln N)1/4 we get that M ′
dg is an O

(
(ln(N)/N)1/4

)
-implementation for F in ex-

post Nash equilibrium.

The literature on optimal pricing in this setting has so far concentrated on the private val-
ues case. However, it has provided better approximations. In particular, Balcan et al. [5], using
sampling techniques from Machine Learning, provide a mechanism that O( 1√

n
)-implements the

maximal revenue.

5 Facility Location

Consider a population of n agents located on the unit interval. An agent’s location is private
information and a social planner needs to locate K similar facilities in order to minimize the
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average distance agents travel to the nearest facility.11 We assume each agent wants to minimize
her distance to the facility that services her. In particular, this entails that values (and reactions)
are private.

5.1 The Discrete Case

We first consider the discrete case where locations are restricted to a finite grid on the unit interval,
L = L(m) = {0, 1

m
, 2

m
, . . . , 1}. Using the notation of previous sections, let Ti = L, S = LK , and

let Ri = L. The utility of agent i is

ui(ti, s, ri) =

{
−|ti − ri| if ri ∈ s,

−1 otherwise.

Hence, ri(bi, s) is the facility closest to the locations of the facility in s closest to bi. Let F (t, s) =
1
n

∑n
i=1 ui(ti, s, ri(ti, s)) be the social utility function, which is 1-sensitive (i.e., d = 1).

First, consider the uniform commitment mechanism M̂U , which is based on the uniform dis-
tribution over S for the commitment mechanism. Now consider the mechanism M̂LOC1, based on
the uniform commitment mechanism, as in Corollary 2

Corollary 4 M̂LOC1 6
√

m(m+1)K

n

√
ln

(
n

2m

)
- implements the optimal location.

Proof: Note that γ = 1
m

, |S| = (m+1)K and the proof follows immediately from Corollary 2.

QED

Now consider an alternative commitment mechanism. Consider the distribution P , over S =
LK , which chooses uniformly among all the following alternatives - placing one facility in location
j
m

and the remaining K − 1 facilities in location j+1
m

, where j = 0, . . . ,m− 1. Note that for any i,
any pair bi 6= ti is separated by at least one alternative in this set. For this mechanism p̃ = 1

m
. Now

consider the mechanism M̂LOC2, based on the commitment mechanism, MP :

Corollary 5 M̂LOC2 6
√

m2

n

√
ln

(
n(m+1)K

2m2

)
-implements the optimal location.

11For expositional reasons we restricting attention to the unit interval and to the average travel distance. Similar
results can be obtained for other sets in IR2 and other metrics, such as distance squared.
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Proof: This is an immediate consequence of Theorem 2.

QED

The rate at which the two mechanism converges to zero, as the society grows, is similar. In
addition, both mechanisms deteriorate as the grid size , m, grows. However the latter deteriorates at
a substantially slower rate. This becomes important when we leverage the discrete case to analyze
the continuous case in the next paragraph.

In fact, we can further improve our results for the facility location problem. To do so we revisit
the bound on the loss from being truthful for the Exponential Mechanism. This bound is based
on the sensitivity of F and in particular on the fact that |F (t, s) − F ((t̂i, t−i), s)| ≤ 1

n
(recall that

d = 1). In fact, a stronger inequality holds here: |F (t, s) − F ((t̂i, t−i), s)| ≤ |ti−t̂i|
n

. This, in turn,
yields a better bound on the loss incurred by being truthful in the Exponential mechanism:

Lemma 6 (Analog of Corollary 1) In the facility location problem, if ε ≤ 1 then for any i, any
bi, ti ∈ Ti and any t−i ∈ T−i,

E
M

ε
2 (ti,t−i)

[ui(ti, s, ri(ti, s))] ≥ E
M

ε
2 (bi,t−i)

[ui(ti, s, ri(ti, s))]− 2ε|ti − bi|.

Proof: Note that

|F (bi, t−i, s)− F (ti, t−i, s)| =
1

n
|ui(bi, s, ri(bi, s))− ui(ti, s, ri(ti, s))|

≤ 1

n
max
x=bi,ti

|ui(bi, s, ri(x, s))− ui(ti, s, ri(x, s))|

=
1

n
max
x=bi,ti

∣∣|bi − ri(x, s)| − |ti − ri(x, s)|
∣∣ ≤ 1

n
|ti − bi|.

Plugging this into the definition of the Exponential Mechanism we get:

E
M

ε
2 (bi,t−i)

[ui(ti, s, ri(ti, s)] =
∑
s∈S

ui(ti, s, ri(ti, s))M
ε
2 (bi, t−i)(s)

=
∑
s∈S

ui(ti, s, ri(ti, s))
e

nε
2

F (bi,t−i,s)∑
s′∈S e

nε
2

F (bi,t−i,s′)

≤
∑
s∈S

ui(ti, s, ri(ti, s))
e

nε
2

“
F (ti,t−i,s)+

|ti−bi|
n

”
∑

s′∈S e
nε
2

“
F (ti,t−i,s′)−

|ti−bi|
n

”
= eε|ti−bi|

∑
s∈S

ui(ti, s, ri(ti, s))M
ε
2 (ti, t−i)(s)

= eε|ti−bi|E
M

ε
2 (ti,t−i)

[ui(ti, s, ri(ti, s)],
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The proof is completed by noting that as |ti − bi| ≤ 1 and ε < 1, eε|ti−bi| ≤ 1 + 2ε|ti − bi|.

QED

Assume that the grid size is some power of 2, say m = 2m̄. Consider an imposing mechanism
induced by the following distribution P over the set S: First, choose a uniformly a random number
X ∈ {1, 2, 3, . . . , m̄}. Then choose another random number, Y uniformly in {0, 1, 2, . . . , X}.
Now let s be the alternative where one facility is located at Y

X
and the other K−1 facilities at Y +1

X
.

Lemma 7 (Analog of Lemma 4) For the grid size m = 2m̄, ∀bi 6= ti, t−i, EMP (ti,t−i)[ui(ti, s)] ≥
EMP (bi,t−i)[ui(ti, s)] + |ti−bi|

2m̄
.

Proof: Consider the case bi < ti. Note that whenever 1/X < |ti − bi| ≤ 2/X and bi ≤
Y
X

< bi + 1
X

then for the resulting social alternative, s, the facility assigned to i whenever she
announces bi is located at Y

X
, whereas the facility assigned to i whenever she announces ti is at

Y +1
X

. Consequently, ui(ti, s, ri(ti, s)) ≥ ui(ti, s, ri(bi, s)) + 1
X
≥ ui(ti, s, ri(bi, s)) + (ti−bi)

2
. In

words, for the specific choice of X and Y misreporting one’s type leads to a loss of over (ti−bi)
2

.

The probability of choosing such X and Y is
∑ 2

ti−bi

x= 1
ti−bi

1
m̄

1
x
≥

∑ 2
ti−bi

x= 1
ti−bi

1
m̄

ti−bi

2
= 1

m̄
.

Since the mechanism is imposing, for any choice of X and Y misreporting is not profitable.
Therefore, the expected loss from misreporting exceeds |ti−bi|

2m̄
.

The case ti < bi is resolved with similar arguments.

QED

As in the generic construction , let M̄ ε
q (t) = (1− q)M

ε
2 (t)+ qMP (t). If q satisfies q · |ti−bi|

2 log2 m
≥

2ε|ti − bi| then M̄ ε
q (t) is truthful. In particular this holds for q = 4ε log2 m.

Set γ̂ = 1
m·2 log2 m

, ε =
√

γ̂d
n

√
ln

(
nγ̂
2d
|S|

)
and q = 2ε

γ̂
and let M̂LOC3 = M̄ ε

q for those parame-
ters.

Theorem 3 (analog of Theorem 2) M̂LOC3 O
(√

m ln m
n

√
ln(nm)

)
-implements F for large enough

n.

The proof follows similar arguments as those in the proof of Theorem 2 and is therefore omit-
ted.

The quality of the approximation, in terms of the population size, is the same as the previous
two mechanisms. However, the last mechanism is superior in terms of the grid size. This becomes
instrumental when we analyze the continuous case.
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5.2 The Continuous Case

We now use the above result to construct a mechanism for the case where types are taken from
the (continuous) unit interval. Consider the mechanism M̂LOC3 for the grid with m elements and
set M̂LOC4(t) = M̂LOC3(round(t)), where m will be determined henceforth and round(t) is the
vector of elements on the grid that is closest to t. In words, the mechanism M̂LOC4 first rounds
agents’ announcements to the closest point on the grid, and then applies the mechanism M̂LOC3

for the discrete case.

Recall that M̂LOC3 is truthful for the discrete case. Consequently, if i is located at ti and an-
nounces a location bi such that both bi and ti are rounded to the same element of the grid then
the utility of i is similar. This shows that M̂LOC4 is not truthful, however it has weakly dominant
strategies. In addition, the mechanism’s outcomes are the same for all weakly dominant strate-
gies. Hence, in order to compute how well M̂LOC4 implements F in weakly dominant strategies it
suffices to analyze the outcome of M̂LOC4 assuming agents are truthful.

The loss of M̂LOC4 is bounded by that of M̂LOC3 and an additional additive factor of 1
m

, which

is a result of the rounding. Hence we get that MLOC4 is O
(√

m ln m
n

√
ln(nm) + 1

m

)
-optimal.

We now set m = n1/3/(ln n)2/3 and next Theorem follows immediately:

Theorem 4 M̂LOC4 weakly-O
(

ln(n)

n1/3

)
-implements F .

6 Discussion

In this section we discuss the importance of the two driving forces of the mechanism: differential
privacy and imposition. In addition, we discuss some of the limitations of our results.

6.1 Disposing of Imposition

The driving force underlying the proposed mechanism is the combination of differential privacy
on the one hand with imposition on the other hand. One natural question is to understand the
importance of each of these two components separately.

McSherry and Talwar [19] focus on differential privacy and show that this property is sufficient
to yield approximate implementation in ε-dominant strategies. Unfortunately, this result cannot be
qualitatively improved. Clearly, one cannot hope for exact implementation. However, as demon-
strated in the following example, differential privacy on its own cannot guarantee implementation
with a stronger solution concept. In fact, in the following, we show the existence of dominant
strategies that lead to inferior result, in conjunction with the existence of the ε-dominant strategies.
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Example 1 Consider a monopolist producing a digital goods who faces n buyers, each having a
unit demand at a valuation that is either 0.5 or 1. The monopolist cannot distinguish among buy-
ers and is restricted to choosing a price in the set {0.5, 1}. Assume the monopolist is interested in
maximizing the average revenue per buyer (we assume that the marginal cost of production for dig-
ital goods is zero).12 The optimal outcome for the auctioneer is OPT (t̄) =

maxs∈{0.5,1}(s·|{i:ti≥s}|)
n

.
Indeed, if the monopolist uses the appropriate exponential mechanism then it is ε-dominant for
agents to announce their valuation truthfully, resulting in almost optimal revenues. However, one
should note that the probability that the exponential mechanism will choose the lower of the two
prices increases with the number buyers that announce 0.5. Hence, it is dominant for buyers to
announce 0.5. This may lead to inferior results. In particular, whenever all agents value the good
at 1 but announce 0.5 the mechanism will choose the price 0.5 with high probability, leading to an
average revenue of 0.5, which is half the optimal average revenue.

6.2 Disposing of Differential Privacy

It is intuitive to assume that our notion of imposition trivializes the results. One could argue that the
possibility to detect untruthful agents, even if it only in hind sight, is sufficient to induce truthful
announcements, by inflicting sufficient punishment. Our notion of imposition may be viewed as
a severe punishment mechanism, where agents are free to choose any reaction but are severely
punished if the reaction falls outside of the restricted set. Does such punishment scheme trivialize
our results? The answer is no. In fact, the next example demonstrates that imposition is insufficient
to induce truthfulness. The reason for this is that an agent may benefit by mis-reporting, even if
she later is committed to a sub-optimal reaction (the one that complies with her report instead of
the one that complies with her type).

Example 2 Consider a digital goods pricing problem where agents valuations are either 1 + µ or
2 + µ, and the possible prices are 1 and 2. Consider a mechanism which implements the ’optimal’
price with probability one (instead of the corresponding smoothing induced by the exponential
mechanism). Assume there are 2n + 1 agents, of which n announced a valuation of 1 + µ and
another n announced 2 + µ. Consider the last agent, who is of type 2 + µ. If she announces her
true type then with high probability the price will is set to 2 and her expected profit is slightly
greater than µ. If, on the other hand, she misrepresents her self and announces 1 + µ then with
high probability the price is set to 1 and her expected profit is slightly less than 1.

In this example, no agent has a large influence of the value of the social welfare function.
However, there exits a possibility where a single agent will have a large influence on the actual
choice of the social alternative. Therefore, truthfulness is not dominant, although the environment
is private and imposition mechanism is in place. By adding the exponential mechanism to the
framework the choice of social alternative is no longer a ’knife-edge’ decision, thus making each
agent less influential and restoring truthfulness as a dominant strategy.

12We consider the average revenue per buyer as the social welfare function, instead of the total revenue, in order to
comply with the requirement that the value of the social welfare function is restricted to the unit interval.
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6.3 Model Limitations

There are three overarching limitations to the technique we present: (1) The generic mechanism
only works for social welfare problems which are not sensitive, (2) We consider settings where the
reaction set of agents is rich enough, such that any pair of types can be separated by the optimal
reaction on at least one social alternative; and (3) The size of the set of social alternatives cannot
grow too fast as the set of agents grows.

Sensitive function: As discussed earlier in the paper many of the social welfare functions of in-
terest are actually insensitive and comply with our requirements. Examples of insensitive functions
are are revenue in monopoly setting, sum of agents’valuations, the Gini index and more. However
there are important settings where our technique cannot be applied as the social welfare function
is sensitive. One important example is that revenue maximization in a single unit auction. Clearly
there are extreme settings where a change in a type of a single agent can drastically change the
revenue outcome. E.g., consider the instance where all agents value the good at zero, resulting in
a maximal revenue of zero. Compare this with a unilateral change in the valuation agent 1 from
zero to one. This will change the maximal revenue from zero to one as well. However, even in this
case the domain of type profiles (valuation profiles) that demonstrate sensitivity is quite small, and
in some generic sense this will not happen.

Rich reaction set: The second limitation, is that we consider settings where the reaction set of
agents is rich enough. In fact, what we need for the results to hold is that for any pair of types
of an agent there exists some social alternative for which the optimal reaction for the first type
is different than the optimal reaction for the second type. For example, in an auction setting, we
require that for each pair of agents’ valuations the auctioneer can propose a price such that one
type will buy the good, while the other will refuse.

Small number of social alternatives: The approximation accuracy we achieve is proportional

to
√

ln(nS)
n

. Therefore, if S grows exponentially as the number of agents grows the inaccuracy may
not vanish. Two examples for such settings are matching problems, where each social alternative
specifies the list of pairs, and multi unit auctions where the number of goods is proportional to
the number of bidders. On the other hand, if the size of the set S grows polynomially with the
number of agents then the limiting accuracy result still holds, although the rate of conversion could
be slower.

6.4 Alternative mechanisms

The framework we presented combines a differentially private mechanism with an imposing one.
Our general results refer to a ‘universal’ construction of an imposing mechanism (the uniform one),
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yet the specific examples we analyze demonstrate that imposing mechanisms that are tailor made
to the specific setting can improve upon the results.

Similarly, it is not imperative to use the Exponential mechanism as for the first component, and
other differentially-private mechanisms may be adequate. In fact, the literature on differential pri-
vacy provides various alternatives that may outperform the Exponential mechanism in sa specific
context. Some example can be found in Dwork et al. [9], where the mechanism has a noisy compo-
nent that is calibrated to global sensitivity, or in Nissim et al. [22] where a similar noisy component
is calibrated to smooth sensitivity. The latter work also uses random sampling to achieve similar
properties. To learn more the reader is referred to the recent survey of Dwork [8].
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