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Abstract

Following Kreps (1979), I consider a decision maker with uncertain beliefs about her
future tastes. This uncertainty leaves the decision maker with preference for �exibil-
ity: When choosing among menus containing alternatives for future choice, she weakly
prefers larger menus. Existing representations accommodating this choice pattern can-
not distinguish tastes (indexed by a subjective state space) and beliefs (a probability
measure over the subjective states) as di¤erent concepts, making it impossible to relate
parameters of the representation to choice behavior. I allow choice among menus to
depend on exogenous states, interpreted as information. My axioms yield a represen-
tation that uniquely identi�es beliefs, provided information is su¢ ciently relevant for
choice. The result is suggested as a choice theoretic foundation for the assumption,
commonly made in the (incomplete) contracting literature, that contracting parties
who know each other�s ranking of contracts also share beliefs about each others future
tastes in the face of unforeseen contingencies.

1. Introduction

The expected utility model of von Neumann and Morgenstern (1944, henceforth vNM,)

explains choice under risk by considering probabilities and tastes separately. In the context

of choice under subjective uncertainty, the corresponding separation of beliefs and tastes is a

central concern. For the one extreme case, where all subjective uncertainty can be captured

by observable states of the world, the works of Savage (1954) and Anscombe and Aumann

(1963, henceforth AA,) achieve this separation. In the other extreme case, where none of the

subjective uncertainty can be captured by observable states of the world, uncertainty can be
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modeled with a subjective state space. Kreps (1979, henceforth Kreps) and Dekel, Lipman

and Rustichini (2001, henceforth DLR,)1 �nd that the separation is not possible in this case.

In the general case some subjective uncertainty can be described by observable states of

the world, but potentially not all. This paper analyzes a model of choice under such general

subjective uncertainty, which features the AA and DLR models as special cases.2 The model

separately identi�es beliefs over subjective states and tastes, provided that observable states

are "relevant enough". A tight behavioral characterization of relevant enough is given.3

I call observable states of the world information. An act assigns a menu of alternatives

for future choice to every information.4 Timing of choice is the following. In period 1, the

decision maker (DM) chooses an act. Between periods 1 and 2 information arrives. In period

2 the act is evaluated and DM chooses from the resulting menu. Only period 1 choice is

observed. If information does not account for all subjective uncertainty that resolves between

periods 1 and 2, then even commitment to a contingent plan of period 2 choice is costly and

one should observe conditional preference for retaining �exibility: All else being equal, DM

prefers the act that assigns a larger menu to any particular information.

This paper provides a representation of Conditional Preference for Flexibility (CPF.) As

in DLR, subjective uncertainty is modeled by a subjective state space, which collects all

possible tastes that might govern DM�s choice in period 2. I call it the taste space. DM

conditions her beliefs about her future tastes on information. Holding information �xed,

choice over menus is represented by a subjective expected utility as in DLR. The central new

axiom, Relevance of Information, is equivalent to the unique identi�cation of utilities and

conditional beliefs in this representation.

My model allows any �nite or topological information space, I, and any �nite prize

space. An act, g; assigns every information, i; a contingent menu, g (i), of lotteries over

prizes. Accordingly, the taste space, S; collects all possible vNM rankings of lotteries over

prizes. In the case of �nite I, choice has a CPF representation , if it can be represented by

V (g) =
X
i2I
� (i)

24Z
S

�
max
�2g(i)

Us (�)

�
d� (s ji)

35 ;
1Throughout the paper I refer to the version of their model that represents preference for �exibility.

Dekel, Lipman, Rustichini and Sarver (2007), henceforth DLRS, is a relevant corrigendum.
2In Savage and Kreps�models there is no objective uncertainty (or risk), while AA, DLR, and the present

paper consider a combination of subjective and objective uncertainty.
3Ozdenoren (2002) also accomodates this general case. In the terminology of the present paper he assumes

that the observable state is irrelevant.
4This is in analogy to the terminology in Savage. The notion of "contingent menus" appears in Epstein

(2006). Nehring (1999) calls acts with menus as outcomes "opportunity acts":
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where � (s ji) is a subjective probability measure on S. � (s ji) is interpreted as the belief
that taste s occurs, conditional on information i. Us is a realized vNM utility function that

represents taste s. � is a probability distribution over information.

Theorem 1 takes the CPF representation and the distribution � as given.5 It establishes

that conditional beliefs � (s ji) are unique and utilities Us are unique in the appropriate
sense, if and only if choice between acts satis�es the Relevance of Information axiom. The

axiom is formulated in terms of DM�s induced ranking of menus conditional on information,

which is derived from her choice over acts. Say that two menus are the same for DM, if for

any information she considers the union of those menus to be as good as either of the menus

individually. Relevance of Information requires that if two menus are not the same for DM,

then there must be information under which she prefers one over the other.

Theorem 2 states that choice over acts has a CPF representation, if and only if it satis�es

the immediate extensions of the AA and DLR axioms. These axioms have no implications

for the e¤ect of information on the conditional ranking of menus. They are necessary axioms

even for a more general representation, where not only beliefs but also utilities depend on

the observable state of the world, i: However, the interpretation of observable states as

information (and with it the separation of beliefs and objectives) relies on the fact that

only beliefs are updated when the state changes. Theorem 2, therefore, implies that the

interpretation of observable states as information is always possible, as it does not constrain

period 1 choice.

The usual choice theoretic approach is to take the representation as a description only of

period 1 choice, where DM behaves in period 1 as if she held beliefs about possible tastes

that might govern period 2 choice. Theorem 1 relates beliefs, which are parameters of the

representation, to period 1 choice behavior.

I propose to go further. If DM has private knowledge about the contingencies underlying

the formation of her taste,6 then the natural inductive step is to employ her beliefs about

future tastes to forecast period 2 choice behavior. Doing so implies that the CPF represen-

tation is interpreted as a map of the decision making process. This cuts two ways: on the

one hand it requires evaluating the appropriateness of the representation for a particular

application,7 on the other hand the model can be refuted, if its forecasts do not agree with

observation.
5� could be objective. If � is subjective as suggested above, it must also be elicited from choice. This is

the content of Theorem 3.
6Kreps (1992) points out that a subjective taste space naturally accounts for contingencies that are not

just indescribable, but unforeseen, at least by the observer.
7The three main modelling choices are: The expected utility criterion is used to evaluate uncertain

prospects, information impacts only beliefs and, ultimately, only the chosen item on a menu generates
utility.
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Being able to forecast behavior can be important in strategic situations. As an illustrative

example, consider a retailer, who writes a contract with a supplier today. The demand, s;

facing the retailer tomorrow will be either high (h) or low (l). Today s is unknown to both

parties, tomorrow it will become the private knowledge of the retailer. The only relevant

public information that becomes available tomorrow is consumer con�dence, i; a general

market indicator, which will also be either high (H) or low (L) : Thus, a contract, g; can only

condition on consumer con�dence, not on demand. Clearly the most e¢ cient contract might

give the retailer some choice of supply quantities, q, contingent on consumer con�dence.

From the perspective of the retailer, such a contract is an act in the terminology of this

paper. Routinely one might write down the following objective function for the retailer�s

choice of contract:

V (g) =
X

i2fH;Lg

� (i)

24 X
s2fh;lg

� (s ji) max
q2g(i)

(Us (q))

35 :
First, take consumer con�dence, i 2 fH;Lg, as given. The retailer can then order any
quantity in g (i). If tomorrow she faces demand s 2 fh; lg, she will choose the quantity q
that maximizes her pro�ts, Us (q) : Today she does not know tomorrow�s demand, but she

can assign probabilities conditional on consumer con�dence, � (s ji). She values the menu
g (i) at its expected value,

P
s2fh;lg

� (s ji) max
q2g(i)

(Us (q)). Second, she takes an expectation over

di¤erent levels of consumer con�dence according to a probability distribution �: This is

an example of a CPF representation.8 The supplier�s pro�t from supplying the quantity

q does not directly depend on the demand the retailer faces, s. The supplier�s expected

pro�t depends on the probability of s only because, within the constraints of the contract;

the retailer orders the quantity that maximizes her pro�ts, given s. If the supplier does

not understand the contingencies underlying s; then he can not assign a probability to s:

Because of this asymmetry in information, the supplier�s ability to rank contracts depends

on learning the retailer�s beliefs.

Contracting models usually have to assume that, �rst, parties know each other�s ranking

of contracts and that, second, they share common beliefs about future utility-payo¤s, when

writing the contract. The �rst assumption raises the complex game theoretic question of

how parties learn each other�s ranking of contracts. This question is rarely addressed and

8A general contract may give the retailer some choice between non-degenerate lotteries, �; over di¤erent
quantities as alternatives for future choice, contingent on consumer con�dence. For example the contract
might commit the supplier to a certain action, like the quantity of units to pack and the type of packing
material to use. This action might have probabilistic implications for the quantity of intact units received
by the retailer.
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is not my focus here. Instead, I am concerned with the second assumption. If two parties

write a contract in the face of unforeseen or indescribable contingencies, which are relevant

for one party�s future utility-payo¤s, then there can be e¢ ciency gains from giving some

control rights to this party, as in the example.9 Since those contingencies are more relevant

for one party, it seems natural that this same party can also foresee them better, leading to

asymmetric information. In a survey on incomplete contracts, Tirole (1999) speculates that

"... there may be interesting interaction between "unforeseen contingencies" and asymmetric

information. There is a serious issue as to how parties [...] end up having common beliefs

ex ante." Beliefs that are elicited from a party�s ranking of contracts give choice theoretic

substance to the assumption of common beliefs.10

Section 2 demonstrates the generic identi�cation of beliefs in the example above. Section

3 lays out the model and establishes Theorems 1 and 2, �rst for a �nite information space

and then for a general topological information space. Section 4 contains Theorem 3, which

combines the two results. Section 5 comments in more detail on possible implications for

contracting. Section 6 concludes.

2. Illustration of Identi�cation of Beliefs

Consider the following three speci�cations of the CPF representation of the retailer�s choice

between contracts in the example above, where �nal outcomes are lotteries, �; over quantities.

� Irrelevant information: Suppose that the retailer�s beliefs are independent of information
about consumer con�dence, � (h jH ) = � (h jL) = � (h). In this case her induced ranking

of menus is independent of information and it is without loss of generality to consider only

contracts with g (H) = g (L) : If g is such an unconditional contract, then

V (g) =
X
s2fh;lg

� (s) max
�2g(H)

(Us (�)) :

9Only states of the world are indescribable here. Actions (or lotteries over prizes) can be described ex
ante. Whether such a contract is considered incomplete is a de�nitional question. See section 5 in Hart and
Moore (1999) for a discussion.
10Dekel, Lipman and Rustichini (1998-a) note that "... there are very signi�cant problems to be solved

before we can generate interesting conclusions for contracting [...] while the Kreps model (and its modi�ca-
tions) seems appropriate for unforeseen contingencies, [...] there are no meaningful subjective probabilities.
A re�nement of the model that pins down probabilities would be useful."
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This is an example of DLR�s representation. To see that beliefs are not identi�ed, consider

a di¤erent probability distribution b� (s) on S = fh; lg and rescaled utilities
bUs (x) = Us (x) � (s)b� (s) :

Then X
s2fh;lg

� (s)

�
max
�2g(H)

Us (�)

�
�
X
s2fh;lg

b� (s)� max
�2g(H)

bUs (�)� .
This is the fundamental indeterminacy in the Kreps and DLR models and variations of those.

� No preference for �exibility: Suppose that � (h jH ) = 1 and � (h jL) = 0. Now subjective
uncertainty is perfectly captured by the observable information states and it is without loss

of generality to identify h with H and l with L. There is then no preference for �exibility

and one can con�ne attention to contracts with lotteries instead of menus as outcomes: If

g (i) = �i is such a fully speci�ed contract, then

V (g) =
X

i2fH;Lg

� (i)Ui (�i) .

This is an example of AA�s representation.

� Preference for Flexibility and Relevant Information: Lastly, suppose the retailer believes
that she faces high demand with higher probability, if consumer con�dence is also high,

1 > � (h jH ) > � (h jL) > 0. Further suppose that there was another representation of the
same ranking of contracts with beliefs b� (s ji) and tastes bUl and bUh:

bV (g) = X
i2fH;Lg

� (i)

24 X
s2fh;lg

b� (s ji) max
�2g(i)

�bUs (�)�
35 .

V and bV have to generate the same ranking of contracts.
Consider two quantities (or degenerate lotteries) qh and ql such that the retailer prefers

to receive qh if demand is high and ql if demand is low, that is, Uh (qh) � Uh (ql) > 0 and

Ul (qh)�Ul (ql) < 0: Slightly abusing notation, I denote a lottery that gives qh with probability
� and ql with probability 1� � by �: I denote by f�; �g the menu that contains lotteries �
and �:

Suppose for � < � and �; " 2 (0; 1� �) the retailer is indi¤erent between the two
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contracts

g =

�
f�+ �; �g if i = H
f�; �g if i = L

�
g0 =

�
f�; �g if i = H
f�+ "; �g if i = L

�
:

� < � implies that � is relevant for the value of these contracts only under taste h. Hence,

g � g0 implies that

� (H)� (h jH ) � (Uh (qh)� Uh (ql)) = � (L)� (h jL) " (Uh (qh)� Uh (ql)) :

An analogous equality must hold for the parameters of bU: Therefore,
� (h jH )
� (h jL) =

"� (L)

�� (H)
=
b� (h jH )b� (h jL) :

Similarly,
� (l jH )
� (l jL) =

b� (l jH )b� (l jL) :
Since � and b� are both probability measures, it follows immediately that � � b�. That the
scaling of the expected utility functions Uh and Ul is unique up to a common linear trans-

formation is implied by standard arguments applied to the comparison of contracts which

disagree only under information i.

This reasoning can be generalized to any �nite information space, I: whenever a repre-

sentation features at least as many linearly independent probability measures over the taste

space, indexed by i 2 I, as there are relevant tastes, then beliefs are uniquely identi�ed and
the scaling of utilities is uniquely identi�ed up to a common linear transformation. For the

proof of Theorem 1, however, no particular representation is given. The theorem implies

that the CPF representation of any ranking that satis�es Relevance of Information must

have this feature.

3. The Model

Consider a two-stage choice problem, where public information becomes available between

the two stages. In period 2 DM chooses a lottery over prizes. This choice is not modelled

explicitly. The lotteries available to her in period 2 may depend on choice in period 1 and

on the information. Period 1 choice is described as choice of an act, which speci�es a set
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of lotteries (a menu) that is contingent on information and contains the feasible choices for

period 2.

Let Z be a �nite prize space with cardinality k and typical elements x; y; z. �(Z) is the

space of all lotteries over Z with typical elements �; �; . Write explicitly

� = h� (x) ; x;� (y) ; y; :::i, where � (x) is the probability � assigns to x 2 Z etc. When

there is no risk of confusion, x also denotes the degenerate lottery h1; xi : Let A be the

collection of all compact subsets of �(Z) with menus A;B;C as elements.11

Endow A with the topology generated by the Hausdor¤ metric

dh (A;B) = max
n
max
A
min
B
dp (�; �) ;max

B
min
A
dp (�; �)

o

where dp is the Prohov metric, which generates the weak topology, when restricted to lot-

teries.

Further let I be an exogenous state space with elements i; j. Call elements of I "infor-

mation". Information is observable upon realization. Let F be a �-algebra on I. Two cases

have to be distinguished. If I is �nite, F is assumed to be the �-algebra generated by the

power set of I. If I is a generic topological space, then F is the Borel �-algebra.

Let G be the set of all acts. An act is a measurable function g : I ! A. After information
i realizes, DM chooses an alternative from the menu g (i) 2 A. This choice is not explicitly
modeled. � is a binary relation on G � G. < and � are de�ned the usual way. G can be

viewed as a product space generated by the index set I, G =
Q
i2I
A. Thus, it can be endowed

with the product topology, based on the topology de�ned on A.
The following concepts are important throughout the paper.

De�nition 1: The convex combination of menus is de�ned as

pA+ (1� p)B := f = p� + (1� p) � j� 2 A; � 2 B g :

The convex combination of acts is de�ned, such that

(pg + (1� p) g0) (i) := pg (i) + (1� p) g0 (i) :

To de�ne DM�s induced ranking of menus A and B conditional on an event D 2 F ,
consider acts that give menu A or B, respectively, in event D and some arbitrary but �xed

11Compactness is not essential. If menus were not compact, maximum and minimum would have to be
replaced by supremum and in�mum, respectively, in all that follows.
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default menu, A�; in the event not D. Comparing those acts induces a ranking �D over
menus. In the context of the model, �D turns out to be independent of A�.

De�nition 2: Fix an arbitrary menu A�2 A. For D 2 F and A 2 A, de�ne gAD by

gAD (i) :=

�
A for i 2 D
A� otherwise

:

Let �D be the induced binary relation on A�A, A �D B, if and only if gAD � gBD. <D and
�D are de�ned the usual way. An event D 2 F is nontrivial, if there are A;B 2 A with

A �D B.

In period 2 objects of choice are lotteries over the prize space. The taste space (the

collection of all conceivable period 2 tastes) is the collection of all vNM rankings of lotteries.

The following de�nition is due to DLRS.

De�nition 3:

S =

(
s 2 Rk

�����X
t

st = 0 and
X
t

s2t = 1

)
is the taste space.12

S collects all possible realized vNM utilities, twice normalized. Every taste in S is a vec-

tor with k components where each entry can be thought of as specifying the relative utility

associated with the corresponding prize.13

De�nition 4: For any topological information space I and preference relation �, call
(�; �; U) a representation of Conditional Preference for Flexibility (CPF), if � is a probabil-

ity measure on I; � = f� (: ji)gi2I is a family of probability measures on S, U = fUs (:)gs2S
is a family of vNM utilities where Us represents taste s and the objective function

V (g) = E�

24Z
S

�
max
�2g(i)

Us (�)

�
d� (s ji)

35
represents � :

12DLRS refer to S as the universal state space.
13In Theorem DLRS, as in the theorems that follow, there is clearly always a larger state space, also

allowing a representation of �D, in which multiple states represent the same ranking of lotteries.
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E� denotes an appropriately de�ned expectation. The following two subsections consider

I to be a �nite and a generic topological space, respectively.

3.1. Information as a Finite Space

Assume that I is �nite and let i; j 2 F denote the elementary events of the sigma algebra

F . Then the CPF representation (�; �; U) corresponds to the objective function

V (g) =
X
i2I
� (i)

24Z
S

�
max
�2g(i)

Us (�)

�
d� (s ji)

35 :
If Us is a vNM representation of taste s, then it must have the form

Us (�) = l(s)(s � �) + c(s); where s � � is the vector product of state s and lottery �, l (s)
is the "intensity" of taste s and c (s) is some constant. The relative intensity of utilities

together with beliefs determines how DM trades of gains across tastes. The constants c (s)

have no behavioral content. In addition any changes on measure zero subsets of S have no

behavioral content. This motivates the next de�nition.

De�nition 5: For the CPF representation (�; �; U)
i) The space of relevant information, I� � I; is the minimal set with � (I�) = 1:
� = f� (: ji)gi2I is unique, if the measure � (s ji) is unique for all i 2 I�.
ii) The space of relevant tastes, S� � S; is the minimal set with � (S� ji) = 1 for all i 2 I�:14

U = fUs (:)gs2S is essentially unique, if Us are unique up to a common linear transformation,
the addition of constants c (s) and up to changes on SnS�:

An axiomatization of the CPF representation is given in Theorem 2. The distribution �

is identi�ed from behavior in Theorem 3. The main concern, however, is to separately iden-

tify beliefs � and objectives U , provided that DM�s choice over acts has a CPF representation

for a given distribution �.

Axiom 1 (Relevance of Information): If A [ B �i B for some i 2 I, then there is

j 2 I with A �j B.

To paraphrase Axiom 1: whenever two menus are not the same for DM, then there is

some information for which they are not equally good. If A and B were the same for DM,

then she should be willing to choose from A [B by simply ignoring A: This can not be the
14S� can be thought of as the tastes DM considers possible.
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case, if A [ B �i B for some i 2 I: Throughout the interpretation is that, ultimately, only
the chosen item matters for the value of a menu. If A �i B, then Axiom 1 is empty. If

A �i B, then A[B �i B implies that under i the chosen item must sometimes be in A and
sometimes in B. Axiom 1 requires that changing information can make either one or the

other case more relevant, namely that there is j 2 I with A �j B. Axiom 1 is not a strong

assumption in the sense that it is local; it only requires breaking indi¤erence. Intuitively,

the axiom speci�es situations under which information has to be relevant at all. It does not

require information to be very informative. This should make it easier for the experimenter

to �nd a rich enough information space.

Theorem 1: If, given a probability distribution � on I, � has the CPF representation

(�; �; U), then statements i and ii below are equivalent and imply iii:

i) � satis�es Axiom 1,

ii) � is unique and U is essentially unique,

iii) the cardinality of S� is bounded above by the cardinality of I�:

Proof: See Appendix.
If a decision maker acts, as if she had preference for �exibility, updated her beliefs

when learning information and otherwise maximized expected utility according to objective

probabilities, then her preferences satisfy Axiom 1, if and only if the subjective probabilities

that a Kreps-style representation assigns to future tastes are determined uniquely. The

unique identi�cation of probabilities and utilities gives meaning to the description of beliefs

and tastes as two distinct concepts. The lack of this distinction is the central drawback of

previous work on preference for �exibility, starting with Kreps.

Another di¢ culty in the application and interpretation of models of preference for �ex-

ibility is the generically in�nite subjective state space. Theorem 1 conveniently constrains

the space of relevant tastes, S�; to be �nite. Axiom 1 implies this �niteness, because I

must be rich enough to distinguish between any two menus for which DM might have pref-

erence for �exibility. This implies that only �nitely many lotteries can be appreciated in any

menu.15 Section 3.2 considers I to be a general topological space, lifting the constraint on

the cardinality of S�.

If the CPF representation is viewed as purely descriptive of period 1 choice, then the

identi�cation of beliefs relates parameters of the representation to period 1 choice behavior

only. However, if DM has private information about the formation of her future taste, then

15Kopylov (2009) turns this around and generates �niteness of S in the absence of an exogenous state
space by basically assuming that the number of lotteries DM can appreciate in any given menu is limited.

11



the natural inductive step is to employ the beliefs about future tastes elicited in Theorem 1 to

forecast period 2 choice. Doing so implies that the CPF representation is interpreted as a map

of the decision making process and that period 1 choice which satis�es Axiom 1 constrains

period 2 choice frequencies. On the one hand this inductive step must be justi�ed for a

particular application. On the other hand its validity can be refuted, if observed behavior

is not in line with the model�s predictions. The assumption that allows the identi�cation of

beliefs and objectives in this work is similar to the assumption underlying the uniqueness

results in AA and Savage. Here, changing information only leads to updated beliefs. There, a

state-independent ordinal ranking implies a state-independent cardinal ranking of prizes.16 ;17

The ability to forecast period 2 choice frequencies is relevant in strategic situations, for

example in the context of contracts. Section 5 elaborates.

Both types of exogenous uncertainty in my domain are essential for the uniqueness result:

on the one hand, DLR �nd that menus over lotteries alone do not allow to distinguish

objectives and beliefs � (s). There has to be some channel through which to vary one, but

not the other. In the CPF representation, information impacts only probabilities, � (s ji).
On the other hand, Nehring (1999) �nds that acts with menus of prizes as outcomes do

not allow to distinguish objectives and beliefs in the axiomatic setup developed by Savage

(1954).18 To establish the uniqueness result, the payo¤ a menu generates must be varied

independently for di¤erent tastes. This is possible only because DM can be o¤ered lotteries

over prizes.

That the collection of tastes which DM considers possible, S�, must indeed be �nite

is argued in the discussion of the theorem above. To see how Relevance of Information

implies unique beliefs and utilities, suppose there were two CPF representations of the same

preference relation, (�; �; U) and
�
�; b�; bU�. Suppose further that for information i 2 I

one could construct menus K �i bK , such that K generates constant payo¤ across tastes

according to (�; �; U) and bK according to
�
�; b�; bU�. Changing information changes only

DM�s beliefs about her future tastes. If a menu generates the same payo¤ for every taste,

16AA�s representation can be viewed as a special case of the CPF representation, where there is only one
taste. Their identifying assumption is the corresponding special case: the scaling of the vNM utility indexed
by this one taste is independent of information.
17Karni and co-authors, for example Grant and Karni [2005] and Karni [2009a and 2009b,] elaborate the

point that interpreting Savage�s or AA�s unique subjective probabilities over objective states as DM�s true
beliefs may be misleading. The CPF model is not immune to this critique. However, beliefs in the former
models have no direct implications for observable behavior while beliefs over tastes in the CPF model have
implications for period 2 choice frequencies. Hence, the current model is more readily measured against the
quality of its predictions.
18Following Nehring (1996), a companion paper to the one cited above, Epstein and Seo (2009) consider

a domain of random menus, which are lotteries with menus as outcomes. On this domain they tease out
unique induced probability distributions over ex post upper contour sets as the strongest possible uniqueness
statement.

12



then the conditional value of the menu is independent of information. Hence, K �j bK for all

j 2 I would have to hold. At the same time, if (�; �; U) and
�
�; b�; bU� were distinct, bK would

not generate constant payo¤ across tastes according to (�; �; U) : Therefore K [ bK �j0 K for

some j0 2 I. Relevance of Information would then imply that there is j 2 I with K �j bK, a
contradiction. This rough intuition does not quite work, because the construction of menus

that generate the same payo¤ for every taste is not possible in general. However, because

S� � S is �nite, one can construct pairs of menus (A;B for (�; �; U) and bA; bB for ��; b�; bU�)
for which the di¤erence in payo¤s is constant across tastes. LetK be the convex combination

of menus 1
2
A + 1

2
bB and let bK = 1

2
bA + 1

2
B. Then K �j bK for all j 2 I and by the type of

argument laid out above K [ bK �j0 K for some j0 2 I: This is enough to contradict the
Relevance of Information assumption.

If Axiom 1 fails completely, in the sense that information is irrelevant to the decision

maker, clearly there are no bounds on the range of probability measures � (s ji), which allow
a representation. This is the same indeterminacy �rst encountered by Kreps. But how much

indeterminacy is implied by a partial failure of Axiom 1? Suppose there is a CPF represen-

tation of �. Further suppose there is a pair of menus, A;B 2 A, such that A [ B �i B for

some i 2 I, but A �j B for all j 2 I. This means there is some preference for �exibility in
having both A and B available, but their comparison is independent of information. To say

this more precisely:

De�nition 6:
cA;B (s) := max

�2A
Us (�)�max

�2B
Us (�)

is the cost of having to choose from B 2 A instead of A 2 A under taste s 2 S.

A [ B �i B implies that cA;B (s) cannot be zero for all s and A �i B implies that it

cannot be any other constant. Still, A �j B for all j 2 I meansX
S�

cA;B (s)� (s jj ) = 0

for all j 2 I. This suggests the following Proposition.

13



Proposition 1: Suppose (�; �; U) is a CPF representation of �. Then the following two
conditions are equivalent:

i) there is a pair of menus A;B 2 A, such that A[B �i B for some i 2 I, but A �j B for

all j 2 I,
ii) there is a family of representations

n�
�; b�; bU�o

�
based on b� (s ji) = (1+�cA;B(s))�(sji )P

S�
(1+�cA;B(s))�(sji )

and bUs = Us
1+�cA;B(s)

, indexed by � > � 1
cA;B(s)

.

If there is another pair of menus A0; B0 2 A satisfying i), then there is another such

family of possible representations, if and only if

cA0;B0 (s)

cA0;B0 (s0)
6= cA;B (s)

cA;B (s0)

for some s; s0 2 S.

Proof: See Appendix.
It is now time to axiomatize the CPF representation. When I use the general notation

D 2 F this indicates that a statement is also relevant for a general topological information

space and the induced sigma-algebra, as discussed in Section 3.2. As mentioned above, the

axioms are direct extensions of standard assumptions:

Axiom 2 (Preference): � is asymmetric and negatively transitive.

Axiom 3 (Continuity): The sets fg jg � hg and fg jg � hg are open in the topology de�ned
on G for all h 2 G.

Axiom 4 (Independence): If for g; g0 2 G, g � g0 and if p 2 (0; 1), then

pg + (1� p)h � pg0 + (1� p)h

for all h 2 G.

If a convex combination of menus were de�ned as a lottery over menus, then the motiva-

tion of Independence in my setup would be the same as in more familiar contexts. Uncertainty

would resolve before DM consumes an item from one of the menus. However, following DLR

and Gul and Pesendorfer (2001), I de�ne the convex combination of menus as the menu

containing all the convex combinations of their elements. The uncertainty generated by the

convex combination is only resolved after DM chooses an item from this new menu. Gul and

14



Pesendorfer term the additional assumption needed to motivate Independence in this setup

"indi¤erence as to when uncertainty is resolved."19

Axiom 5 (Nontriviality): There are g,h 2 G, such that g � h.

The next axiom considers DM�s induced ranking of menus, �D. As long as some subjec-
tive uncertainty is not resolved with information, �D should exhibit preference for �exibility.
This is captured by the central axiom in Kreps, which states that larger menus are weakly

better than smaller menus:

Axiom 6 (Monotonicity): A [B <D A for all A;B 2 A and D 2 F .

Corollary 1: If � satis�es Axioms 2-6, then �D is a preference relation and satis�es

the appropriate variants of Continuity, Independence and Monotonicity for all D 2 F . Fur-
ther, there is a nontrivial event D 2 F .

The proof is immediate.

Theorem DLRS (Theorem 2 in DLRS): For D 2 F nontrivial, �D is a preference that
satis�es Continuity, Independence and Monotonicity, if and only if there is a subjective state

space SD, a positive countably20 additive measure �D (s) on SD and a set of non-constant,

continuous expected utility functions Us;D : � (Z)! R, such that

VD (A) =

Z
SD

max
�2A

Us;D (�) d�D (s)

represents �D and every cardinal ranking of prizes x 2 Z corresponds to at most one state
in SD.

Because Us;D (�) are realized vNM utility functions, the subjective state space SD can

be replaced by the taste space S for all D 2 F . Note that the taste space does not include
the taste where DM is indi¤erent between all prizes, implicitly assuming nontriviality of the

19Both DLR and Gul and Pesendorfer elaborate this argument.
20See footnote 3 in DLRS.
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ex-post preferences over prizes.21 ;22

Theorem 2: � satis�es Axioms 2-6, if and only if it has a CPF representation.

Proof: See Appendix.
The proof �rst establishes an additively separable representation of � con�ned to convex

subsets of �(Z) via the Mixture Space Theorem. Because of order denseness, this repre-

sentation pins down an additively separable representation of � on all of �(Z) ; V (g) =P
i2I
vi (g (i)) : Now suppose Vi represents �i : Because of the uniqueness implied by the Mix-

ture Space Theorem, Vi must agree up to scaling with vi. The scaling is absorbed by � (i),

which is then normalized to be a probability distribution. Thus, an act is evaluated by

V (g) =
X
i2I
� (i)Vi (g (i)) .

Note that this is AA�s representation, where my acts have menus as outcomes, while AA acts

have lotteries as outcomes.23 Indeed, Axioms 2-4 imply AA�s axioms. Furthermore, Axioms

2-6 imply DLRS�axioms, according to Corollary 1. According to Theorem DLRS, �i can
then be represented by bVi (A) = Z

S

max
�2A

(Us;i (�)) d�i (s) ;

where Us;i are vNM utility functions.24 Pick any j 2 I and de�ne Us := Us;j. Rescaling

�i (s) allows representing �i by

Vi (A) =

Z
S

max
�2A

Us (�) d�i (s)

21For a nontrivial event D 2 F , the trivial taste is not required to obtain the representation in Theorem
DLRS. As seen below, a representation based on S does not require the assumption of nontriviality for each
D 2 F .
22DLR further establish that, for the smallest taste space SD, which allows a representation of �D,

closure (SD) is unique. This closure is independent of information, if and only if information is not exhaustive:
If D;D0 2 F and A;B 2 A, then A [B �D A implies A [B �D0 A.

23In terms of the contracting example, Anscombe-Aumann acts correspond to completely speci�ed con-
tracts.
24In terms of the contracting example, menus correspond to contracts that do not condition on information.
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for all i 2 I: Combining the two yields the CPF representation (�; �; U) where

V (g) =
X
i2I
� (i)

24Z
S

max
�2g(i)

Us (�) d� (s ji)

35
represents � : The intensity of each taste is endogenous, but it is �xed across information.
Clearly Axioms 2-6 are also necessary for the generic combination of the AA and DLRS

representations,

bV (g) =X
i2I
� (i) bVi (g (i)) =X

i2I
� (i)

24Z
S

max
�2g(i)

(Us;i (�)) d�i (s)

35
where exogenous states impact not only probabilities � (s ji), but also the intensities of tastes.
Theorem 2 implies that there is a CPF representation of � whenever the more general rep-
resentation bV exists. The assumption that information impacts only beliefs does, therefore,
not constrain period 1 choice.

Remark: Let eS = S � R+ collect all pairs of vNM rankings and intensities. Suppose

eV (g) =X
i2I
� (i)

264Z
eS
max
�2g(i)

(Ues (�)) de� (es ji)
375

represents � : This representation is even more general than the representation bV above.

Theorem 2 implies that there is a family of probability measures e� = fe� (es ji)gi2I on eS,
that allows to represent � and for which every taste, s 2 S, corresponds to at most one
state in its support. It is straight forward to verify that this e� has the smallest possible
support S� � eS among all measures that allow a representation of � : Thus, restricting

attention to CPF representations is equivalent to considering those representations based on

the subjective state space eS, which utilize only a minimal amount of subjective states in the
sense of DLR. According to Theorem 1, e� is unique.
3.2. Information as a Topological Space

If the information space I is �nite, Axiom 1 limits the cardinality of the taste space, S. This

is no longer the case when I is in�nite. This sub-section generalizes the previous one and

considers I to be a generic topological space. The reader may choose to proceed directly to

section 4 without a loss in the continuity of ideas. Here and in the proofs, de�nitions and
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results that generalize those in the previous sub-section are distinguished by a prime on their

label.

Recall that F is the Borel �-algebra on I. The expectation under probability measures

on F can only be calculated directly for simple functions.25 For general functions it is de�ned
as an appropriate limit:

De�nition 7 (Based on De�nition 10.12 in Fishburn (1970)): For a countably additive

probability measure � on F and a bounded measurable function ' : I ! R, let h'ni be a
sequence of simple functions, 'n : I ! R, that converge from below to '. Then de�ne

E� ['] := sup fE� ['n] jn = 1; 2; :::g

to be the expectation of ' under �.

Fishburn establishes that this expectation is well de�ned.

De�nition 5�: For the CPF representation (�; �; U)
i) � = f� (: ji)gi2I is unique, if the measure � (s jD ) := E� [� (s ji) jD ] is unique for all
D 2 F and up to �-measure zero changes.

ii) U = fUs (:)gs2S is essentially unique, if Us are unique up to a common linear transfor-

mation, the addition of constants c (s) and changes on a set S 0 � S with E�
�R
S0
d� (s ji)

�
= 0.

The next de�nition provides a measure of how much a set A is preferred over set B in

terms of how much the menu corresponding to the entire prize space, Z, is preferred over

the worst prize.

De�nition 8: Given D 2 F , let z be the worst prize, A <D fzg for all A 2 A.26

For A;B 2 A, de�ne pA;B (D) 2 (�1; 1), such that
i) for A <D B, p = pA;B (D) solves

1

1 + p
A+

p

1 + p
fzg �D

1

1 + p
B +

p

1 + p
Z;

25The value of a simple function depends only on some �nite and measurable partition fDt jt 2 f1; ::; Tgg

of I . E� ['n] :=
TP
t=1
� (Dt)'n (Dt).

26If � can be represented by a CPF representation, then this prize must exist because Z is �nite and
because �D must obviously satisfy Monotonicity.
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ii) for B �D A, pA;B (D) = �pB;A (D).
Call pA;B (D) the cost of getting to choose from B instead of A under event D.

Note that pA;B (D) 6= 0 implies that D is nontrivial.

If two sequences of menus, hAni and hBni, approach each other, then the cost of getting
to choose from Bn rather than An vanishes under every event. However, the ratio of such

costs may have a well de�ned limit.

Axiom 1�(Relevance and Tightness of Information): If hAni ; hBni ; hCni � A converge

in the Hausdor¤ topology, then
pCn;An[Bn (D)

pCn;Bn (D)
9 1

for some D 2 F implies that there is D0 2 F , such that

pCn;An (D
0)

pCn;Bn (D
0)
9 1:

Axiom 1�implies Axiom 1, where i is substituted by D. To see this, note that Axiom

1 holds trivially unless there is D 2 F , such that A [ B �D B and A �D B. This implies
pC;B (D) = pC;A (D) and pC;A[B (D) 6= pC;B (D) : De�ne the constant sequences An := A and
Bn := B and let Cn := C �D A. Then pCn;An[Bn (D)

pCn;Bn (D)
9 1: Thus, according to Axiom 1�, there

is D0 2 F with pCn;An (D
0)

pCn;Bn (D
0) 9 1: Hence A �D0 B, and Axiom 1 is satis�ed.27

Theorem 1�: If, given � : I ! R+, � has the CPF representation (�; �; U), then �
satis�es Axiom 1�, if and only if � is unique and U is essentially unique.

Proof: See Appendix.
The discussion of Theorem 1 applies here, including the implications of a partial failure

of Axiom 1 and Axiom 1�, respectively.

The intuition for the proof of Theorem 1 involves identifying taste s 2 S� via two menus,
where one is preferred over the other under taste s, but they generate the same payo¤ under

every other relevant taste. If S is continuous, then the complication is that making a menu

preferred less by a �nite amount under one taste will invariably make it worse under similar

tastes,28 too. Therefore, individual tastes can only be identi�ed in the limit where the less

preferred and the more preferred menu approach each other. In this limit the cost of having

27If pCn;Bn
(D)9 0, then Axiom 1 trivially implies Axiom 1�. Thus, Axiom 1�is only stronger than Axiom

1 for pCn;Bn
(D)! 0.

28When tastes are viewed as vectors in Rk+.
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to choose from the less preferred menu instead of the more preferred menu tends to zero.

Axiom 1�allows statements about the limit of the ratio of these costs for two di¤erent pairs

of menus. The main idea of the proof is the same as for Theorem 1. To show that a similar

construction is possible here, menus are best described in terms of their support functions.29

In addition to Axioms 2-6, an axiomatization of the CPF representation requires that

�D does not change too much for small changes in D.

Axiom 7 (Continuity in Information): For any B 2 A, the set fA jA �D B g is con-
tinuous in D.

Theorem 2�: � satis�es Axioms 2-7, if and only if � has a CPF representation.

Proof: See Appendix.
Straight forward changes to the proof of Theorem 2 establish the result for � constrained

to all simple acts.30 The simple acts are shown to be dense in G under the topology de�ned

on G. Ensuring that De�nition 7 applies completes the proof.

4. Subjective versus Objective Probabilities of Information

Theorems 1 and 1�take the distribution � on I and the CPF representation (�; �; U) as given

and establish that � and U are unique in the appropriate sense, if and only if information is

relevant enough. �might be objective in the sense that it corresponds to observed frequencies

of information, or it might be subjective.

Consider �rst the case where � is subjective and must also be elicited from behavior. De-

termining � uniquely is analogous to the classical problem addressed by AA. Their unique

identi�cation of probabilities of exogenous states is based on the assumption of state inde-

pendence of the ranking of outcomes. The di¤erence is that they consider acts with lotteries

(instead of menus of lotteries) as outcomes, so there is no room for preference for �exibility in

their setup. In my setup, the combination of information independence and Axiom 1 would

rule out any preference for �exibility. Thus, the assumption of information independence

has to be constrained to a proper subset 	 � A to be useful here. Having assumed state

independent rankings, AA move on to consider only cardinally state independent rankings

(or state independent utilities). This cannot be assumed in terms of an axiom. Instead

it is a constraint on the class of representations for which they establish their uniqueness

29The introduction of support functions to the analysis of choice over menus is a major contributuion of
DLR.
30The outcome of a simple act depends only on the event D in some �nite partition fDt jt 2 f1; ::; Tgg.
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result.31 For the CPF representation it would amount to requiring that
R
S

max
�2A

Us (�) d� (s ji)

is independent of i 2 I for all A 2 	. But if 	 � A is a generic collection of menus, then

this might not be consistent with �, which applies to all of G.32 Thus, the requirement must
be limited to a particular collection of menus.

De�nition 9: Let 
 � Z denote a non-degenerate set of prizes and �(
) the set of

all lotteries with support in 
. Let 	(� (
)) � A be the set of all menus of lotteries that

have support in 
.

Axiom 8 (Partial Information Independence): There is 
 � Z, such that for A;B 2
	(� (
)), A �D B for some event D 2 F implies A �D0 B for all nontrivial D0 2 F . If �
satis�es the same condition for 
0 � Z, then also for 
 [ 
0.

To illustrate Axiom 8, consider 
 = f$1; $0g to consist of the prizes "1 Dollar" and "noth-
ing". The �rst part of Axiom 8 then requires all menus that consist only of lotteries that

might pay out $1 to be ranked independently of information. To motivate the requirement

it is su¢ cient to assume that the value of $1 (versus nothing) is independent of information.

Once AA restrict attention to representations with state independent utilities, there is

no arbitrariness in their model. In contrast, preference for �exibility implies 
 � Z: Hence,
there could be 
0 � Z, for which � also satis�es the �rst part of Axiom 8, while for 
 [ 
0

it does not. Either the prizes in 
 or those in 
0 could then be assigned a cardinal ranking,

which is independent of information. While there is no inherent argument to favor one over

the other, the two assumptions clearly lead to di¤erent representations. This arbitrariness

would render the uniqueness result meaningless. The second part of Axiom 8 rules out this

scenario, suggesting the following de�nition:

De�nition 10: If � satis�es Axiom 8, let 
� � Z be the largest set, for which it does.

Theorem 3: � satis�es Axioms 1-6 and Axiom 8 (Axiom 1� and Axioms 2-8 if I is a

general topological space,) if and only if it has a CPF representation, (�; �; U), where the

evaluation of menus in 	(� (
�)) is independent of information. For this representation �

is unique, � is unique and U is essentially unique and constant across S for all x 2 
�.
31Compare to the discussion of Theorem 1.
32For a simple example of such inconsistency consider 	 = ff�g ; f�g ; fgg but, for some p 2 (0; 1) and

D;D0 2 F , fp�+ (1� p) g �D f�g �D0 fp�+ (1� p) g. Since
R
S

max
�2A

Us (�) d� (s ji ) is linear, it can not

be independent of i 2 I.
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Proof: In the class of representations, where
R
S

max
�2A

Us (�) d� (s ji) does not depend on i 2 I

for all A 2 	(� (
�)), the uniqueness of � follows in complete analogy to the corresponding
result in AA. Given the unique �, Theorems 1 and 1�imply uniqueness of � and essential

uniqueness of U . Because a representation where Us (x) is constant across S for all x 2 
�

clearly exists, the unique representation must have this feature. �

Now consider the alternative case, where frequencies of information are observable: an

observer who observes frequencies � might be willing to assume that DM bases her evalua-

tion of acts on �, as long as a CPF representation based on � exists:33 ;34

Proposition 2: Suppose � satis�es Axiom 1 and can be represented by (�; �; U), where

� has minimal support in the sense that I� has the cardinality of S�; T:35 Then there is a

neighborhood of � in RT , such that for any probability measure � on I� in this neighborhood
there is a representation

�
�; b�; bU� ; where bU and b� are continuous in �.

Proof: See Appendix.
This result about the robustness to small misspeci�cations of � can be relevant in appli-

cations where beliefs are used to forecast period 2 choice: if the observer and the decision

maker disagree slightly in their perception of the "objective" probabilities, then Theorem 1

can be applied36 and the unique subjective probabilities of future tastes provided by Theorem

1 are at least a good approximation of DM�s true beliefs.

33This is not always the case. For example if (�; �; U) represents � an there is an event D 2 F that is
trivial according to � but not according to �, then there is no CPF representation based on �.
34Alternatively, it is easy to strengthen Axiom 8, such that the unique CPF representation in Theorem 3

is based on those frequencies: (Objective Probabilities): There is 
 � Z, such that for A;B 2 	(� (
))
and nontrivial D;D0 2 F ,

� (D0)

� (D) + � (D0)
hAD +

� (D)

� (D) + � (D0)
hBD0 �

� (D)

� (D) + � (D0)
hAD0 +

� (D0)

� (D) + � (D0)
hBD:

If � satis�es the same condition for 
0 � Z, then also for 
 [ 
0.
This implies Axiom 8. It also implies that V

�
gAD
�
� V

�
gBD
�
=
�
V
�
gAD0

�
� V

�
gBD0

�� �(D)
�(D0) for A;B 2

	(� (
)).
35Such a representation can always be found by pooling all information states that are not needed to

identify beliefs.
36There is a representation based on �, even if DM truly believes �.
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5. Asymmetric Information and Contracts

As illustrated by the example in the introduction, my domain has a natural interpretation in

terms of contracts. At the time two parties write a contract, the event space I is describable.

In addition there are indescribable contingencies that are more relevant for one party than for

the other. It seems natural that information about those contingencies is also asymmetric.

In order to focus on this asymmetry, I assume that each party foresees those and only those

contingencies that are directly relevant to its own payo¤s. Contingencies that are foreseen

by both parties are describable.

Consider a principal and an agent who want to write a contract. Only the principal�s

valuations depend on indescribable contingencies, which are unforeseen only by the agent.

Let S denote the principal�s taste space. Actions are observable, so there is no risk of moral

hazard. An action pair speci�es actions to be taken by the principal and the agent, respec-

tively. Each action pair induces a probability distribution over outcomes, which potentially

dependents on the event i 2 I; but not on indescribable contingencies.37

The contract can fully condition on uncertainty about the agent�s payo¤, because this

uncertainty resolves entirely between writing the contract and taking action. Therefore, an

e¢ cient contract assigns some control rights to the principal: it speci�es a collection of action

pairs for every describable event i 2 I, from which the principal can choose at a later time.

The reduced form of such a contract, g : I ! A, speci�es a menu of lotteries over outcomes
for every event i 2 I. The principal chooses from g (i), after information i realizes and after

the uncertainty about the contingencies that determine her taste over outcomes, s 2 S, has
been resolved. From the principal�s point of view, the contract is an act in the terminology

of the previous sections.

To agree on an e¢ cient contract, both parties must be able to rank all contracts.

The principal�s ranking of contracts has a CPF representation and satis�es Axiom 1. For

�s (A) := argmax
�2A

(� � s)38 the CPF representation can be written as

V (g) = E�

24Z
S

Us (�
�
s (g (i))) d� (s ji)

35 ;
where � is unique. The agent assigns an event dependent cost, c (x; i), to every prize x 2 Z.
Let c (i) 2 Rk be the vector of these costs. Further he also assess probabilities of events
37Contingencies that impact the e¤ect of actions on the probabilities of outcomes are directly relevant for

both parties.
38The argmax exists, because menus are compact. If it is not unique, ties can be broken in favor of the

agent.
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according to the probability distribution � : I ! [0; 1]. Lastly, the agent believes that

the CPF representation reveals the principal�s assessment of the uncertainty about her own

future tastes. Then, conditional on learning the principal�s ranking of contracts, the agent

ranks contracts according to

W (g) = E�

24Z
S

(��s (g (i)) � c (i)) d� (s ji)

35 :
Note that W (g) depends on the conditional subjective probabilities, �, as perceived by the

principal but not on the intensities of her tastes, U . In my axiomatic setup these two are

distinct concepts.

The assumption that rankings of contracts are commonly known is usually required in

contract theory and justi�ed by some informal story of learning from past observations.39 As

this assumption is not my focus, I make it without doing the game theoretic complexity of

the contracting problem justice. Instead I address the additional assumption required in the

(incomplete) contracting literature: In order to allow both parties to rank all contracts, it

has to be assumed that they believe in the same probability distribution over utility-payo¤s,

ex ante.40 This ad hoc assumption is made for lack of a useful choice theoretic model of

the bounded rationality involved. It is troubling in the context of unforeseen contingencies,

where asymmetric information seems natural. My domain is not only well suited to describe

the type of (incomplete) contracts laid out above, but for those contracts my axioms also

give choice theoretic substance to the assumption of common beliefs.

Forecasting behavior based on beliefs elicited from the principal�s ranking of contracts is

an inductive step. The underlying assumption that the CPF representation maps her actual

decision making process is not directly falsi�able. However, it can be falsi�ed indirectly on

the basis of its predictions. The agent might, thus, be comfortable to make this assumption

not only because it is intuitive from introspection, but also because past agents have found

it to generate the right predictions.

6. Conclusion

The notion of a taste space is attractive, because in principle it allows distinction of conse-

quences and probabilities. In the context of preference for �exibility this distinction, in turn,

reconciles choice with Bayesian decision making, which is at the heart of the notion of ratio-

39Alternatively contracts signed in a large homogenuous population might be observed.
40Section 3 in Maskin and Tirole (1999) elaborates this point.
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nality. However, identifying the two conceptually distinct components through preferences

has proven di¢ cult. This paper proposes to consider an exogenous state space, interpreted as

information, which is relevant enough to allow their unique identi�cation. The interpretation

is that information is chosen by Nature. I conclude by suggesting a reinterpretation.

Consider information, which can be determined by the experimenter instead of Nature.

In many contexts the experimenter cannot credibly o¤er alternative information about states

of nature. If he can, then information is typically interpreted as just another dimension of

the consumption bundle. In contrast, a frame is information which seems to be irrelevant to

the rational evaluation of alternatives, but which may a¤ect choice. The experimenter can

change the frame (at least in a laboratory) and the frame is not interpreted as part of the

consumption bundle.

One possible interpretation of frames is suggested by Sher and McKenzie (2006). They

propose that logically equivalent frames may not be informationally equivalent, but convey

information about the sender�s knowledge about relevant but not explicitly speci�ed aspects

of the choice situation.41

Let f�fgf2I be a subset of A�A�I: Each binary relation �f is a subset of A�A and
captures choice between menus in A under frame f 2 I. The adaptation of my axioms

to this new domain is straight forward. A representation of Preference for Flexibility with

Frames is a pair (�; U) where � and U are as speci�ed in De�nition 4 and

Vf (A) =

Z
S

max
�2A

Us (�) d� (s jf )

represents �f . To paraphrase the identifying assumption, "Relevance of Frame", in this
context: if there is preference for �exibility with respect to two menus that are indi¤erent

under one frame, then the choice can be reframed so as to break the indi¤erence. Frames

are relevant, if and only if the parameters of the representation are unique in the sense of

Theorems 1.42

The representation suggests interpreting DM�s susceptibility to frames as Bayesian deci-

sion making. The underlying model is not speci�ed, but the uniqueness result allows classi-

fying the information content of changing frame f to frame f 0 by comparing the probability

distributions � (s jf ) and � (s jf 0 ) they induce.
If DM truly was a Bayesian decision maker (in the sense speci�ed by the model,43) then

41Of course, DM might be susceptible to frames for a multitude of other reasons, like hedonic forces,
cognitive load or reference dependent preferences.
42On this domain there is no probability measure over frames that corresponds to � in the CPF represen-

tation. This simpli�es the uniqueness statement and Theorem 3 becomes irrelevant.
43This may be the case, even if she is not explicitly aware of the information content she assigns to frames.

For example a reference point introduced by a frame might persist and in�uence future choice the way DM
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� (s jf ) should predict how often taste s governs her future choice. Whether and when it
does, is an empirical question.

7. Appendix

7.1. Proof of Theorem 1

The following de�nition is according to DLR.

De�nition 11: Call �A : S ! R with �A := max
p2A

(p � s) the support function of A.

Support functions have the following useful properties:44

(i)A � B if and only if �A 6 �B
(ii) ��A+(1��)B = ��A + (1� �)�B whenever 0 � � � 1
(iii) �A\B = �A ^ �B and �(A[B) = �A _ �B.
Denote by A� the maximal menu supported by �; A� =

S
�A=�

A. Let A� be the collection of

all menus that are maximal with respect to some support function. Note that A 2 A� i¤ A
is convex. Let �i simultaneously denote the induced ranking of support functions, � �i � if
and only if A� �i A�.

Lemma 1: For " small enough, �" := " is a support function.

Proof: The k�1 dimensional hyperplane in Rk that contains S isHS =
�
x 2 Rk jx � 1 = 0

	
.

The hyperplane that contains the k � 1 dimensional simplex of lotteries, �(Z) ; is H�(Z) =�
x 2 Rk jx � 1 = 1

	
: These two hyperplanes are parallel. Choose " small enough such that

the k � 1 dimensional ball B" � H�(Z) with radius " around the center of the simplex is

itself inside the simplex, B" � �(Z). Then �B" � ". �

Proof of Theorem 1, i))iii): Suppose to the contrary that S� is in�nite or �nite with
#S� > #I: The de�nition of S� implies that one can �nd #I +1 Borel Sets with non-empty

interior, fStg#I+1t=1 ; such that for all t � #I+1 there exists i 2 I with � (int (St) ji) > 0. Since
� can have at most countably many atoms, one can further guarantee � (Cl (St) \ Cl (St0) ji) =
0 for all t; t0 � #I + 1 and all i 2 I:

"expects" it to.
44See, for example, Rockafellar (1972).
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Claim 1: Given St, there is " small enough and a support function �t, such that �t = " on
SnSt; �t � " on St and xt (i) :=

R
S

[�t (s)� "] d� (s ji) > 0 for some i 2 I�.

Proof of Claim 1: Remember that �" supports a ball, B"; with radius " around the
center of the simplex. The maximal menu B with �B � �" on SnSt includes all lotteries
with p � s � " for all s 2 SnSt: This implies max

p2B
(p � s) > " for all s in the non-empty interior

of St: Hence, �B > �" must hold on int(St). Let �t := �B: k

We can solve the following system of #I +1 independent linear equations with variables

f�tgt2f1;#I+1g for any n > 0 and some given t0 :

#I+1X
t=1

xt (i)�t = 0 for all i 2 I and �t0 = #;

where xt is as de�ned in Claim 1. Choose # such that
P
j�tj = 1:The convex combination

of �nitely many menus is well de�ned, and by property (ii) above, the convex combination

of �nitely many support functions is, too. Thus one can de�ne two support functions as

� : =

#I+1X
t=1

j�tj (1�t>0�t + 1�t<0")

� : =

#I+1X
t=1

j�tj (1�t>0"+ 1�t<0�t)

On the one hand,
#I+1P
t=1

xt (i)�t = 0 for all i 2 I immediately implies that A� �i A�:
On the other hand, �t0 6= 0 implies that A� [ A� �i A� for some i 2 I�, which contradicts
Axiom 1.

Proof of Theorem 1, i))ii):

Claim 2: For any positive function f on S� there is � > 0 small enough, such that for

any 0 < � < � there are support functions � and � with � � �jS� = �f .

Proof of Claim 2: List the elements of S� = fs1; s2; :::g : Consider fStg#S
�

t=1 with st 2 St
and sr =2 St for r 6= t. Construct �t (s) as in Claim 1. Let xt := �t (st)� ": Choose f�tg

#S�

t=1

such that �txt / f (st) and
P
�t = 1. De�ne � :=

P
�t�t and � := ". Then � � �

��
S�
� �f

for some � > 0: For � < � let � := �� + (1� �) ". Then � � �jS� � �f: k
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Suppose (�; �; U) and
�
�; e�; eU� are two CPF representations of � with S� and fS� as

the corresponding relevant taste spaces. Write the vNM expected utility Us (p) as Us (p) =

l (s) (s � p) : As in the text, l (s) captures the "intensity" of taste s: Let f (s) / 1
l(s)

on S�.

Analogously let ef (s) / 1el(s) on fS�. Find � and e� small enough, such that there are � ande� with � � �jS� = �f and e� � ����fS� = e� ef and e� �i �. Because f (s) / 1
l(s)
it must be true that

max
p2A�

Us (p)�max
p2A�

Us (p) is constant across S�: Consequently,
P
S�

�
max
p2A�

Us (p)�max
p2A�

Us (p)

�
� (s jj )

must be independent of j: This independence is meaningful in terms of �. It is easy to verify
that it holds, if and only if

� (i)

� (i) + � (j)
g
A�
i +

� (j)

� (i) + � (j)
gA�j � � (i)

� (i) + � (j)
gA�i +

� (j)

� (i) + � (j)
g
A�
j

for all i; j 2 I�: The same argument, based on the representation
�
�; e�; eU�, implies thatP

fS�
 
max
p2Ae�

eUs (p)�max
p2A�

eUs (p)!e� (s jj ) is independent of j: (�; �; U) and ��; b�; bU� both repre-
sent �; and therefore

P
S�

 
max
p2Ab�Us (p)�maxp2A�

Us (p)

!
� (s jj ) must be independent of j: Hence,

e� �j � for all j 2 I. At the same time, max
p2Ae�Us (p) � maxp2A�

Us (p) is not constant across S�;

because (�; �; U) and
�
�; e�; eU� are distinct, which implies e� ef (s) is not identical to �f (s)

on S� or on fS�. W.l.o.g. suppose they disagree on S�: Because e� �j �, there must be
s0; s00 2 S� with e� ef (s0) > �f (s0) and e� ef (s00) < �f (s00). Hence, Ae� [ A� �j A� for all j 2 I
with � (s0 jj ) > 0. This contradicts Axiom 1. Hence, S� = fS� and l(s) / el (s) on S�. This
establishes the essential uniqueness of U:

That the measure � (: ji) is unique for all i 2 I with � (i) > 0 then follows immediately
from the result in DLR (their Theorem 1), that b� (s ji)bl (s) / � (s ji) l (s) for the case of a
�nite taste space.

Proof of Theorem 1, ii))i): It remains to establish that Axiom 1 is also necessary.

Suppose to the contrary that the representation exists with the stated uniqueness, but Ax-

iom 1 is violated. Then, there are two menus A;B 2 A, such that A �j B for all j 2 I
and A [ B �i B for some i 2 I. A �j B for all j 2 I implies

P
S�
cA;B (s)� (s jj ) = 0 for

all j 2 I. A [ B �i B implies that cA;B (s) cannot be zero under all tastes, so it must be

positive under some tastes and negative under others. For the proof it is important that it is
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not constant across tastes: de�ne b� (s ji) := (1+�cA;B(s))�(sji )P
S�
(1+�cA;B(s))�(sji )

, where � is small enough, such

that 1+ �cA;B (s) > 0 for all s 2 S�. Accordingly de�ne bl (s) := l(s)
1+�cA;B(s)

. Clearly
�
�; b�; bU�

is a representation of �i, when evaluated in acts gAi . As such, it is unique up to positive
a¢ ne transformations. To verify that it represents � it is, therefore, su¢ cient to �nd two

menus, A �j B for all j 2 I, for which the relative cost of getting gBj instead of gAj across
I is the same according to bV (g) as according to V (g). Consider again A� and A� from the

proof of claim 2. Their construction immediately implies that V
�
g
A�
i

�
� V

�
gA�i
�
/ � (i)

and bV �gA�i �� bV �gA�i � / � (i)

1 + �
P
S�
cA;B (s)� (s ji)

= � (i) :

This contradicts the uniqueness statement in Theorem 1 i). Thus, Axiom 1 is necessary for

this uniqueness statement. �

7.2. Proof of Proposition 1

That i) implies ii) is demonstrated in the proof of Theorem 1. The reverse follows from

Theorem 1.

It remains to be shown that if there is another pair of menus, A0; B0 2 A, such that
A0 �j B0 for all j 2 I and A0[B0 �i B0 for some i 2 I�, then they add another set of possible
representations, if and only if

cA0;B0 (s)

cA0;B0 (s
0) 6=

cA;B(s)

cA;B(s0)
for some s; s0 2 S. That this condition is

su¢ cient for the existence of additional representations is obvious. To see that it is necessary,

suppose there was a representation
�
�; b�; bU� with b� (s ji) 6= (1+�cA;B(s))�(sji )P

S�
(1+�cA;B(s))�(sji )

for all �. There

must be some non-constant function c : S ! R, such that b� (s ji) � (1+�c(s))�(sji )P
S�
(1+�c(s))�(sji ) for some

� > 0 and c (s) 6= cA;B (s). �i mandates that bl (s) / l(s)
1+�c(s)

. Because
�
�; b�; bU� represents

the same preference as (�; �; U),
P
S�
c (s)� (s ji) must be constant. Hence, there is some

non-constant function ec : S ! R, with
P
S�
ec (s)� (s ji) = 0 for all i 2 I. Let ec+ (s) and ec� (s)

be the positive and negative part of ec (s), respectively. Following the proof of Claim 1 above,
choose �+ such that �+ � �

��
S�
= �ec+ and �� such that �� � ���

S�
= �ec�. Let A0 := A�+

and B0 := A�� :Then A�+ �i A�� for all i 2 I; but A�+ [A�� �j A�� for some j 2 I; because
cA0;B0 (s) is not constant. Thus A0 and B0 violate Axiom 1. They satisfy

cA0;B0 (s)

cA0;B0 (s
0) 6=

cA;B(s)

cA;B(s0)

by construction. �
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7.3. Proof of Theorem 2

De�nition 12: Let A be the collection of all convex subsets of �(Z). Let G be the collec-
tion of all acts: g : I ! A. Call g 2 G a convex act.

Lemma 2: � constrained to G satis�es Axioms 2-4, if and only if there are continuous

linear functions vi : A ! R, such that v : G ! R with v (g) =
P
i2I
vi (g (i)) represents � on

G.

Moreover, if there is another collection of continuous linear functions, v0i : A ! R, such
that v0 (g) =

P
i2I
v0i (g (i)) represents � on G, then there are constants a > 0 and fbi ji 2 I g,

such that v0i = bi + avi for each i 2 I.

Proof: The collection of convex acts G together with the convex combination of acts as

a mixture operation is a mixture space. Lemma 2 is an application of the Mixture Space

Theorem (Theorem 5.11 in Kreps (1988)),45 where additive separability across I follows from

the usual induction argument. �

Corollary 2: If i 2 I is nontrivial, then Vi (A) and vi (A) agree on A up to positive

a¢ ne transformations.

Proof: Evaluating v
�
gAi
�
implies that vi represents �i on A. vi is linear. The Mixture

Space Theorem states that any other linear representation of �i agrees with vi, up to a
positive a¢ ne transformation. According to Theorem DLRS, Vi (A) is linear and represents

�i on A. �

For any nontrivial event i 2 I (which exists according to Corollary 1), Vi (A) and vi (A)
agree on A up to a positive a¢ ne transformation, as established by Corollary 2. Thus there
is an event dependent, positive scaling factor �0 (i), such that vi (A) = �0 (i)Vi (A) for all

A 2A, where �0 (i) = 0, if and only if i is trivial. Let V 0 represent � on G and V 0 � v on
G. Continuity implies that there is a convex act g 2 G for all g 2 G, such that g (i) �i
g (i). Then, according to Lemma 2, V 0 (g) = V 0 (g) =

P
i2I
vi (g (i)) =

P
i2I
�0 (i)Vi (g (i)).

According to Theorem DLRS, Vi (g (i)) = Vi (g (i)). Hence, g � h implies
P
i2I
�0 (i)Vi (g (i)) >

45Axiom 2 (Continuity) is stronger than von Neumann-Morgenstern Continuity on G, which requires that
for all g � g0 � g00 there are p; q 2 (0; 1), such that pg + (1� p) g00 � g0 � qg + (1� q) g00.
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P
i2I
�0 (i)Vi (h (i)). Therefore

V 0 (g) =
X
i2I
�0 (i)

24Z
S

l (s) max
�2g(i)

(� � s) d�i (s)

35
represents �. Since v is unique only up to positive a¢ ne transformations, �0 (i) can be
normalized to be a probability measure, � (i). Interpreting � (s ji) := �i (s) as a conditional
probability measure over the taste space S, de�ne

V (g) :=
X
i2I
� (i)

24Z
S

l (s) max
�2g(i)

(� � s) d� (s ji)

35
to establish the su¢ ciency statement in Theorem 2. That Axioms 2-6 are necessary for the

existence of the representation is straight forward to verify. �

7.4. Proof of Theorem 1�

The proof idea is the same as for Theorem 1. To show that Axiom 1 is su¢ cient for the

uniqueness statement, �rst establish the analogous claim to Claim 2. The de�nition of

support functions (de�nition 11) and all related notations remain relevant here.

Recall that Us (p) can be written as Us (p) = l (s) (s � p) : The function l : S ! R+ is
strictly positive.46 Consider the uninformative event I 2 F : Note that

R
S0 ld� (s jI ) exists

for any measurable S 0 � S, because the value of the menu supported by �" in Lemma 1 isR
S
�"ld� (s jI ) = "

R
S
ld� (s jI ).

Lemma 3: There are support functions � and � and a number � > 0, such that � (S 0 jI )�R
S0 � (� � �) ld� (s jI ) < ": For �

0 > � there are also support functions �0 and �0, such that

� (S 0 jI )�
R
S0 �

0 (�0 � �0) ld� (s) < ".

Proof:

Claim 3: If f is positive and integrable, then for any " > 0, there is a continuous, positive
function g : S ! R with bounded support, such that

R
S0 jf � gj d� (s) < " for every measur-

able set S 0 � S:
46 l (s) = 0 corresonds to the trivial state, which is not part of a CPF representation.
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Proof: As f and � are both weakly positive,
R
S
jf� (s)j ds exists. Thus, for every " > 0;

there exists a continuous function g : S ! R such that
R
S0 jg � f j d� (s) < ": See, for exam-

ple, Billingsley, Theorem 17.10. Since f is positive, g can be chosen positive.k

Given " > 0; Claim 3 establishes that there is a continuous, positive function g , such

that
R
S0 jl � gj d� (s) < " for every measurable set S

0 � S. The function 1
g
: S ! R+ is then

positive, bounded and continuous. Thus, for any " > 0; g can be chosen such thatZ
S0
jg � lj 1

g
d� (s) �

1g

1

Z
S0
jg � lj d� (s) < "

2
:

Claim 4 (Lemma 11 in DLR): The functions that are the di¤erence of two support
functions span a cone that is dense in C (S) ; the space of continuous functions on S; the

unit sphere in Rk:

As l is positive, � (S 0) :=
R
S0 ld� (s jI ) is itself a measure.

47 Claim 4 then implies that for

every " > 0 there are two support functions � and � and a number � > 0, such thatZ
S0

����1g � � (� � �)
���� ld� (s) < "

2

for every measurable set S 0 � S:
Hence,

� (S 0 jI )�
Z
S0
� (� � �) ld� (s jI ) �

Z
S0
j1� � (� � �) lj d� (s jI )

�
Z
S0
jg � lj 1

g
d� (s jI ) +

Z
S0

����1g � � (� � �)
���� ld� (s jI ) < ":

This establishes the �rst part of the lemma. To show the second part, consider �0 = c�

with c > 1; then let �0 = � and �0 = 1
c
� +

�
1� 1

c

�
�. �0 is a convex combination of support

functions and therefore a support function and �0 (�0 � �0) � � (� � �). This concludes the
proof of Lemma 3. �
47If information is ignored, in the sense that DM only gets to choose only between acts that do not

condition on information, then preferences can be represented as in DLR. The measure � corresponds to the
measure featured in this representation. It is dominated by the measure � (s jI ) and the Radon-Nikodym
derivative of v with respect to � (: jI ) evaluated in s is l (s) ; the intensity of taste s:
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Suppose (�; �; U) and
�
�; b�; bU� are two CPF representations of �. Following Lemma

3, one can de�ne a sequence of support functions h�ni and h�ni and a sequence of numbers
h�ni, such that

� (S 0 jI )�
Z
S0
�n (�n � �n) ld� (s jI ) <

1

n

for every measurable set S 0 � S and for all n > 0: Analogously de�ne
Db�nE and hb�ni and a

sequence of numbers hb�ni based on ��; b�; bU� : According to the second part of Lemma 3 it
is possible to choose h�ni and hb�ni such thatZ

S

(�n � �n) ld� (s jI ) =
Z
S

�b�n � b�n� ld� (s jI )
and hence 1

2
�n +

1
2
b�n �I 1

2
b�n + 1

2
�n according to (�; �; U) for all n > 0.

Rewriting pA;B (D) as de�ned in de�nition 8 in terms of support functions yields pA;B (D) =R
S
(�A � �B) ld� (s jD ) : For the remainder of the proof, let An; Bn and Cn be de�ned, such

that �An =
1
2
�n +

1
2
b�n; �Bn = 1

2
b�n + 1

2
�n and �Cn =

1
2
�n +

1
2
b�n.

Claim 5: pCn;An (D)

pCn;Bn (D)
! 1 for all D 2 F .

Proof: First note that

pCn;An (D)

pCn;Bn (D)
=

R
S
1
2
(�n + b�n � �n � b�n) ld� (s jD )R

S
1
2

�
�n + b�n � b�n � �n� ld� (s jD )

=

R
S
(�n � �n) ld� (s jD )R

S

�b�n � b�n� ld� (s jD )
By de�nition � (S 0 jI )� �n

R
S0 (�n � �n) ld� (s jI ) <

1
n
for every measurable set S 0 � S and

for all n > 0 implies that (i) lim
n!1

�
�n
R
S
(�n � �n) ld� (s jI )

�
= 1, because � is a probability

measure and (ii) �n (�n � �n) l ! 1 almost everywhere according to � (s jI ) : The same
observations can be made for

Db�nE, hb�ni, hb�ni and ��; b�; bU� :
For every D 2 F the range of � (: jD ) is a subset of the range of � and S 0 � S is � (: jD )

measurable, if and only if it is � (s jI ) measurable. Hence,

lim
n!1

�
�n
R
S
(�n � �n) ld� (s jD )

�
= 1 for all D 2 F . Analogously

lim
n!1

hb�n RS �b�n � b�n�bldb� (s jD )i = 1 for all D 2 F . As in the case of �nite I; it is easy
to verify that this independence is meaningful in terms of �. Hence, there is a sequence
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of numbers h�ni, such that lim
n!1

h
�n
R
S

�b�n � b�n� ld� (s jD )i = 1 for all D 2 F . Since
1
2
�n +

1
2
b�n �I 1

2
b�n + 1

2
�n for all n > 0, it must be that �n

�n
! 1. Together with observations

(ii) above this implies that
R
S(�n��n)ld�(sjD )R
S(b�n�b�n)ld�(sjD ) ! 1 for all D 2 F . k

Claim 6: If (�; �; U) and
�
�; b�; bU� are two CPF representations of � that are distinct be-

yond the changes permitted in the uniqueness statement of Theorem 1�, then
pCn;An[Bn (D)
pCn;Bn (D)

9 1:

Proof: First note that

pCn;An[Bn (I)

pCn;Bn (I)
=

R
S
1
2

�
�n + b�n �maxn�n + b�n;b�n + �no� ld� (s jI )R

S
1
2

�
�n + b�n � b�n � �n� ld� (s jI )

=

R
S
max

n
�n � �n;b�n � b�no ld� (s jI )R
S

�b�n � b�n� ld� (s jI )
It follows immediately from the uniqueness statements in Theorems 3 and 4 in DLR, that

� (s jD ) and b� (s jD ) share the same support in the sense of De�nition 5 and that l (s)� (s jD )
is unique up to rescaling for any D 2 F . Thus, if (�; �; U) and

�
�; b�; bU� are distinct in

the sense of the claim, then the corresponding functions l and bl have to be distinct. Conse-
quently, there is S 0 � S, such that

R
S0

lbld� (s jI ) 6= � (S 0 jI ). Thus, for n large enough,
lim
n!1

h
�n
R
S0

�b�n � b�n� ld� (s jD )i = c 6= � (S 0 jI ) : W.l.o.g. suppose that c > 1: Then

lim
n!1

h
�n
R
S
max

n
�n � �n;b�n � b�no ld� (s jD )i > 1, which implies

R
S
max

n
�n � �n;b�n � b�no ld� (s jD )R
S

�b�n � b�n� ld� (s jD ) 9 1: k

The combination of Claims 5 and 6 is a direct violation of Axiom 1�. Hence, Axiom 1

implies that (�; �; U) is unique in the sense of Theorem 1�.

It remains to show that Axiom 1�is also necessary. The argument requires only slight

changes compared to the �nite case: suppose to the contrary that the representation holds

with the stated uniqueness, but Axiom 1� is violated. Then, there are sequences

hAni ; hBni ; hCni � A, which converge in the Hausdor¤ topology, with pCn;An[Bn (D)
pCn;Bn (D)

9 1
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for some D 2 F and pCn;An (D
0)

pCn;Bn (D
0) ! 1 for all D0 2 F . pCn;An (D

0)
pCn;Bn (D

0) ! 1 for all D0 2 F implies that

R
S

cAn;Bn (s)� (s jD0 )R
S

cCn;Bn (s)� (s jD0 )
! 0

for all D0 2 F . pCn;An[Bn (D)
pCn;Bn (D)

9 1 implies

cAn;Bn (s)R
S

cCn;Bn (s)� (s jD )
9 0

� (s jD )-almost everywhere. In complete analogy to the �nite case, de�ne

b� (s jD ) :=
0@1 + � cAn;Bn (s)R

S

cCn;Bn (s)� (s jD )

1A� (s jD ) ;
where � is small enough, such that 1 + � cAn;Bn (s)R

S

cCn;Bn (s)�(sjD )
> 0 for all s 2 S. From here the

argument is identical to the one in the �nite case. Thus, Axiom 1�must hold. �

7.5. Proof of Theorem 2�:

De�nition 13: Let fDt jt 2 f1; ::; Tgg be a �nite partition of I with Dt 2 F . fDtg denotes
a generic partition of this type. Further let GfDtg be the collection of acts where the outcome

depends only on the event D 2 fDtg. Let G� :=
S
fDtg

GfDtg be the set of simple acts. G\G�

is the collection of all simple convex acts.

The support of g 2 GfDtg is a �nite subset of A.

Lemma 2�: � constrained to G \ G� satis�es Axioms 2-4, if and only if there are con-

tinuous linear functions vD : A ! R, such that v : G \G� ! R with v (g) =
TP
t=1

vDt (g (Dt))

for g 2 G \GfDtg, represents �.
Moreover, if there is another collection of continuous linear functions, v0D : A ! R, such

that v0 (g) =
TP
t=1

v0Dt (g (Dt)) represents � on G \ G�, then there are constants a > 0 and

fbD jD 2 F g, such that v0D = bD + avD for each D 2 F .

Proof: That v (g) =
TP
t=1

vDt (g (Dt)) for g 2 G \ GfDtg represents � con�ned to G \ GfDtg,
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is implied by Lemma 2.

If the simple act g is constant on each element of fDtgTt=1, then it is also constant on
each element of a �ner partition fD0

tg
T 0

t=1. For � � f1; :::; T 0g, such that Dt =
S
t2�
D0
t, the

usual induction argument yields

1

]�
(g� (D1) ; :::; g

� (Dt�1) ; A; g
� (Dt+1) ; :::; g

� (DT )) +
]� � 1
]�

g�

=
X
t2�

1

]�

�
g� (D0

1) ; :::; g
� �D0

t�1
�
; A; g�

�
D0
t+1

�
; :::; g� (D0

T 0)
�
;

and thus vDt (A) =
P
t2�
vD0

t
(A). Therefore, v (g) =

TP
t=1

vDt (g (Dt)) for g 2G\GfDtg represents

� constrained to all simple acts, g 2 G \G�.
The uniqueness statement follows immediately from the uniqueness in Lemma 2. That

the representation implies continuity and linearity of v and, thus, the axioms is obvious. �

As suggested in the text, �rst establish the result of Theorem 2 for simple acts and then

show that those are dense in the space of all acts. Once this is established, verify that De�-

nition 7 can be employed. Corollary 2 still holds, where i is replaced with D.

Claim 7: If � satis�es Axioms 2-6, then there are a set of bounded positive numbers

fl (s)gs2S, a collection of probability measures f�D (s)gD2F and a countably additive prob-
ability measure � on F , such that, for g 2 GfDtg,

V (g) =
TX
t=1

� (Dt)

Z
S

l (s) max
�2g(Dt)

(� � s) d�Dt (s)

represents � on G�. Furthermore, there is a function v : G! R as in Lemma 2 that agrees
with V on G�.

Proof: Just as in the proof of Theorem 2, establish that there is an event dependent,

positive scaling factor �0 (D), such that

v (g) =

TX
t=1

�0 (Dt)

Z
S

l (s) max
�2g(Dt)

(� � s) d�Dt (s)

for g 2 GfDtg, where v represents �. �0 (D) = 0, if and only if D is trivial. �D is then
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represented by
R
S

l (s)max
�2A

(� � s) d�D (s). Holding utilities �xed, it is a straight forward

variation of AA�s classical result, that �D identi�es �D (s) uniquely. Thus, it obviously

identi�es �0 (D)�D (s) up to the value �
0 (D). Now consider a partition fDtgTt=1 withD[D0 2

fDtgTt=1 and a �ner partition fD0
tg
T 0

t=1 with D;D
0 2 fD0

tg
T 0

t=1. According to the proof of

Lemma 2�, vD[D0 (A) = vD (A) + vD0 (A). As l (s) does not depend on D, the representation

for the �ner partition must then assign the same relative weight to any taste s, as the

representation for the coarser partition:

�D[D0 (s) / �0 (D)�D (s) + �0 (D0)�D0 (s)

for all s 2 S and D;D0 2 F . Thus, for �D[D0 (s) to be a probability measure, it must hold

that �0 (D [D0) = �0 (D) + �0 (D0). Inductively establish that

�0
�[

Dt

�
=
X

�0 (Dt)

for
S
Dt 2 F . F is a �-algebra, so it includes all countable unions of its elements. Since v

is unique only up to positive a¢ ne transformations, � (D) / �0 (D) can be normalized, such
that � (D) is a countably additive probability measure. For g 2 G�, de�ne

V (g) :=
TX
t=1

� (Dt)

Z
S

l (s) max
�2g(Dt)

(� � s) d�Dt (s)

to establish Claim 7. k

Claim 8: The simple acts G� are dense in G in the topology de�ned on G.

Proof: I will argue that every neighborhood of an act g 2 G in the product topology

contains a simple act. Let pi : G! Gi be the natural projection from G to Gi = A and let

B" (A) � A be an open ball of radius " > 0 around A 2 A,

B" (A) := fB 2 A jdh (A;B) < "g :

It su¢ ces to show that, for every act g 2 G, there is a simple act in every �nite intersection
of sets of the form p�1i (B" (g (i))) � G.48 Let a �nite set I 0 � I index the relevant dimensions
48Open sets in the product topology are the product of open sets in the topology dh on A, which coincide

with A for co�nitely many i 2 I.
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for this intersection. I will establish that there is always a simple act h with

max
i2I0

dh (g (i) ; h (i)) < ":

Let L � �(Z) be a �nite set of lotteries over Z, such that for all � 2 �(Z) there is �0 2 L
with dp (�; �0) < ". This set exists, because �(Z) is compact. Let A0 be the set of all subsets

of L. Then A0 � A, and for all A 2 A there is A0 2 A0 with dh (A;A0) < " by the de�nition
of dh (A;B). Thus, there is an act in

T
I0
p�1i (B" (g (i))) with support only in A0. Because I 0

is �nite and F the Borel �-algebra, there is �nite partition fDtg of I, such that i; j 2 I 0

and i 2 Dt imply j =2 Dt. Thus, for every g 2 G and for all " > 0, there is a simple act inT
I0
p�1i (B" (g (i))). k

Claim 8 implies that, if

v (g) �
TX
t=1

� (Dt)

Z
S

l (s) max
�2g(Dt)

(� � s) d�Dt (s)

on G�, which can be guaranteed according to Claim 7, then the continuous function v (g) is

uniquely determined on all of G.

To use De�nition 7, hold l (s) �xed. It is bounded by construction. For a simple act,

gn 2 GfDtg, consider the function 'n : I ! R, de�ned as

'n (i) :=

Z
S

l (s) max
�2gn(D)

(� � s) d�D (s)

for i 2 D 2 fDtg. Then, the task is to �nd a sequence of simple acts, hgni � G�, such that
'n converges from below to the bounded function

' (i) :=

Z
S

l (s) max
�2g(i)

(� � s) d�i (s)

for a given act g 2 G and some measure �i (s). First, for gn 2 GfDtg, let Dn (i) be such

that i 2 Dn (i) 2 fDtg. Because gn 2 GfDtg can always be expressed by using a �ner

partition and because F is the Borel �-algebra, it is without loss of generality to assume

lim
n!1

Dn (i) = fig. Given �D (s), l (s) is unique. Axiom 7 then implies that �i (s) :=

lim
gn!g

�Dn(i) (s) is well de�ned. (� � s) is continuous; thus, gn (i) ! g (i) for gn ! g holds

by construction. Second, compactness of �(Z) and Continuity (Axiom 3) imply that the
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set of acts with only singletons in their support has a worst element, g. Axiom 6 then implies

that g < g for all g 2 G. For a singleton f�g,

Z
S

l (s) max
�2f�g

(� � s) d�i (s) =
X
x2Z

0@� (x)Z
S

l (s) sxd�i (s)

1A :
For z = argmin

x2X

�R
S

l (s) sxd�i (s)

�
, this expression is minimized in � = h1; zi. Thus, g has

support in ffh1; zig jz 2 Z g, which is a �nite set. Hence g is simple.
With a simple act as a worst act, there must then be a sequence of simple acts, such that

gn (i)! g (i) from below. Continuity of v and De�nition 7 give

E�

24Z
S

l (s) max
�2g(i)

(� � s) d�i (s)

35 = v (g) :
Interpreting � (s ji) := �i (s) as a probability measure over the taste space S, conditional

on the information i 2 I, yields the representation in Theorem 2�:

V (g) = E�

24Z
S

l (s) max
�2g(i)

(� � s) d� (s ji)

35 :
This completes the proof of the su¢ ciency statement in Theorem 2�. That the axioms are

also necessary for the existence of the representation is straight forward to verify. �

7.6. Proof of Proposition 2

The following lemma is at the heart of the proof of Proposition 2:

Lemma 4: If I is �nite and (�; �; U) and
�
�; b�; bU� both represent �, then

� (i)

� (j)
=
� (i)

� (j)

R
S

l(s)bl(s)d� (s ji)R
S

l(s)bl(s)d� (s jj )
has to hold for all nontrivial i; j 2 I.

Proof : For any given i 2 I, (�; �; U) and
�
�; b�; bU� represent the same preference, �i.
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Then b� (s ji) must be a probability measure with b� (s ji) / l(s)bl(s)� (s ji) and consequently

bl (s) b� (s ji) = l (s)� (s ji)R
S

l(s)bl(s)d� (s ji)
:

At the same time (�; �; U) and
�
�; b�; bU� represent the same preference across I. It is easy

to verify that this implies � (i)
R
S

bl (s) max
�2g(i)

(s � �) db� (s ji) / � (i)
R
S

l (s)max
g(j)

(s � �) d� (s ji)

for all g 2 G and hence � (i) = � (i)
R
S

l(s)bl(s)d� (s ji) ;which establishes Lemma 4. �
I� and S� are assumed to have �nite cardinality T . According to Lemma 4, bl (s) has to

solve the system of equations � (i) / � (i)
P
S�

l(s)bl(s)� (s ji) for all i 2 I�: We want to establish
that there is a neighborhood of �, such that all � in this neighborhood allow an alternative

representation,
�
�; b�; bU�. Interpret � and � as vectors in RT+. Denote by � (s) 2 RT+ the

vector with i-th component � (s ji) and by � � � (s) 2 RT+ the component wise product of
those vectors. The system of equations has a solution with bl (s) > 0, if and only if � is in
the interior of the positive linear span of f� � � (s)gs2S�.

Lemma 5: Under the conditions of Proposition 2, f� (s)gs2S� are linearly independent.

Proof : Suppose not. Let n 2 f1; :::; Tg index the tastes in S�. Then there must be

parameters cn for n 2 f1; :::; T � 1g, such that � (sT ) =
P

n2f1;:::;T�1g
cn� (sn). Then for some

� 2 (0;1) n f1g, one can de�ne �0 (s ji) to be probability measures, such that

�0 (sT ) / �� (sT ) and
�0 (sn ji)
�0 (sm ji)

=
� (sn ji)
� (sm ji)

for all n;m 2 f1; :::; T � 1g and all i 2 I. Then l0 (sn) := l (sn)
�(snji )
�0(snji ) is well de�ned for

all n 2 f1; Tg, and for U 0s (�) = l0 (s) s � � the CPF representation (�; �0; U 0) is numerically
identical to the representation (�; �; U) : This contradicts Theorem 1. �

� 2 RT+. Thus, f� � � (s)gs2S� must also be linearly independent. Therefore f� � � (s)gs2S�
spans RT , and the positive linear span of f� � � (s)gs2S� is open in RT+. � can be ex-

pressed as a linear combination, which assigns unit weight to T linearly independent vectors:

� =
P
S�
� � � (s). Hence, � is in the interior of the positive linear span of f� � � (s)gs2S�.

This establishes the �rst part of Proposition 2: under the conditions of the proposition,
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there is a neighborhood of � in RT , such that all � in this neighborhood allow an alternative
representation,

�
�; b�; bU�. Since the solution of a linear system of equations is continuous in

all parameters, it is continuous in �. This establishes the second part of Proposition 2. �
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