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Abstract

We introduce a model in which firms trade goods via bilateral contracts which
specify a buyer, a seller, and the terms of the exchange. This setting subsumes (many-
to-many) matching with contracts, as well as supply chain matching. When firms’
relationships do not exhibit a supply chain structure, stable allocations need not exist.
By contrast, in the presence of supply chain structure, a natural substitutability condi-
tion characterizes the maximal domain of firm preferences for which stable allocations
always exist. Furthermore, the classical lattice structure, rural hospitals theorem, and
one-sided strategy-proofness results all generalize to this setting.
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1 Introduction

The theoretical literature on two-sided matching began with the simple one-to-one (mar-

riage) model of Gale and Shapley (1962), in which agents on opposite sides of a market

(men and women) seek to match into pairs. The central solution concept in this literature is

stability, the requirement that for no unmatched pair does each agent prefer the other to their

current assigned partner. Gale and Shapley (1962) showed that stable one-to-one matches

exist in general, and obtained conditions under which this existence result is preserved even

if agents on one side of the market are allowed to match to multiple partners, that is, when

the matching is many-to-one (as in college admissions and doctor-hospital matching). Fol-

lowing high-profile applications of matching in labor markets and school choice programs,1

the foundational work on matching has been extensively generalized.2 Recently, Ostrovsky

(2008) illustrated that matching markets need not be two-sided—they may instead consist

of a market of firms organized into supply chains. Earlier matching models easily embed

into the supply chain framework: for example, the many-to-one matching market between

doctors and hospitals may be thought of as a “one-step supply-chain” in which doctors sell

their services to hospitals.

Although the expanding work on matching has eliminated nearly all the theoretical re-

strictions imposed in the early literature, two assumptions have been maintained through-

out, either implicitly or explicitly:

1Roth and Sotomayor (1990) provide a survey of the pre-1990 theory of matching. Roth (2008) gives
an updated account, as well as references for historical and recent applications of matching. For examples
of specific applications, see Roth (2002) (National Resident Matching Program) and Abdulkadı̀roǧlu et al.
(2009) (school choice).

2Kelso and Crawford (1982) extended many-to-one matching to a setting in which matches are supple-
mented by wage negotiations, as well as allowing for more general preferences than responsiveness for those
agents desiring multiple contracts; Hatfield and Milgrom (2005) generalized this framework still further, by
allowing agents to negotiate contracts which fully specify both a matching and the conditions of the match.

Meanwhile, a host of work has studied the existence of stable matchings in many-to-many matching set-
tings, two-sided markets in which all agents may match to multiple partners (as in the matching of consultants
to firms). Many-to-many matching has been studied, for example, in the work of Sotomayor (1999a, 2004),
Echenique and Oviedo (2006), and Konishi and Ünver (2006). Recently, Hatfield and Kominers (2010)
merged this line of research with that of Hatfield and Milgrom (2005), introducing a theory of many-to-many
matching with contracts.
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• acyclicity – no agent may both buy from and sell to another agent, even through

intermediaries, and

• full substitutability – upon being endowed with an additional item, an agent’s demand

for other items is lower, both in the sense of a reduced desire to buy additional items

and an increased desire to sell items he currently owns.3

In this paper, we introduce a new matching model in which firms trade via bilateral con-

tracts which specify a buyer, a seller, and the terms of the exchange. This model subsumes

all classical matching models, and hence can be used to understand many-to-many match-

ing markets (such as the matching of auto-parts suppliers and assemblers (Fox, 2008)), as

well as more complex markets where agents are both buyers and sellers (such as in multi-

firm supply chains (Ostrovsky, 2008)).

The generality of our framework allows us to make two novel theoretical contributions.

First, we show that both acyclicity and full substitutability are necessary for classical

matching theory. If either condition is violated, then stable allocations cannot be guaran-

teed.4 Intuitively, if a contracting relationship contains a cycle, and if a firm in the cycle

has an outside option which he prefers to one contract in the cycle, then both the outside

option and the complete trading cycle are unstable; the necessity of acyclicity follows. The

necessity of full substitutability is more technical to illustrate, but follows closely upon

prior results of Hatfield and Kominers (2010).

Second, in the presence of acyclicity and fully substitutable preferences, we fully gener-

alize the key results of classical matching theory. We prove that under these conditions, sta-

ble allocations correspond bijectively to fixed points of an isotone operator; Tarski’s fixed

3Full substitutability is a condition on firms’ preferences familiar from auction theory. Indeed, full sub-
stitutability is an ordinal analogue of the conventional notion of substitutes from auction theory (see, for
instance, Milgrom (2004)) and we prove more formally that it is equivalent to quasisubmodularity of the
associated indirect utility function.

4Note that we use a notion of stability which is distinct from chain stability introduced by Ostrovsky
(2008). Our stability concept is more stringent than chain stability, although these two notions coincide on
acyclic contract domains over which firm preferences are fully substitutable. As we detail in Section 3.3, for
domains where these conditions do not hold, chain stability has some unappealing properties.

3



point theorem then guarantees the existence of a lattice of stable allocations. We also prove

a generalization of the classical rural hospitals theorem of Roth (1986) and the strategy-

proofness results of Hatfield and Milgrom (2005) and Hatfield and Kojima (2009).5 These

latter results display a surprising structure which can only be elicited within a framework as

general as ours: in particular, we show that the difference between the numbers of buy- and

sell-contracts held, rather than the absolute number of contracts held, is invariant across

stable allocations for each agent.6

In light of our necessity results, our work establishes a frontier of matching theory.

Without acyclicity and fully substitutable preferences, stable allocations are not guaranteed

to exist in general, and hence the results of classical matching theory fail. Up to the failure

of these conditions, however, all of the results of classical matching theory hold.

The remainder of this paper is organized as follows. We formalize our model in Sec-

tion 2 and discuss the various restrictions on preferences, proving our characterization of

full substitutability. In Section 3, we prove the sufficiency and necessity of fully substi-

tutable preferences for the existence of stable contract allocations. In Section 4, we dis-

cuss the structure of the set of stable allocations, proving our rural hospitals and strategy-

proofness results. We conclude in Section 5.

5As in other work in the theory of generalized matching our rural hospitals theorem provides an invariant
on agents’ net position in contracts. It thus only partially generalizes the original rural hospitals theorem of
Roth (1986). However, as we discuss in Footnote 26, this generalization is maximal.

6The Roth (1986) rural hospitals theorem and its subsequent generalizations by Hatfield and Milgrom
(2005) and Hatfield and Kominers (2010) all showed that, under certain conditions, the number of contracts
signed by each firm is invariant across stable allocations. The natural conjecture that this exact result would
extend to our setting is false, as we demonstrate in Section 4.1. We instead find that the proper invariant for
each firm in our framework is the difference between the numbers of buy- and sell-contracts held by that firm.
This result implies the previous rural hospitals results because, in a two-sided market, no firm can be both a
buyer and a seller.
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2 Model

2.1 Framework and Solution Concepts
2.1.1 Agents and Contracts

There is finite set F of of firms, and a finite set X of contracts. Each contract x ∈ X is

associated with both a buyer xB and a seller xS; several contracts in X may have the same

buyer and seller.7

For concreteness, one may suppose each contract x ∈ X denotes the exchange of a

single unit of a good from xS to xB.8 However, contracts need not use a constant unit. For

example, labor markets might allow both full- and part-time job contracts.9

Let xF ≡ {xB, xS} be the set of the firms associated with contract x. For a set of

contracts Y , we denote

YB ≡
⋃
y∈Y

{yB}, YS ≡
⋃
y∈Y

{yS}, YF ≡ YB ∪ YS.

The contract set X is acyclic if there does not exist a cycle, i.e. a set of contracts

{
x1, . . . , xN

}
⊆ X

such that x1
B = x2

S, x
2
B = x3

S, . . . , x
N−1
B = xN

S , x
N
B = x1

S (as pictured in Figure 1).10 This

condition is equivalent to the condition that there is an ordering B on F such that for all

x ∈ X , xS C xB; for an acyclic contract set X , if f C f ′, we will say that f is upstream

of f ′ and that f ′ is downstream of f . We say that X is exhaustive if there is a contract

7Note that since X is finite, we may interpret X as being a subset of the set F × F × T , for some finite
set T of possible contract terms. With this notation, a contract x ∈ X is a 3-tuple: x = (xB , xS , t) with
xB , xS ∈ F and t ∈ T .

8In this case, an exchange of 17 units from xS to xB would technically occur through 17 different con-
tracts. While in practice the actual sale would not transact in this fashion—a single contractual document
would cover the sale of all 17 units—use of primitive contract units lose no generality and will help us inter-
pret the numerical implications of our results. For example, when primitive units are used, our Theorem 8
characterizes the excess stock of goods held by each firm at every stable allocation.

9As we point out in Section 4.1, the practical implications of our results which involve numerical contract
counts are unclear if contracts are not denoted in a fixed unit. An in-depth discussion of these issues is
presented by Hatfield and Kominers (2010).

10In our diagrams, an arrow h1
z−→ h2 between two firms denotes a contract z with seller zS = h1 and

buyer zB = h2.
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x1
B

x2
// . . . xN

// xN
B

x1

hh

Figure 1: A contract cycle.

between any two firms, that is, if for all f 6= f ′, f, f ′ ∈ F there exists a contract x such

that xF = {f, f ′}.

Each f ∈ F has a strict preference relation P f over sets of contracts involving f . Let

Y |f ≡ {y ∈ Y : f ∈ yF}, the set of contracts in Y associated with firm f .

For any Y ⊆ X , we first define the choice set of f as the set of contracts he chooses

from Y . Define

Cf (Y ) ≡ max
P f
{Z ⊆ Y : x ∈ Z ⇒ f ∈ xF} .

It will also be convenient to define the choice function for f as a buyer when f has access

to the set of contracts Y as a buyer and the set of contracts Z as a seller. Hence we define

Cf
B (Y |Z) ≡

{
x ∈ Cf ({y ∈ Y : yB = f} ∪ {z ∈ Z : zS = f}) : xB = f

}
.

Analogously, we define

Cf
S (Z|Y ) ≡

{
x ∈ Cf ({y ∈ Y : yB = f} ∪ {z ∈ Z : zS = f}) : xS = f

}
.

We also define the rejected set of contracts when acting as a buyer or as a seller as

Rf
B (Y |Z) ≡ Y − Cf

B(Y |Z),

Rf
S (Z|Y ) ≡ Z − Cf

S(Z|Y ).

Let CB(Y |Z) ≡
⋃

f∈F C
f
B(Y |Z) be the set of contracts chosen from Y by some firm

as a buyer, and CS(Z|Y ) ≡
⋃

f∈F C
f
S(Z|Y ) be the set of contracts chosen from Z by some

firm as a seller. Let RB(Y |Z) ≡ Y − CB(Z|Y ) and RS(Z|Y ) ≡ Z − CS(Z|Y ).

An allocation is a set of contracts A ⊆ X . Preference relations are extended to alloca-

tions in a natural way: for two allocationsW,V ⊆ X , writeW �f V to meanW |f �f V |f .
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2.1.2 Stability

The key question in matching theory is whether or not an allocation A is stable, that is,

whether or not there exists a blocking set of contracts Z such that all firms in ZF will

choose their contracts in Z from Z ∪ A (and possibly drop contracts in A).

Definition 1. An allocation A is stable if it is

1. Individually rational: for all f ∈ F , Cf (A) = A|f .

2. Unblocked: There does not exist a nonempty blocking set Z ⊆ X such that Z∩A =

∅ and for all f ∈ F , Z|f ⊆ Cf (A ∪ Z).

This notion is the natural generalization of the prior notions of stability in the one-to-

one and many-to-one literature.11,12 Stability is inherently a price-theoretic notion. For an

allocation A to be stable, we must be able to find offer sets (that is, sets of contracts offered

to each firm) such that

• each contract in X is offered to some firm and

• each contract not part of the allocation A is rejected by every firm to which it is

offered.13

This is similar to the idea of competitive equilibrium in price theory, where the demand

for each item, given the prices, exactly equals the supply.

Stronger notions of stability allow for firms to play “strategically”, that is, to take on a

set contracts Z from which they obtain a better overall allocation, even though a particular

11See Roth and Sotomayor (1990) and Hatfield and Milgrom (2005) for definitions of stability in the one-
to-one and many-to-one contexts. See Hatfield and Kominers (2010) for a discussion of the relationship
between these concepts.

12This definition of stability is also strictly stronger than the “chain stability” and “tree stability” concepts
introduced by Ostrovsky (2008); we discuss further the relationship between these concepts in Section 3.3.

13Here, we use the terminology “offer set” instead of “choice set” since firms are typically allowed to
choose only one option (or point, or bundle) from a choice set; here they may choose any subset of contracts
offered. (See the definition given on the first page of Chapter 1 of Mas-Colell et al. (1995) for instance.)
Formally the choice set is the power set of the offer set.
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contract z ∈ Z may not be part of Cf (Z ∪ A) for some f . However, allocations satis-

fying these stronger notions of stability, such as setwise stability (Roth (1984); Sotomayor

(1999b)) or strong pairwise stability (Echenique and Oviedo (2006)) often do not exist even

for reasonable preferences.

2.1.3 Strategy-proofness

We also consider strategic properties of matching mechanisms. A matching mechanism

ψ is a mapping from the set of preference profiles to the set of allocations. In particu-

lar, we examine whether certain matching mechanisms are strategy-proof for some firms;

that is, whether or not it is a weakly dominant strategy for firms to truthfully reveal their

preferences.

Definition 2. A matching mechanism ψ is strategy-proof for G ⊆ F if, for all g ∈ G, for

any preference profile P , ψ (P ) <g ψ
(
P̂ g, P−g

)
for all P̂ g.

Similarly, we can consider the incentives of groups of firms under a given matching

mechanism.

Definition 3. A matching mechanism ψ is group strategy-proof for G ⊆ F if, for any

preference profile P , for at least one g ∈ G, ψ (P ) <g ψ
(
P̂G, P−G

)
for all P̂G.

As is standard in the matching literature, for a matching mechanism to not be group

strategy-proof, the deviation from truth-telling must make all firms in the coalition strictly

better off.14

2.2 Conditions on Preferences
2.2.1 Full Substitutability

We now proceed to introduce the two conditions on preferences of Ostrovsky (2008). The

primary condition on preferences studied in matching theory is substitutability. Intuitively,

14See Hatfield and Kojima (2009) for a discussion of the motivation behind this definition.
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contracts x and y are substitutes for f if they are the same type of contract for f and they

are not complements. For example, if xB = yB = f , and f rejects the contract y from

Y as a buyer while having access to Z as a seller, f will not choose y from the larger set

{x} ∪ Y while still having access to Z as a seller. The formal definition of substitutes is

given below:

Definition 4. Preferences are same-side substitutable for f ∈ F if for all Y ′ ⊆ Y ⊆ X

and Z ′ ⊆ Z ⊆ X ,

1. Rf
B (Y ′|Z) ⊆ Rf

B (Y |Z) and

2. Rf
S (Z ′|Y ) ⊆ Rf

S (Z|Y ).

Note that this condition is over offer sets; it states that any contract that is rejected from

a smaller offer set is also rejected from a larger one.

However, for models where firms can be both buyers and sellers, we must consider how

additional offers on one side of the market changes firms’ choices on the other side of the

market. The key condition here is cross-side complementarity. Intuitively, contracts y and

z are cross-side complements for f where yB = f = zS whenever f chooses y from Y as

a buyer when the set Z of contracts is available to f as a seller, f still chooses y from Y

when {z} ∪ Z is available to f as a seller.

Definition 5. Preferences are cross-side complementary for f ∈ F if for all Y ′ ⊆ Y ⊆ X

and Z ′ ⊆ Z ⊆ X ,

1. Rf
B (Y |Z) ⊆ Rf

B (Y |Z ′) and

2. Rf
S (Z|Y ) ⊆ Rf

S (Z|Y ′).

Same-side substitutability and cross-side complementarity are closely linked. For illus-

tration, suppose that each contract delineates the transfer of an object: that is, the transfer

of an object from the seller to the buyer. If a firm’s preferences satisfy both same-side
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substitutes and cross-side complements, then the firm has “substitutable” preferences over

objects: that is, the firm is more willing to buy an object if either there are less other ob-

jects available to buy (same-side substitutes), or there are more opportunities for the firm

to sell objects he already possesses (cross-side complements). Similarly, the firm is more

willing to sell an object if either there are fewer other opportunities to sell objects the firm

already possesses (same-side substitutes), or more opportunities to buy an object to replace

the one the firm is losing (cross-side complements). In other words, the more objects the

firm currently holds, the less willing the firm is to buy/keep new objects. Hence we shall

call fully substitutable any preference relation that satisfies both same-side substitutes and

cross-side complements.

We can characterize the set of preferences which are fully substitutable. We describe

the set of contracts that f may choose to sign by the offer vector ~qf = (~qf
x)x∈X|f defined by

~qf
x (Y ) =


0 xB = f and x ∈ Y
−1 xB = f and x /∈ Y
0 xS = f and x ∈ Y
1 xS = f and x /∈ Y.

Intuitivively, ~qf
x (Y ) refers to the “object” associated with contract x. A value of 1 is given

if the firm currently owns the object but can not sell it. A value of 0 is given if either the

firm does not currently own the object but may choose to buy it, or the firm currently owns

the object but may choose to sell it. Finally, a value of −1 is given if the firm does not

currently own the object and can not buy it.

Using the above notation, we can represent preferences over offer sets with an indirect

utility function u over offer vectors. An indirect utility function u represents a preference

relation P f if

u
(
~qf (Y )

)
> u

(
~qf (Y ′)

)
⇔ Cf (Y ) �f C

f (Y ′) for all Y, Y ′ ⊆ X .

Of particular interest are preferences that induce a quasisubmodular indirect utility func-
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tion.15,16

Theorem 1. The preferences of f ∈ F are fully substitutable if and only if every indirect

utility function representing these preferences is quasisubmodular.

Submodularity of the indirect utility function is the key condition in demand theory

for preferences to be demand-theory substitutes; see, e.g., Milgrom (2009). However, in

the absence of transferable utility it is impossible to quantify the increase in utility from

a newly available contract and therefore we can only characterize the utility functions in

terms of the ordinal notion of quasisubmodularity.17

2.2.2 The Laws of Aggregate Supply and Demand

A number of important results in two-sided matching theory rely on the law of aggregate

demand, which was first introduced by Hatfield and Milgrom (2005).18 We generalize this

concept to the matching in networks framework with the following definitions:

Definition 6. Preferences of f satisfy the law of aggregate demand if for all Y, Z ⊆ X

and Y ′ ⊆ Y , ∣∣∣Cf
B (Y |Z)

∣∣∣− ∣∣∣Cf
B (Y ′|Z)

∣∣∣ ≥ ∣∣∣Cf
S (Z|Y )

∣∣∣− ∣∣∣Cf
S (Z|Y ′)

∣∣∣ ,
and satisfy the law of aggregate supply if for all Y, Z ⊆ X and Z ′ ⊆ Z,∣∣∣Cf

S (Z|Y )
∣∣∣− ∣∣∣Cf

S (Z ′|Y )
∣∣∣ ≥ ∣∣∣Cf

B (Y |Z)
∣∣∣− ∣∣∣Cf

B (Y |Z ′)
∣∣∣ .

15Recall that u (·) is quasisubmodular if for all ~q ≤ ~r and ~s ≥ 0 we have that

u (~r + ~s)− u (~r) > 0⇒ u (~q + ~s)− u (~q) > 0,

u (~q + ~s)− u (~q) < 0⇒ u (~r + ~s)− u (~r) < 0.

16The utility function is indirect as it is a function of what are contracts are available to the firm, as opposed
to what contracts the firm actually chooses.

17For firms who are either only buyers or only sellers, Hatfield and Kominers (2010) show that if prefer-
ences satisfy (same-side) substitutes, then not only is every function that represents these preferences qua-
sisubmodular, but one can always find a submodular function that represents these preferences. This second
result relies on a technique introduced by Chambers and Echenique (2009), who show in general that there
exists a monotonic transformation for any quasisubmodular utility function that transforms it to a submodular
utility function. A similar technique can not be applied to the current setting, as utility is not monotonic in
the offer vector.

18Alkan and Gale (2003) introduced a related condition called “size monotonocity”.
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Note that the laws of aggregate demand and supply generalize the analogous definitions

from two-sided matching. In two-sided matching, if a firm is a buyer, then that firm does

not choose any contracts as a seller, and so the right-hand side of the law of aggregate

demand vanishes, and hence the law of aggregate demand reduces to its usual statement,

that a firm, upon recieving additional offers, chooses at least as many offers as it did before.

However, when a firm can be both a buyer and a seller of contracts, the condition is more

subtle. The law of aggregate demand now imposes that when an firm obtains additional

offers as a buyer, that firm takes on at least as many new contracts as a buyer as he takes

on as a seller. Intuitively, the condition states that when a firm has a new offer where he is

a buyer that he accepts, while holding onto his other offers, that firm will then sell at most

one new item. Similarly, the law of aggregate supply can be interpeted to say that when

the firm receives a new offer to sell that he accepts while holding onto his other offers, he

will choose to buy at most one new item.

3 Existence of Stable Allocations

3.1 Sufficiency of Substitutable Preferences

To prove the existence of a stable allocation, we introduce the operator

ΦS

(
XB, XS

)
≡ X −RB

(
XB|XS

)
ΦB

(
XB, XS

)
≡ X −RS

(
XS|XB

)
Φ
(
XB, XS

)
=
(
ΦB

(
XB, XS

)
,ΦS

(
XB, XS

))
,

a generalized version of the deferred acceptance algorithm of Gale and Shapley (1962).

The inputs XB and XS are sets of contracts which, respectively, contain the options avail-

able to the firms as buyers, and the options available to the firms as sellers. At each iteration

of Φ, we obtain a new set of seller options which includes all of X except RB

(
XB|XS

)
,

the set of contracts currently available to firms as buyers that they are rejecting. Similarly,

the new set of buyer options is all of X except RS

(
XS|XB

)
.

12



We first consider fixed points of the operator, and show that these fixed points corre-

spond to stable allocations. Intuitively, at a fixed point we have that every contract is either

being accepted (and hence is in both XB and XS), is being rejected by a buyer (and hence

is in XB but not XS) or is being rejected by a seller (and hence is in XS but not XB).

Since every contract not in XB ∩XS is being rejected by some firm, there does not exist a

blocking set of contracts Z such that each firm will desire all of those contracts, so long as

preferences are fully substitutable.

Theorem 2. Suppose that the set of contracts X is acyclic and that preferences are fully

substitutable. Then if Φ
(
XB, XS

)
=
(
XB, XS

)
, the allocation XB ∩ XS is stable.

Conversely, if A is a stable allocation, there exist XB, XS ⊆ X such that Φ
(
XB, XS

)
=(

XB, XS
)

and XB ∩XS = A.

Full substitutability is necessary for both directions of the above result. To see that

full substitutablity is necessary for stable allocations to generate fixed points, consider an

example where F = {f1, f2} and X = {x, y}, where xS = yS = f1 and xB = yB = f2, as

shown in Figure 2.

Now, consider the following preferences:

P f1 : {x, y} � ∅,

P f2 : {x} � {y} � ∅.

Note that the preferences of f1 are not substitutable. Then ∅ is the unique stable match, and

yet there do not exist
(
XB, XS

)
such that XB ∩XS = ∅ and Φ

(
XB, XS

)
=
(
XB, XS

)
.

If either x or y is in XB, then one of these contracts is not rejected by the buyer f2, and

hence this contract is in XS = ΦS

(
XB, XS

)
= X − RB

(
XB|XS

)
, contradicting the fact

that XB ∩XS = ∅. If both x and y are in XS , then neither is rejected by the seller f1, and

so both are also in XB = ΦB

(
XB, XS

)
= X −RS

(
XS|XB

)
, again contradicting the fact

that XB ∩XS = ∅.
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f1

x

��
y

		
f2

Figure 2: A simple contract structure where the fixed-point characterization fails if prefer-
ences are not fully substitutable.

To see that full substitutablity is necessary for fixed points to imply stability, consider

altering the example above so that preferences are given by

P f1 : {x, y} � ∅,

P f2 : {x, y} � ∅.

In this case, {x, y} is the unique stable match, but ({x} , {y}) is a fixed point and corre-

sponds to the match ∅.

Furthermore, acyclicity is necessary for fixed points to imply stable matches. Consider

the case where there are three firms, f1, f2, g, and the contract structure is as shown in

Figure 3. When firms’ preferences are given by

P f1 :
{
y, x2

}
�
{
x1, x2

}
� ∅, P f2 :

{
x2, x1

}
� ∅,

P g : {y} � ∅,

no stable allocation exists. However,
(
XB, XS

)
= (∅, {y, x1, x2}) is a fixed point of the

operator.19

Theorem 2 shows that, when preferences are fully substitutable, and the contract set is

acyclic, there is a bijective correspondence between the set of fixed points of Φ and the set

19It is not necessary that no stable match exist for fixed points to not correspond to stable matches. Consider
the case where F = {f1, f2} and X = {x, y}, where xS = yB = f1 and xS = yB = f2, and preferences
are given by:

P f1 : {x, y} � ∅,

P f2 : {x, y} � ∅,

which satisfy full substitutability. In this example, {x, y} is the unique stable match, but ({x, y} , ∅) is a
fixed point of Φ (·) even though ∅ is not a stable match.
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Figure 3: A contract cycle with an outside option.

of stable allocations. We now define the order v on X ×X as

(
XB, XS

)
v
(
X̂B, X̂S

)
if XB ⊆ X̂B and XS ⊇ X̂S.

It is clear that Φ is isotone with respect to this order if preferences are fully substitutable.20

Hence, by Tarski’s theorem, there exists a lattice of fixed points of this operator. Further-

more, if the contract set is acyclic, these fixed points correspond to stable allocations.

Theorem 3. Suppose that the set of contracts X is acyclic and that preferences are fully

substitutable. Then there exists a nonempty finite lattice of fixed points
(
XB, XS

)
of Φ

which correspond to stable allocations A = XB ∩XS .

Furthermore, this lattice of fixed points has the same structure as in standard bilateral

matching contexts. An allocation Â is the buyer-optimal stable allocation if it is preferred

to all other stable allocations A by all firms who are exclusively buyers, that is Â <g A for

all stable allocations A and for all g ∈ {f ∈ F : @x ∈ X such that xS = g}. Since the set

of the fixed points is a lattice, there exists a highest fixed point with respect to the order

v, which we denote by
(
X̂B, X̂S

)
. Since this fixed point has the largest set of contracts

for the buyers to choose from, it is the unanimously most preferred stable allocation for all

firms who are buyers but not sellers. Similarly, the lowest fixed point with respect to v,

20This means that, when preferences are fully substitutable,(
XB , XS

)
v
(
X̂B , X̂S

)
⇒ Φ

(
XB , XS

)
v Φ

(
X̂B , X̂S

)
.
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denoted
(
X̌B, X̌S

)
, is the unanimously most preferred stable allocation for all firms who

are sellers but not buyers.

Theorem 4. Suppose that the set of contracts X is acyclic and that preferences are fully

substitutable. Then the highest fixed point
(
X̂B, X̂S

)
of Φ corresponds to the buyer-

optimal stable allocation X̂B∩X̂S , and the lowest fixed-point
(
X̌B, X̌S

)
of Φ corresponds

to the seller-optimal stable allocation X̌B ∩ X̌S .

Our proof of the existence of a stable allocation naturally generalizes the deferred ac-

ceptance approach of Gale and Shapley (1962) to the context of matching with networks.

Consequently, our existence (Theorem 3) and opposition of interest (Theorem 4) results

naturally and directly generalize those of Gale and Shapley (1962) (for one-to-one and

many-to-one matching), Hatfield and Milgrom (2005) (for many-to-one matching with

contracts), and Hatfield and Kominers (2010) (for many-to-many matching with contracts).

Additionally, these results generalize the analogous results due to Echenique and Oviedo

(2006) (for many-to-many matching) and Ostrovsky (2008) (for supply chain matching).

3.2 Necessary Conditions for Stability

From the preceding analysis, it is clear that, in order to ensure the existence of a stable

allocation, it is sufficient that preferences are fully substitutable and that the set of contracts

is acyclic. In many-to-one matching with contracts, however, there exist weaker conditions

on preferences that guarantee the existence of a stable allocation.21 However, for the more

general model of matching in networks, both conditions are necessary: if either of the

conditions fails, then there exist preferences for the (other) firms satisfying these conditions

such that no stable allocation exists.

21Hatfield and Kojima (2008) show that substitutes is not necessary to guarantee existence of a stable
allocation for many-to-one matching with contracts. Hatfield and Kojima (Forthcoming) and Hatfield and
Kominers (2010) have found in that setting weaker conditions on preferences than substitutability that guar-
antee the existence of a stable allocation.
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Figure 4: A contract structure in which stable allocations may not exist when preferences
are not fully substitutable.

Theorem 5. If the set of contracts X admits a cycle L =
{
x1, . . . , xN

}
and there exists

a firm f /∈ LF and a contract between f and some firm in the cycle, then there exist fully

substitutable preferences such that no stable allocation exists.

An example of fully substitutable preferences where no stable match exists is given in

the discussion of acyclicity in Section 3.1. Consider again the contract structure given in

Figure 3. Intuitively, if contracts form a cycle (such as that between f1 and f2), then it

is easy to construct preferences satisfying full substitutability such that each firm wants

either both contracts it is associated with in the cycle or no contracts at all. With these

preferences, the empty allocation is not stable, as all members of the cycle agree that the

contract cycle is better than nothing. However, if one member of the cycle (f1) has an

outside option as a buyer (y) then the cycle itself may not be stable as that one member

may most prefer to choose this outside option as a buyer while keeping the contract where

he is a seller (x2) from the cycle. This implies that the cycle itself is unstable. However, any

other allocation (such as {y, x2}) is also unstable, as it is not individually rational for some

agent. Hence, we see that even when preferences are reasonable, contract sets containing

cycles may not admit stable allocations.

Furthermore, it is also necessary that the preferences of each firm be fully substi-

tutable. As an example, consider the following, where F = {f1, f2, f3, f4} and X =

{(i, j) : fi, fj ∈ F and i ≤ 2 < j}, as pictured in Figure 4. Here, firms f1 and f2 are sell-

ers, and firms f3 and f4 are buyers. Suppose that preferences are given by:

17



P f1 : {(1, 3)} � {(1, 4)} � ∅,

P f2 : {(2, 4)} � {(2, 3)} � ∅,

P f3 : {(1, 3) , (2, 3)} � ∅,

P f4 : {(1, 4)} � {(2, 4)} � ∅.

It is not stable for both sellers f1 and f2 to sell to f3, as then f2 would like to deviate

and sell to f4, and f4 would like to buy from f2. That, however, is also not stable, as then

f3 would buy nothing, and so f1 would then sell to f4. This is also not stable, as then

both sellers would prefer to sell to f3. Hence, no allocation is individually rational and

unblocked. Generalizing this example, we obtain the following theorem.

Theorem 6. Suppose X is exhaustive, there exists a firm f whose preferences are not fully

substitutable, and there exist at least two firms upstream and two firms downstream of f .

Then, there exist fully substitutable preferences for the firms other than f such that no

stable allocation exists.22

Theorem 6 is a generalization of the previous necessity results in the matching literature

(see Hatfield and Kominers (2010)). Unlike the previous necessity results, the generality of

our framework allows us to demonstrate through Theorem 6 that we are generally unable

to find stable assignments in the roommate problem of Gale and Shapley (1962).23

3.3 Chain Stability

We now compare our notion of stability to chain stability, the notion of stability considered

by Ostrovsky (2008). Although chain stability is a less stringent solution concept than the

22Slightly weaker conditions on the number of firms other than f can be stated. However, these conditions
are exceedingly technical; see the proof of Theorem 6 for details.

23Our model does not directly subsume the roommate problem, since contracts in our setting are directed,
while in a roommate problem, a match is comprised of undirected links. However, it is possible to embed
the roommate problem in our framework by imposing a partial order � on agents and expressing a match
between agents f1 � f2 by a contract x with xS = f1 and xB = f2. (The order structure dictates for
bookkeeping purposes that a match between two agents is encoded by a contract in which the higher agent
sells to the lower.) With this structure preferences do not generally satisfy cross-side complementarity, hence
Theorem 6 applies.
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notion of stability used in this paper, these concepts coincide on domains whereX is acyclic

and preferences are fully substitutable. However, as we illustrate below, chain stability has

some unappealing properties on domains where these conditions do not hold. To address

these issues formally, we first define a chain of contracts.

Definition 7. A set of contracts
{
x1, . . . , xN

}
is a chain if

1. xn
B = xn+1

S for all n = 1, . . . , N − 1.

2. xn
S = xm

S implies that n = m.

3. xN
B 6= x1

S .

Intuitively, contracts form a chain if each firm holding a contract in the chain sells to

the next firm in the chain (condition 1), the chain never doubles back on itself (condition

2), and the chain is not a loop, i.e. the buyer of the last contract is not the seller of the first

(condition 3). Naturally, then, an allocation is chain stable if it is not blocked by chains of

contracts.

Definition 8. An allocation A is chain stable if it is individually rational and there is no

chain that is a blocking set.

It is immediate that any stable allocation, regardless of restrictions on preferences or

the contract set, is chain stable.24 However, for fully substitutable preferences over acyclic

contract sets, these notions are equivalent.

Theorem 7. Suppose that the set of contracts X is acyclic and that preferences are fully

substitutable. Then an allocation A is stable if and only if it is chain stable.

Unfortunately, the equivalence of Theorem 7 only holds when the contract set is acyclic

and preferences are fully substitutable. If either condition fails, then the set of stable alloca-

tions may be a strict subset of the set of chain stable allocations, and furthermore the set of
24This follows as chain stability requires that blocking sets be chains, whereas our notion of stability puts

no restrictions on the structure of the blocking set.

19



chain stable allocations may be an intuitively unappealing solution concept. For instance,

consider the following example, where xS = yB = f , and xB = yS = g:

P f : {x, y} � ∅,

P g : {x, y} � ∅.

These preferences are fully substitutable; however, the contract set X is not acyclic, as it

admits the cycle {x, y}. For this example, the set {x, y} is the only stable allocation, while

both {x, y} and ∅ are chain stable. The ∅ allocation is an unappealing solution to this

problem on both normative and positive grounds; {x, y} is Pareto preferred to ∅, and it

also seems unreasonable to consider a solution concept which does not allow f and g to

take part in a joint deviation from ∅ to {x, y}.

If preferences do not satisfy full substitutability, then chain stability is again a strictly

weaker concept than stability. Furthermore, chain stability is not equivalent to the stan-

dard notions of stability used in the many-to-many matching literature, which are special

cases of our stability notion (see Echenique and Oviedo (2006); Klaus and Walzl (2009);

Hatfield and Kominers (2010)). Rather, chain stability is equivalent to pairwise stability,

a much weaker concept. Consider again the (many-to-many matching) example of Sec-

tion 3.2, where F = {f1, f2, f3, f4} and X = {(i, j) : fi, fj ∈ F and i ≤ 2 < j} (pictured

in Figure 4):

P f1 : {(1, 3)} � {(1, 4)} � ∅,

P f2 : {(2, 4)} � {(2, 3)} � ∅,

P f3 : {(1, 3) , (2, 3)} � ∅,

P f4 : {(1, 4)} � {(2, 4)} � ∅.

Note that the preferences of firm f3 do not satisfy same-side substitutes. There does

not exist a stable allocation; however, {(1, 4)} is chain stable, as the only blocking set is

{(1, 3) , (2, 3)}, which is not a chain. Furthermore, for preferences such as those of firm
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f3, a chain stable allocation exists for any fully substitutable preferences for other firms so

long as the contract set X is acyclic. These chain stable allocations can be found by using

the isotone operator Φ introduced above on the set X − {x ∈ X : f3 ∈ xF}, that is on the

set of contracts in X that do not involve firm f3; these allocations will be chain stable

as there are clearly (by Theorem 2) no blocking sets not involving firm f3, and the only

blocking set involving firm f3 could be {(1, 3) , (2, 3)}, which is not a chain. However,

for such problems, it is not clear that {(1, 4)} is the expected outcome; the blocking set

Z = {(1, 3) , (2, 3)} seems a very natural deviation that makes all members of ZF strictly

better-off.

4 The Structure of the Set of Stable Allocations

4.1 The Rural Hospitals Theorem

In the celebrated rural hospitals theorem, Roth (1986) proved that in a many-to-one (doctor-

hospital) matching market with responsive preferences, any hospital that has unfilled po-

sitions at some stable matching is assigned exactly the same set of doctors at every stable

matching.25 In the context of many-to-one (Hatfield and Milgrom (2005); Hatfield and Ko-

jima (Forthcoming)) and many-to-many matching with contracts (Hatfield and Kominers

(2010)), the rural hospitals theorem has been (partially) generalized to a statement regard-

ing the number of contracts: in a many-to-many matching market with contracts, if prefer-

ences are substitutable and satisfy the law of aggregate demand, then every firm holds the

same number of contracts in each stable allocation.26

25Recall that hospital preferences are called responsive if they are consistent with a complete strict order
over individual doctors.

26Generalizations of the Roth (1986) rural hospitals theorem to the theory of matching with contracts have
focused only upon the total number of contracts signed by each hospital h, since in general both the set of
doctors with whom h contracts and the contract terms to which h agrees may vary across stable allocations.
Indeed, Hatfield and Kojima (Forthcoming) give (in their Footnote 21) a many-to-one matching with contracts
example in which there is a hospital h with unfilled positions such that both

• the set of doctors h contracts with, and

• the contract terms h receives from doctors
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Figure 5: A contract structure in which the most immediate (putative) generalization of the
rural hospitals theorem need not hold.

However, this statement is false in the context of matching in networks. For in-

stance, consider the following simple set of preferences, where F = {f1, f2, f3} and

X = {(i, j) : fi, fj ∈ F and i < j}, as pictured in Figure 5:

P f1 : {(1, 2)} � {(1, 3)} � ∅,

P f2 : {(1, 2) , (2, 3)} � ∅,

P f3 : {(1, 3)} � {(2, 3)} � ∅.

Note that firm f2 has the simplest possible fully substitutable preferences where the set of

contracts that firm f2 signs as a buyer truly depends on the set of contracts she has access to

as a seller. Furthermore, these preferences satisfy the laws of aggregate demand and supply.

However, both {(1, 3)} and {(1, 2) , (2, 3)} are stable allocations, and so we see that the

number of contracts in different stable allocations may vary across stable allocations even

when preferences satisfy the laws of aggregate supply and demand. Rather, the difference

for each firm between the number of contracts where he is a buyer and the number where he

is a seller is constant across the two stable allocations; it turns out this “balancing” property

holds in general.

Theorem 8. Suppose that the set of contracts X is acyclic and that preferences are fully

substitutable and satisfy the laws of aggregate supply and demand. Then, for each firm, the

vary across stable allocations. Hence, the invariance of the number of contracts per firm across stable alloca-
tions seems to be the sharpest possible matching with contracts generalization of the Roth (1986) theorem.
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difference between the number of contracts the firm buys and the number of contracts the

firm sells is invariant across stable allocations.

When all contracts are denoted in a fixed unit (as in exchange economies), Theorem 8

implies that each agent holds the same excess stock at every stable allocation. When con-

tracts do not use a constant unit (as, for example, in labor markets in which both full- and

part-time job contracts are available), the exact numerical implications of Theorem 8 are

less clear, as Hatfield and Kominers (2010) discuss. However, even in this case, the rural

hospitals result is crucial for the strategy-proofness results of Section 4.2.

Note that Theorem 8 does generalize the prior rural hospitals theorems: in previous

two-sided matching models, a firm f either only buys or only sells, hence Theorem 8

implies that f signs exactly the same number of contracts in every stable allocation. We

have that the net position in contracts of a firm which both buys and sells is invariant

across stable allocations, but the total number of contracts such a firm signs can vary across

stable allocations. Furthermore, the laws of aggregate supply and demand are the weakest

possible conditions that ensure this additional structure on the set of stable allocations.

Theorem 9. Suppose that the set of contracts X is acyclic and exhaustive. Then if the

preferences of some firm f do not satisfy the law of aggregate supply or the law of aggregate

demand but are fully substitutable, then there exist preferences for the other firms satisfying

full substitutability and the laws of aggregate supply and demand such that there exist two

stable allocations such that the difference between the number of contracts f buys and the

number of contracts f sells is different.

4.2 Strategy-Proofness

In many-to-one matching with contracts, substitutes and the law of aggregate demand are

enough to ensure that the buyer-optimal stable mechanism is strategy-proof for buyers

when buyers demand at most one contract. Unfortunately, in many-to-many contexts,

it is not strategy-proof for either side of the market to reveal its preferences truthfully to
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any mechanism which chooses a stable allocation. However, even in the matching in net-

works framework, if some subset of firms acts only as buyers, and each of these buyers

demands at most one contract, then the mechanism which chooses the buyer-optimal stable

allocation will be strategy-proof for these buyers.27

Theorem 10. Suppose that the set of contracts X is acyclic and that preferences are fully

substitutable and satisfy the laws of aggregate supply and demand. If additionally, for all

g ∈ G ⊆ F , the preferences of g exhibit unit demand, then any mechanism that selects the

buyer-optimal stable allocation is (group) strategy-proof for G.

Theorem 10 generalizes results of Dubins and Freedman (1981), Abdulkadı̀roǧlu (2005),

Hatfield and Milgrom (2005), and Hatfield and Kojima (2009); its proof follows exactly as

in Hatfield and Kojima (2009). This result can be used to show a common corollary that the

set of unit-demand buyers weakly prefers the buyer-optimal stable allocation to all other

individually rational allocations.

Corollary 1. Suppose that the set of contracts X is acyclic and that preferences are fully

substitutable and satisfy the laws of aggregate supply and demand. If additionally, for

all g ∈ G ⊆ F , the preferences of g exhibit unit demand, then there does not exist an

individually rational allocation that every member ofG strictly prefers to the buyer-optimal

stable allocation.28

This result is commonly called “weak Pareto optimality” and was first shown by Roth

(1982) for one-to-one matching; the most result general result to date is for many-to-one

matching with contracts and is shown by Hatfield and Kojima (2009) and Kojima (2007).

5 Conclusion

In this paper we have extended the model of classical matching theory to consider net-

works of contracts. We have shown that, on the one hand, if the set of contracts is acyclic,
27By symmetry, an analogous result applies to sellers.
28As with Theorem 10, the proof of Corollary 1 follows as in Hatfield and Kojima (2009).
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Figure 3: A contract cycle with an outside option.

and preferences are fully substitutable, not only do stable allocations exist, but they form

a lattice. Moreover, classical results of matching theory, such as the rural hospitals and

strategy-proofness theorems, generalize to this setting. On the other hand, Theorem 5

shows that, in the presence of fully substitutable preferences over contracts, stability can-

not be guaranteed if there is a single cycle in the set of contracts; furthermore, Theorem 6

shows that if even one firm does not have fully substitutable preferences, stability again

cannot be guaranteed. Hence our work delineates a strict frontier for matching, in the sense

that both acyclity and full substitutability are both necessary and sufficient for classical

matching theory.

However, supplementing the set of contracts with a numeraire (over which utility is

quasilinear) may allow us to go further. Consider the simplest example where a cyclic

contract set confounds stability, drawn from the proof of Theorem 5. There are three firms,

f1, f2, g, and the contract structure is as shown in Figure 3, which we reproduce here. When

firms’ preferences are given by

P f1 :
{
y, x2

}
�
{
x1, x2

}
� ∅, P f2 :

{
x2, x1

}
� ∅,

P g : {y} � ∅,

there exists no stable allocation. Indeed, firm f1 prefers its outside option y over x1, and

hence the trade cycle {x1, x2} always breaks down.

Problems of this form often arise in contracting relationships, and they have a well-

known solution, albeit one outside the scope of classical matching theory. One resolution
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to this dilemma dates back to ideas of Vickrey (1961) and Pigou: firm f1 should pay a

transfer to f2 equal to the value of the externality f1 causes by dropping contract x1 in

favor of y. Generalizing this intuition, Hatfield et al. (2010) find that transferable utility

promotes stability in some new settings.

Even with transferable utility, full substitutability is necessary in order to guarantee the

existence of stable allocations.29 However, many problems naturally generate complemen-

tarities; a hospital may open a new wing only if it acquires doctors of multiple specialities,

or a firm may be able to operate more efficiently with more units.30 Much work remains to

be done to understand the dynamics and equilibria of matching markets with complemen-

tarities; we leave this topic for future research.

29It is easy to construct examples based, for instance, on examples such as those constructed by Milgrom
(2007), in which competitive equilibria do not exist.

30Milgrom (2007) and Day and Milgrom (2008) discuss some of the issues that arise with complementary
preferences in package auctions. Klaus and Klijn (2005) discuss the “couples problem,”a type of comple-
mentary preferences that commonly arises in bilateral matching contexts.
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Appendix

Proof of Theorem 1
Proof of the “only if” Direction

Let the preferences of f be given by

XN � XN−1 � · · · � X2 � X1 � ∅

and let

Consider any two offer vectors ~qf (Y q) and ~rf (Y r) such that ~q ≤ ~r and suppose that

~qf
w = ~rf

w = 0. Hence Y q ⊆ Y r and Zq ⊇ Zr. Suppose that

u
(
~qf ({w} ∪ Y r)

)
− u

(
~qf (Y r)

)
> 0

then w ∈ Cf
B ({w} ∪ Y r), so w ∈ Cf

B ({w} ∪ Y q) by same-side substitutes, and so w ∈

Cf
B ({w} ∪ Y q) by cross-side complements. Hence,

u
(
~qf ({w} ∪ Y q)

)
− u

(
~qf (Y q)

)
> 0

and quasisubmodularity is satisfied when we add any contract to the offer set as a buyer.

(Clearly, when we add a contract to the offer set, the utility of the firm can not fall.)

If

u
(
~qf (Y q)

)
− u

(
~qf (Y q)

)
< 0

then w ∈ Cf
S (Zq), so w ∈ Cf

S (Zr) by same-side substitutes, and so w ∈ Cf
S (Zr) by

cross-side complements. Hence,

u
(
~qf (Y r)

)
− u

(
~qf (Y r)

)
< 0

and quasisubmodularity is satisfied when we remove any contract to the offer set as a seller.

(Clearly, when we remove a contract from the offer set, the utility of the firm can not rise.)
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Proof of the “if” Direction

Suppose that preferences violate condition #1 of same-side substitutability. Then there

exists contracts x,w ∈ X and Y, Z ⊆ X such that

w /∈ Cf
B (Y ∪ {w}) and w ∈ Cf

B ({x} ∪ Y ∪ {w})

Now consider any indirect utility function u which represents these preferences. Hence

we have that

u
(
~qf (Y ∪ {w})

)
− u

(
~qf (Y )

)
= 0 < u

(
~qf ({x} ∪ Y ∪ {w})

)
− u

(
~qf ({x} ∪ Y )

)
so u is not quasisubmodular.

Similarly, suppose that preferences violate condition #2 of same-side substitutability.

Then there exists contracts x,w ∈ X and Y, Z ⊆ X such that

w /∈ Cf
S (Z ∪ {w}) and w ∈ Cf

S ({x} ∪ Z ∪ {w})

Now consider any indirect utility function u which represents these preferences. Hence

we have that

u
(
~qf (Y )

)
− u

(
~qf (Y ∪ {w})

)
= 0 > u

(
~qf (Y )

)
− u (~q (Y ))

so u is not quasisubmodular.

Now suppose that preferences violate condition #1 of cross-side complementarity. Then

there exists contracts x,w ∈ X and Y, Z ⊆ X such that

w ∈ Cf
B (Y ∪ {w}) and w /∈ Cf

B (Y ∪ {w})

Now consider any indirect utility function u which represents these preferences. Hence

we have that

u
(
~qf (Y ∪ {w})

)
− u

(
~qf (Y )

)
> 0 = u

(
~qf (Y ∪ {w})

)
− u

(
~qf (Y ∪ {z})

)
so u is not quasisubmodular.
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Similarly, suppose that preferences violate condition #2 of cross-side complementarity.

Then there exists contracts x,w ∈ X and Y, Z ⊆ X such that

w ∈ Cf
S (Z ∪ {w}) and w /∈ Cf

S (Z ∪ {w} ∪ Y )

Now consider any indirect utility function u which represents these preferences. Hence

we have that

u
(
~qf (Y )

)
− u

(
~qf (Y )

)
> 0 = u

(
~qf ({x} ∪ Y )

)
− u

(
~qf ({x} ∪ Y )

)
so u is not quasisubmodular.

Proof of Theorem 2
First Part

Suppose that XB ∩XS ≡ A is a fixed point, but that A is either not individually rational or

admits a blocking set Z. If it is not individually rational, there must exist x ∈ A such that

x ∈ Rf (A) for some f ∈ F . Then either x ∈ Rf
B (A|A) and xB = f or x ∈ Rf

S (A|A)

and xS = f . Assume the former. (The latter case is symmetric.) Then x ∈ Rf
B

(
XB|A

)
by same-side substitutes. However, every contract in the set XS − A is rejected by some

firm as a seller, and so Rf
B

(
XB|A

)
= Rf

B

(
XB|XS

)
by individual rationality. Hence

x ∈ Rf
B

(
XB|XS

)
, and hence x /∈ XS , and hence x /∈ XB ∩XS = A, a contradiction.

If there exists a blocking set Z, consider a contract z such that zS E yS for all other

y ∈ Z.31 By same-side substitutes, since z ∈ CzS
S (Z ∪ A|Z ∪ A), we have that z ∈

CzS
S ({z} ∪ A|Z ∪ A) = CzS

S ({z} ∪ A|A) as there are no contracts in Z such that zS is a

buyer by assumption. Hence, by individual rationality, z ∈ CzS
S

(
{z} ∪XS|A

)
and then

by cross-side complements, z ∈ CzS
S

(
{z} ∪XS|XB

)
. Hence, if z ∈ XS , then it would

also be in XB = X − RS

(
XS|XB

)
. But z /∈ A = XB ∩ XS by assumption, and

XB ∪XS = X , and so z ∈ XB. Now consider an arbitrary contract w ∈ Z, and suppose

that for all contracts y ∈ Z such that yS C wS , y ∈ XB. By same-side substitutes, since
31Recall that acyclicity guarantees there exists an order C on F such that xS C xB for all x ∈ X .

33



w ∈ CwS
S (Z ∪ A|Z ∪ A), we have that w ∈ CwS

S ({w} ∪ A|Z ∪ A). Now, by induction,

for any contract y ∈ Z such that yB = wS , y ∈ XB. Hence, {y ∈ Z : yB = wS} ⊆ XB,

and A ⊆ XB, hence {y ∈ Z : yB = wS}∪A ⊆ XB, and so by cross-side complemenarity,

w ∈ CwS
S

(
{w} ∪ A|XB

)
. Hence, by individual rationality, w ∈ CwS

S

(
{w} ∪XS|XB

)
.

Hence, if w ∈ XS , then it would also be in XB = X − RS

(
XS|XB

)
. But w /∈ A =

XB ∩XS by assumption, and XB ∪XS = X , and so w ∈ XB. Using induction then, we

have that Z ⊆ XB. Working symmetrically for buyers, we have that Z ⊆ XS . Hence,

Z ⊆ XS ∩XB = A and hence Z is not a blocking set, a contradiction.

Second Part

Suppose A is a stable allocation. We construct XB and XS iteratively over firms; since

contracts are acyclic, we order the firms f1, . . . , fN so that fn C fn+1 for all n = 1, . . . , N−

1. Let XB (0) = XS (0) = A. Let

XB (n) =
{
x ∈

(
X −XS (n− 1)

)
: xB = fn

}
∪XB (n− 1)

XS (n) =
{
x ∈ X : x ∈ Rfn

S

(
{x} ∪ A|XB (n)

)}
∪XS (n− 1)

Finally, let XB = XB (N) and XS = XS (N).

We now show that
(
XB, XS

)
is a fixed point. We have

X −RS

(
XS|XB

)
= X −

⋃N
n=1R

fn

S

(
XS|XB

)
= X −

⋃N
n=1R

fn

S

(
XS|XB (n)

)
as XB (n) =

{
x ∈ XB : xB = fn

}
= X −

⋃N
n=1R

fn

S

(
XS (n) |XB (n)

)
as XS (n) =

{
x ∈ XS : xS = f

}
= X −

⋃N
n=1R

fn

S (XS (n)− A|fn) as fn has fully substitutable preferences

= X −
(
XS − A

)
by the definition of XS

= XB by the definition of XB
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Similarly,

X −RB

(
XB|XS

)
= X −

⋃N
n=1R

f
B

(
XB|XS

)
= X −

⋃N
n=1R

f
B

(
XB|XS (n)

)
as XS (n) =

{
x ∈ XS : xS = fn

}
= X −

⋃N
n=1R

f
B

(
XB (n) |XS (n)

)
as XB (f) =

{
x ∈ XB : xB = n

}
= X −

⋃N
n=1

(
XB (n)− A|fn

)
as shown below

= X −
(
XB − A

)
by the definition of XB

= XS by the definition of XS

To see the fourth equality, suppose that there exists a nonempty set of contracts

Y ≡
{
y1, . . . , yk

}
∈
⋃N

n=1

(
XB (n)− A|fn

)
−
⋃N

n=1R
f
B

(
XB (n) |XS (n)

)
We also know that no contract Y is rejected by a seller (assuming they have access to XB

as buyers) as these are contracts XB. Hence, Y is a blocking set and hence A is not stable,

a contradiction. Finally, A|fn ∩R
f
B

(
XB (n) |XS (n)

)
= ∅ as A is individually rational.

Finally, we need to show that XB ∩XS = A. First, since XB (0) ∩XS (0) = A and

XB (n− 1) ⊆ XB (n) and XS (n− 1) ⊆ XS (n), A ⊆ XB (0) ∩ XS (0). Suppose that

z ∈ XS −A. Then z /∈ XB, as it could only be added in the zB-th step and since z ∈ XS ,

a ∈ XS (fzB
− 1).

Proof of Theorem 4

For any stable allocation
(
XB, XS

)
, we have that

XB ∩XS = XB ∩
(
X −RB

(
XB|XS

))
= XB ∩

(
X −

(
XB − CB

(
XB|XS

)))
= XB −

(
XB − CB

(
XB|XS

))
= CB

(
XB|XS

)
Since for each firm f who is only a buyer, Cf

B

(
XB|XS

)
= Cf

(
XB
)
, the firm f has

a strictly larger choice set under
(
X̂B, X̂S

)
than under any other stable allocation, and
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hence (weakly) prefers
(
X̂B, X̂S

)
. The proof that

(
X̌B, X̌S

)
is the seller-optimal stable

allocation is symmetric.

Proof of Theorem 5

Let y be the contract with f and some member of the cycle. Define fn ≡ xn
S . Suppose

that yS = f1 and yB = g. (The other case is symmetric.) Then for n = 2, . . . , N , let the

preferences of firm fn be

P fn :
{
xn, xn+1

}
� ∅

which satisfies same-side substitutes and cross-side complements. Let

P g : {y} � ∅

P f1 :
{
y, xN

}
�
{
x1, xN

}
� ∅

which satisfies full substitutability; let all other firms desire no contracts. Any set Y *

L ∪ {y} is not stable, as it is not individually rational. Any Z ( L ∪ {y} is not stable, as

it not individually rational unless Z = ∅, in which case L is a blocking set, or Z = L, in

which case {y} is a blocking set.

Proof of Theorem 6

If the preferences of a firm f do not satisfy same-side substitutes, then there exists contracts

x, y and sets of contracts Y, Z such that

y /∈ Cf
B (Y |Z) but y ∈ Cf

B ({x} ∪ Y |Z) or

y /∈ Cf
S (Y |Z) but y ∈ Cf

S (Y | {x} ∪ Z)

Assume the former; the latter case is symmetric. There are two cases.

Case 1: xS 6= yS . Let the firms in YS and ZB (except xS and yS) have preferences such

that they are willing to accept any all contracts with f that they are associated with.

Let yS have preferences such that he would be willing to accept any and all of the
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contracts he is associated with in Y , except that he wants exactly one of w and y, and

would prefer y, where wS = yS and wB = xB. Let xS have preferences such that

he would be willing to accept any and all of the contracts he is associated with in Y ,

except that he also desires w and only desires x if he obtains w. Finally, let all other

firms not want any contracts. Now suppose that there is a stable allocation A.

1. Suppose A|f ≺f C
f (Y ∪ Z). If A is individually rational, all other firms want

their contracts inCf (Y ∪ Z) irrespective of their other contracts, soCf (Y ∪ Z)

is a blocking set.

2. Suppose A|f = Cf (Y ∪ Z). Then both xS and yS desire the contract w; hence

w ∈ A. But then Cf ({x} ∪ Y ∪ Z) is a blocking set.

3. Suppose Cf ({x} ∪ Y ∪ Z) �f A|f �f Cf (Y ∪ Z). In this case, x ∈ A as

otherwise A|f is available to f from Y ∪ Z, so we could not have A|f �f

Cf (Y ∪ Z). But then, Cf ({x} ∪ Y ∪ Z) is a blocking set.

4. Suppose Cf ({x} ∪ Y ∪ Z) = A|f . Then if w ∈ A, A is not individually

rational for yS; if w /∈ A, A is not individually rational for xS .

Case 2: xS = yS ≡ d. Let the firms in YS and ZB (except yS) have preferences such that

they are willing to accept any all contracts with f that they are associated with. By

assumption, there are two firms, g and h, downstream of f , and one firm, e upstream

of f , and hence upstream of g and h. Now consider the contracts v, v′, w and w′ such

that vS = wS = d, v′S = w′S = e, vB = v′B = g and wB = w′B = h (which exist as X

is exhaustive). g and h are willing to accept any and all contracts in Y , and outside

of that, have preferences given by

P g : {v} � {v′} � ∅

P h : {w′} � {w} � ∅
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and e is always willing to accept any and all contracts in Y , and outside of that, has

preferences

P e : {v′} � {w′} � ∅

Finally, d is always willing to accept any and all contracts in Y except y; his pref-

erences over x, y, w, v are responsive, where he wishes to obtain two contracts in

accord with the preferences over singleton contracts given by w � z � x � v. Now

suppose there exists a stable allocation A.

1. Suppose A|f ≺f C
f (Y ∪ Z). Then Cf (Y ∪ Z) constitutes a blocking set, as

all the firms want their contracts in Cf (Y ), irrespective of other contracts.

2. Suppose A|f = Cf (Y ∪ Z). Since d does not obtain x or y, he desires both

v and w. For A to be stable then, d obtains v. Furthermore, since e does not

obtain v′, for A to be stable, e must obtain w′. Hence {w′, v} ⊆ A and w /∈ A.

Hence Cf ({x} ∪ Y ∪ Z) is a blocking set.

3. SupposeCf (Y ∪ Z) ≺f A|f ≺ Cf ({x} ∪ Y ∪ Z). Then x ∈ A, soCf ({x} ∪ Y ∪ Z)−

{x} is a blocking set, as d will always take y and the other firms in Y and Z

will always accept offers of any and all contracts in Y .

4. Suppose Cf ({x} ∪ Y ∪ Z) = A|f . Then v′ ∈ A, as otherwise {v′} is a block-

ing set. (Note that in this case v /∈ A, as then {x, y, v} ⊆ A, and so A is not

individually rational for d.) But v′ ∈ S implies that w′ /∈ S, by the individ-

ual rationality of e. Hence w is a blocking set. (Note that w /∈ A, as then

{w, y, w} ⊆ A, and so A is not individually rational for d.)

If the preferences of a firm f do not satisfy cross-side complements, then there exists

contracts y, z and sets of contracts Y, Z such that

y ∈ Cf
B ({y} ∪ Y |Z) but y /∈ Cf

B ({y} ∪ Y | {z} ∪ Z) or

z ∈ Cf
S ({z} ∪ Z|Y ) but z /∈ Cf

S ({z} ∪ Z| {y} ∪ Y )
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Assume the latter; the former case is symmetric.

Let the firms in YS and ZB (except yS and zB) have preferences such that they are will-

ing to accept any all contracts with f that they are associated with. Let yS have preferences

such that he would be willing to accept any and all of the contracts he is associated with in

Y , except that he wants exactly one of w and y, and would prefer w, where wS = yS and

wB = zB. Let zB have preferences such that he would be willing to accept any and all of

the contracts he is associated with in Z, except that he wants exactly one of w and z, and

would prefer z. Finally, let all other firms not want any contracts. Now suppose that there

is a stable allocation A.

1. Suppose A|f ≺f Cf (Y ∪ {z} ∪ Z). If A is individually rational, all other firms

want their contracts in Cf (Y ∪ {z} ∪ Z) irrespective of their other contracts, so

Cf (Y ∪ {z} ∪ Z) is a blocking set.

2. Suppose A|f = Cf (Y ∪ Z). Then both yS and zB desire the contract w; hence

w ∈ A. But then A ⊇ {w} ∪ Cf (Y ∪ {z} ∪ Z) is not individually rational for yS .

3. Suppose Cf ({y} ∪ Y ∪ {z} ∪ Z) �f A|f �f C
f (Y ∪ {z} ∪ Z). In this case, y ∈

A as otherwise A|f is available to f from Y ∪{z}∪Z, so we could not have A|f �f

Cf (Y ∪ {z} ∪ Z). But then, Cf ({x} ∪ Y {z} ∪ ∪Z) is a blocking set.

4. Suppose Cf ({y} ∪ Y ∪ {z} ∪ Z) = A|f . Then if w ∈ A, A is not individually

rational for zB; if w /∈ A, {w} is a blocking set.

Proof of Theorem 7

Consider an allocation A that is not stable. If it is not individually rational, then it is not

chain stable by definition. Hence, suppose there is a blocking set Z. Since X is acyclic,

there is an ordering of firms in ZF such that xB B xS . Find the firm f for which f B g

for all g ∈ ZF , and consider one contract y1 ∈ Z such that y1
B = f . Now consider

y1
S . By same-side substitutes, y1 ∈ C

y1
B

B ({y1} ∪ A|A) and y1 ∈ C
y1

S
S ({y1} ∪ A|A ∪ Z).
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If y1 ∈ C
y1

S
S ({y1} ∪ A|A), then {y1} is a chain and a blocking set and we are done, if

not there exists a contract y2 ∈ Z such that y1 ∈ C
y1

S
S ({y1} ∪ A|A ∪ {y2}) and y2 ∈

C
y1

S
B ({y2} ∪ A|A ∪ {y1}), by same-side substitutes. (If no such y2 exists, then prefer-

ences do not satisfy same-side substitutes, as there exists y2 /∈ Cy1
S

B ({y2} ∪ A|A ∪ {y2}),

but y2 ∈ C
y1

S
B (Z ∪ A|A ∪ {y2}).) Using the same arguments for the contract y2, ei-

ther {y1, y2} is a chain and a blocking set, or there exists y3 ∈ Z such that y2, y3 ∈

Cy2
S ({y1, y2, y3} ∪ A). More generally, {y1, y2, . . . , yn} is a chain and a blocking set, or

there exists yn+1 ∈ Z such that yn, yn+1 ∈ Cyn
S ({y1, . . . , yn+1} ∪ A). Since X is finite, Z

is finite, and hence there exists a chain
{
y1, . . . , yN

}
that is a blocking set.

5.1 Proof of Theorem 8

Consider any stable allocation A associated with the fixed point
(
XS, XB

)
and the seller-

optimal stable allocation Â associated with the fixed point
(
X̂S, X̂B

)
. Consider an arbi-

trary firm f . We have that∣∣∣CS
f

(
X̂S|X̂B

)∣∣∣− ∣∣∣CB
f

(
X̂B|X̂S

)∣∣∣ ≥ ∣∣∣CS
f

(
XS|X̂B

)∣∣∣− ∣∣∣CB
f

(
X̂B|XS

)∣∣∣
≥
∣∣CS

f

(
XS|XB

)∣∣− ∣∣CB
f

(
XB|XS

)∣∣ ,
where the first inequality follows by the LoAS, as X̂S ⊇ XS , and the second follows by

the LoAD, as X̂B ⊆ XB. Hence, the difference between the number of contracts f sells

and the number f buys is weakly greater under
(
X̂S, X̂B

)
than

(
XS, XB

)
. However,

summing over all firms, the difference between the number of contracts bought and the

number of contracts sold is zero. Hence, for each firm the change in the difference between

the number of sold and the number bought is zero.

Proof of Theorem 9

Let the ordering of firms given X such that no firm sells to a lower-orded firm by C. There

are three possibilities:
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1. There exists a contract z ∈ X such that

x, y ∈ Cf
S (Z|Y ) and x, y /∈ Cf

S ({z} ∪ Z|Y )

(The case where f is a buyer is symmetric.) For any firm g ∈ (Y ∪ Z)−{xB, yB, zB}

let them desire any and all contracts in Y ∪Z they are associated with. Furthermore,

let {xB, yB, zB} all desire any and all contracts they are associated with in Z regard-

less of their other contracts.

There are two subcases:

(a) We have either f C xB C zB or f C yB C zB; assume the former (the latter

is symmetric). Then let {xB, yB, zB} have these additional preferences over

contracts besides Z − {x, y, z}:

P xB : {x, ŷ} � {x, ẑ} � {x} � {ŷ} � {ẑ} � ∅

P yB : {y} � {ŷ} � ∅

P zB : {ẑ} � {z} � ∅

There are two stable allocations: Cf (Z ∪ Y ) ∪ {ẑ} and Cf ({z} ∪ Z ∪ Y ) ∪

{ŷ}, and hence the conclusion of the rural hospitals theorem fails for f .

(b) We have f C zB C xB, yB. Then let {xB, yB, zB} have these additional prefer-

ences over contracts besides Z − {x, y, z}:

P zB : {z, x̂} � ∅

P yB : {y} � ∅

P xB : {x} � {x̂} � ∅

There are two stable allocations: Cf (Z ∪ Y ) and Cf ({z} ∪ Z ∪ Y )∪{x̂}, and

hence the conclusion of the rural hospitals theorem fails for f .
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2. There exists a contract z ∈ X such that

x ∈ Cf
S (Z|Y ) , y /∈ Cf

B (Y |Z) and x /∈ Cf
S ({z} ∪ Z|Y ) , y ∈ Cf

B (Y | {z} ∪ Z)

(The case where f is a buyer is symmetric.) For any firm g ∈ (Y ∪ Z)−{xB, yB, zB}

let them desire any and all contracts in Y ∪Z they are associated with. Furthermore,

let {xB, yB, zB} all desire any and all contracts they are associated with in Z regard-

less of their other contracts. Then let {xB, yB, zB} have these additional preferences

over contracts besides Z ∪ Y − {x, y, z}:

P xB : {x} � ∅

P yS : {y} � {ŷ} � ∅

P zB : {ŷ} � {z} � ∅

There are two stable allocations: Cf (Z ∪ Y )∪{ŷ} andCf ({z} ∪ Z ∪ Y ), and hence

the conclusion of the rural hospitals theorem fails for f .

3. There exists a contract z ∈ X such that

x, y /∈ Cf
B (Y |Z) and x, y ∈ Cf

B (Y | {z} ∪ Z)

(The case where f is a buyer is symmetric.) For any firm g ∈ (Y ∪ Z)−{xB, yB, zB}

let them desire any and all contracts in Y ∪Z they are associated with. Furthermore,

let {xB, yB, zB} all desire any and all contracts they are associated with in Z regard-

less of their other contracts. Then let {xB, yB, zB} have these additional preferences

over contracts besides Z ∪ Y − {x, y, z}:

P xS : {x} � ∅

P yS : {y} � {ŷ} � ∅

P zB : {ŷ} � {z} � ∅

There are two stable allocations: Cf (Z ∪Y )∪{ŷ} and Cf ({z}∪Z ∪Y ), and hence

the conclusion of the rural hospitals theorem fails for f .
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