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1. Introduction 

  This paper develops a dual-self model that is compatible with modern dynamic 

macroeconomic theory and evidence, and calibrates it to make quantitatively accurate 

predictions in experiments that display a wide range of behavioral anomalies concerning 

risk: small-stakes risk aversion (the “Rabin paradox”), the Allais paradox, and the effect 

of cognitive load on risk taking.   To obtain a quantitative fit, as opposed to simply 

showing that the model allows the anomalies, we extend the simpler “nightclub” dual- 

self model of Fudenberg and Levine [2006] by  introducing one additional choice (the 

choice of a “nightclub,” or more generally of anticipated consumption) and one  

additional parameter that needs to be calibrated.  

A key motivation for the paper is our belief that models in behavioral economics, 

as in other areas of economics, should do more than simply organize the data from a 

given experiment, and that it is much better to have a small number of models that 

explain a large number of facts than the reverse. Ideally, a model should not only predict 

the data to which it was fit, but also make correct predictions about outcomes in other 

settings, including experiments that have not yet been run. Our first dual-self paper made 

a step towards that goal by studying a self-control problem derived from a game between 

a single long-lived self and a sequence of short-term myopic selves. The equilibrium of 

this game corresponds to a dynamic model of intertemporal choice consistent with those 

widely and successfully used in macroeconomics, and it qualitatively predicts many 

behavioral anomalies seen in the laboratory. In particular, while it is designed to be a 

time-consistent explanation of the facts used to motivate quasi-hyperbolic discounting, 

the dual-self model predicts the Rabin paradox of inconsistent risk aversion between 

small and large gambles. It also makes predictions about the impact of cognitive load on 

decision making. As we argued, existing data on cognitive load suggests that the cost of 

self-control is not linear but rather strictly convex.1 This implies that choices involving 

                                                
1 The work of Baumeister and collaborators (for example, Muraven et al [1998,2000], Galiot et al [2008]) 
argues that self-control is a limited resource, moreover one that may be measured by blood glucose levels. 
The stylized fact that people often reward themselves in one domain (for example, food) when exerting 
more self control in another (for example, work) has the same implication. This is backed up by evidence  
from Shiv and Fedorikhin [1999] and Ward and Mann [2000] showing that agents under cognitive load 
exercise less self-control, for example, by eating more deserts. The first two observations fit naturally with 
the idea that a common “self-control function” controls many nearly simultaneous choices. The third fits 
naturally with the hypothesis that self-control and some other forms of mental activity draw on related 
mental systems or resources. Benahib and Bisin [2005], Bernheim and Rangel [2004], Brocas and Carillo 
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relatively less tempting options will be made according to the preferences of the long-run 

self, while choices involving more tempting options will be made according to the 

preferences of the short-run self. We then pointed out that when the cost function is 

convex, the dual-self model fails the independence axiom of expected utility theory. In 

this paper we show that convex cost of self-control can generate an Allais paradox, and 

that lab data supports the idea that the cost of self-control is convex. 

 The reason that our model predicts the Allais paradox is that the convexity of the 

cost function leads to a particular sort of violation of the independence axiom: Agents 

should be “more rational” about choices that are likely to be payoff-irrelevant.  This is 

exactly the nature of the violation of the independence axiom in the Allais paradox. In the 

Allais paradox there are two scenarios each involving two options. Under expected utility 

theory, the same option must be chosen in each scenario, but in practice people choose 

different options in the two scenarios. A key element of the paradox is that one of the 

scenarios involves a much smaller probability of winning a prize. That means that there is 

less temptation to the short-run self. With a convex cost of self-control, less temptation 

lowers the marginal cost of self-control, so that the long-run self uses more self-control 

and thus chooses the lottery with the highest long-run utility. Because the long-run self is 

patient and the lottery is a small share of lifetime wealth, this will be the lottery with the 

higher expected value. When the chance of winning a prize is high, the temptation great, 

so the marginal cost of self-control high. In this case the long-run self should allow the 

short-run self to choose the lottery. Since short-run utility will be essentially the same 

regardless of whether the prize is large or small, the short-run self prefers the lottery with 

the highest probability of winning a prize. This is exactly the sort of reversal observed in 

the Allais paradox. We should emphasize that our theory does not explain all possible 

violations of the independence axiom: If the choices in each of the two Allais scenarios 

were reversed, the independence axiom would still be violated, but our explanation would 

not apply. 

Our goals in this paper are not only to formalize the analysis of the Allais 

paradox, but to construct a form of the dual-self model that can be calibrated to explain a 

                                                                                                                                            
[2005], Loewenstein and O’Donoghue [2005] and Ozdenoren et al [2006] present similar dual-self models, 
but they do not derive them from a game the way we do, and they do not discuss risk aversion, cognitive 
load, or the possibility of convex costs of self-control. 
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range of data about choices over lotteries. To do this, we extend the nightclub model we 

used in Fudenberg and Levine [2006] by adding an additional choice of “consumption 

technology.” This is necessary not only to explain the Allais paradox with plausible 

parameter values, but to explain why there is substantial risk aversion even to the very 

small stakes used in some experiments. Specifically, while our earlier model can explain 

the examples in Rabin [2000], those examples (such as rejecting a bet that had equal 

probability of winning $105 or losing $100) understate the degree of risk aversion in 

small-stakes experiments, where agents are risk averse over much smaller gambles, and 

fitting our earlier model to these small gambles requires parameter values that conflict 

both with intuition and with other data. 

The idea of the bank/nightclub model is that agents use cash on hand as a 

commitment device, so that on the margin they will consume all of any small unexpected 

winnings. However, when agents win large amounts, they choose to exercise self-control 

and save some of their winnings. The resulting intertemporal smoothing make the agents 

less risk averse, so that they are less risk averse to large gambles than to small ones. 

When calibrating the model to aggregate data, we took the underlying utility function to 

be logarithmic and the same for all consumers. In the present paper we show that this 

simple specification is not consistent with experimental data on risk aversion and 

reasonable values of the pocket cash variable against which short-term risk is compared.2  

For this reason we introduce an extension of the nightclub model in which the choice of 

venue at which short-term expenditures are made is endogenous. This reflects the idea 

that over a short period of time, the set of things on which the short-run self can spend 

money is limited, so the marginal utility of consumption decreases fairly rapidly and risk 

aversion is quite pronounced. Over a longer time frame there are more possible ways to 

adjust consumption, and also to learn how to use or enjoy goods that have not been 

consumed before, so that the long-run utility possibilities are the upper envelope of the 

family of short-run utilities.  With the preference that we specify in this paper, this upper 

                                                
2 Since the first version of this paper was written, Cox et al [2007] conducted a series of experiments to test 
various utility theories using relatively high stakes. They also observe that the simple logarithmic model is 
inconsistent with observed risk aversion, and they argue that the simple linear-logarithmic self-control 
model does not plausibly explain their data.  We will be interested to see whether their data is consistent 
with the more complex model developed here. 
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envelope, and thus the agent’s preferences over steady state consumption levels, reduces 

to the logarithmic form we used in our previous paper.  

After developing the theory of “endogenous nightclubs,” we then calibrate it in an 

effort to examine three different paradoxes. Specifically, we analyze  Rabin paradox data 

from Holt and Laury [2002], the Kahneman and Tversky [1979] and Allais  versions of 

the Allais paradox, and the experimental results of Benjamin, Brown,  and Shapiro 

[2006], who find that exposing subjects to cognitive load increases their small-stakes risk 

aversion.3  

Our procedure is to find a set of sensible values of the key parameters, namely the 

subjective interest rate, income, the degree of short-term risk aversion, the time-horizon 

of the short-run self, and the degree of self-control, using a variety of external sources of 

data. We then investigate how well we can explain the paradoxes using the calibrated 

parameter values and the dual-self model.  How broad of set of parameter values in the 

calibrated range will explain the paradoxes? To what extent can the same set of parameter 

values simultaneously explain all the paradoxes? Roughly speaking, we can explain most 

of the data if we assume an annual subjective interest rate in the range of 1-7%, a short-

run “relative risk aversion of consumption” of about 2, and a daily time horizon for the 

short-run self. We find that the Rabin paradox is relatively insensitive to the exact 

parameters assumed; the Allais paradox is sensitive to choosing a plausible level of risk 

aversion; and the Chilean cognitive load data is very sensitive to the exact parameter 

values chosen. In particular, the Chilean data requires a subjective interest rate of 7%, 

which is at the high end of the range consistent with macroeconomic data.  

We should emphasize that the subject populations we study are heterogeneous 

and range from Chilean high school students to U.S. and Dutch undergraduates. 

Moreover, only some subjects exhibit reversals. In short, there is no reason to believe that 

                                                
3 The main focus of Benjamin, Brown and Shapiro [2006], like that of Frederick [2005], is on the 
correlation between measures of cognitive ability and the phenomena of small-stakes risk aversion and of a 
preference for immediate rewards. Benjamin, Brown and Shapiro find a significant and substantial 
correlation between with each of these sorts of preferences and cognitive ability. They also note that the 
correlation between cognitive ability and time preference vanishes when neither choice results in an 
immediate payoffs, and that the correlation between small-stakes risk aversion and “present bias” drops to 
zero once they control for cognitive ability. This evidence is consistent with our explanation of the Rabin 
paradox, as it suggests that that small-stakes risk aversion results from the same self-control problem that 
leads to a present bias in the timing of rewards. They also discuss the sizable literature that examines the 
correlation between cognitive ability and present bias without discussing risk aversion.  
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the reversals we observe in the data can all be explained by a single common set of 

“representative” parameter values. Consequently instead of trying to focus on the single 

parameter constellation that would best fit all the data, we focus on the range and 

robustness of the parameter values that can be used to explain reversals, and the fact that 

even across subjects and populations this range is roughly the same. 

After showing that the base model provides a plausible description of data on 

attitudes towards risk, gambles, and cognitive load, we examine the robustness of the 

theory. Specifically, in the calibrations we assume that the opportunities presented in the 

experiments are unanticipated, so we consider what happens when gambling 

opportunities are foreseen.  

2. Self-Control, Cash Constraints, and Target Consumption 

We consider an infinite-lived consumer making a savings decision. Each period 

1,2,t = … is divided into two sub-periods, the bank sub-period and the nightclub sub-

period. Wealth at the beginning of the bank sub-period is denoted by tw . During the 

“bank” sub-period, consumption is not possible, and wealth is divided between savings 

ts , which remains in the bank, pocket cash tx  which is carried to the nightclub, and 

durable consumption dtc  which is paid for immediately and is consumed in the second 

sub-period of period t .4  In the nightclub consumption 0 t tc x≤ ≤  is determined, with 

t tx c−  returned to the bank at the end of the period. Wealth next period is just 

1 ( )t t t tw R s x c+ = + − . For simplicity money returned to the bank bears the same rate 

of interest as money left in the bank. No borrowing is possible, and there is no other 

source of income other than the return on investment. 

 

Consumption Commitment: So far, we have followed Fudenberg and Levine [2006]. 

Now we consider an extension of that model that we will use to explain the degree of risk 

aversion we observe in experimental data. Specifically, we suppose that there is a choice 

of nightclubs to go to in the nightclub sub-period. These choices are indexed by the 

                                                
4 Durable and/or committed consumption is a significant fraction (roughly 50%) of total consumption so we 
need to account for it in calibrating the model, but consumption commitments are not our focus here. For 
this reason we use a highly stylized model, with consumption commitments reset at the start of each time 
period. A more realistic model of durable consumption would have commitments that extend for multiple 
periods, as in Grossman and Laroque [1990]. 
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quality of the nightclub * (0, )tc ∈ ∞ . In a nightclub of quality *tc  we assume that the 

utility of the short-run self has the form ( | *)t tu c c  depending on the amount consumed 

tc  there and the quality of the nightclub.  

The utility function at the nightclub is assumed to satisfy *( | ) ( | )t t t tu c c u c c≤ . 

This means that when planning to consume a given amount tc  it is best to choose the 

nightclub of the same index. Intuitively, the quality *tc  of a nightclub represents a 

“target” level of consumption expenditure at that nightclub. That is, if you are going to 

consume a low level of tc  you would prefer to spend it at a nightclub with a low value of 

*tc  and you would like to consume a high level of tc  at a high quality nightclub. 

It is useful to think of a low value of *tc  as representing a nightclub that serves 

cheap beer, while a high value of *tc  represents a nightclub that serves expensive wine.  

At the beer bar tc  represents expenditure on cheap beer, while at the wine bar it 

represents the expenditure on expensive wine. The assumption that 

*( | ) ( | )t t t tu c c u c c≤  captures the idea that spending a large amount at a low quality 

nightclub results in less utility than spending the same amount at a high quality nightclub: 

lots of cheap beer is not a good substitute for a nice bottle of wine. Conversely, spending 

a small amount at a high quality nightclub results in less utility than spending the same 

amount at a low quality nightclub: a couple of bottles of cheap beer are better than a 

thimble-full of nice wine. People with different income and so different planned 

consumption levels will choose consumption sites with different characteristics. The 

quality of a nightclub can also be interpreted as a state variable or capital stock that 

reflects experience with a given level of consumption: a wine lover who unexpectedly 

wins a large windfall may take a while both to learn to appreciate differences in grands 

crus and to learn which ones are the best values.5   

We assume that ( | ) logt t tu c c c= ; this ensures that in a deterministic and 

perfectly foreseen environment without self control costs, behavior is the same as with 

standard logarithmic preferences. To avoid uninteresting approximation issues, we 

assume that there are a continuum of different kinds of nightclubs available, so that there 

are many intermediate choices between the beer bar and wine bar. 

                                                
5 To fully match the model, this state variable needs to reflect only recent experience: a formerly wealthy 
wine lover who has been drinking vin de table for many years may take a while to reacquire both a 
discerning palate and up-to-date knowledge of the wine market. 
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There are a great many possible functional forms satisfying these properties. Our 

choice of a specification is guided both by analytic convenience and by evidence 

(examined below) that short-term risk preferences seem more risk averse than consistent 

with the logarithmic specification, even when self-control costs are taken into account. 

This leads us to adopt the functional form 

 
1( / *) 1

( | *) log *
1

t t
t t t

c c
u c c c

ρ

ρ

− −
= −

−
, 

where 1ρ ≥  corresponds to the short-run self’s relative risk aversion over immediate 

consumption.  

With this specification ( | ) log( )t t tu c c c= , and  

 

2* *

* *

( | ) 1 1t t t

t tt t

u c c c

c cc c

ρ− ∂ = −  ∂  
.    

As a consequence, the first order condition for maximizing ( | *)t tu c c  with respect to 

*tc  implies *t tc c= , and the second order condition is  

 ( )
*

2

2 2 2*2

( | *) 1 1 1
2) 1

t t

t t

t t tt c c

u c c

c c cc
ρ ρ

=

∂
= − −( − = −

∂
,  

which is negative when 1ρ > . 

 

Durable Consumption: The next step is to specify the agent’s preferences for durable 

versus non-durable consumption. Our goal here is simply to account for the fact that 

durable consumption exists, and not to explain it, so we adopt a simple Cobb-Douglas-

like specification ( | *) (1 )log d
t t tu c c cτ τ+ − ; this will lead to a constant share τ  of 

spending on durables. Durable consumption  dtc  can only be adjusted slowly, and seems 

unlikely to respond at all to the sorts of income shocks received in the lab experiments we 

study. For this reason we simplify the model by assuming that the time path of dtc  is 

chosen for once and for all in the initial time period.6 

 

                                                
6 Similarly, we abstract from labor supply, precautionary savings motives, and so forth. However we 
explicitly introduce durable consumption so that when we calibrate pocket cash the short-run self does not 
perceive that the rent check and similar expenses are available for short-term amusement.   



 8 

Cost of Self-Control: The long-run self maximizes the expected discounted present 

value of the utility of the short-run selves. This is done subject to a cost of self-control. 

This cost depends on the resources the short-run self perceives as available to himself. 

These resources determine a temptation utility for the short-run self, representing the 

utility the short-run self perceives as available if allowed unfettered access to those 

resources, free from the bounds of self-control exerted by the long-run self. Denote this 

temptation utility by tu . The actual realized utility that the long-run self allows the short-

run self is tu , and there may be cognitive load due to other activities, td . Then the cost of 

self-control is ( )t t tg d u u+ −  and where the function g is continuously differentiable 

and convex. Until section 7 we suppose that there is no cognitive load from other 

activities, and set 0td = . The key idea here is that the cost of self-control depends on the 

difference between the utility the short-run self is tempted by tu  and the utility the short-

run self is allowed tu . In our calibrations of the model, we will take the cost function to 

be quadratic: 2( ) (1/2)t t tg v v vγ= + Γ . 

 

Long-run Self: In the bank no consumption is possible, and so there is no temptation for 

the short-run self. In the nightclub the short-run self cannot borrow, and wishes to spend 

all of the available pocket cash 
t

x  on consumption. This pocket cash functions as a 

commitment device: by spending money on durable consumption or leaving it in the 

bank, it is not available to the short-run self in the nightclub, so does not represent a 

temptation that must be overcome by costly self-control.  

The problem faced by the long-run self is to choose pocket cash and consumption 

to maximize the present value using the discount factor δ  of short-run self utility net of 

the cost of self-control. The objective function of the long-run self is 

 
( )1 * * *

1
( | ) ( ( | ) ( | ) (1 )log )

RF

t d
t t t t t t tt

U

E u c c g u x c u c c cδ τ τ
∞ −
=

=

 − − + − ∑
  (2.1) 

which is to be maximized with respect to *0, 0, 0, 0d
t t t tc c c x≥ ≥ ≥ ≥  subject to 1w  

given, 1 ( )t t t tw R s x c+ = + − , d
t t t ts x c w+ + ≤  and 0tw ≥ . 

 In this formulation there is a single long-run self with time-consistent preferences. 

Although the impulsive short-run selves are the source of self-control costs, the 

equilibrium of the game between the long run self and the sequence of short run selves is 
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equivalent to the optimization of this reduced-form control problem by the single long-

run self. 

 

Solution in the Deterministic Case: Suppose that there is no uncertainty, so this is a 

simple deterministic infinite-horizon maximization problem. Because there is no cost of 

self-control in the bank, the solution to this problem is to choose *
t t tc c x= = . In other 

words, cash tx  is chosen to equal the optimal consumption for an agent without self-

control costs, and *
tc  is the nightclub of the same quality. The agent then spends all 

pocket cash at the nightclub, and so incurs no self-control cost there. Since *
t t tc c x= = , 

the utility of the short run self is *( | ) logt t tu x c x= , and as there is no self-control cost, 

this boils down to maximizing  

 1
1

log (1 )log )t d
t tt
x cδ τ τ

∞ −
=

 + − ∑  

subject to the budget constraint 1 ( )dt t t tw R w x c+ = − − . The solution is easily 

computed7 to be (1 )t tx wδ τ= − , and (1 )(1 )d
t tc wτ δ= − − .  The corresponding 

present value utility of the long-run self is 

 1
1 1

log( )
( )

1

w
U w K

δ
= +

−
, 

where  

 [ ]
1

log(1 ) log( ) log (1 )log(1 )
1

K Rδ δ δ τ τ τ τ
δ

= − + + + − −
−

. 

These together give the solution of the simple deterministic budget problem. 

 Because the time path of durable consumption dtc  is chosen once and for all in 

period 1 as a function of initial wealth 1w , the utility from period 2 on is 

 

 2 1 1
2 2 1

log( (1 ) ) (1 )log((1 ) )
( | )

1 1

w R w R w
U w w K

τ τ δ τ τ δ

δ δ

− − − −
= + +

− −
,  

where K  is the same constant as above. 

                                                
7 The derivation is standard; an explicit computation in the case where 1τ =  is in Fudenberg and Levine 
[2006]. Note that equation (1) of that paper contains a typographical error: in place of 

( )0(1 ) log(1 ) loga yγ+ − +  it should read 0(1 )log(1 ) log( )a yγ+ − + . 
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The demand for costly self-commitment in order to reduce the future cost of self-

control has many implications. For example, individuals may pay a premium to invest in 

illiquid assets, as do the quasi-hyperbolic agents in Laibson [1997]. They may also 

choose to carry less cash than in the absence of self-control costs. 

 

Uncertainty and Unforeseen Choices: The deterministic perfect-foresight savings 

model is too simple to account for any behavioral phenomena. However, the model does 

predict that there can be “preference reversals” in evaluating some intertemporal 

tradeoffs when there is uncertainty that resolves in the nightclub as opposed to as the 

bank.   

Specifically, suppose that unexpectedly the short-run self at the nightclub is 

offered a choice between an amount 1z  today and an amount 1zθ  tomorrow, where 

Rθ > . Let 2w  denote period 2 wealth in the absence of this unexpected opportunity, and 

let *
1c  and 1

dc  be the quality of the first-period nightclub and first-period durables, which 

were also chosen before going to the nightclub. Because the choice is unexpected, we 

have *
1 1x c= .8 To analyze this binary choice problem, it is convenient to consider the 

auxiliary problem where the agent can choose to consume any non-negative portion of 1z  

at the nightclub, with the balance “invested” with return θ , so that consuming 

* *
1 1 1 1[ , ]c c c z∈ +  leads to period-2 wealth *

1 1 1 2( )c z c wθ + − + .  In this auxiliary problem, 

the agent maximizes  

 
( )[ ]

* * *
1 1 1 1 1 1 1 1

2 2 1 1 1 1

( | ) ( ( | ) ( | )) (1 )log

( ( )) |

du c c g u x z c u c c c

U w z c x w

 − + − + − 

+ + − −

τ τ

δ θ
 

over * *
1 1 1 1[ , ]c c c z∈ + . The derivative of this objective function with respect to 1c  is  

 ( )[ ]2* * *
1 1 1 1 1 1 1 2 1 1 1 1

1 2
1 '( ( | ) ( | )) ( | ) ( ( )) |

u U
g u x z c u c c c c w z c x w

c w

∂ ∂ + + − − + − −  ∂ ∂
τ δθ θ ,  

In contrast, the first order condition in the original problem at the bank was 

 ( )[ ]2*
1 1 2 1

1 2

( | ) | 0.
u U
c c R w w

c dw

∂ ∂
− =

∂
τ δ  

                                                
8 The analysis would be essentially the same if this choice was foreseen but had very low ex-ante 
probability, as in this case it would have a negligible effect on the decisions made at the start of period 1. 
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Define 
1 0

* * *
1 1 1 1 1 1lim '( ( | ) ( | ))z g u x z c u c c

↓
= + −γ  to be the marginal cost of self-

control at * *
1 1( , )c c .  The first order condition for the original bank problem implies that in 

the limit as 1 0z → , the derivative of the at-the-nightclub objective function evaluated at 

*
1 1c c=  is  

 [ ]( ) ( )[ ]2
1 2 1

2

1 |
U

R w w
dw

γ δ δθ
∂

+ − . 

This means that if 1z  is small and 1(1 )Rθ γ< + , the long-run self at the nightclub will 

strictly prefer to consume now 1z  rather than 1zθ in the future. This is despite the fact that 

given the choice between 1z  at future date t  and 1zθ  at date 1t +  the long-run self will 

strictly prefer the later date. The reason is simply that at the nightclub the short-run self 

was rationed by the available cash 1x . An extra cash payment of 1z  today will cause a 

temptation to increase spending that is costly for the long-run self to control.  By contrast 

there is no temptation associated with future payoffs, and so there can be “preference 

reversal” whenever the cost of resisting the short-run temptation is sufficiently high. 

 Now suppose that the choice instead of between certain rewards the rewards 

1 1,z zθ  have a common probability p  less than one of being received (so with 

complementary probability 1 p−  the reward is 0.) Because the reward is less likely, the 

costs and benefits of resisting temptation are lower. If the cost of self-control is linear, 

these effects exactly offset, but if marginal cost is increasing ( 0Γ > ), then when the 

rewards are less likely, the marginal cost of self-control is smaller as compared to its 

benefit, so  preference reversal will only occur for a smaller range of returns θ . In 

particular, for some values of θ  the reversal will occur when the reward is certain, but 

not when there is a sufficiently small chance of receiving the reward. The following data 

from Keren and Roelsofsma [1995] shows that this is exactly what happens.9 

 

                                                
9 This experimental result is confirmed by Weber and Chapman [2005], and discussed in Halevy [2008], 
who proposed an objective function that is consistent with these choices.   Note that the experiment was in 
Dutch Florins. We converted from Dutch Florins to U.S. Dollars using an exchange rate typical of the early 
1990s of 1.75 Florin per Dollar. 
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Table 1 – “Hyperbolic” Discounting with Random Reward 

  Probability of reward 

  1.0 0.5 

$175 now 0.82 0.39 A 

$192 4 weeks 0.18 0.61 

$172 26 weeks 0.37 0.33 B 

$192 30 weeks 0.63 0.67 

 

Note that this dependence of the choices on the probability of reward is not 

consistent with quasi-hyperbolic preferences (as in Laibson [1997]) or with the version of 

the independence axiom (for choices over menus) imposed as an axiom by Gul and 

Pesendorfer [2001] and Dekel, Lipman, and Rustichini [2008].  

 

Mental Accounting: A crucial aspect of the model is the “pocket cash” tx  that serves to 

ration consumption and so reduce the temptation to the sort-run self. In the simple 

perfect-foresight version of the model, it is optimal to give the short-run self exactly the 

amount to be spent at the nightclub, and so avoid temptation and self-control cost 

entirely. In effect the long-run self hands the pocket cash to the short-run self to take to 

the nightclub and says “here…go crazy….spend it all.” The actual decision about how 

much pocket cash to allocate to the short-run self is taken at a location – “the bank” – 

where there are no tempting consumption possibilities.  

 In Fudenberg and Levine [2006] the notion of a bank and pocket cash were taken 

literally. In practice there are many strategies that individuals use to reduce the 

temptation for impulsive expenditures. The view we take here is that pocket cash is 

determined by mental accounting of the type discussed by Thaler [1980], and not 

necessarily by physically isolating money in a bank. In other words, tx  should not be 

viewed as the literal amount of money the short-run self has in their wallet or the amount 

available including cash cards and so forth, but should be viewed as the amount of 

resources that the short-run self feels entitled to use. The strategies individuals use for 

this type of commitment can be varied. For example some people may choose to carry 

only a limited amount of cash and no credit cards. Others may allow the short-run self to 
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spend money only in the “right pocket.” Yet others may engage in more direct mental 

accounting of the form “you may spend $100 at the nightclub, but no more.”  

 In this formulation we do not imagine that tx  is directly observable, for example 

by surveying individuals about how much money they have in their wallets. However, 

because of the intertemporal optimization problem, we can calculate tx  (along with *
tc  

which is also not directly observable) from knowledge of the underlying parameters of 

preferences ,δ ρ . 

3. Risky Drinking: Nightclubs and Lotteries 

Suppose in period 1 (only) that when the agent arrives at the nightclub of her 

choice, she has the choice between two lotteries, A and B with returns 1 1,A Bz z� � . Initially 

we will assume that this choice is completely unanticipated – that is, it has prior 

probability zero. This means that * (1 )t t tc x wδ τ= = − . What is the optimal choice of 

lottery given *
1 1,x c ? For simplicity, we assume throughout that the agent does not expect 

to have lottery opportunities at nightclubs after period 1; as noted earlier, the overall 

savings and utility decision will not change significantly provided that the probability of 

getting future lottery opportunities is small.  

The lotteries 1 1,A Bz z� �  may involve gains or losses, but we suppose that the largest 

possible loss is less than the agent’s pocket cash. There are number of different ways that 

the dual-self model can be applied to this setting, depending on the timing and 

“temptingness” of the choice of lottery and spending of its proceeds. In this paper we 

assume that the short-run self in the nightclub simultaneously decides which lottery to 

pick and how to spend for each possible realization of the lottery.  

Since the highest possible short-run utility comes from consuming the entire 

proceed of the lottery, the temptation utility is * *
1 1 1 1 1 1max{ ( , ), ( , )}A BEu x z c Eu x z c+ +� �  

where 1
jz�  is the realization of lottery ,j A B= . This temptation must be compared to the 

expected short-run utility from the chosen lottery. If we let 1 1( )j jc z�  be the consumption 

chosen contingent on the realization of lottery j, the self-control cost is  

( )* * *
1 1 1 1 1 1 11max{ ( , ), ( , )} ( , )jA Bg Eu x z c Eu x z c Eu c c+ + −� � � . 
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Let 1γ  denote the marginal cost of self-control in the first period. We let 11 1ˆ ( )( )j jc zγ  be 

the solution to the first-order condition for a maximum for a given marginal cost of self 

control, that is, the unique solution to 

  ( ) ( )
1 1*

1 11 1 1

(1 )(1 )
( )j j jc c w z c

ρρ δ γ
τ

δ

− − +
= + − , 

and find the corresponding marginal cost of self control 

 
11

* * *
1 1 1 1 1 1 1 1 11 1 1

ˆ ( )

ˆ'(max{ ( , ), ( , )} (min{ ( )( ), }, ))

j

j j jA Bg Eu x z c Eu x z c Eu c z x z c

γ γ

γ

=

+ + − +� � � �

 

We show in the Appendix that we can characterize the optimum as follows: 

Theorem 1: For given *
1 1( , )x c  and each { , }j A B∈  there is a unique solution to 

 1 1 1ˆ ( )j j jγ γ γ=  

and this solution together with 11 1 1 1 1ˆmin( ( )( ), ]j j j j jc c z x z= +� γ  and the choice of j  that 

maximizes long-run utility is necessary and sufficient for an optimal solution to the 

consumer’s choice between lotteries A and B.  
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The “consumption function” is 11 1 1 1 1ˆmin( ( )( ), }j j j j jc c z x zγ= +� . Let ẑ  such that all the 

winnings are spent, that is, 1 11̂ ˆ ˆ( )( )jc z x zγ = + . From the first order condition this can be 

computed equal to 

 ( ) [ ]
1 1/

*
1 1 1 1 1 1

1
ˆ (1 )z c w x x

− − 
= + − − 

 

ρ ρ

ρ
δ

γ τ
δ

 

Note that for arbitrary *
1 1,x c  we may have 1̂z  negative. This is sketched in Diagram 1. 

For 11 ˆjz z<  no self-control is used, and all winnings are spent. Above this level self 

control is used, with only a fraction of winnings consumed, and the rest going to savings. 

When the time period is short, 1̂
jc  is very flat, so that only a tiny fraction of the winnings 

are consumed immediately when receipts exceed the critical level. Thus when the agent is 

patient he is almost risk neutral with respect to large gambles. However the agent is still 

risk averse to small gambles, as these will not be smoothed but will lead to a one for one 

change in current consumption. 

 

Increasing Marginal Cost of Self-Control: So far we have focused on the first-order 

effect of self-control costs. We showed that when an unexpected gamble arises at the 

nightclub the problem of self-control that was not present at the bank leads to a wedge in 

Figure 1 - The "Consumption" Function 
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marginal utilities and consequently a high marginal propensity to consume out of small 

gains. Our main goal is to understand how changes in the chances of winning a prize, as 

in the Allais paradox or the Keren and Roelsofsma [1995] data, can lead to preference 

reversals. As we shall see, changing the chances of winning a prize has complicated 

effects, depending both on temptation, how the overall prize money is spent, and so forth. 

However, we can gain some intuition about these effects by considering the simple 

conceptual experiment of changing the temptation holding fixed the constraints and other 

parameters of the decision problem. 

 Specifically, the overall objective function we are interested in has the form 

 
( )

1

* *
1 1 1 1 1 2 2 1 1 1

( )

( | ) ( ( | )) (1 )log ( ( ( )))d

U u

u c c g u u c c c U w z c x

=

− − + − + + − −τ τ δ θ
 

where u  represents the temptation. This weights the utility of the current short-run self 

( )* *
1 1 1 1 1( | ) ( ( | ) (1 )log )du c c g u u c c cτ τ− − + −  against the utility of future short-run 

selves 2 2 1 1 1( ( ( )))U w z c xδ θ+ − − . What happens to the objective function with 

quadratic cost of self-control when we change the (unforeseen) temptation u  to 'u ? 

Then 

 
( )

[ ]

* 2 * 2
1 1 1 1 1 1

2 2 *
1 1

( ') ( ) / ( ' ) ( /2)(( ' ( | )) ( ( | )) )

( ' ) ( /2)( ' ) ( ' ) ( | )

U u U u u u u u c c u u c c

u u u u u u u c c

− = − − − Γ − − −

= − − + Γ − + Γ −

τ γ

γ
 

The term in square brackets just involves ',u u  which are constants that do not matter for 

the decision. The second term shows that if 0Γ > , the weight ( ' )u uΓ −  on the utility 

*
1 1( | )u c c  of the current short-run self increases as the temptation increases. In other 

words, more temptation implies greater weight on the utility of the current short-run self 

in the optimal decision. If there is great temptation then the current short-run self calls the 

shots; if there is little temptation, then the agent’s maximization problem is more like the 

usual exponential discounting case. It is this idea that generates reversals such as those in 

the Allais paradox and the Keren and Roelsofsma [1995] data. 

 Note well the implications of this analysis for risk aversion. The preferences of 

the current short-run self *
1 1( | )u c c  are CES with the base level of “wealth” 

corresponding to the endogenous pocket cash 1x . On the other hand, the preference of the 

future short-run selves, as measured by 2 2 1 1 1( ( ( )))U w z c xθ+ − − , are logarithmic with 
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the base level of wealth equal to lifetime wealth. In other words, the current-short self is 

very risk averse, and the future long-run self is nearly risk neutral. So as the temptation 

increases and more weight is placed on the preferences of the current short-run self, the 

individual will behave in a more risk averse fashion. 

4. Basic Calibration 

The first step in our calibration of the model is to pin down as many parameters as 

possible using estimates from external sources of data. We will subsequently use data 

from laboratory experiments to calibrate risk aversion parameters and to determine the 

cost of self control.  

To measure the subjective interest rate r  we ordinarily think of taking the 

difference between the real rate of return and the growth rate of per capital consumption. 

However, we must contend with the equity premium puzzle. From Shiller [1989], we see 

that over a more than 100 year period the average growth rate of per capita consumption 

has been 1.8%, the average real rate of returns on bonds 1.9%, and the real rate of return 

on equity 7.5%. Fortunately if the consumption lock-in once a nightclub is chosen lasts 

for six quarters,10 the problem of allocating a portfolio between stocks and bonds is 

essentially the same as that studied by Gabaix and Laibson [2001], which is a simplified 

version of Grossman and Laroque [1990].11 Their calibrations support a subjective 

interest rate of 1%. This rate, and any rate in the range 1-7%, can explain the data on the 

Allais paradox.12  To explain the Benjamin, Brown, and Shapiro data on Chilean high 

school students requires a higher interest rate of 7%, at the high end of what can be 

supported by Shiller’s data. 

From the Department of Commerce Bureau of Economic Analysis, real per capita 

disposable personal income in December 2005 was $27,640. To consider a range of 

income classes, we will use three levels of income $14,000, $28,000, and $56,000. To 

                                                
10 We have implicitly assumed it lasts for only a day, but the length of lock-in plays no role in the analysis, 
no result or calculation changes if the lock-in is six quarters. 
11 They assume that once the nightclub is chosen, no other level of consumption is possible. We allow 
deviations from the nightclub level of consumption – but with very sharp curvature, so in practice 
consumers are “nearly locked in” to their choice of nightclub. Chetty and Szeidl [2006] show that these 
models of sticky consumption lead to the same observational results as the habit formation models used by 
Constantinides [1990] and Boldrin, Christiano and Fisher [2001]. 
12 Subjective interest rates outside this range are also consistent with the Allais data, we did not explore this 
as we focus on the range that has some prior support from macroeconomic data. 
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infer consumption from the data we do not use current savings rates, as these are badly 

mis-measured due to the exclusion of capital gains from the national income accounts. 

We instead use the historical long-term savings rate of 8% (see FSRB [2002]) measured 

when capital gains were not so important. This enables us to determine wealth and 

consumption from income.  

We estimate wealth as annual consumption divided by our estimate of the 

subjective interest rate r : 1 10.92 /w y r= , where 1y  denotes steady state income. In 

determining pocket cash, we need take account of consumption dtc  that is not subject to 

temptation: housing, consumer durables, and medical expenses. At the nightclub, the rent 

or mortgage was already paid for at the bank, and it is not generally feasible to sell one’s 

car or refrigerator to pay for one’s impulsive consumption. As noted by Grossman and 

Laroque [1990], such consumption commitments increase risk aversion for cash 

gambles.13 For consumption data, we use the National Income and Product Accounts 

from the fourth quarter of 2005. In billions of current dollars, personal consumption 

expenditure was $8,927.8. Of this $1,019.6 was spent on durables, $1,326.6 on housing, 

and $1,534.0 on medical care, which are the non-tempting categories. This means that the 

share of income subject to temptation 0.57τ = . 

 Finally, we must determine the time horizon ∆  of the short-run self. This is hard 

to pin down accurately, in part because it seems to vary both within and across subjects, 

but the most plausible period seems to be about a day. For the purposes of robustness we 

checked that none of our results are sensitive to assuming a time horizon of a week: 

details can be found in the earlier working paper version available on line. 

Putting together all these cases,  we estimate pocket cash to be 

1 1 10.57 0.92 /365 .00144x y y= × × = × . 

                                                
13 Chetty and Szeidl [2006] extend Grossman and Laroque to allow for varying sizes of gambles and costly 
revision of the commitment consumption.  Postelwaite, Samuelson and Silberman [2006] investigate the 
implications of consumption commitments for optimal incentive contracts. 
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Table 2 – Calibrated Parameter Summary 

Percent interest r 1y = 14K 1y = 28K 1y = 56K 

annual daily 1w  1x  1w  1x  1w  1x  

1 .003 1.3M 2.6M 5.2M 

3 .008 .43M .86M 1.7M 

5 .014 .30M 

 

20 

.61M 

 

40 

1.2M 

 

80 

 

To determine a reasonable range of self control costs, we need to find how the 

marginal propensity to consume “tempting” goods changes with unanticipated income. 

The easiest way to parameterize this is with the  “self-control threshold,” which is the 

level of consumption at which self-control kicks in. The consumption cutoff 

corresponding to 1̂z   is given by  

 
( ) [ ]

( )

1/1

1 1 1 1 2

1/
1

(1 )
ˆ ˆ (1 )

1

c x z x w

x

ρρ

ρ

ρ

τ δ
γ

δ

γ

− − 
≡ + = + 

  

≈ +

 

where we use the facts that 2 1 1 / (1 )w w x τ δ≈ = − , and that 1δ ≈ . Define 

( )1/1 1 1 1 1ˆ( ) 1 /c xρµ γ γ= + ≈ .  Because 1γ  is measured in units of utility, its numerical 

value is hard to interpret. For this reason we will report 1 1( )µ γ  rather than 1γ . 

We can also relate 1µ  to consumption data. Abdel-Ghany et al [1983] examined 

the marginal propensity to consume semi- and non-durables out of windfalls in 1972-3 

CES data.14 In the CES, the relevant category is defined as “inheritances and occasional 

large gifts of money from persons outside the family...and net receipts from the 

settlement of fire and accident policies,” which they argue are unanticipated. For 

windfalls that are less than 10% of total income, they find a marginal propensity to 

consume out of income of 0.94. For windfalls that are more than 10% of total income 

they find a marginal propensity to consume out of income of 0.02. Since the reason for 

                                                
14 The Imbens, Rubin and Sacerdote [2001] study of consumption response to unanticipated lottery 
winnings shows that big winners earn less after they win, which is useful for evaluating the impact of 
winnings on labor supply. Their data is hard to use for assessing 1µ , because lottery winnings are paid as 

an annuity and are not lump sum, so that winning reduces the need to hold other financial assets. It also 
appears as though the lottery winners are drawn from a different pool than the non-winners since winners 
earn a lot less than non-winners before the lottery.  
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the 10% cutoff is not clear from the paper, we will view 10% as a general indication of 

the cutoff. 15 As we have figured the ratio of income to pocket cash to be 1 1/ 696y x = , 

the value of 1µ  corresponding to 10% of annual income is 69.6.  

5. Small Stakes Risk Aversion 

To demonstrate how the model works and calibrate the basic underlying model of 

risk preference, we start with the “Rabin Paradox”: the small-stakes risk aversion 

observed in experiments implies implausibly large risk aversion for large gambles.16  The 

central issue is the case of small gambles. Following Rabin’s proposal, let option A be 

(.5 : 100,.5 : 105)− , while option B is to get nothing. We expect that as Rabin predicts 

many people will choose B.  Since the combination of pocket cash and the maximum 

winning is well below our estimates of 1̂c , all income is spent, and the consumer simply 

behaves as a risk-averse individual with wealth equal to pocket cash and a coefficient of 

relative risk aversion of ρ . Let us treat pocket cash as an unknown for the moment, and 

ask how large could pocket cash be given that a logarithmic consumer is willing to reject 

such a gamble. That is, we solve 1 1 1.5 log( 100) .5( 105) ln( )x x x− + + =  for pocket 

cash; for larger values of 1x  the consumer will accept the gamble, and for smaller ones he 

will reject. In this sense, as we argued in Fudenberg and Levine [2006], short-run 

logarithmic preferences are consistent with the Rabin paradox.17  

  The problem with this analysis is that the gamble (.5 : 100,.5 : 105)−  has 

comparatively large stakes. Laboratory evidence shows that subjects will reject 

considerably smaller gambles, which is harder to explain with short-run logarithmic 

preferences. We use data from Holt and Laury [2002], who did a careful laboratory study 

of risk aversion. Their subjects were given a list of ten choices between an A and a B 

lottery. The specific lotteries are shown below, where the first four columns show the 

                                                
15 Landsburger [1966] with both CES data and with data on reparation payments by Germany to Israeli 
citizens reaches much the same conclusion. 
16 Rabin thus expands on an earlier observation of Samuelson  [1963]. 
17 Note that this theory predicts that if payoffs are delayed sufficiently, risk aversion will be much lower. 
Experiments reported in Barberis, Huang and Thaler [2003] suggest that there is appreciable risk aversion 
for gambles where the resolution of the uncertainty is delayed as well as the payoffs themselves. However, 
delayed gambles are subject to exactly the same self-control problem as regular ones, so this is consistent 
with our theory. In fact the number of subjects accepting the risky choice in the delayed gamble was in fact 
considerably higher than the non-delayed gamble, rising from 10% to 22%. 



 21 

probabilities of the rewards, and the first four rows, which are irrelevant to our analysis 

are omitted. 

 

Table 3 – Laboratory Preferences Towards Risk 

Option A Option B Fraction of Subjects Choosing A 

$2.00 $1.60 $3.85 $0.10 1X 20X 50X 90X 

0.5 0.5 0.5 0.5 .70 .85 1.0 .90 

0.6 0.4 0.6 0.4 .45 .65 .85 .85 

0.7 0.3 0.7 0.3 .20 .40 .60 .65 

0.8 0.2 0.8 0.2 .05 .20 .25 .45 

0.9 0.1 0.9 0.1 .02 .05 .15 .40 

1.0 0.0 1.0 0.0 .00 .00 .00 .00 

 

Initially subjects were told that one of the ten rows would be picked at random and they 

would be paid the amount shown. Then they were given the option of renouncing their 

payment and participating in a high stakes lottery, for either 20X, 50X or 90X of the 

original stakes, depending on the treatment. The high-stakes lottery was otherwise the 

same as the original: a choice was made for each of the ten rows, and one picked at 

random for the actual payment. Everyone in fact renounced their winnings from the first 

round to participate in the second. The choices made by subjects are shown in the table 

above. 

 In the table we have highlighted (in yellow and turquoise respectively) the 

decision problems where roughly half and 15-20% of the subjects chose A. We will take 

these as characterizing median and high risk aversion respectively. The bottom 15th 

percentile exhibits little risk aversion, suggesting that perhaps they do not face much in 

the way of a self-control problem.  

Since the stakes plus pocket cash remain well below our estimate of ĉ , we can fit 

a CES utility function with respect to our pocket cash estimates of $21, $42, $84, $155, 

$310 and $620, in each case estimating the value of ρ  that would leave a consumer 

indifferent to the given gamble, assuming the chosen nightclub is equal to pocket cash. 



 22 

To do this, we use the CES functional form measured in units of marginal utility of 

income, so functional form being 

 
1

1 1
1
( / ) 1

1

c x
x

ρ

ρ

− −
−

−
. 

We can then compute the utility gain from option A for each of the highlighted gambles 

for each value of the unobserved parameter 1x . The theory says this should be zero. We 

estimate the ρ ’s corresponding to the median and 85th percentile choices by minimizing 

the squared sum of these utility gains pooled across all of the gambles in the relevant 

cells. The results are shown in Table 3. 

 

Table 4 – Estimated Relative Risk Aversion 

 Pocket Cash 1x  

 $20 $40 $80 

ρ  median 1.06 1.3 1.8 

ρ  85th 2.1 2.8 4.3 

 

Because the estimated ρ ’s are greater than 1, these preferences are not logarithmic. 

Notice that the data does not let us separately identify pocket cash and risk aversion; 

various combinations of these two are observationally equivalent. 

As a check on the estimation procedure, we can compute for each of the estimated 

risk preferences and each scale of gamble (1X, 20X, 50X, 90X) the unique probability of 

reward that makes the individual indifferent between option A and option B. Tables 4 and 

5 report these indifference points along with the indifference points in the data. That is, 

the actual indifference points reported in Table 4 are those from Table 2 at which about 

half the population chose A, and the actual indifference points in Table 5 are those from 

Table 2 at which about 85% of the agents chose A. The theoretical indifference points are 

the probabilities which would make an individual with the given CES preference 

indifferent. 
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Table 5: Indifference Probabilities for Median Estimated Value of ρ  

 Pocket cash and corresponding 

median estimated ρ  

  $20,1.06 $40,1.3 $80,1.8 

 Actual indifference point Theoretical indifference points 

 1X  .60 .47 .46 .46 

20X  .70 .65 .62 .60 

50X  .70 .72 .71 .71 

90X .80 .79 .79 .81 

 

Table 6: Indifference Probabilities for 85
th

 Percentile Estimated Value of ρ  

 Pocket cash and corresponding 

median estimated ρ  

 Actual Indifference point Theoretical indifference points 

  $20, 2.1 $40, 2.8 $80, 4.3 

 1X  .70 .50 .48 .47 

20X  .80 .81 .79 .78 

50X  .90 .90 .91 .94 

 

If the CES model fit the data perfectly then in each row the theoretical probabilities 

corresponding to different levels of pocket cash would be identical to the actual 

probabilities. For the 20X and above treatments the fit is quite good. However, the 1X 

treatments fit less well, suggesting that for very small gambles risk aversion is even 

greater than in the CES specification.18
 

                                                
18 It is possible that the size of the choices might have been confounded with the order in which the choices 
were given. Harrison, Johnson, McInnes and Rutstrom [2005] find that corrected for order the impact of the 
size of the gamble is somewhat less than Holt and Laurie found, a point which Holt and Laurie [2005] 
concede is correct. The follow-on studies which focus on the order effects do not contain sufficient data for 
us to get the risk aversion estimates we need. 



 24 

6. The Allais Paradox 

We proceed next to examine the Allais paradox in the calibrated model. We 

assume that the choice in this (thought) experiment is completely unanticipated. In this 

case the solution is simple: there is no self-control problem at the bank, so the choices is 

*
1 1c x=  and spend all the pocket cash in the nightclub of choice. Given this, the problem 

is purely logarithmic, so the solution is to choose 1 1(1 )x wδ= − . 

In the Kahneman and Tversky [1979] version of the Allais Paradox the two 

options in the first scenario are 1A  given by (.01 : 0,.66 : 2400,.33 : 2500) , while 1B  is 

2400 for certain. Many people choose option 1B . In scenario two the pair of choices are 

2A =  (.33 : 0,.34 : 2400,.33 : 2500)  and 2B = (.32 : 0,.68 : 2400) .19 Here many people 

choose 2A . Expected utility theory requires the same option A  or B  be chosen in both 

scenarios. 

To describe the procedure we will use for reporting calibrations concerning 

choices between pairs of gambles, let us examine in some detail the choice  between 1A  

and 1B  in the base case where the annual interest rate 1%r = , annual income is 

$28,000, wealth is $860,000, so pocket cash and the chosen nightclub are *
1 1 40x c= = . 

Recall the cost of self-control 2
1 1 1( ) (1/2)g v v vγ= + Γ . Consider first the case 0Γ =  of 

linear cost of self-control. Here we have an expected utility model, so the optimal choice 

is independent of the scenario, and we can solve for the numerically unique value *
1γ  

                                                
19 These were thought experiments. We are unaware of data from real experiments where subjects are paid 
over $2000, though experiments with similar “real stakes” are sometimes conducted in poor countries. 
There is experimental data on the Allais paradox with real, but much smaller, stakes, most notably Battalio, 
Kagel and Jiranyakul [1990]. Even for these very small stakes, subjects did exhibit the Allais paradox, and 
even the reverse Allais paradox. The theory here cannot explain the Allais paradox over such small 

amounts, as to exhibit the paradox, the prizes must be in the region of the threshold 1 1( )µ γ , while the 

prizes in these experiments ranged from $0.12 to $18.00, far out of this range. However, indifference or 
near indifference may be a key factor in the reported results. In set 1 and set 2 the two lotteries have exactly 
the same expected value, and the difference between the large and small prize is at most $8.00, and there 
was only one chance in fifteen that the decision would actually be implemented. So it is easy to imagine 
that subjects did not invest too much time and effort into these decisions. By way of contrast Harrison 
[1994] found that with various small stakes the Allais paradox was sensitive to using real rather than 
hypothetical payoffs, and found in the real payoff case only 15% of the population exhibited the paradox. 
Although Colin Camerer pointed out the drop from 35% when payoffs were hypothetical was not 
statistically significant, a follow study by Burke, Carter, Gominiak and Ohl [1996] found a statistically 
significant drop from 36% to 8%. Conlisk [1989] also finds little evidence of an Allais paradox when the 

stakes are small. He examines payoffs on the order of $10, much less than our threshold values of 1 1( )µ γ  

of roughly 1% of annual income. These studies suggest that when played for small real stakes there is no 
Allais paradox, as our theory predicts. 



 25 

( 1 1( *) 9.60µ γ = ) such that there is indifference between the two gambles A and  B.20 A 

numerical computation shows that 1 1 1 1( ( *)) ( ( *))B AEu c Eu cγ γ>� � , so that when *
1γ  is 

chosen so that the long-run self is indifferent, the short-run self prefers the sure outcome 

B. On the other hand, when there is no cost of self-control, it is easy to compute that the 

long-run self prefers the risky outcome A .   

Next, suppose that 0Γ > . Suppose we have solved the optimization problem as 

described by Theorem 1. As before, let 1u  be the temptation utility. This is calculated by 

letting the short-run self choose the preferred lottery B  and spend the entire proceeds. 

We compute two possible values of the marginal cost of self-control separately 

depending on whether option A  or option B  is chosen by the long-run self. 
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1 1 1 1

1 1 1 1
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( ( ))

A A A

B B B

u Eu c

u Eu c

γ γ γ

γ γ γ

= + Γ −

= + Γ −

�

�

 (6.1) 

 Suppose we start with γ  slightly smaller than *
1γ  and 0Γ = . Then in both scenarios the 

risky option is strictly preferred. If we increase Γ  slightly then in the high temptation 

scenario 1, 1γ  will rise more than in the low temptation scenario 2, creating the 

possibility that we will get a reversal in the high temptation scenario without creating a 

reversal in the low temptation scenario. This is exactly the Allais paradox. 

 To verify that this construction works, we computed *
1γ  for each of our cases, 

then constructed valued of ,γ Γ  with γ  close to 1 *γ  and solved (6.1) iteratively to find 

in scenario 1 1 1[1], [1]A Bγ γ  and in scenario 2 1 1[2], [2]A Bγ γ . We then verified that in fact B 

is preferred in scenario 1 and A is preferred in scenario 2. The parameters used are 

reported in Table 7.21 

 

 

 

 

 

                                                
20 We omit the subscript on A and B since here the independence axiom is satisfied, so it does not matter 
which pair of choices we consider. Subsequently when we add some curvature the indifference will be 
broken, and, as we shall see, in opposite ways for the first and second pair of choices. 
21 The programs used for the computations were in Octave, a free equivalent of Matlab. They can be found 
at www.dklevine.com/papers/allais.zip. 
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Table 7  Explaining the Allais Paradox with 1%r =  

income 1 1 *x c=  ρ  1 1( *)µ γ  γ  Γ  1 1( [1])Aµ γ  1 1( [1])Bµ γ  1 1( [2])Aµ γ  1 1( [2])Bµ γ  

14000 20 1.06 19.41 21.08 1 19.69 19.67 19.33 19.31 

14000 20 2.10 7.20 59.08 32 7.22 7.20 7.16 7.15 

28000 40 1.30 9.61 17.04 1.5 9.68 9.68 9.55 9.54 

28000 40 2.80 4.04 46.37 64 4.06 4.05 4.03 4.02 

56000 80 1.80 4.80 15.02 4 4.85 4.84 4.80 4.79 

56000 80 4.20 2.45 39.96 128 2.46 2.45 2.45 2.44 

 

Notice that for each case there is a wide range of parameters that will generate 

paradoxes. The basic limitation is that if the curvature Γ  is very large, then it will be 

impossible to generate values of 1 1,A Bγ γ  that are sufficiently close to *
1γ  to give 

paradoxes. This is shown in Figure 2, where the parameter values generating Allais 

paradoxes are computed for the base case of $28,000 annual income and risk aversion 

Figure 2 - Allais Paradoxes 
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1.3ρ = . In the blue shaded blue region with low costs of self-control, the long-run 

optimum A is the best choice in both scenarios. In the red shaded region with high costs 

of self-control, the short-run optimum B, is the best choice in both scenarios. In the green 

shaded region in between an Allais reversal occurs, as the optimal choice is B in the high 

temptation scenario and A in the low temptation scenario. 

The comparative statics are driven by how the marginal cost of self-control must 

change to maintain indifference between the two gambles in the face of changes in the 

marginal utilities of current and future consumption. Recall that the short-run self prefers 

the safe gamble B, while, starting in period 2 the long-run self prefers the risky gamble A. 

If the marginal utility of current consumption increases relative to future consumption, 

this will break the tie in favor of the earlier period, that is, the short-run self. However, 

lowering the marginal cost of self-control effectively lowers the weight on the short-run 

self’s preferences, and restores the tie. The short version: more weight on the present 

implies the marginal cost of self-control must fall be lower in order to maintain 

indifference.  

 The first comparative static we consider is to change the interest rate. If we 

increase r  to 3% or 5%, which increases the weight on the present, the marginal cost of 

self-control must fall to accommodate the paradox. However, in the calibration when we 

change r  we also change wealth correspondingly. Changing r  from 1% to 5% raises the 

weight on the present period by a little more than a factor of 5, but is lowers wealth by a 

factor of 5, and since second period value is logarithmic, raises the marginal utility of 

second period wealth by a factor of 5. The net effect is a very small increase in the weight 

on the present, and when we did the calculation, the values of 1 1( *)µ γ  change only in the 

third significant digit. 

 In contrast, raising risk aversion holding everything else fixed makes the gamble 

less attractive to the short-run self, increasing the temptation. This effectively increases 

the weight on the first period, so must lead to a reduced marginal cost of self-control, as 

happens in Table 7. Increasing income has a different effect: it has little effect on the 

decision problem, since that is formulated in relative terms. That means that the cutoff in 

dollars cannot change much, and so the cutoff relative to pocket cash, which has 

increased, must go down. 
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The values of the self-control parameter 1 1( *)µ γ  range from 2.44-19.4, which is 

considerably smaller than the 69.6 figure Abdel-Ghany et al [1983] found in CES data 

that we discussed above. However, the windfall income in the CES is considerably larger 

than these Allais gambles, so poses a greater temptation, and with increasing marginal 

cost of self-control should generate higher marginal self-control costs.  

 Notice that we are able to explain the Allais paradox with exactly the same risk 

aversion parameters that we used to explain the Rabin paradox. The theory here give a 

consistent explanation of both paradoxes, and it does so with a decision model that is 

consistent with long-run savings behavior being logarithmic as in growth and 

macroeconomic models. 

 Now we examine whether these parameters are consistent with the Keren and 

Roelsofsma [1995] data on hyperbolic discounting reported above. The non-linearity here 

is not sufficient to generate a reversal in the Keren and Roelsofsma experiment: 

Computation shows that even with the 50% chance of a prize, an individual with any of 

the parameters in the table above strictly prefers to take the money now. The reason is 

that our estimates of the linear coefficient γ  are too large to support a reversal. If we use 

the same value of the curvature coefficient Γ  as before, but a lower intercept, then a 

reversal is generated.22  However, this lower value of the linear coefficient cannot explain 

the Allais paradox, because it reduces the temptation of the Allais gambles so much that 

the riskier gamble A is preferred in both scenarios.  It might be possible to accommodate 

both the Allais choices and Keren and Roelsofsma data by departing from the quadratic 

specification of control costs, but we have not explored this possibility.   

 

Original Allais Paradox: The original Allais paradox involved substantially higher 

stakes, so it would be difficult to implement other than as a thought experiment: option 

1A  was (.01 : 0,.89 : 1,000,000,.1 : 5,000,000)  and 1B  was 1,000,000 for certain,; the 

second scenario was 2A =  (.90 : 0,.10 : 5,000,000)  and 2B = (.89 : 0,.11 : 1,000,000) . 

Here the paradoxical choices were 1B  and 2A . In our base case of median income the 

results for the original Allais paradox are reported in Table 8. 

                                                
22 For example, with low income, high risk aversion, and an annual subjective interest rate of 3%, if the 
intercept is taken to be 4.4 rather than 26.4, and we use the estimated curvature of 23.9, a reversal is 
generated for the Keren and Roelsofsma [1995] data. 
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Table 8: Explaining the Original Allais Paradox with 1%r =  

income 1 1 *x c=  ρ  1 1( *)µ γ  γ  Γ  1 1( [1])Aµ γ  1 1( [1])Bµ γ  1 1( [2])Aµ γ  1 1( [2])Bµ γ  

28000 40 1.3 8631.76 124351.02 131072 8768.31 8595.35 8512.30 8331.91 

28000 40 2.8 115.87 571255.84 10747904 117.93 113.83 117.88 113.77 

 

 Notice that the values of 1 1( *)µ γ  are considerably larger here than they are for the 

Kahneman-Tverksy version of the paradox. This is as it should be: 1 1( *)µ γ  is 

endogenous and determined by temptation. The original Allais paradox involves larger 

stakes and thus larger temptations than the Kahneman-Tverksy version, so the theory 

predicts that the marginal cost of self-control should be larger. The value corresponding 

to low risk aversion, however, is implausible. It implies that the cutoff in dollars is about 

$400,000, meaning that if the outcome is favorable (winning either $1,000,000 or 

$5,000,000) the long-run self intends to allow the short-run self to spend this amount on 

the first day. The value corresponding to high risk aversion is still large but more 

sensible: in case of success the long-run self will allow the short run self to spend $5200 

immediately. Since our model was calibrated on data with real payoffs, and that original 

paradox involves very large amounts that subjects may find difficult to evaluate, the 

discrepancy does not seem like a major concern. 

7. Cognitive Load 

The theory predicts that increasing cognitive load should increase the marginal 

cost of self-control and lead to reversals similar to those in the Allais paradox. Relatively 

few experiments have been conducted on the effect of cognitive load on decisions 

involving risk. One recent one is an experiment conducted with Chilean high school 

juniors by Benjamin, Brown and Shapiro [2006]. We analyze their data to show that their 

subjects have Allais-like reversals brought about by cognitive load as predicted by the 

theory. 

 In the experiment students made choices about uncertain outcomes both under 

normal circumstances and under the cognitive load of having to remember a seven-digit 

number while responding. In scenario 1 the choice was between a 50-50 gamble between 

650 pesos and nothing versus a sure option of 250 pesos. In scenario 2 the sure option 
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was replaced by a 50-50 gamble between 300 and 200 pesos.23 The table below 

summarizes the fraction of the population taking the risky choice, with the number in 

parentheses following the treatment indicating the number of subjects. 

 

Table 9  - Students Taking the Low Risk Option 

650/0 versus 250 650/0 versus 300/200 

No load (13) Cognitive Load (21) No Load (15) Cognitive Load (22) 

70% 24% 73% 68% 

 

These were real, and not hypothetical choices, the subjects were paid in cash at the end of 

the session. To provide some reference for these numbers, 1 $US= 625 pesos and the 

subjects average weekly allowance was around 10,000 pesos from which they had to buy 

themselves lunch twice a week. 24 

The key fact in the table is that introducing cognitive load when the alternative is 

safe induces many subjects to switch to the safe alternative, while there is no such 

reversal when the “safe” alternative is the 300/200 gamble. This is as the theory predicts. 

If the short-run self prefers the safe alternative to the risky one we should see the first 

reversal. However, the 300/200 gamble is less tempting than the sure alternative of 250, 

so a cognitive load that will lead to a reversal in the first scenario need not do so in the 

second. 

 To calibrate the model, we take pocket cash to be the average weekly allowance 

of 10,000 pesos divided by 7 that amount in the daily case, or about $2.29. We then work 

out wealth and income indirectly using the utility-function parameters that we calibrated 

in the Allais experiments.25  To explain a preference reversal, the parameters must lead 

the two choices to have sufficiently similar levels of utility that self-control matters. 

Within the range of parameters in our calibration, the only set of parameters for which 

                                                
23 We thank the authors for providing us with this data. There is data on a risky alternative involving four 
other size prizes that are not relevant for our purposes. There is one anomaly in the data that we cannot 
explain: the fraction of people choosing the risky option against the sure alternative under cognitive load 
actually decreases as the size of the prize is increased. This may be due to sampling error. 
24 Many of them buy lunch at McDonald’s for 2000 pesos twice a week, leaving an apparent disposable 
income of 6000 pesos per week. 
25 It is unclear that we should use the same value of τ  but the results are not terribly sensitive to this. 
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this is true is when the annual interest rate is 7% and risk aversion is at the lower median 

level. For these parameters, we can calculate the values of 1 1( *)µ γ  that leads to 

indifference in the first and second scenario respectively. 

 

Table 10  - Parameters for Indifference for the Chilean Gambles 

r  income 1w  *
1 1x c=  ρ  1 1( *)µ γ  1 1 1( *)µ γ  2 

7% 1.6K 21K 2.29 1.06 23.91 23.95 

 

Note that the values of 1 1( *)µ γ  of 24.66-24.71 needed to create indifference for the 

Chilean gambles are close to the value 1 1( *) 19.2µ γ =  from the Allais paradox for the 

5% calibration. This makes sense, because the temptations are of the same order of 

magnitude,. 

In both scenarios, the risky option has the greater temptation, meaning that it will 

be chosen only for low marginal cost of self-control or equivalently, low values of 1 *γ . 

The risky option, however, is preferred in the absence of cost of self-control. Recall that 

in our model the marginal cost of self-control is 1 1 1( )d u uγ + Γ + −  where d  measures 

the cognitive load. Suppose that 1 1( ) 23.90µ γ <  and that Γ  is not too large. Then when 

cognitive load 1 0d = , marginal cost of self-control is low enough in both scenarios that 

the risky alternative will be chosen. On the other hand, when cognitive load is high so 

1 1 0d d= > , for an appropriate value of 1d , there will be a greater marginal cost of self-

control 1 123.90 ( ) 23.95µ γ≤ ≤ . That means that in scenario 1 the marginal cost of self-

control is high enough that the safe alternative will be chosen, while in scenario 2 the 

marginal cost of self-control is low enough so that the risky alternative will continue to 

be chosen. 

Note that the cognitive load calibration is more sensitive to the interest rate than 

the Allais calibration, as with cognitive load we require that r  be at least 5%. In both 

cases, increasing the interest rate slightly increases the weight on the present relative to 

the future, due to the offsetting effect of changing wealth in the calibration. The intuition 

for this is that in the Allais case it is the levels of the marginal cost of self-control that 

matters, while in the cognitive load case what matters is the difference between two 

different marginal costs of self-control. The latter is much smaller than the absolute level, 
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and so smallish increases in the level can result in largish increases (proportionally) in the 

difference. 

In both cases, increasing the interest rate increases by a small (due to the 

offsetting effect of changing wealth in the calibration) amount the weight on the present 

relative to the future. In both cases this has the effect of slightly reducing the cost of self-

control that leads to indifference. In the cognitive load calibration, there is less temptation 

in scenario 2 than scenario 1, meaning that for indifference 1 1( *)µ γ  is larger in scenario 2 

than scenario 1, as required to explain the data. However, for 1%,3%r = , the weight on 

the first period is so small that the algorithm is unable to find indifference. As we 

increase the weight on the early period the amount by which we must adjust self-control 

to maintain indifference for a given drop in temptation increases. At 5%r =  the 

computer can find it, and the gap expands considerably as we increase the interest rate 

further. For interest rates higher than 5% – not implausible for high school students – we 

find that the range expands farther, making it more likely that cognitive load could push 

the marginal cost of self-control into the intermediate range needed to explain the data. 

8. Making the Evening’s Plans: Pocket Cash and Choice of Club 

 Our base model supposes that that the choice between A  and B  is completely 

unanticipated. How does the optimal choice of nightclub *
1c  and pocket cash change if 

the decision maker realizes that she will face a gamble? Specifically, let Gπ  denote the 

probability of getting the gambles. Our assumption has been that 0Gπ = . In this case 

the solution is simple: there is no self-control problem at the bank, so the choices is 

*
1 1c x=  and spend all the pocket cash in the nightclub of choice. Given this, the problem 

is purely logarithmic, so the solution is to choose 1 1(1 )x wδ= − .  

To examine the robustness of our results, consider then the polar opposite case in 

which 1Gπ = , that is, the agent knows for certain she will be offered the choice between 

A  and B . Since we will derive qualitative results only, we will simplify to the case 

1τ = . Given the choice of venue and pocket cash *
1 1,c x  the choice of which lottery to 

choose at the nightclub and how much to spend are the same regardless of the beliefs that 

led to the choice of *
1 1,c x . To keep things simple, we will assume that 1 1̂

kz z� �  so that all 

the proceeds of the gamble will be spent at the nightclub and 1x  will be chosen to be 

strictly positive. 
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In the Appendix we show that 

 

Proposition 2: First order conditions necessary for an optimum are 
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where k  is the chosen alternative. 

To understand (8.1), suppose that 1
kz�  is constant, not random. Then (8.1) reduces to 

1 1 1(1 )kx Ez wδ δ+ = −� . Here 1
kEz�  does not substitute for pocket cash 1x  on a 1-1 basis, 

as it has a miniscule effect on life-time wealth, but as δ  is nearly one, as we would 

expect it nearly does so. The second condition (8.2) then implies that *
1c  is chosen equal 

to the certain expenditure at the nightclub. 

When the variance of 1
kz�  is positive, observe that by assumption 1ρ −  is positive 

so that ( )1/( 1)ρ−i  is increasing, and ( ) 1ρ−i  is concave or convex as 2, 2ρ ρ< > . This 

implies  

 
11

1 1 1 1( ) ( )k kE x z E x z
ρρ −−  + < + � �  

if 2ρ <  with the inequality reversed if 2ρ > . This in turn implies that 

( )*
1 1 1( ) kc E x z< > + �  as ( )2ρ < > . An individual with low risk aversion chooses a less 

attractive venue in the face of risk, and individual with high risk aversion chooses a more 

attractive venue.  

9. Conclusion 

 We have argued that a simple self-control model with quadratic cost of self-

control and logarithmic preferences can account quantitatively for both the Rabin and 

Allais paradoxes. We have argued also that the same model can account for risky 

decision making of Chilean high school students faced with differing cognitive loads. 

Ranges of income from half to double the median income; subjective interest rates in the 

range of 1-7%; short-run risk aversion in the range from 1-4; and a self-control cost 



 34 

switchpoint 1 1( *)µ γ  in the range 15-30 cover all of the cases. Except for the Chilean 

data, these results are quite robust. The Chilean students’ behavior, however, require high 

subjective interest rates of 7%.    

We find it remarkable that the behavior of Chilean high school students can be 

explained with essentially the same parameters that explain the Allais paradox. This 

finding is not trivial, as their possible observations that are not consistent with the theory. 

For example, cognitive load in the Chilean experiment could have caused subjects to 

switch in the reverse, “anti-Allais,” direction, which we would not be able to explain. 

Second, there is enormous heterogeneity in the data; only a fraction of subject 

populations exhibit reversals, and the populations in the various experiments are very 

different, so there is no reason to believe that there is a single set of individual parameter 

values that will explain all of the data. However, while we have allowed the parameters 

to vary somewhat across experiments, it is important that all the parameters we use fall 

within a plausible range.  

The main problem we have in calibrating the model is with respect to the degree 

of self-control. The model predicts that there should be a threshold level of unanticipated 

income, with marginal propensity to consume of 100% below the threshold and a very 

low marginal propensity above it. As we indicated, the permanent consumption data 

analyzed by Abdel-Ghany et al [1983] indicates that this may be true, and that the 

threshold is about 10% of annual income or 69.6 times pocket cash. We find, however, 

that to explain the data we consider, the threshold must be in the range of 4.04-22.3, 

which is considerably smaller than the threshold found in household consumption 

surveys. If we make the plausible assumption that windfall income measured in 

household consumption surveys is much less tempting than cash paid on the spot then 

this lower threshold makes more sense. 

The existing model most widely used to explain a variety of paradoxes, including 

the Allais paradox, is prospect theory, which involves an endogenous reference point that 

is not explained within the theory.26 In a sense, the dual-self theory here is similar to 

prospect theory in that it has a reference point, although in our theory the reference point 

is a particular value, pocket cash. They key aspect of pocket cash is that it is not arbitrary, 

                                                
26 See Kozegi and Rabin [2006] for one way to make the reference point endogenous, and Gul and 
Pesendorfer [2007] for a critique.  



 35 

but is endogenous and depends in a specific way on the underlying preference parameters 

of the individual. The theories are also quite different in a number of respects. Prospect 

theory makes relatively ad hoc departures from the axioms of expected utility, while our 

departure is explained by underlying decision costs. Our theory violates the independence 

of irrelevant alternatives, with choices dependent on the menu from which choices are 

made, while prospect theory satisfies independence of irrelevant alternatives. Our theory 

can address issues such as the role of cognitive load and explains intertemporal paradoxes 

such as the hyperbolic discounting phenomenon and the Rabin paradox about which 

prospect theory is silent. Finally, a primary goal of our theory is to have a self-contained 

theory of intertemporal decision making; by way of contrast, it is not transparent how to 

embed prospect theory into an intertemporal model.27 

In the other direction, prospect theory allows for individuals who are 

simultaneously risk averse in the gain domain and risk loving over losses. This is done in 

part through the use of different value functions in the gain and loss domains, and in part 

through its use of a probability weighting function, which can allow individuals to 

overweight rare events.28  Most work on prospect theory has estimated a representative-

agent model; Bruhin, Fehr-Duda, and Epper [2007] refined this approach by classifying 

individuals as expected utility maximizing or as prospect theory types,29 and find that 

most individuals are prospect theory types.  It is interesting to note that given the 

functional forms they estimate, individuals with expected utility preferences are assumed 

to be risk averse throughout the gains domain, while in their data individuals are risk 

loving for small probabilities of winning, while for higher probability of success they are 

risk averse. This can be explained within the expected utility paradigm by means of a 

Savage-style S-shaped utility function that is risk loving for small increases in income 

and risk averse for larger increases.30 

                                                
27 Kozegi and Rabin [2007] develop but do not calibrate a dynamic model of reference dependent choice.  
28 See Prelec [1998] for an axiomatic characterization of several probability weighting functions, and a 
discussion of their properties and implications. 
29 Their estimation procedure tests for and rejects the presence of additional types. 
30 Notice that it is possible to embed such short-run player preferences in our model although we have 
focused on the risk averse case. Indeed, such preferences are consistent even with long-run risk aversion: 
the envelope of S-shaped short-term utility functions can be concave provided that there is a kink between 
gains and losses, with strictly higher marginal utility in the loss domain. There is evidence that this is the 
case. 
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While S-shaped utility can explain risk seeking for small chances of gain and risk 

aversion for larger chances, it does not explain the Allais paradox, while prospect theory 

can potentially do so. But it appears that the parameters needed to explain individuals 

who are simultaneously risk averse and risk loving cannot at the same time explain the 

Allais paradox. Neilson and Stowe [2002] conducted a systematic examination of the 

parameters needed to fit prospect theory to various empirical facts, and concluded that 

 

parameterizations based on experimental results tend to be too extreme in 
their implications. The preference function estimated by Tversky and 
Kahneman (1992) implies an acceptable amount of risk seeking over 
unlikely gains and risk aversion over unlikely losses, but can 
accommodate neither the strongest choice patterns from Battalio, Kagel, 
and Jiranyakul (1990) nor the Allais paradox, and implies some rather 
large risk premia. The preference functions estimated by Camerer and Ho 
(1994) and Wu and Gonzalez (1996) imply virtually no risk seeking over 
unlikely gains and virtually no risk aversion over unlikely losses, so that 
individuals will purchase neither lottery tickets nor insurance…. We show 
that there are no parameter combinations that allow for both the desired 
gambling/insurance behavior and a series of choices made by a strong 
majority of subjects and reasonable risk premia. So, while the proposed 
functional forms might fit the experimental data well, they have poor out-
of-sample performance. 

 

 The survey examined the original Allais paradox holding relative risk aversion 

constant, which as we have already noted is quite difficult because with expected utility 

individuals are not near indifference with reasonable degrees of risk aversion. However, 

if we use the Bruhin, Fehr-Duda, and Epper [2007] estimates from the Zurich 03 gains- 

domain treatment, the prospect theory types have preferences give by  
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where ip  is the probability of winning the prize ix .31 In the Kahnemann and Tversky 

version of the Allais paradox, 1A  is (.01 : 0,.66 : 2400,.33 : 2500) , and 1B  is 2400 for 

                                                
31 Bruhin, Fehr-Duda, and Epper [2007] specified a utility function only for two-outcome gambles, this 
seems the natural extension to the three or more outcomes demanded to explain the Allais paradox. Note 
also that this utility function has the highly unlikely global property that if we fix the probabilities of the 
outcomes and vary the size of the rewards it exhibits strict risk loving behavior. 
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certain. This gives 1( ) 3874.58U A =  and 1( ) 3711U B = . In other words, an individual 

with these preferences would prefer 1A  to 1B  and so would not exhibit an Allais paradox. 

 Our overall summary, then, is that the dual-self model explains choices over 

lotteries about as well as prospect theory, while explaining phenomena such as 

commitment and cognitive load that prospect theory cannot. Moreover, the dual-self 

model is a fully dynamic model of intertemporal choice that is consistent with both 

traditional models of savings (long-run logarithmic preferences) and with the equity 

premium puzzle.32    

In conclusion, there is no reason to think that the dual-self model has yet arrived 

at its best form, but its success in providing a unified explanation for a wide range of 

phenomena suggests that it should be viewed as a natural starting point for attempts to 

explain other sorts of departures from the predictions of the standard model of consumer 

choice.  One possible next step would be try to more explicitly account for the evident 

heterogeneity of the population, and estimate distributions of self-control parameters as 

opposed to simply fitting the median or some other fractile as we have done here. 

                                                
32 The “behavioral life cycle model” of Shefrin and Thaler [1988] can also explain many qualitative 
features of observed savings behavior, and pocket cash in our model plays a role similar to that of “mental 
accounts” in theirs. The behavioral life cycle model takes the accounts as completely exogenous, and does 
not provide an explanation for preferences over lotteries. It does seem plausible to us that some forms of 
mental accounting do occur as a way of simplifying choice problems. In our view this ought to be derived 
from a model that combines the long-run/sort-run foundations of the dual-self model with a model of short-
run player cognition.  
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Appendix 1 

Theorem 1:  (a) For given *
1 1( , )x c  and each { , }j A B∈  there is a unique solution to 

 1 1 1ˆ ( )j j jγ γ γ= . 

This solution together with 1 1 11 1 1ˆmin( ( )( ), }j j jj Jc c z x zγ= +�  and the choice of j  that 

maximizes long-run utility is necessary and sufficient for an optimal solution. 

Proof: Consider random unanticipated income 1
jz�  at the nightclub. If 1z  is the realized 

income, the short-run self is constrained to consume 1 1 1c x z≤ + . Period 2 wealth is 

given by  

 2 1 1 1 1 1 1 1 1 1( ) ( )d dw R s x z c c R w z c c= + + − − = + − −  . 

The utility of the long-run self starting in period 2 is given by the solution of the problem 

without self control, that is: 

 2
2 2

log( )
( ) .

1

w
U w K

δ
= +

−
 

Let 1c�  be the optimal response to the unanticipated income 1z� . This is a random variable 

measurable with respect to 1z� . The overall objective of the long-run self is to maximize 

 ( )* *
1 1 1 1 11 1 1 1( , ) ( , , ) log( )

(1 )
j j j j dEu c c g x c c E w z c c K

δ
τ

δ
− + + − − +

−
� � � � . (A.1) 

 Let * * *
1 1 1 1 1 1 1 1 1( , ) max{ ( , ), ( , )}A Bu x c Eu x z c Eu x z c= + +� �  denote the maximum 

possible utility given *
1c  and the pair of lotteries A,B. We then have that  

 
( )

* *
1 1 11 1

* * *
1 1 1 1 11 1

( , ) ( , , )

( , ) ( , ) ( , )

j j

j j

Eu c c g x c c

Eu c c g u x c Eu c c

− =

− −

� �

� �

, 

and since 1u  does not depend on 1
jc� , the optimal level of consumption can be  determined 

for each lottery realization by pointwise maximization of  (A.1) with respect to 

1c = 1 1( )j jc z .  The marginal cost of self-control is given by 

 ( ) ( )
1

* * * *
1 1 1 1 1 1 1 1 11 1 1' ( , ) ( , ) ' ( , ) Pr( ) ( , )j

j j j

z
g u x c Eu c c g u x c z u z cγ = − = −∑� . (A.2) 
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First we show that the first order conditions corresponding to optimal 

consumption for a given choice j have a unique solution. Observe that 

 ( )1 * * *
1 1 1 1 11 1 1 1

1 1

Pr( ) '( ( ), ) " ( , ) ( , ) 0
( )

j j j j
j j

d
z u c z c g u x c Eu c c

dc z

γ
= − − ≤� . 

Because  

 ( )
*

11 *1
11

1

( , )
( )

j
j

j

u c c
c c

c

ρρ −−∂
=

∂
,  

the derivative of (A.1) with respect to 1 1 1( )j j jc c z=  evaluated at 1
jz  as 

 * 1
1 1 1

1 11 1

1
(1 )( ) ( )

(1 )
j

j j d
c c

w z c c

ρ ρ δ
τ γ

δ
− −+ −

− + − −
  

From this we can compute the second derivative 

 ( )
( )

11* 1 * 1
1 1 11 1 2

1 1 11 1

1
( ) ( ) (1 ) ( ) 0

(1 )
j j

j j j d

d
c c c c

dc w z c c

ρρ ρ ργ δ
τ τρ γ

δ

−− − − −− + − <
− + − −

 

implying that the function is globally concave. 

Because the objective function is globally concave with respect to 1
jc , it follows 

that the unique maximum is given by the solution to the first order condition, which may 

be written as 

  
( ) ( )

( )

1 1*
1 1 11 1 1

1 11 1

(1 )(1 )
( )j j j d

j j d

c c w z c c

K w z c c

ρρ τ δ γ

δ

− − +
= + − −

= + − −

.  
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From the diagram below we can see both the uniqueness of the solution of the first order 

condition, and also see that the solution is increasing in K , that is, decreasing in δ  and 

increasing in 1γ , and that the solution is increasing in 1 1
jw z+ .  

 We now show that the conditions in the Theorem are necessary and sufficient for 

an optimum. Examine necessity first. Suppose that an optimum exists. Once we know the 

choice j , for any given consumption plan in j  the marginal cost of self control 1γ  is 

defined by A.2, and the optimal consumption plan must satisfy the first order condition 

with respect to that 1γ because our conditions preclude a boundary solution. That is, 

1 1 1ˆ ( )j j jγ γ γ=  must hold.  

 Next we show sufficiency. Suppose we have 1, jj γ satisfy the conditions of the 

theorem and that this is not the optimum. Since the problem is one of maximizing a 

continuous function over a compact space, an optimum exists. That optimum must yield 

more utility in (3.1) than choosing j−  and any consumption plan in j− , so the unique 

consumption plan that comes from solving 1 1 1ˆ ( )j j jγ γ γ− − −= . Given that j  is chosen, 

the optimal consumption is the unique solution of the first order condition.  On the other 



 45 

hand, if j−  was chosen, we could do no better than the consumption plan defined by 

1 1 1ˆ ( )j j jγ γ γ− − −= , and by assumption this is not as good as choosing j . 

� 

 

Proposition 2: When 11 ˆ , ,jz z j A B=� �  the first order conditions necessary for an 

optimum are 

 
1

1 1
1 1

1 1

( )
(1 ) (1 )

( )

k

k

E x z
x w

E x z

ρ

ρ
δ δ δ

−

−

+
− + = −

+

�

�
 (8.1) 

 ( )( )
1/( 1)1*

1 1 1
kc E x z

ρρ −−
= + �  (8.2) 

where k  is the chosen alternative. 

Proof: When 11 ˆ , ,jz z j A B=� �  all income is spent at the nightclub so 11 1
j jc x z= +� � , 

and consequently the gamble most preferred by the short-run self is chosen. There is no 

self-control cost, so the objective function, given the choice of gamble of gamble j , is  

 *
1 1 1 21( , ) log( )

(1 )
jEu c c E w x K

δ

δ
+ − +

−
� . (A.3) 

The first order condition with respect to *
1c  is 

 ( )
1* 2

1 1*
1

1
( ) 0jc E c

c

ρρ −−− =�  

which solves to give (8.2). 

The first order condition with respect to 1x  is 

 ( )
1*

1 1 1
1 1

1
( ) 0

1
kc E x z

w x

ρ ρ δ

δ

− −+ − =
− −

� . 

Substituting (8.2) and rearranging gives (8.1). 
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