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We study costless pre-play communication of intentions among inexperienced
players. Using the level-k model of strategic thinking to describe players�beliefs,
we fully characterize the e¤ects of pre-play communication in symmetric 2� 2
games. One-way communication weakly increases coordination on Nash equilib-
rium outcomes, although average payo¤s sometimes decrease. Two-way commu-
nication further improves payo¤s in some games, but is detrimental in others.
Moving beyond the class of symmetric 2 � 2 games, we �nd that communica-
tion facilitates coordination in common interest games with positive spillovers
and strategic complementarities, but there are also games in which any type of
communication hampers coordination.
JEL: C72.
Keywords: Pre-play communication, coordination games, Stag Hunt, level-k,
bounded rationality.

Some people �nd themselves in a new strategic situation. How can they best coordinate their
actions? Since they cannot rely on precedence, maybe they should start talking? If so, what
are the exact reasons why communication helps? These fundamental questions crop up in many
disciplines, including evolutionary biology, psychology, political science, and economics.1

Farrell (1987, 1988) and Matthew Rabin (1990, 1994) provide formal analyses of costless
communication, or cheap talk, as a means to convey intentions and thereby improve coordination
among rational players in games with complete information.2 While the models are insightful,
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1For evolutionary biology, see e.g., Steven Pinker and Paul Bloom (1990) and Martin A. Nowak (2006,
Chapter 13); for psychology, see e.g., Norbert L. Kerr and Cynthia M. Kaufmann-Gilliland (1994); for political
science, see e.g., Thomas C. Schelling (1966, Chapter 7), and for economics, see e.g., Joseph Farrell and Garth
Saloner (1988) or David Genesove and Wallace P. Mullin (2001).

2For a non-technical introduction to the literature on cheap talk about intentions, see Farell and Rabin (1996),
especially pages 110�116. An early precursor is Robert J. Aumann (1974). See also Roger Myerson (1989), who
emphasizes that cheap talk can communicate both own intended actions (�promises�) and desires about others�
actions (�requests�). Like most of the literature, we focus on the former. Note that we ignore the communication
of private information; Vincent P. Crawford and Joel Sobel (1982) and Jerry R. Green and Nancy L. Stokey
(2007) (originally written in 1981) are seminal contributions to the study of strategic information transmission.
Throughout, we take for granted that players have access to a common language. A substantial fraction of

the literature on cheap talk starts from the opposite presumption that messages are not inherently meaningful;
instead, messages may or may not acquire meaning in equilibrium� where equilibrium is a steady state of an
evolutionary process of random matches between pre-programmed players; see, for example, Akihiko Matsui
(1991), Karl Wärneryd (1991), Yong-Gwan Kim and Sobel (1995), Luca Anderlini (1999) and Abhijit Banerjee
and Jörgen W. Weibull (2000). While the evolutionary approach can explain how language emerges in �old�
games, it is less appropriate for our question of how an existing language will be used in �new� games. For
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H L
H 0; 0 3; 1
L 1; 3 0; 0

Figure 1: Battle of the Sexes

H L
H 9; 9 0; 8
L 8; 0 7; 7

Figure 2: Stag Hunt

we argue that they make problematic assumptions concerning players�beliefs, and that recent
models of strategic thinking o¤er alternative assumptions that better �t our intuitions and
available experimental evidence.
To put our arguments into perspective, let us brie�y review some of the literature. Farrell

(1987) studies communication in a Battle of the Sexes game (Figure 1). Farrell assumes that
behavior will correspond to the symmetric mixed strategy Nash equilibrium if players cannot
communicate. He also assumes that message pairs (�H�;�L�) and (�L�;�H�) that are con-
sistent with a pure strategy equilibrium will induce play of that equilibrium. Based on these
assumptions, he shows that with two-way communication there are better symmetric mixed
strategy equilibria than the no-communication equilibrium. Payo¤s improve with the number
of communication rounds, but full e¢ ciency is unattainable because players have con�icting
interests over the two e¢ cient equilibria.
Although the symmetric Nash equilibrium assumption makes some sense in the Battle of the

Sexes, it is not generally a convincing assumption about the behavior of inexperienced players
in the absence of communication; rationality and reasoning alone is insu¢ cient to support
equilibrium. In their subsequent work, Farrell and Rabin instead make the weaker assumption
that the outcome without communication will be rationalizable. One drawback of this approach
is that rationalizability provides no prediction about behavior in many games, including Battle
of the Sexes. Without a prediction for the game without communication, a speci�c prediction
for the game with communication does not su¢ ce to say whether communication improves
coordination or not.
Another objection to Farrell and Rabin�s approach is that one-way communication sometimes

works excessively well, especially in coordination games like Stag Hunt (Figure 2).3 In Stag
Hunt, all outcomes are again rationalizable without communication. Farrell (1988) suggests
that one-way communication su¢ ces to attain coordination on the e¢ cient outcome (H;H),
because the message �H�is self-committing. That is, if sending the message �H�convinces the
receiver that the sender intends to play H, the best response is for the receiver to play H, and
thus the sender has an incentive to play according to the own message. Aumann (1990) objects
that even a sender who has decided to play L has an incentive to induce the opponent to play H.
That is, the message �H�is not self-signaling. Relatedly, Pei-yu Lo (2007) demonstrates that
the message �L� is weakly dominated under the two assumptions that players have common
knowledge about the meaning of the language and believe their opponent to behave rationally
given this knowledge. As a consequence, both action H and L survive iterated elimination of

evolutionary models in which language has some pre-existing meaning, see Andreas Blume (1998) and Stefano
Demichelis and Weibull (2008).

3Since Stag Hunt is the prototype representation of coordinated hunting situations, it is an apt touchstone
for theories of communication. Indeed the bene�ts from coordinated hunting of large animals has been proposed
as an explanation for why language have emerged (see, e.g., Pinker and Bloom 1990, Section 5.3).
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H L
H 11; 11 0; 10
L 10; 10 10; 9

Figure 3: Vulnerability Game

weakly dominated strategies.
Addressing Aumann�s critique, Farrell and Rabin (1996, page 114) acknowledge that their

theory is not entirely satisfactory, but think that it has the right implications: �[A]lthough we
see the force of Aumann�s argument, we suspect that cheap talk will do a good deal to bring
[the players] to the stag hunt.� Are Farrell and Rabin right? The experimental evidence on
behavior in Stag Hunt games is somewhat con�icting, but it consistently shows that communi-
cation improves coordination. For example, in an experiment by Gary Charness (2000) one-way
communication induces substantial coordination on the e¢ cient equilibrium. In the prior ex-
periment by Russell Cooper et al. (1992) one-way communication improves players willingness
to play H, but two-way communication does so to a greater extent; see Section III for a more
detailed discussion of the evidence.
To summarize, Farrell and Rabin�s approach leaves open at least three questions. First and

foremost, when does communication improve coordination? Second, why does communication
of intentions matter even in situations when messages apparently fail to be self-signaling? Third,
might two-way communication sometimes generate more coordination than one-way communi-
cation, and if so why?
In a nutshell, we argue that rationalizability is an inappropriate assumption about inexperi-

enced players�beliefs, and that more realistic assumptions help to answer all the above three
questions. One shortcoming of rationalizability we have already mentioned: Too often, it im-
poses no restriction on beliefs. Another shortcoming is that it sometimes imposes unrealistically
strong restrictions on beliefs. To �x ideas, consider the Vulnerability Game in Figure 3.4

In the Vulnerability Game, playing H is strategically risky for the row player, whereas L
is safe. We intuitively believe that many row players would be unwilling to risk losing 10 in
order to gain 1.5 We also believe that communication by the column player can increase the
row player�s willingness to play H. By sending the pre-play message �H�, the column player
provides some reassurance to the row player, who as a result comes to regard action H less
risky. We think it is this sort of intuition that explains why communication has an e¤ect in
Stag Hunt. However, the intuition is inadmissible in Farrell and Rabin�s framework. Since L
is a dominated action for the column player, (H;H) is the unique rationalizable outcome, and
thus ought to obtain whether players communicate or not. Rationalizability assumes not only
that players are rational, but also that players believe with probability 1 that their opponents
are rational.6 In the Vulnerability Game, the row player�s �rm belief that the column player
is rational eliminates the need for communication. We propose instead that it is exactly the
doubt about the column player�s rationality that induces the row player to pay attention to the
column player�s message.
If some players doubt that their opponent is rational, what do they believe? Data from

Beauty Contest games led Rosemarie Nagel (1995) to suggest that people�s implicit beliefs
about others�behavior can often be characterized as follows: Some people believe that their
opponents randomize uniformly. Other more advanced people believe that their opponents

4The Vulnerability Game is inspired by the game in Figure 1.4 of Drew Fudenberg and Jean Tirole (1991).
5For related arguments and evidence, see Robert Rosenthal (1981), and T. Randolph Beard and Richard O.

Beil Jr. (1994).
6 Indeed, all players are assumed to believe that all players believe that all players believe that...etc...all

players are rational.
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believe that opponents randomize uniformly. Others again believe that their opponents believe
that opponents believe that opponents randomize uniformly. The corresponding formal model is
known as the level-k model. Level-0 players, who may or may not be assumed to exist in reality,
randomize uniformly. Level-1 players believe that their opponent is level-0. Level-2 players
believe that their opponents are level-1; and so on. The level-k model was �rst studied by Dale
O. Stahl and Paul W. Wilson (1994, 1995) and Nagel (1995) and has the virtue of o¤ering a
structural non-equilibrium approach to the analysis of people�s initial behavior in unfamiliar
games. A natural extension of the level-k model is to assume that a level-k player believes that
the opponent is drawn from a distribution of more primitive player types; see Colin F. Camerer,
Teck-Hua Ho and Juin-Kuan Chong (2004) for an analysis of the ensuing cognitive hierarchy
model. These models successfully organize data on the behavior of inexperienced players in a
wide variety of settings.7

The level-k model straightforwardly explains why some row players would play L in the
Vulnerability Game. A level-1 row player thinks it is equally likely that the column player plays
L and H; and since 10 > 5:5 it is better for the row player to play L. A drawback with the
level-k model is that higher level row players all believe with probability 1 that their opponent
understands the game well enough to not play a dominant strategy. Thus, these players all
prefer H, and would continue to do so independently of the di¤erence between their (H;H)-
payo¤ and their (L;H)-payo¤, as long as it is positive. The cognitive hierarchy model, on the
other hand, predicts that the behavior of higher level player types is sensitive to this payo¤
di¤erence, since no player completely rules out the possibility that the opponent is of level-0.
These considerations notwithstanding, we focus attention on the error-free level-k model due to
its greater simplicity. See Appendix 3 for a detailed analysis applying the cognitive hierarchy
model.
Observe that both the level-k model and the cognitive hierarchy model assume that all players

at level 1 or higher behave rationally given their beliefs. Thus, players�messages will also be
chosen to maximize expected payo¤s. However, to fully pin down behavior we need to specify the
choice of message when players are indi¤erent between several messages. Following Demichelis
and Weibull (2008), we assume that whenever the truthful message is in the indi¤erence set,
players are truthful. That is, they have a weak (lexicographic) preference for being honest.8 This
weak preference for honesty is key to several of our results. For example, in the Vulnerability
Game, a level-1 row player is a¤ected by the column player�s message precisely because it is
believed to be honest.
The lexicographic truthfulness assumption is strong enough to determine the messages of

level-0. Since level-0 players are indi¤erent between all actions, they are also truthful. Observe
that an alternative and more direct justi�cation of level-0 truthfulness is to assume credulity on
the part of level-1; this is the essentially the approach taken by Crawford (2003). If level-0 does
not exist, except in the minds of level-1 players, the two assumptions are behaviorally similar.
In symmetric two-player games with one-way communication, we show that the truthfulness of

7See Stahl and Wilson (1994, 1995), Nagel (1995), Ho, Camerer and Keith Weigelt (1998), Miguel A. Costa-
Gomes, Crawford and Bruno Broseta (2001), Camerer, Ho and Chong (2004), Costa-Gomes and Crawford
(2006), Crawford and Nagore Iriberri (2007a), Costa-Gomes, Crawford and Iriberri (2009) for various normal
form game applications of the level-k and cognitive hierarchy models based on laboratory data. Crawford and
Iriberri (2007b) use the level-k model to explain the winners�curse and overbidding in private-value auctions and
Crawford et al. (2009) use it to study optimal auction design. Toshiji Kawagoe and Hirokazu Takizawa (2008b)
apply the level-k model to an extensive form game, the centipede game. Östling et al. (2008) and Alexander L.
Brown, Camerer and Dan Lovallo (2009) estimate cognitive hierarchy and level-k models using �eld data. See
also footnote 9 for references to level-k analyses of communication.

8There is considerable experimental evidence that many people assign strictly positive utility to behaving
honestly (e.g., Ellingsen and Magnus Johannesson, 2004b and the references therein), and our results would
be largely the same with positive utility from honesty. However, the analysis is simpler if the preference is
lexicographically small.
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level-0 is contagious: A level-1 receiver plays a best response to the received message. Since level-
1 behavior constitutes level-2 players�model of the world, and the game is symmetric, a level-2
sender will send a truthful message that corresponds to the sender�s favorite Nash equilibrium.
Analogous reasoning proves that, in this class of games, all player types communicate their
intentions honestly under one-way communication. However, contagious honesty does not imply
that one-way communication su¢ ces to induce an e¢ cient outcome. For example, in the Stag
Hunt game above, level-1 players would send and play L.
Let us now brie�y describe our main results. For parameter choices that are typical in the

level-k literature, the following is true for symmetric 2� 2 games: (i) One-way communication
improves average payo¤s in Stag Hunt games with a con�ict between e¢ ciency and strategic
risk, such as that in Figure 2, and in some but not all mixed motive (Chicken) games. (ii) Two-
way communication may yield higher average payo¤s than one-way communication, but only
in Stag Hunt games with a con�ict between e¢ ciency and strategic risk and in mixed motive
games with high miscoordination payo¤s. (iii) In mixed motive games with high miscoordination
payo¤s, average payo¤s can be lower with communication than without. An additional �nding is
that if players are su¢ ciently sophisticated, both one-way and two-way communication su¢ ces
to attain the e¢ cient outcome in Stag Hunt. This conclusion holds not only in the limit as
sophistication goes to in�nity; it su¢ ces that both players perform at least two thinking steps.
Extending our analysis to larger games and/or relaxing the symmetry assumption, we �nd

that both one-way and two-way communication facilitates coordination in all two-player com-
mon interest games: When both players make at least two thinking steps, there is always
coordination on (the best) Nash equilibrium in these games. If there are more than two play-
ers, a similar result holds under the additional assumption of positive spillovers and strategic
complementarities.
On the other hand, it is easy to identify games in which communication erodes coordination.

The reason is that players have an incentive to deceive the opponent by misrepresenting their
intentions. Even if the game has a unique pure strategy equilibrium, players can obtain large
non-equilibrium payo¤s if they successfully fool their opponent. When players are not too
sophisticated, they may end up playing non-equilibrium strategies that are either more or less
pro�table than equilibrium.
Crawford (2003) is the seminal study of communication of intentions with level-k beliefs.

Crawford studies a special class of zero-sum games, namely Hide and Seek games, with one-
way communication. Our work adapts Crawford�s approach in order to study a di¤erent (and
larger) class of games, while considering both one-way and two-way communication.9 The
resulting sets of applications are quite di¤erent. Where Crawford�s paper studies deception,
ours predominantly studies mutually bene�cial coordination.

I. Model

Let G = hN;A; ui denote some normal form game between jN j players where N denotes the
set of players, Ai denotes the �nite set of actions for player i, A = �j2NAj denotes the set
of feasible action pro�les, ui : A ! R is player i�s von Neumann-Morgenstern utility function,
and u is the vector of all players� utility functions. We refer to G as an action game. Let
�N� (G) denote the game G preceded by one round of pre-play communication, where the
subset N� � N of the players are allowed (by nature) to send a message. Let Mi = Ai be the
set of feasible messages for a communicating player i and letMi = Ai [�. Let M = �j2NMj

andM =�j2NMj denote the corresponding sets of feasible message pro�les. By convention, a
non-communicating player sends an empty message �. The nonempty messages are assumed to

9Recently, Erik Wengström (2008) has applied the level-k model to study communication in a price competi-
tion game. Previously, Hongbin Cai and Joseph Tao-Yi Wang (2006) and Kawagoe and Takizawa (2008a) have
adapted Crawford�s model to study one-sided cheap talk in sender-receiver games with private information.
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articulate a statement about the sender�s intention (rather than for example a statement about
which action the sender desires from the receiver). Let player i�s message and action be denoted
mi and ai, respectively. A strategy of the game �N� (G) for player i is a message mi 2Mi and
a mapping fi :M! Ai de�ning the action for any message pro�le.
To begin with, we focus attention on symmetric and generic 2� 2 games.10 The two actions

are labeled H and L. The utilities associated with each outcome are denoted uHH , uHL, uLH
and uLL. In the game G preceded by one-way communication, �I (G), one of the players is
allowed to send one of two messages, h and l, before the action game G is played. Although
from player i�s point of view, the game in which he is a receiver is quite separate from the game
in which he is a sender, it is convenient to write the two strategies jointly. From now on we thus
say that a strategy si for player i of the full game �I (G) prescribes what message mi to send
and action ai to take as sender, and a mapping fi : fh; lg ! fH;Lg from received messages to
actions as receiver. We write a pure strategy of player i (given the received message mj) as

si = hmi; ai; fi (mj = h) ; fi (mj = l)i :

For example, s1 = hh;H;L; Li means that player 1 sends the message h and takes the action H
if he is the sender, while playing L whenever acting as receiver.
Observe that we neglect unused strategy components by restricting attention to the reduced

normal form. In other words, we do not specify what action a player would take in the coun-
terfactual case when he sends another message than the message speci�ed by his strategy.
In the game with two-way communication, �II (G), both players simultaneously send a mes-

sage mi 2 fh; lg before G is played.11 A strategy si for player i of the full game is therefore
given by a message mi and a mapping fi : fh; lg ! fH;Lg from the opponent�s message to
actions. A pure strategy of player i (given the message mj sent by player j) can thus be written

si = hmi; fi (mj = h) ; fi (mj = l)i :

For example, s1 = hh;H;Li means that player 1 sends the message h, but plays according to
the received message (i.e., plays H if player 2 sends message h and L if player 2 plays message
l).
Players�behavior depends on their degree of sophistication. A player of type 0 (or level-0),

henceforth called a T0 player, is assumed to understand only the set of strategies, and not how
these strategies map into payo¤s. Thus, T0 makes a uniformly random action plan, sticking to
this plan independently of any message from the opponent. (Hearing the opponent�s intended
action is of little help to a player who does not understand which game is being played.)
Importantly, since T0 players do not understand how their own or their opponent�s actions
map into payo¤s, or how their messages may a¤ect their opponent�s action, they are indi¤erent
concerning their own messages.
For positive integers k, a Tk player chooses a best response to (the behavior that the Tk

player expects from) a Tk�1 opponent. In particular, T1 plays a best response to T0. When
k � 2; Tk players will sometimes observe unexpected messages. In this case Tk assumes that the
message comes from a Tk�l player, where l � k is the smallest integer that makes Tk�s inference
consistent. (As we shall see, T0 sends all messages with positive probability, so l 2 f1; ::; kg

10There is a tension between genericity and symmetry, but none of our results are knife-edge with respect to
symmetry. For the purpose of this paper, we consider a game to be generic if no player obtains exactly the same
payo¤ for two di¤erent pure strategy pro�les. We restrict attention to symmetric and generic games merely in
order to keep down the number of cases under consideration. In section II.B, however, we discuss an asymmetric
2� 2 game.

11Simultaneous messages may appear to be an arti�cial assumption. However, besides preserving symmetry,
the case of simultaneous messages may capture the notion from models with sequential communication that the
�rst and the last speaker may both have an impact.
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always exists.) Let pk denote the proportion of type k in the player population. As we shall see,
players who perform more than one thinking step often, but not always, behave alike. Therefore,
it is convenient to let Tk+ denote player types that perform at least k thinking steps.
When a player is indi¤erent about actions in G, we assume that the player randomizes uni-

formly. However, when the player is indi¤erent about what pre-play message to send, we assume
that there is randomization only in case the player is unable to predict the own action� which
can only happen under two-way communication. Otherwise, indi¤erent players send truthful
messages (or more precisely, a message that conveys the action that the player expects to be
playing). The assumption re�ects the notion that people are somewhat averse to lying, but
it does so without incurring the notational burden of introducing explicit lying costs into the
model. While such lexicographic preference for truthfulness is an apparently weak assumption,
one of its immediate implications is that the message by T0 reveals the intended action. Or to
put it even more starkly, T1 believes in received messages. (In Section I.C we explore alternative
assumptions regarding how T0 treat messages.)
In Appendix 1 we explicitly characterize the strategies of all player types. However, it is

common to argue that T0 does not accurately describe the behavior of any signi�cant portion of
real adult people and that actual players are best described by a distribution with support only
on T1; T2 and T3 (e.g. Costa-Gomes, Crawford and Broseta 2001 and Costa-Gomes and Crawford
2006). For some of our results we thus refer to type distributions consisting exclusively of players
of these three types. Accordingly, we say that p = (p0; p1; :::) is a standard type distribution if
pk > 0 for all k 2 f1; 2; 3g and pk = 0 for all k =2 f1; 2; 3g.

A. Examples

Consider the Stag Hunt game in Figure 2. Absent communication, T1 best responds to the
uniformly randomizing T0 by playing the risk dominant action L. Understanding this, the best
response of T2 is to play L as well. Indeed, by induction any player T1+ plays L. For any type
distributions with p0 = 0, the unique outcome is the risk dominant equilibrium (L;L).12 The
level-k model hence provides a rationale for why players play the risk dominant equilibrium in
coordination games without communication.
If players can communicate, one-way communication su¢ ces to induce play of H by all types

T2+. The analysis starts by considering the behavior of T0 (as imagined by T1). By assumption,
a T0 sender randomizes uniformly over L and H, while sending the corresponding truthful
message. A T0 receiver randomizes uniformly over L and H. As a sender, T1 best responds
by playing the risk dominant action L, and due to the lexicographic preference for truthfulness
sends the honest message l. As a receiver, T1 believes that messages are honest and thus plays L
following the message l and H following the message h. Consider now T2. A T2 sender believes
to be facing a T1 receiver who best responds to the message, so T2 sends h and plays H. A
T2 receiver, expects to receive an l message and therefore play L. If receiving a counterfactual
h message, T2 thinks it is sent by a truthful T0 sender and therefore plays H. It is easily
checked that all T2+ behave like T2, implying that there will be coordination on the payo¤
dominant equilibrium whenever two T2+ players meet and communicate. In other words, the
level-k model not only shows that it is feasible for advanced players to coordinate on the payo¤
dominant equilibrium, but that the unique outcome is that they will do so. Note in particular
how reassurance plays a crucial role in the example. When a receiver gets a message h, the
receiver is reassured that the sender will play H, and is therefore also willing to play H: Even
if the message h is actually only self-signaling for (the non-existing) level-0 senders, it is self-
committing for all other types, and this su¢ ces to attain e¢ cient coordination as long as both

12Note that this is not about equilibrium selection in the ordinary sense. Players do not select among the set
of equilibria, but best-respond to the behavior of lower-step thinkers. Their behavior ultimately results from the
uniform randomization of T0, which explains the parallel to risk dominance.
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Table 1: Action profiles played in Stag Hunt with communication
�I (G) (one-way communication) �II(G) (two-way communication)

0R 1R � 2R 0 1 � 2
0S Uniform 1

2
HH; 1

2
LL 1

2
HH; 1

2
LL 0 Uniform 1

2
HH; 1

2
LL 1

2
HH; 1

2
LH

1S 1
2
LL; 1

2
LH LL LL 1 1

2
HH; 1

2
LL Uniform HH

� 2S 1
2
HH; 1

2
HL HH HH � 2 1

2
HH; 1

2
HL HH HH

H L
H 0; 0 3; 1
L 1; 3 a; a

Figure 4: Mixed motive game

parties perform at least two thinking steps.
In Stag Hunt, the reassurance role of communication is strengthened even more when both

players send messages. Under such two-way communication, T1 trusts the received message and
responds optimally to it. Expecting to play either action with equal probability, T1 sends both
messages with equal probability. T2 believes that the opponent listens to messages, and therefore
sends h and plays H irrespective of the received message. T3+ players believe that the opponent
will play H and they therefore play H and send an h message. If they receive an unexpected l
message, they believe it comes from T1 and therefore play H anyway (as T1 will respond to the
received h message by playing H). Note that under two-way communication, T2+ players are
so certain that the opponent will play H that they play H irrespective of the received message.
This an important case in which the cognitive hierarchy model predicts a di¤erent strategy.
Because T2 players in the cognitive hierarchy model �nd it likely that the opponent is a truthful
T0 player, they respond to messages under reasonable parameter assumptions (see Appendix 3
for details).
Table 1 summarizes the action pro�les that will result in the Stag Hunt under one-way and

two-way communication. The notation 1S indicates a player of type 1 in the role of sender, and
so on. �Uniform�indicates that all four outcomes are equally likely.
Communication entails perfect coordination on the payo¤dominant equilibrium whenever T2+

players meet. However, one-way and two-way communication di¤er in two respects whenever
T1 players are involved. With one-way communication, T1 senders play L and the risk dominant
equilibrium therefore results whenever T1 senders play (since T0 does not exist). Under two-
way communication, however, there is miscoordination in half of the cases when two T1 players
meet. Thus, there is a trade-o¤ when choosing the optimal communication structure between
coordination on either equilibria and achieving the payo¤ dominant equilibrium more often.
For standard type distributions, two-way communication entails higher expected payo¤s than
one-way communication as long as p1 2 (0; 2=3).
In Stag Hunt, communication increases players� payo¤ because it brings su¢ ciently much

reassurance for players to coordinate on the risky but payo¤ dominant equilibrium. In mixed
motive games such as Battle of the Sexes and Chicken, communication instead serves the role
of con�ict resolution. To see this, consider the mixed motive game depicted in Figure 4, where
a < 3 and a 6= 2. If a = 0, then this is a Battle of the Sexes, whereas it is a Chicken game if
a > 0. The outcome for this game depends on whether L or H is the risk dominant action, i.e.,
whether a ? 2. For simplicity, we disregard the possibility that a = 2, but allow the �Battle of
the Sexes�possibility that a = 0 (although this makes the game non-generic).
First consider the case of no communication. T1 then plays the risk dominant action, i.e., L

if a > 2 and H if a < 2. T2 responds optimally by playing H if a > 2 and L if a < 2. The
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Table 2: Action profiles played in mixed motive games (a > 2)

G (no communication) �I (G) (one-way communication)
0 Odd Even 0R 1R � 2R

0 Uniform 1
2
HL; 1

2
LL 1

2
LH; 1

2
HH 0S Uniform 1

2
HL; 1

2
LH 1

2
HL; 1

2
LH

Odd 1
2
LH; 1

2
LL LL LH 1S 1

2
LH; 1

2
LL LH LH

Even 1
2
HL; 1

2
HH HL HH � 2S 1

2
HL; 1

2
HH HL HL

behavior of more advanced players continues to alternate, odd types playing L if a > 2 and H
otherwise, whereas even types play H if a > 2 and L otherwise. The outcome therefore depends
on the type distribution, but there will generally be many instances of miscoordination.13

One-way communication powerfully resolves the con�ict inherent in such games with two
pure asymmetric equilibria. If H is the risk dominant action, then T1+ senders send h and
play H, whereas T1+ receivers optimally respond to messages. If instead L is risk dominant, a
T1 sender sends l and plays L, whereas T2+ senders continue to send h and play H: One-way
communication therefore implies that T1+ players always coordinate on an equilibrium. Except
in the case when L is risk dominant and the sender is of type T1; coordination is on the sender�s
preferred equilibrium.
It is unsurprising that one-way communication can resolve the con�ict and achieve coordi-

nation in games with two asymmetric equilibria. However, our analysis also reveals the novel
possibility that in some versions of Chicken some players propose and play their least favorite
equilibrium. T1 senders play their risk-dominant action which may not correspond to their
preferred equilibrium, whereas T2 senders are con�dent in reaching their preferred equilibrium.
Table 2 shows the outcomes that will result without communication and with one-way commu-
nication, demonstrating the improved coordination on equilibrium outcomes.
Although one-way communication entails more equilibrium coordination than no communica-

tion, more coordination need not raise players�average payo¤s. If a > 2, then players prefer the
(L;L) outcome to ending up in either equilibrium with equal probability. If the type distribution
is such that the (L;L) outcome results su¢ ciently often without communication, average payo¤s
are thus higher without communication. For example, when a = 5=2 and there is a standard
type distribution with p2 < 1=3, then average payo¤s are lower under one-way communication
than under no communication.
Suppose players could choose whether to engage in communication or not, and that the

allocation of roles is random. Each player type k would then consider the own expected payo¤
in each regime conditional on meeting a player of type k � 1. To illustrate that players may
prefer not to communicate, we consider the case when a = 0, i.e., the Battle of the Sexes.
Absent communication, T3 believes that the opponent will play L and thus obtains the preferred
equilibrium payo¤. With one-way communication and a random allocation of roles, however,
T3 expects to end up in either equilibrium with equal probability. That is, T3 expects to be
better o¤ if communication is impossible.

B. Results

In this section we generalize the �ndings from the previous section to all symmetric and
generic 2 � 2 games, disregarding (the measure zero class of) games in which neither action
is risk dominant. There are three broad classes of such games. The �rst class of games are
the dominance solvable ones, like Prisoners�Dilemma. We use the convention of labelling the
dominant action of these games H(igh). The second class are coordination games, where we

13The outcome without communication does generally not resemble the symmetric mixed strategy equilibrium,
but may happen to do so for certain combinations of payo¤ con�gurations and type distributions.
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follow the example above and label the actions corresponding to the payo¤dominant equilibrium
H(igh). The third class of games are mixed motive games like the one in Figure 4. For this
class of games, we label the action corresponding to a player�s preferred equilibrium H(igh).
In Appendix 1, we completely characterize behavior of all player types k 2 N for these three
classes of games. These characterizations provide the foundation for the results in this section,
where we focus on average outcomes under standard type distributions.
Our �rst result states the conditions under which one-way communication serves to increase

players�average payo¤s relative to no communication.

PROPOSITION 1: Given a standard type distribution, the average payo¤ associated with �I(G)
exceeds the average payo¤ associated with G if and only if (i) G is a coordination game with
a con�ict between risk and payo¤ dominance, or (ii) G is a mixed motive game that satis�es
either
a. L is risk dominant and�

1

2
� p2 (1� p2)

�
(uHL + uLH) > p

2
2uHH + (1� p2)

2
uLL;

or
b. H is risk dominant and�

1

2
� p2 (1� p2)

�
(uHL + uLH) > (1� p2)2 uHH + p22uLL.

PROOF:
In Appendix 2.

If we replace p2 by pE , the probability that players think an even number of steps, Proposition
1 generalizes straightforwardly to all type distributions in which p0 = 0. In our examples, we
have already explained why one-way communication improves average payo¤s in Stag Hunt, and
indicated why it sometimes fails to improve payo¤s in mixed motive games. A straightforward
implication of Proposition 1 is that one-way communication raises the average payo¤ in the
Battle of the Sexes.14 (To see this, recall that in Battle of the Sexes 0 = uHH = uLL <
uLH < uHL, which implies that H is risk dominant and that condition (b) in Proposition 1 is
satis�ed.) Proposition 1 also implies that communication does not improve average payo¤s in
dominance solvable games. For Chicken, the impact of communication hinges more delicately
on parameters, and communication may even serve to reduce payo¤s.

COROLLARY 2: Given a standard type distribution, the average payo¤ associated with �I(G)
is smaller than the average payo¤ of G if and only if G is a game of Chicken that satis�es either
a. L is risk dominant and�

1

2
� p2 (1� p2)

�
(uHL + uLH) < p

2
2uHH + (1� p2)

2
uLL;

or
b. H is risk dominant and�

1

2
� p2 (1� p2)

�
(uHL + uLH) < (1� p2)2 uHH + p22uLL.

14Note that this does not contradict the statement at the end of Section I.A that T3 prefers not to communicate
in the Battle of the Sexes. Proposition 1 refers to payo¤s averaged across player types, while the earlier remark
referred only to T3�s payo¤ given that he is certain that he faces a T2 opponent.
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PROOF:
In Appendix 2.

Since H is risk dominant in Battle of the Sexes, one-way communication su¢ ces to attain
perfect coordination on the speaker�s preferred equilibrium outcome. Thus, we here have a
case in which the prediction from the level-k model coincides with the prediction from Farrell
(1988). The ine¤ectiveness of cheap talk in dominance solvable games is also analogous. More
generally, the two approaches share the property that communication, if anything, pulls players
towards Nash equilibria in symmetric 2� 2 games.

PROPOSITION 3: For any distribution of types, the frequency of coordination on pure strategy
Nash equilibrium pro�les is weakly greater in �I(G) than in G.

PROOF:
In Appendix 2.

The pull towards Nash equilibria is so strong that one-way communication results in equi-
librium play whenever T1+ meet. Moreover, T2+ always play the action corresponding to the
sender�s preferred equilibrium.

COROLLARY 4: For type distributions with p0 = 0, players in �I(G) always coordinate on
pure strategy Nash equilibrium pro�les. If in addition p1 = 0, players in �I(G) always coordinate
on the sender�s preferred equilibrium.

PROOF:
Follows directly from Tables A1 to A4 in the proof of Proposition 3.

Unlike one-way communication, two-way communication may destroy not only average pay-
o¤s but also coordination on equilibrium outcomes. For example, suppose there are only T1
players and let G be a coordination game in which payo¤ and risk dominance coincide. Then
�II(G) entails miscoordination in half of the cases, because T1 sends random messages while
listening to received messages. By contrast, in G and in �I(G) two T1 players always play
the (payo¤ and risk) dominant equilibrium. Our model therefore captures the intuition that
two-way communication can bring noise in the form contradictory messages.
Nevertheless, there are important classes of games in which two-way communication outper-

forms one-way communication.

PROPOSITION 5: Given a standard type distribution, the average payo¤ associated with �II(G)
exceeds the average payo¤ associated with �I(G) if and only if (i) G is a coordination game in
which L is the risk dominant action and (4� 3p1)uHH + p1 (uLH + uHL) > (4� p1)uLL; or
(ii) G is a mixed motive game with a type distribution satisfying the following condition:

1 +
2 (p1 � 1) (p1 � 1 + 2p3)

p21 + 4p
2
3

<
uLL � uHH

uLH + uHL � 2uHH
:

PROOF:
In Appendix 2.

The Stag Hunt game in Figure 2 belongs to the �rst class of games identi�ed by Proposition 5.
For that particular game, two-way communication yields higher expected payo¤ than one-way
communication whenever p1 2 (0; 2=3). The second class of games identi�ed in Proposition 5
is harder to specify because of the cycling patterns of behavior under two-way communication
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in mixed motive games. However, for two-way communication to be bene�cial, the payo¤ when
both players play L must be su¢ ciently high (at least (uHL+uLH)=2) and in addition the type
distribution has to be such that the miscoordination outcome (L;L) happens su¢ ciently often
with two-way communication. For example, with only T3 players, the outcome is (L;L) under
two-way communication, whereas such players coordinate on an asymmetric equilibrium with
one-way communication.

C. Robustness

How robust are our results to the assumptions that we have made about players�behavior?
The largest di¤erence in comparison with other level-k applications is that we assume that

players have a weak preference for truthfulness. If players have no preference for truthfulness,
communication ceases to have any e¤ect whatsoever in our model: behavior is the same in �I(G),
�II(G) and G. This speci�cation is strongly at odds with the evidence that communication
matters in many game experiments.
Another alternative hypothesis is that all players prefer to be truthful, but that the most

primitive types also respond systematically to received messages. The idea is that (if the actions
of both players have the same label), the receiver could imitate or di¤erentiate based on the
sender�s message. The most natural way to account for such imitation is to allow heterogeneous
T1 players, some believing that receivers randomize, others believing that receivers imitate.15

With one-way communication, this implies that some T1 players believe T0 receivers randomize,
whereas others believe that they imitate. With two-way communication, some T1 players believe
that opponents are truthful, whereas other believe they imitate. Let us now consider the
consequences of this speci�cation.
First consider the Stag Hunt in Figure 2. Under one-way communication, T1 senders who

believe that receivers imitate send the message h and play H. This in turn implies that T2
receivers respond to messages as if they were truthful irrespective of which kind of T1 sender they
think they face. Under one-way communication, the only di¤erence compared to our original
assumption is that there will be somewhat more coordination on (H;H) since some T1 senders
now play H. Under two-way communication, T1 players who believe that opponents imitate
send h and play H instead of responding to received messages. T2 players therefore optimally
send h and play H irrespective of which type of T1 player they meet. Since miscoordination
only occurs whenever two T1 players that send random messages meet, there will now be more
equilibrium coordination compared to the standard case.
Second, consider one-way communication in the Battle of the Sexes. While T1 receivers, and

hence T2 senders, behave as before, T1 senders that believe they face imitators now send l and
play H. In the previous footnote, we have already argued that this behavior is implausible
and that the fraction of such T1 players must therefore be small. However, irrespective of how
small a proportion they constitute, T2 receivers now play L irrespective of what message they
receive. This implies that T3 senders send h and play H. Under a standard type distribution,
the outcome in terms of observed action pro�les is thus the same as before.
Although some details of the analysis change with the introduction of heterogeneous T1 play-

ers, we conclude that the main mechanisms are robust to this modi�cation.
Another cause for concern is our assumption about how unexpected messages are treated.

An alternative assumption to ours is that Tk believes that unexpected messages are truthful.

15An alternative is to let T1 assume that some fraction of T0 imitates rather than randomizes. In this case,
T1 is sophisticated enough to consider heterogeneity among T0. We do not think this is plausible, and the
consequences are counterfactual too: Consider one-way communication in the Battle of the Sexes. If there
is heterogeneity among T0, T1 will send l and play H� believing that some opponents ignore their message,
whereas others imitate their message and play L. Since p1 is typically estimated to be quite high, the implication
is that sending l and playing H would be a relatively common practice. Cooper et al. (1989) studies one-way
communication in Battle of the Sexes. They �nd that only 2 percent of all senders even sent an l message.
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X Y Z
U 5�; 5� �50;�50 2; 4
V �50;�50 2; 4� 4�; 3
W 4; 4� 3�; 3 3; 3

Figure 5: High Risk Game

This would not change any our results for one-way communication, but it would imply that T3+
responds to messages (rather than always playing H) in coordination games as well as slightly
di¤erent behavior of T2+ in mixed motive games. (See also the discussion following Observation
7 about the sensitivity to the assumption about unexpected messages for the behavior of T2+
in mixed motive games.) In Appendix 3, we consider the cognitive hierarchy model in which
no messages are unexpected (because all players take into account that the opponent might be
T0) and show that, with the exception of T2+ in mixed motive games, our results are robust.

II. Extensions

So far, we have con�ned attention to symmetric 2�2 games. In principle it is straightforward
to extend the analysis to games with more players and strategies. In this section, we show
that the reassurance property of communication extends to two-player games in which players�
interests are su¢ ciently well aligned. When attractive non-equilibrium outcomes are present,
however, senders might try obtain these by deceiving the opponent. The possibility of deception
implies that one-way communication may hamper coordination on Nash equilibria. In addition,
we show that multilateral communication in N -player games facilitiates coordination in a class
of common interest games.

A. Two-player common interest games

The Stag Hunt example illustrates that pre-play communication facilitates the play of a risky
payo¤ dominant equilibrium. Since our model does not assume equilibrium play, it is also
applicable to situations in which players realistically fail to play a unique and e¢ cient Nash
equilibrium� such as the High Risk game, devised by Margaret Gilbert (1990) and reproduced
in Figure 5 (in which best replies are marked with asterisks).16 Absent communication, the
level-k model predicts that two T5+ players coordinate on the unique pure strategy equilibrium
(U;X), whereas all less sophisticated players fail to do so.17 In contrast, one-way and two-way
communication implies that T2+ coordinate on equilibrium. That is, much less sophistication
is required to reach equilibrium with communication than without.18

16Experimental results of Anthony Burton and Martin Sefton (2004) con�rm the prevalence of coordination
failure in one-shot play of the High Risk game, but demonstrate that players learn to play the equilibrium after
having played a number of practice rounds with the same opponent.

17To see this, note that T1 plays W and Z since these are the risk dominant actions. Using the best responses
indicated in Figure 5 it follows that T2 plays V and X, T3 plays U and Y , T4 plays W and X, and �nally that
T5+ plays U and X.
A referee makes the following additional observation: �Replace 50 by x. If anyone is playing U or V in a

�rst encounter with the game [...], the number of such players should decline as x increases.�We agree. This is
another case in which the cognitive hierarchy model o¤ers a richer and more realistic prediction than level-k.

18To see this, �rst consider one-way communication. A T1 row sender sends w and plays W , while a column
sender sends z and plays Z. A T1 receiver best responds to messages. A T2+ row sender therefore sends u and
plays U , while a column sender sends x and plays X, while a T2+ receiver best responds to messages. Now
consider two-way communication. T1 believes the opponent is truthful and therefore best responds to messages
and randomize what message to send. A T2+ row player therefore sends u and plays U while a column player
sends x and plays X.
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Y Z
W 3�; 2� 4�; 0
X 0; 0 3; 3�

Figure 6: Asymmetric 2 x 2 game

The positive e¤ect of communication in the High Risk game extends to all �nite and normal
form two-player games which has a payo¤dominant equilibrium that gives strictly higher payo¤s
to both players than all other outcomes of a game, i.e., to all common interest games. For this
class of games it is straightforward to show that T2+ coordinate on the payo¤ dominant equi-
librium. The underlying mechanism is that since T1 listens and best responds to messages, T2
can achieve the best possible outcome by sending and playing the payo¤ dominant equilibrium.

PROPOSITION 6: Let G be a two-player common interest game. For type distributions with
p0 = p1 = 0, players in �I(G) and �II(G) always coordinate on the payo¤ dominant Nash
equilibrium.

PROOF:
See Appendix 2.

B. Other two-player games

In common interest games and in symmetric 2 � 2 games with one-way communication,
players always represent their intentions truthfully. In other classes of games, however, this
is not necessarily the case. Crawford (2003) already shows how deception arises naturally in
a level-k model of communication in Hide-and-Seek games. Deception can also arise in an
asymmetric dominance solvable 2� 2 game with a unique pure strategy equilibrium. Consider
the game in Figure 6.
The game�s unique pure strategy equilibrium is (W;Y ). SinceW and Y are the risk dominant

actions, T1+ players coordinate on the (W;Y ) equilibrium if they are not allowed to communi-
cate. Now consider one-way communication. Suppose that the row player acts as sender and
the column player acts as receiver. The T1 sender sends w and playsW , while a T1 receiver best
responds to received messages. A T2 sender therefore sends x, but plays W , while a T2 receiver
best responds to messages. T3 sends x but plays W , while a T3 receiver ignores messages and
always plays Y . Whenever T3+ players meet, the resulting outcome is equilibrium play, but
not when less sophisticated players play. In contrast to Proposition 3, one-way communication
leads to less equilibrium coordination than no communication unless all players carry out three
or more thinking steps.
Proposition 3 does not generalize to symmetric two-player games with more than two actions

either. To see this, consider the game in Figure 7.19 This symmetric 3 � 3 game has a unique
pure strategy equilibrium, (H;H), for all q > 1, but the game also has the asymmetric outcomes
(H;L) and (L;H) that are attractive either to the row or column player. Since there is a third
strategy, D, which has L as its best response, some senders will try to use this strategy to
deceive the other player into playing L.
Speci�cally, consider the case when q = 1 and pre-play communication is not possible. In that

case T1 would play H since it is the best action to take if the opponent randomizes uniformly,
and T2+ would best respond by playing H. One-way communication, however, makes it more
di¢ cult to reach equilibrium. A T1 sender sends h and playsH, while a T1 receiver best responds
(as indicated by the asterisks in Figure 7) to the received message. A T2 sender sends d, but

19This game is non-generic, but the analysis is analogous in the generic case.
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H L D
H 4=q�; 4=q� (4 + 1=q)

�
; 0 0; 0

L 0; (4 + 1=q)
�

0; 0 1�; 1
D 0; 0 1; 1� 0; 0

Figure 7: Symmetric 3 x 3 game

H1 L1 D1 H2 L2 D2 � � � HQ LQ DQ
H1 4; 4 5; 0 0; 0 0; 0 0; 0 0; 0 � � � 0; 0 0; 0 0; 0
L1 0; 5 0; 0 1; 1 0; 0 0; 0 0; 0 � � � 0; 0 0; 0 0; 0
D1 0; 0 1; 1 0; 0 0; 0 0; 0 0; 0 � � � 0; 0 0; 0 0; 0
H2 0; 0 0; 0 0; 0 2; 2 4:5; 0 0; 0 � � � 0; 0 0; 0 0; 0
L2 0; 0 0; 0 0; 0 0; 4:5 0; 0 1; 1 � � � 0; 0 0; 0 0; 0
D2 0; 0 0; 0 0; 0 0; 0 1; 1 0; 0 � � � 0; 0 0; 0 0; 0
...

...
...

...
...

...
...

. . . 0; 0 0; 0 0; 0
HQ 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 4

Q ;
4
Q 4 + 1

Q ; 0 0; 0

LQ 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 0; 4 + 1
Q 0; 0 1; 1

DQ 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 1; 1 0; 0

Figure 8: Symmetric 3Q x 3Q game

plays H, while a T2 receiver best responds to received messages. A T3 sender sends d and plays
H, while a T3 receiver plays H irrespective of the received message. A T4+ sender is indi¤erent
about what message to send and is thus truthful, sending h and playing H; a T4+ receiver
ignores messages and plays H. We conclude that T3+ coordinate on (H;H) and that one-way
communication consequently lowers equilibrium coordination unless all players make three or
more thinking steps.

A modi�cation of the game illustrates how the number of thinking-steps required to reach
equilibrium may increase linearly with the size of the game. Consider the 3Q� 3Q game shown
in Figure 8. It has the game in Figure 7 on the main diagonal and zero payo¤s elsewhere.

Let messages be denotedmq, withm 2 fh; l; dg and q 2 f1; 2; :::; Qg:Without communication,
T1+ plays H1 as in the 3�3 game. However, when one-way communication is allowed, all players
must make at least 2Q + 2 thinking steps in order to coordinate on the unique equilibrium
(H1;H1). To see why, note �rst that T1 through T3 will behave as in the 3� 3 game, but that
receivers will best-respond to all messages mq with q 2 f2; 3; :::; Qg; believing those messages to
come from T0. A T4 sender therefore sends d2 and plays H2 in order to get the outcome (H2; D2)
which is preferred over (H1;H1). T5 receivers do not believe in d2 messages and therefore play
H2 if either h2, l2 or d2 is played. In turn, T6 senders send d3 and play H3 in order to induce
the (H3; L3) outcome. The inductive argument continues like this up until T2Q+1 sends dQ and
plays HQ. A T2Q+2 sender cannot hope to get anything better than (H1;H1) and therefore
sends h1 and plays H1, whereas a T2Q+2 receiver plays Hq whenever hq; dq or lq is played (for
all q).

This example illustrates that the degree of sophistication required to play equilibrium in-
creases with the size of the game. Since the degree of sophistication required is unrealistically
high, in these games players coordinate better if they are unable to communicate.
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C. Other communication protocols

Like much of the cheap talk literature, we have here considered communication of intentions.
Messages are of the form �I plan to play...�. What would happen if players communicated
requests instead, that is if messages were of the form �I want you to play...�? While the model
still admits a notion of truthfulness, the analysis would be quite di¤erent. For example, it is no
longer clear that T1 players should care about the messages that they receive, since T0 players�
requests may reveal nothing about their intentions. We thus expect that credulity will play
a more important role than truthfulness in this case. Speci�cally, communication might now
a¤ect behavior if T1 senders believe that receivers are credulous in the sense that they ful�ll
requests. Preliminary investigations suggest that the ensuing analysis o¤ers a perspective on
how cheap talk may be used to understand cheating in games, but we leave a fuller analysis for
a separate paper.
The paper only considers the communication of intentions by interested parties. A natural

avenue for future research is to study the communication of desires or recommendations, by
players themselves as well as by more or less interested third parties such as managers.20

Another natural extension is to consider multiple rounds of communication. Crawford (2007)
has already used the level-k model to analyze longer conversations in the Battle of Sexes.
He demonstrates that longer bilateral conversations improve coordination rates in a way that
is qualitatively similar to, but quantitatively and intuitively di¤erent from, the equilibrium
analysis of Farrell (1987).

D. Multilateral communication

Communication may also facilitate play of a potentially risky payo¤ dominant equilibrum
in games with more than two players. In this section we show that for all �nite common
interest games with strategic complementarities and positive spillovers, multilateral pre-play
communication facilities play of the payo¤ dominant equilibrium whenever T2+ play the game.
We restrict attention to games with unique best responses. The actions of each players are

assigned integers f1; 2; :::; aig. Such a game has strategic complementarities if best responses
are non-decreasing in the opponents�actions, i.e., if a�i � a0�i implies BRi (a�i) � BRi

�
a0�i
�
.

Finally, a game has positive spillovers if the own payo¤ increases in the opponents�actions, i.e.,
if a�i � a0�i implies �i (ai; a�i) � �i

�
ai; a

0
�i
�
. Note that the payo¤ dominant equilibrium of a

common interest game involves all players choosing their highest actions, a = (a1; a2; :::; an).21

PROPOSITION 7: Let G be a �nite common interest game with unique best responses, strategic
complementarities and positive spillovers. For type distributions with p0 = p1 = 0, players in
�N (G) always coordinate on the payo¤ dominant Nash equilibrium of G.

PROOF:
See Appendix 2.

To better understand the intution behind Proposition 7, consider the Weak-link game. In a
Weak-link game, each player picks an integer from 1 toM . Payo¤s are such that all players want
to play the minimum of what the opponents play, but all players are better o¤ if everybody

20For experimental evidence bearing on these issues, see for example John B. van Huyck, Ann B. Gillette and
Raymond C. Battalio (1992), Roberto Weber et al. (2001) and Jordi Brandts and David J. Cooper (2007).

21To see this, suppose the payo¤ dominant equilibrium is some pro�le a� 6= a. Then at least one player has an
action ai > a�i available that by positive spillovers gives the opponents the same or higher payo¤s, contradicting
the assumption that a� is the payo¤ dominant equilibrium that yields strictly higher payo¤s to all players than
all other outcomes of the game.
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chooses higher numbers. Any strategy pro�le in which all players choose the same number
constitutes a Nash equilibrium, and the payo¤ dominant equilibrium involves all players playing
M . Note that the Weak-link game is essentially a Stag Hunt game with more than two strategies.
(For a more detailed exposition of the Weak-link game see for example Camerer 2003, Chapter
7.) If the Weak-link game is preceeded by multilateral communication, T1 sends a random
message and best responds by playing the minimum of the received messages. A T2 player faces
N � 1 opponents that play the minimum of the received messages, so T2+ best responds by
also playing the minimum of all received messages, but sends the message m (so that the best
outcome occurs if all other players sent m). Hence, as long as there are no T0 and T1 players,
there will be perfect coordination on the payo¤ dominant equilibrium.
Note that the logic of this argument breaks down if only a subset of the players is allowed to

send a message. To see this, suppose that all but one player is allowed to send a message. Then
it is generally no longer optimal for T1 to play the minimum of the received message pro�le
since one opponent�s action is unpredictable, which in turn implies that T2 does not play the
minimum of the received messages, which would be required to guarantee play of the payo¤
dominant equilibrium.

III. Evidence

The level-k model of pre-play communication is primarily a model to explain initial responses,
i.e., the behavior of players that play a game for the �rst time. If players gain experience of the
game and the population of players, they are likely to change their model of opponents�behavior
or perhaps think further and proceed to higher levels of reasoning. In experimental work on pre-
play communication, players typically play the same game in several rounds. Strictly speaking,
most of the available evidence is thus inadequate for our purposes.
Another di¢ culty is that experimenters rarely elicit subjects�von Neumann-Morgenstern util-

ities. Instead, payo¤s are typically monetary. In order to interpret the behavior as evidence of
beliefs, experimenters thus have to assume a particular relationship between monetary alloca-
tions and utility. For example, they may assume that subjects maximize their own expected
monetary payo¤. However, subjects frequently have other goals; for example, it would be ludi-
crous to interpret Dictator game giving as evidence that subjects are confused about the game�s
payo¤s. In principle, we should always distinguish games (involving utilities) from game forms
(involving monetary payo¤s).
With these caveats in mind, and continuing to con�ate games and game forms, let us brie�y

discuss some of the most relevant communication experiments.
Two papers contrast one-way and two-way communication in Stag Hunt games. Cooper et

al. (1992) report that average coordination on the payo¤ dominant equilibrium is 0 percent
without communication, 53 percent with one-way communication and 91 percent with two-way
communication. This study therefore suggests that communication plays a reassurance role, as
emphasized by Crawford (1998).22 By contrast, in a Stag Hunt game with somewhat di¤erent
relative payo¤s, Burton, Graham Loomes and Sefton (2005) �nd that one-way communication
results in 52 percent coordination on the payo¤ dominant equilibrium, whereas two-way com-
munication entailed average coordination on the payo¤dominant equilibrium of only 34 percent.
Both papers �nd that behavior varies substantially across sessions, indicating that heterogeneity
in early rounds of the game a¤ect players choices in later rounds. Burton, Loomes and Sefton
(2005) also collect data on some of their individual subjects�complete strategies (plans). By far
the most common strategy, in our notation, is hh;H;Li. According to the level-k model, this
strategy should only be used by half of the T1 players. On the other hand, the strategy is used
by all T2+ in the cognitive hierarchy model (under the weak assumption that the average of the

22Relatedly, Ellingsen and Johannesson (2004a) identi�es a reassurance role of communication in hold-up
games with multiple equilibria.
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type distribution is below 7). As usual when the two models yield con�icting predictions, the
cognitive hierarchy model�s prediction is preferable.

In addition to the two studies comparing one-way and two-way communication, there are also
a few studies of the Stag Hunt game that investigate either one-way or two-way communication.
John Du¤y and Nick Feltovich (2002) �nd that one-way communication entails coordination on
the payo¤ dominant equilibrium in 84 percent of the cases with one-way communication and in
61 percent of the cases without communication. Charness (2000) studies the e¤ect of one-way
communication in three versions of the Stag Hunt and �nds 86 percent coordination on the
payo¤ dominant equilibrium with one-way communication. Kenneth Clark, Stephen Kay and
Sefton (2001) study two-way communication in two di¤erent Stag Hunt games. In the �rst game,
based on Cooper et al. (1992), playing L yields the same payo¤ irrespective of the opponents
behavior. In this game, coordination on the payo¤ dominant equilibrium is 2 percent without
communication and 70 with two-way communication. In a more standard Stag Hunt game, they
�nd that coordination on the payo¤ dominant equilibrium occurs in only 19 percent of the cases
with two-way communication. Hence, it appears possible that the bene�cial e¤ects of two-way
communication in Cooper et al. (1992) is sensitive to their choice of payo¤ matrix.

On the other hand, the hypothesis that multilateral communication plays a major role in
creating reassurance is more consistently supported by evidence from Weak-link games (see the
previous subsection for a de�nition); see in particular Blume and Andreas Ortmann (2007).
Camerer and Weber (2007) summarize the existing evidence as follows: �Taken together, the
above results suggest that communication can help solve even the most di¢ cult coordination
problems, with relatively large numbers of players and where the minimum e¤ort determines the
entire group�s output. However, the communication required to get large groups to e¢ ciency
is extreme� players must all send messages and have public knowledge of messages.�This is
precisely what Proposition 7 predicts, under the additional prerequisite that all players are
su¢ ciently sophisticated.

For mixed motive games the picture also seems clear, although the consistency in this case
may be due to the low number of studies. Cooper et al. (1989) �nd that one-way communication
results in a high degree of coordination in Battle of the Sexes. Averaged over several rounds of
play, Cooper et al. (1989) report that one-way communication increases coordination from 48
percent without communication to 95 percent with one-way communication. With one round of
two-way communication, coordination is 55 percent.23 For a comparison of this evidence with
the prediction of Rabin�s (1994) cheap talk model, see Costa-Gomes (2002).

To summarize, we believe that more experimental work is needed in order to test the theory
laid out in this paper. Such a test should focus on players�initial responses to several di¤erent
games, which would allow a clearer separation of types. Costa-Gomes and Crawford (2006)
illustrates how this can be done. It would also be useful to directly test the assumption about
T0 players. Since T0 players mainly exist in the minds of other players, we need data on players�
beliefs. Such data can be generated not only through belief elicitation (e.g., Costa-Gomes
and Georg Weizsäcker 2008), but also by response time measurement (e.g., Camerer et al.
1993 and Ariel Rubinstein 2007), information search (e.g., Camerer et al. 1993, Costa-Gomes,
Crawford and Broseta 2001 and Costa-Gomes and Crawford 2006) and through neuroimaging
(e.g., Meghana Bhatt and Camerer 2005).

23 It should be noted, however, that Cooper et al. (1989) allow the players to be silent and that 27 percent
of the players in the two-way treatment, and 5 percent in the one-way treatment, choose to do so. We have
not allowed silence in our analysis. It is of course possible to extend the message space to allow for voluntary
silence, but we have chosen not to do so. Since players are assumed to have a slight preference for truthfulness,
they might want to be silent when they don�t know what action they are going to take in the action game (as
T1 under two-way communication in coordination games).
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IV. Conclusion

Coordination of behavior in new strategic situations is facilitated by communication. Since
communication seeks to a¤ect the beliefs of others, assumptions about initial beliefs are central
to the analysis. Our starting point is that prevailing assumptions about initial beliefs in the
strategic communication literature, as captured by the rationalizability assumption, are prob-
lematic. Thus, we consider the role of communication within the two other general models of
initial beliefs that have won widespread acceptance, namely the level-k and cognitive hierarchy
models. Our analysis demonstrates that these models generate sharp predictions that are often,
if not always, intuitively plausible.
We see two immediate avenues for future research. First, there is a need for evidence that

systematically distinguishes the e¤ects of preferences, beliefs and rationality. In particular,
identi�cation of beliefs is only possible when preferences and rationality are controlled for. The
task is not easy, since direct elicitation of beliefs tends to yield quite di¤erent measures than
revealed measures of beliefs, possibly because direct elicitation a¤ect the depth of subjects�
strategic thinking; see Costa-Gomes and Weizsäcker (2008). Cleaner evidence would help us
to evaluate existing models of beliefs and to suggest new ones, and it would clarify the status
of previously puzzling experimental evidence concerning the e¤ect of communication in games
like Stag Hunt. Secondly, we entirely lack evidence concerning the e¤ects of communication in
many of the other games studied in this paper. Experimental evidence on such games would
allow a true out-of-sample test of the theory.
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Appendix 1: Characterization of Behavior

We here characterize behavior in all symmetric and generic 2 � 2 games using the level-k
model. Consider the symmetric 2� 2 game in Figure A1.
We assume that this game is generic in the sense that none of the four di¤erent payo¤s

(uHH ; uHL; uLH and uLL) are identical. Depending on the relations uHH 7 uLH and uLL 7
uHL, we can divide the class of generic 2� 2 games into three familiar types of games as shown
in Figure A2.24

24The classi�cation of symmetric games follows Weibull (1995) closely. To understand how this classi�cation
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H L
H uHH ; uHH uHL; uLH
L uLH ; uHL uLL; uLL

Figure A1: Symmetric 2 x 2 game

HHLH

LLHL

Coordination games

Mixed motive games

Dominance solvable

Dominance solvable
(e.g. Battle of the Sexes)

(e.g. Prisoners' Dilemma)

(e.g. Prisoners' Dilemma)

(e.g. Stag Hunt)

Figure A2: The four types of generic and symmetric 2 x 2 games

If we were only interested in Nash equilibria, there would be only one prediction for each
of these games. For the level-k model, however, these games will be divided into subclasses
with di¤erent predictions. The most important distinction is indicated by the dashed line in
Figure A2. This condition corresponds to whether uLL � uHL 7 uHH � uLH , i.e., whether
uLH + uLL 7 uHH + uHL. This means that action H is risk dominant above the dashed line in
Figure A2, whereas action L is risk dominant below it. For tractability, we disregard the cases
when neither action is risk dominant throughout the paper.

Dominance solvable games

Dominance solvable games are easiest to analyze, but also least interesting. In a dominance
solvable game, players always have an incentive to play the dominant action, and neither one-
way or two-way communication a¤ect the actions players take.

arises, note that if we were only interested in Nash equilibria of 2�2 games, we could have substracted uLH from
both action H and L when the other player plays H and uHL from both actions when the other player plays
L. This would leave the equilibria of the game unchanged, whereas it a¤ects the prediction for level-k models.
The main reason is that in a level-k model, strategic uncertainty plays a role due to the randomization of level-0
players and we can therefore not use the sure-thing principle to transform the game. After the transformation,
the game is the following.

H L
H uHH � uLH ; uHH � uLH 0; 0
L 0; 0 uLL � uHL; uLL � uHL

>From this game it is clear why the class of symmetric games can be classi�ed by two real numbers, uHH �uLH
and uLL � uHL.
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We assume uHL > uLL and uHH > uLH so that H(igh) is the dominant action. The case
when L is the dominant action is symmetric.

OBSERVATION 1: If players cannot communicate, T1+ plays the dominant action H. If play-
ers can communicate, then both one-way and two-way communication implies that T1+ sends h
and plays H irrespective of any received messages.

PROOF:
Since H is a dominant action, T1+ players play H irrespective of the believed behavior of the

opponent. With the possibility to communicate, this also implies that there are no players that
respond to messages, and T1+ players are therefore indi¤erent about sending h or l. (Sending
l would have been bene�cial if some players responded to messages and uHL > uHH as in the
Prisoners�Dilemma.) However, since players have a lexicographic preference for truthfulness,
they send h.

For dominance solvable 2 � 2 games, communication plays no role. Except for some misco-
ordination due to T0 playing the dominated action, all players play the dominant action. Since
the proof only relies on the fact that each player has a strictly dominant strategy, the result
extends to all normal form two-player games in which both players have a strictly dominant
action.

Coordination games

Behavior in coordination games depends crucially on payo¤ and risk dominance. Since we
restrict attention to generic games, one of the equilibria has to be payo¤ dominant. Let us
without loss of generality assume that H(igh) is the payo¤ dominant equilibrium, i.e., uHH >
uLL.

OBSERVATION 2: (No communication) T1+ plays the risk dominant action.

PROOF:
T1 players believe that the opponent randomizes uniformly and therefore plays the risk dom-

inant action. T2 players best respond and play the same risk dominant action, and so on.

Absent communication, T1 plays the best response to a uniformly randomizing T0 opponent,
which is the risk dominant action. Since this is a coordination game, more advanced players
best respond by playing the same action.

OBSERVATION 3: (One-way communication) If H is the risk dominant action, T1+ sends h
and plays H as sender and responds to messages as receiver. If L is the risk dominant action,
T1 sends l and plays L as sender and responds to messages as receiver. T2+ sends h and plays
H as sender and responds to messages as receiver.

PROOF:
First consider the case when H is risk dominant. T1 plays hh;H;H;Li (facing randomizing

T0 receivers and truthful T0 senders). A T2 sender believes that the receiver best-responds to
the sent message and therefore sends h and plays H. A T2 receiver believes that the sender will
send h and play H, but if T2 receives message l, he believes it comes from a truthful T0 sender.
T2+ therefore plays hh;H;H;Li.
Now consider the case when L is risk dominant. Then, T1 plays hl; L;H;Li. T2+ believes

that the opponent responds to messages and that all messages are truthful and therefore play
hh;H;H;Li.
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When risk and payo¤-dominance coincide, one-way communication is su¢ cient to achieve
coordination among T1+ players. When there is a con�ict between risk and payo¤ dominance,
there is still perfect coordination among T1+ players, but there is more play of the risk dominant
equilibrium (since a T1 sender plays the action corresponding to that equilibrium).

OBSERVATION 4: (Two-way communication) T1 randomizes messages and responds to re-
ceived messages, whereas T2+ sends h and plays H.

PROOF:
T1 believes that the opponent is truthful and therefore best responds to the received message,

while sending random messages (not knowing what action will be taken). T2 believes that the
opponent responds to messages and therefore sends and plays H irrespective of the message
received (since T1 sends a random message). T3 therefore sends h and plays H. Receiving
an unexpected L message, T3 also plays H, believing the opponent to be T1. More advanced
players reason in the same way and thus also play hh;H;Hi.

Mixed motive games

Two common examples of 2�2 mixed motive games are Chicken or Hawk-Dove and Battle of
the Sexes. In order for the game to have mixed motive, we assume uHL > uLL and uLH > uHH .
Without loss of generality, we further assume that uHL > uLH so that each player prefer the
equilibrium where he is the one to play H(igh). If uLL = uHH = 0, then this game is the Battle
of the Sexes, whereas it is a Chicken game if uLL > uHH . Battle of the Sexes is a non-generic
game, but the results in this section hold also for the Battle of the Sexes.

OBSERVATION 5: (No communication) If H is the risk dominant action, then Tk plays H if
k is odd and L if k is even. If L is the risk dominant action, then Tk plays L if k is odd and H
if k is even.

PROOF:
T1 plays the risk dominant action and Tk best-responds to the behavior of Tk�1, which

generates the alternating behavior.

With no possibility to communicate, there is little players can do to coordinate on either
of the asymmetric equilibria and behavior therefore alternates over thinking steps. One-way
communication, on the other hand, provides a way to break the symmetry inherent in the
game.

OBSERVATION 6: (One-way communication) If H is the risk dominant action, then T1+
sends h and plays H as sender and responds to messages as receiver. If L is the risk dominant
action, then T1 sends l and plays L as sender and responds to messages as receiver. T2+ sends
h and plays H as sender and responds to messages as receiver.

PROOF:
First let H be the risk dominant action. A T1 sender faces a randomizing receiver and

therefore plays H and sends h. A T1 receiver, on the other hand, responds to the sent message,
believing it comes from a truthful T0 opponent. T2+ can get the preferred equilibrium as sender
and therefore sends h and plays H, while responding to messages as receiver. If instead L is
the risk dominant action, a T1 sender instead sends and plays L, but otherwise behavior is
unchanged.
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In general, senders play their preferred equilibrium and receivers yield and play their least
preferred equilibrium. However, if the preferred equilibrium does not coincide with the risk
dominant action, T1 senders send and play their least preferred equilibrium.25

OBSERVATION 7: (Two-way communication) T1 sends h and l with equal probabilities and
responds to messages. The behavior of T2+ players cycles in thinking steps of six as follows:
hh;H;Hi,hl; L; Li,hh; L;Hi,hh;H;Hi,hl; L;Hi,hh; L;Hi.

PROOF:
T1 believes that the opponent is truthful and therefore sends random messages, but responds

to the message sent. T2 believes that the opponent responds to messages and therefore plays
hh;H;Hi. T3 expects to receive a truthful h message, and thus sends l and plays L. If receiving
an l message, T3 believes it comes from a T1 opponent and therefore plays L (believing the
opponent will play H). T4 expects to play H and therefore sends h. If receiving the message
h, T4 believes it comes from a T2 opponent and therefore responds by playing L. T5 thinks the
opponent responds to messages and therefore plays H and sends h. Believe an l message comes
from a T2 opponent, T5 subsequently plays H. T6 expects to play L and therefore sends l, but
plays H upon receiving an l message (believing it comes from a T2 opponent). T7 expects to
play H and sends an h message, playing L if receiving an h message. T8 sends h and plays H;
playing H if he receives an l message, just like T2. T9 plays hl; L; Li just like T3. Since the
behavior of eight and nine-level players is just like two- and three-level players, and the rationale
for T4+ did not depend on the behavior of T0 or T1, behavior continues to cycle like this.

Note that the behavior of T0; T1; T2, and T3 is identical to Crawford (2007). However, T4
responds to received messages in our model, but always plays H in Crawford (2007). The
di¤erence stems from the fact that we assume that whenever T4 receives the message h, the
inference is that it comes from a T2 player that will actually play H, whereas Crawford (2007)
assumes that T4 believes an h message is a mistake by a T3 opponent who will play H anyway.26

Comparing one-way and two-way communication, it is clear that two-way communication will
lead to several instances of miscoordination. However, as pointed out by Crawford (2007), the
degree of coordination may still be higher than predicted by Farrell (1987) and Rabin (1994).
Finally, note the parallel to coordination games that risk-dominance only plays a role with

one-way communication. The underlying reason is the strategic uncertainty resulting from
randomizing T0 receivers.

Appendix 2: Proofs

Proof of Proposition 1

>From Observation 1 we know that communication has no e¤ect in dominance solvable
games. Similarly, for coordination games when H is risk dominant, Observation 2 and 3 show
that communication has no e¤ect. In coordination games when L is risk dominant, however,
Observation 2 and 3 show that one-way communication results in either (L;L) or (H;H),

25The result when L is risk dominant is sensitive to the assumption that T1+ players have lexicographic
preferences for truthfulness. Without that preference, level-1 senders would send random messages. Then, the
behavior of more advanced players would alternate and entail many instances of miscoordination.

26Also note that although our T3 behaves as in Crawford (2007), the rationale for their behavior is slightly
di¤erent. T3 in our framework believes an l message comes from a T1 opponent that sends random messages.
Since T3 sent the message l, the player believes that the opponent will play H and they therefore play L. In
Crawford (2007), a T3 player that receives the counterfactual message l believes that it was a mistake by the T2
opponent and therefore plays L anyway.
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whereas no communication results in (L;L). As long as there is a positive fraction of T2+
players, one-way communication therefore results in higher expected payo¤s.
For mixed motive games, �rst suppose L is risk dominant. From Observation 6 we know that

one-way communication always induces coordination when T1+ play, so the expected payo¤
for a player playing the game is (uHL + uLH)=2. However, as noted in Observation 5, no
communication results in miscoordination when two odd-level players meet as well as when two
even-level players meet. Under the standard type distribution, a player�s average payo¤ is

p22uHH + p2 (1� p2)uHL + (1� p2) p2uLH + (1� p2)
2
uLL:

One-way communication results in higher expected payo¤ whenever�
1

2
� p2 (1� p2)

�
(uHL + uLH) > p

2
2uHH + (1� p2)

2
uLL.

A su¢ cient condition is that uLL < uHL (we already know that uHH < uLH), but the necessary
condition depends on p2. Now let H be the risk dominant outcome. The expected payo¤ for
communicating players is unchanged, whereas the condition for one-way communication to result
in higher expected payo¤ is�

1

2
� p2 (1� p2)

�
(uHL + uLH) > (1� p2)2 uHH + p22uLL:

Proof of Corollary 2

>From the proof of Proposition 1 it follows directly that one-way communication only de-
creases average payo¤s if one of the conditions hold with opposite inequality. To see why the
corresponding game is a Chicken, suppose �rst that L is risk dominant. The �rst condition in
Proposition 1 for one-sided communication to decrease expected payo¤s is

(1)
�
1

2
� p2 (1� p2)

�
(uHL + uLH) < p

2
2uHH + (1� p2)

2
uLL:

We know that uHL > uLL, uLH > uHH and uHL > uLH . This implies that uHH < (uLH + uHL) =2.
Suppose that uLL � (uLH + uHL) =2. Then the right hand side of (1) satis�es

p22uHH + (1� p2)
2
uLL < p

2
2

1

2
(uLH + uHL) +

1

2
(1� p2)2 (uLH + uHL)

=

�
1

2
� p2 (1� p2)

�
(uLH + uHL) :

This implies that (1) cannot hold, and therefore the condition must fail unless uLL > 1
2 (uLH + uHL).

This implies that uLL > uHH , which implies that it is a Chicken. An analogous argument can
be made when H is risk dominant.

Proof of Proposition 3

>From Observation 1 we know that communication has no e¤ect in dominance solvable games.
>From Observation 2 and 3, we know that the outcomes of coordination games in which L

is the risk dominant action. These are given in Table A1. Pairwise comparison of the cells in
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Table A1: Action profiles played in coordination games (L risk dominant)

G (no communication) �I(G) (one-way communication)
0 � 1 0R 1R � 2R

0 Uniform 1
2
LL; 1

2
LH 0S Uniform 1

2
HH; 1

2
LL 1

2
HH; 1

2
LL

� 1 1
2
LL; 1

2
LH LL 1S 1

2
LL; 1

2
LH LL LL

� 2S 1
2
HH; 1

2
HL HH HH

Table A2: Action profiles played in coordination games (H risk dominant)

G (no communication) �I(G) (one-way communication)
0 � 1 0R � 1R

0 Uniform 1
2
HH; 1

2
HL 0S Uniform 1

2
HH; 1

2
LL

� 1 1
2
HH; 1

2
HL HH � 1S 1

2
HH; 1

2
HL HH

Table A1 reveals that one-way communication entails weakly more coordination.
If instead H is risk dominant, the outcomes are given in Table A2. The degree of coordination

is again the same or higher with one-way communication than without communication.
Now consider mixed motive games. Observations 5 and 6 yield the outcomes reported in

Table A3 when L is risk dominant. Pairwise comparisons of cells reveal that the degree of
coordination is higher with one-way communication.
Finally, when H is risk dominant, the outcomes are given in Table A4. Again the degree of

coordination is the same or higher for one-way communication for all combinations of types.

Proof of Proposition 5

As Observation 1 shows, communication plays no role in dominance solvable games, so two-
way communication cannot increase expected payo¤s. In coordination games in which H is risk
dominant, Observation 3 and 4 imply that �I(G) and �II(G) yield identical outcomes unless two
T1 players meet. In �I (G), players then coordinate on (H;H), whereas there is miscoordination
in �II (G). Thus �I (G) is weakly better than �II (G) in this case. When instead L is the risk
dominant action, T1 senders always play L. The average payo¤ associated with �I(G) is thus

p1 (1� p1)uLL + p1 (1� p1)uHH + (1� p1) (1� p1)uHH + p21uLL:

The average payo¤ associated with �II(G) is

2p1 (1� p1)uHH + (1� p1) (1� p1)uHH +
1

4
p21 (uLL + uHH + uLH + uHL) :

Table A3: Action profiles played in mixed motive games (L risk dominant)

G (no communication) �I (G) (one-way communication)
0 Odd Even 0R 1R � 2R

0 Uniform 1
2
HL; 1

2
LL 1

2
LH; 1

2
HH 0S Uniform 1

2
HL; 1

2
LH 1

2
HL; 1

2
LH

Odd 1
2
LH; 1

2
LL LL LH 1S 1

2
LH; 1

2
LL LH LH

Even 1
2
HL; 1

2
HH HL HH � 2S 1

2
HL; 1

2
HH HL HL
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Table A4: Action profiles played in mixed motive games (H risk dominant)

G (no communication) �I (G) (one-way communication)
0 Odd Even 0R � 1R

0 Uniform 1
2
LH; 1

2
HH 1

2
HL; 1

2
LL 0S Uniform 1

2
HL; 1

2
LH

Odd 1
2
HL; 1

2
HH HH HL � 1S 1

2
HL; 1

2
HH HL

Even 1
2
LH; 1

2
LL LH LL

Table A5: Action profiles played in mixed motive games
�II(G) (two-way communication)

1 2 3
1 Uniform LH HL

2 HL HH HL

3 LH LH LL

Two-way communication thus yields higher payo¤ whenever

(4� 3p1)uHH + p1 (uLH + uHL) > (4� p1)uLL.

Now consider mixed motive games. Observation 6 shows that for T1+ players, �I(G) entails
perfect coordination, implying an average payo¤ of (uLH + uHL) =2. As shown in Observation
7, matters are generally more complicated for �II(G) since behavior cycles over six thinking
steps. Table A5 provides the resulting outcomes when con�ning attention to standard type
distributions.
We know that (uLH + uHL) =2 > uHH . However, if uLL > (uLH + uHL) =2 then two-way

communication might be preferable. Two-way communication is preferable to one-way commu-
nication whenever�

p2p1 + p1p3 + p2p3 +
1

4
p21

�
(uHL + uLH) +

�
p23 +

1

4
p21

�
uLL +

�
p22 +

1

4
p21

�
uHH

>
1

2
(uLH + uHL) :

Letting p2 = (1� p1 � p3) we can rewrite this as

uLL � uHH
uLH + uHL � 2uHH

> 1 +
2 (p1 � 1) (p1 � 1 + 2p3)

p21 + 4p
2
3

:

A necessary condition for this inequality to hold is that uLL > (uLH + uHL) =2. This follows
from the fact that the minimum of the right hand side is 1=2, whereas the left hand side can
only be larger than 1=2 if uLL > (uLH + uHL) =2.

Proof of Proposition 6

First consider �I(G). A T1 sender sends and plays the action that is optimal given that the
opponent randomizes uniformly over actions. If there are several optimal actions, T1 plays each
of them with equal probability and sends a truthful message. As a receiver, T1 best responds
to messages. Since the payo¤ dominant equilibrium gives the highest possible payo¤, T2 sends
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and plays the corresponding action as sender, while best responding to messages as receiver. It
follows that T3+ behaves as T2. Now consider �II(G). T1 believes the opponent is truthful and
therefore best responds to messages, but sends a random message. T2+ believes the opponent
best responds and therefore sends and plays the payo¤ dominant equilibrium irrespective of the
received message.

Proof of Proposition 7

First suppose that ai is not strictly dominant for any player. A T1 player faces truthful
T0 senders, so T1 sends a random message and best responds to the message pro�le received.
In particular, if m�i = a�i, then T1 plays ai since a is the payo¤ dominant equilibrium. T2
consequently believes that the opponents best-respond to messages. Since G has strategic
complementarities, BRi(m�i) is non-decreasing in m�i, and since there are positive spillovers,
it is weakly dominant for a T2 player to send the message mi = ai. However, since a gives
strictly higher payo¤ than all other outcomes of the game, it is strictly dominant to send the
message mi = ai and play ai if m�i = a�i. T3+ similarly achieves the highest payo¤ by sending
ai and playing ai if m�i = a�i.
If the action ai is strictly dominant for some player i, a T1 player i truthfully sends the

message mi = ai and plays ai. If aj is strictly dominant for all other players j 6= i, then a T2
player i is indi¤erent about what message to send, but since a T2 player i expects to play ai,
he sends ai. (If only some other players have strictly dominant strategies, the same argument
for the behavior of T2�s message as in the previous paragraph hold.) T2+ consequently sends ai
and plays ai if m�i = a�i also in the presence of strictly dominant actions.

Appendix 3: Cognitive Hierarchy

As a robustness check, we conduct our analysis with the cognitive hierarchy model of Camerer,
Ho and Chong (2004). There, the distribution of types is Poisson distributed, i.e., the proportion
of Tk is given by

pk =
e���k

k!
:

Tk best responds given the belief that the others players are T0 up to Tk�1. Tk�s belief about
the proportion of Tl<k is

gk (l) =
plPk�1
h=0 ph

:

The cognitive hierarchy model is developed for normal form games only. In order to adapt the
model to games with pre-play communication we must specify how beliefs are updated after
messages have been received. For reasons of familiarity, we assume Bayesian updating. For the
games preceded by one round of communication, let qki (mi) denote the probability a Tk player
i sends the message mi (and is allowed to send a message). Tk�s belief that the sender i is a
Tl<k player conditional upon receiving the message mi is

gki (ljmi) =
gk (l) qli (mi)Pk�1

h=0 gk (h) qhi (mi)
=

plqli (mi)Pk�1
h=0 phqhi (mi)

;

where the latter equality follows from the de�nition of gk (l).
We retain the assumption that players randomize uniformly when indi¤erent, but that they

prefer to be honest if it does not a¤ect expected payo¤s. This implies that the behavior of T0
and T1 is the same in the cognitive hierarchy model and in the level-k model.
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A feature of the cognitive hierarchy model is that if Tk plays a strategy that is a best response
to Tk opponent in a two-player game with one round of pre-play communication, then Tm>k
will play the same strategy. Since this result will be used repeatedly we state it separately in
Lemma 1.

LEMMA 1: Let G be a symmetric two-player normal form game. If Tk plays a strategy pro�le
that is a best response to a Tk opponent in G, �I (G) or �II (G), then Tm>k play this strategy
too.

PROOF:
Consider the case of one-way communication (the proof for two-way communication and with-

out communication is analogous). Let the strategy played by Tk be denoted s� = hm�; a�; f� (m)i.
Consider a Tk player that received the message m. We know that f� (m) is the action that max-
imizes expected payo¤ conditional on receiving m given the belief that the opponent is Tl<k
with probability

gk (ljm) =
plql (m)Pk�1

h=0 phqh (m)
:

Similarly, a Tk+1 player that receives the same message m best responds given the belief that
the opponent is a Tl<k+1 player with probability

g(k+1) (ljm) =
plql (m)Pk

h=0 phqh (m)
:

Since f� (m) maximizes the expected payo¤ of Tk and is a best response to a Tk sender, by
linearity of expected payo¤s it must be a best response also to the mixture of types Tk+1
believes to be facing (note that this argument does not extend to more than two players).
Now consider the communication stage of the game. The message m� followed by the action

a� is a best response given the belief that the opponent is Tl<k with probability

gk (l) = pl=
k�1X
h=0

ph:

Similarly a Tk+1 player believes that the opponent is Tl<k+1 with probability

gk+1 (l) = pl=

kX
h=0

ph:

Since m� and a� maximizes the payo¤ of Tk and is a best response against another Tk player,
it must be a best response also to the mixture of types Tk+1 believes to be facing.
By induction this reasoning holds for all Tm>k players.

In the cognitive hierarchy model, predicted behavior depends both on the payo¤ con�guration
and the average of the type distribution, � . A complete characterization of behavior is therefore
intractable, and the remainder of this appendix focuses on T2 and T3 in the class of symmetric
and generic 2 � 2 games. However, a general characterization of the behavior of T3 in mixed
motive games with two-way communication is also intractable, so in this case we focus on T2
only. For simplicity, we �nally disregard cases in which the combination of � and the payo¤
structure of the game implies that T2+ is indi¤erent between strategies as well as games in which
neither action is risk dominant.
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Two general �ndings emerge from the analysis. First, when � is close to zero, T2 and T3
players are practically certain that the opponent is T0 and consequently play the same action as
T1. However, T2 and T3 may send another message since they take into account the possibility
that the opponent is (a responsive) T1. Second, for su¢ ciently large � , T2 and T3 play as in the
level-k model in all games except in mixed motive games with two-way communication. In this
part of the parameter space, the level-k model is robust to the assumption about lexicographic
beliefs. For intermediate levels of � , T2 and T3 best-respond to the mixture of lower-level types
they believe they are facing.
An interesting new �nding is that the behavior in the Stag Hunt hypothesized by Aumann

(1990) emerges endogenously in the model. With the payo¤s in Aumann�s original example,
depicted in Figure 2, a T3+ player sends the message h and plays L as sender, and plays L
irrespective of the received message as receiver, whenever � is between 0:547 and 1:646. As a
sender, T3+ does so in order to induce T1 and T2 to play H, but believes that there such a high
probability of meeting a randomizing T0 that it is better to play L. T3+ ignores the received
message because of the likelihood of meeting a T2 opponent, who sends h messages that are not
self-signalling.
In dominance solvable games, T1 sends and plays the dominant strategy, so by Lemma 1, T1+

does so too (irrespective of whether communication is possible). We now proceed to characterize
the behavior in the two remaining classes of games.

Coordination games

As before, we assume that H(igh) is the payo¤ dominant equilibrium, i.e., uHH > uLL.

OBSERVATION 8: (No communication) T1+ plays the risk dominant action.

PROOF:
T1 plays the risk dominant action. Consequently, by Lemma 1 all higher level types do the

same.

Absent communication, behavior is the same in the level-k and cognitive hierarchy models.

OBSERVATION 9: (One-way communication) If H is the risk dominant action, T1+ sends h
and plays H as sender and responds to messages as receiver. If L is the risk dominant action,
T1 sends l and plays L as sender and respond to messages as receiver, but the behavior of T2+
depends on the payo¤ structure of the game:
Case 1 (uLH > uLL): Let � � (uLL � uHL) = (uHH � uLH). If � < (�� 1) =2, then T2 plays
hh; L;H;Li and T3 plays as follows:

T3 plays hh; L;H;Li if � <
p
�� 1 and � <

�p
�+ 1 + 1

�
=�;

T3+ plays hh; L; L; Li if
�p
�+ 1 + 1

�
=� < � <

p
�� 1;

T3+ plays hh;H;H;Li if
p
�� 1 < � <

�p
�+ 1 + 1

�
=�;

T3 plays hh;H;L; Li if � >
p
�� 1 and � >

�p
�+ 1 + 1

�
=�:

If � > (�� 1) =2, then T2+ play hh;H;H;Li.
Case 2 (uLH < uLL): Let � � (uLH � uHL) = (uHH � uLL). If � < (� � 1) =2, then T2
plays hl; L;H;Li and T3 plays hl; L;H;Li if � <

p
� � 1 and hh;H;H;Li if � >

p
� � 1. If

� > (� � 1) =2, then T2+ plays hh;H;H;Li.

PROOF:
First consider the case when H is risk dominant. As in the level-k model, T1 plays hh;H;H;Li

(facing randomizing T0 receivers and truthful T0 senders). Since this strategy is a best-response
to itself, T2+ plays the same strategy.
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Now consider the case when L is risk dominant so that T1 plays hl; L;H;Li. For T2 senders,
the strategy hl;Hi is dominated by hh;Hi, so we need not consider that strategy. The expected
payo¤ for the remaining three sender strategies are

� (hl; Li) = g2 (0)
1

2
(uLL + uLH) + g2 (1)uLL;

� (hh; Li) = g2 (0)
1

2
(uLL + uLH) + g2 (1)uLH ;

� (hh;Hi) = g2 (0)
1

2
(uHL + uHH) + g2 (1)uHH :

If uLH > uLL, then it is clear that T2 senders play either hh; Li or hh;Hi. The payo¤ from
playing hh; Li is higher whenever � is su¢ ciently low,

� <
(uLL + uLH)� (uHL + uHH)

2 (uHH � uLH)
= (�� 1) =2:

Similarly, if uLH < uLL, then T2 senders prefer hl; Li over hh;Hi whenever

� <
(uLL + uLH)� (uHL + uHH)

2 (uHH � uLL)
= (� � 1) =2:

T2 receivers face truthful T1 and T2 senders, so they respond to messages. It is clear that for
su¢ ciently high � , T2+ plays hh;H;H;Li.

We now go on to consider the behavior of T3 when � is below the thresholds above. First
suppose that uLH > uLL and � < (�� 1) =2. Then T3 senders prefer hh; Li over hh;Hi whenever

g3 (0)
1

2
(uLL + uLH) + (g3 (1) + g3 (2))uLH

> g3 (0)
1

2
(uHL + uHH) + (g3 (1) + g3 (2))uHH ,

which simpli�es to (1 + �=2) � < (�� 1) =2. Since the left hand side is larger than � , this
condition may or may not hold. Both sides of the inequality are positive, so the condition is
equivalent to � <

p
� � 1. Suppose now that uLH < uLL. Then T3 senders prefer hl; Li over

hh;Hi whenever

(1 + �=2) � <
(uLL + uLH)� (uHL + uHH)

2 (uHH � uLL)
= (� � 1) =2

Both sides of the inequality are positive, so this condition is equivalent to � <
p
� � 1.

Finally, T3�s behavior as receivers depend on the T2 senders. It is only when T2 senders send
h, but play L that T3 may not respond to messages. If T3 receives a l message, it comes from a
T0 player and T3 best responds by playing L. The payo¤ from each action upon receiving h is

� (Hjh) = g3 (0jh)uHH + g3 (1jh)uHH + g3 (2jh)uHL;
� (Ljh) = g3 (0jh)uLH + g3 (1jh)uLH + g3 (2jh)uLL:
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Figure A3: Level-3 in coordination games

Playing L is preferable whenever

�2

1 + 2�
>
uHH � uLH
uLL � uHL

= 1=�:

To illustrate the �rst case when L is risk dominant, Figure A3 displays the behavior of T3 as
a function of � and the payo¤s of the game. First note that � has to be larger than 1 because
L is risk dominant. Above the thick line in Figure A3, T2+ plays hh;H;H;Li and below it T2
plays hh; L;H;Li. Figure A3 shows the four di¤erent cases for the behavior of T3 in the latter
case. For example, for the Stag Hunt depicted in Figure 2, � = 7; implying that T3+ plays
hh; L; L; Li whenever 0:547 < � < 1.646.

OBSERVATION 10: (Two-way communication) T1 randomizes messages and responds to re-
ceived messages. Let � � (uHH � uLH) = (2uLL � uLH � uHH). If L is the risk dominant action
and 0 < � < (� � 1) =2, then T2+ plays hh;H;Li if � < �, hl; L; Li if � < � < (� � 1) =2; and
hh;H;Hi if � > (� � 1) =2. If both inequalities are violated, T2+ plays hh;H;Li if � < � and
hh;H;Hi if � > �. If H is the risk dominant action, the behavior of T2 depends on the payo¤
structure of the game:
Case 1 (uLH + uHH > uLL + uHL): T2+ plays hh;H;Li if � < � and hh;H;Hi if � > �.
Case 2 (uLH + uHH < uLL + uHL): Let  � (uLL � uHL) = (2uHH � uLL � uHL) and
� � (uHH � uLL) = (uLL � uHL). If � < , then T2 plays hl;H; Li; T3 plays hl;H; Li if in
addition � <

�p
4�2 + 1� 1

�
=2�, but plays hh;H;Hi if � >

�p
4�2 + 1� 1

�
=2�. If

� > , then T2+ plays hh;H;Hi.

PROOF:
T1 believes that the opponent is truthful and therefore best responds to the received message,

while sending random messages (not knowing what action will be taken).
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T2 faces truthful T0 and responding T1. Since zero-step and one-step thinkers send both
messages with equal probabilities, g2 (ljm) = g2 (l). The strategy hl;H;Hi is clearly dominated
by hh;H;Hi and hh; L; Li is dominated by hh;H;Li. The remaining strategies gives the following
expected payo¤:

� (hh;H;Li) = g2 (0)
1

2
(uLL + uHH) + g2 (1)

1

2
(uLH + uHH) ;

� (hh;H;Hi) = g2 (0)
1

2
(uHL + uHH) + g2 (1)uHH ;

� (hl; L; Li) = g2 (0)
1

2
(uLL + uLH) + g2 (1)uLL;

� (hl;H; Li) = g2 (0)
1

2
(uLL + uHH) + g2 (1)

1

2
(uLL + uHL) .

First suppose that L is risk dominant. This implies that uLL+uLH > uHL+uHH and conse-
quently that uLH > uHL so that hh;H;Li dominates hl;H; Li. T2 prefers hh;H;Hi over hh;H;Li
whenever

� > (uLL � uHL) = (uHH � uLH) = �,
and hh;H;Hi over hl; L; Li whenever � > (� � 1) =2. Finally, T2 prefers hl; L; Li over hh;H;Li
whenever

� >
uHH � uLH

2uLL � uLH � uHH
,

given that the right hand side is positive.

Second, suppose that H is risk dominant and uLH + uHH > uLL + uHL so that hh;H;Li
dominates hl;H; Li and hh;H;Hi dominates hl; L; Li. T2 plays hh;H;Hi rather than hh;H;Li
if � > �.

Finally, suppose that H is risk dominant and uLH + uHH < uLL + uHL. Now hl;H; Li
dominates hh;H;Li and hh;H;Hi dominates hl; L; Li. Therefore, T2 plays hh;H;Hi if � >
(uLL � uHL) = (2uHH � uLL � uHL).

Since hl; L; Li, hh;H;Li and hh;H;Hi are best responses if the opponent plays the same
strategies, by Lemma 1, T3+ play like T2 in these cases. Finally, consider T3 when T2 plays
hl;H; Li. In this case, whenever T3 receives an h message, he believes that it comes from a T0
or T1 player. Suppose �rst T3 receives the message h. If T3 sent h, then it is optimal to play
H. If T3 sent the message l, the payo¤s from playing L and H are

� (hl; L; �i jh) = g3 (0)uLH + g3 (1)uLL;
� (hl;H; �i jh) = g3 (0)uHH + g3 (1)uHL:

Playing H is preferred whenever � < (uHH � uLH) = (uLL � uHL) = 1=�. Since H is risk
dominant, � < 1 and since  < 1, this condition always hold. Now consider the case when T3
receives the message l. If T3 sent l, then it is optimal to play L (since T0 is truthful and T1 and
T2 best-responds). Suppose that T3 sent h. Then expected payo¤s are:

� (hh; �; Li jl) = g3 (0jl)uLL + g3 (1jl)uLH + g3 (2jl)uLH
� (hh; �;Hi jl) = g3 (0jl)uHL + g3 (1jl)uHH + g3 (2jl)uHH

Playing L is preferred whenever � (1 + �) < �.
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Which message will T3 send? Suppose �rst that � (1 + �) < � so that T3 plays hh;H;Li or
hl;H; Li. These strategies give the following ex ante payo¤s

� (hh;H;Li) = g3 (0)
1

2
(uLL + uHH) + g3 (1)

1

2
(uLH + uHH) + g3 (2)uLH ;

� (hl;H; Li) = g3 (0)
1

2
(uLL + uHH) + g3 (1)

1

2
(uLL + uHL) + g3 (2)uLL:

It follows from the condition uLH +uHH < uLL+uHL that hl;H; Li dominates hh;H;Hi. Now
consider the case when � (1 + �) > � so that T3 play either hh;H;Hi or hl;H; Li. The payo¤
from each strategy is

� (hh;H;Hi) = g3 (0)
1

2
(uHL + uHH) + g3 (1)uHH + g3 (2)uHH ;

� (hl;H; Li) = g3 (0)
1

2
(uLL + uHH) + g3 (1)

1

2
(uLL + uHL) + g3 (2)uLL:

Sending h is preferred whenever � + �2� > , i.e. when � >
�p

42� + 1� 1
�
=2� (since

 > 0 and � > 1).

Note that two-way communication always entails play of the payo¤ dominant equilibrium in
the Stag Hunt game depicted in Figure 2. For that particular game, � = 7 so that T2+ plays
hh;H;Li if � < 7 and hh;H;Hi otherwise.

Mixed motive games

As before, we assume without loss of generality that uHL > uLH so that each player prefers
the equilibrium where he is the one to play H(igh).

OBSERVATION 11: (No communication) Let � = (uLH � uHH) = (uHL � uLL). If H is the
risk dominant action, T1 plays H. If � < (1=� � 1) =2, T2 plays H; T3 plays H if in addition
� + �2=2 < (1=� � 1) =2, but plays L if � + �2=2 > (1=� � 1) =2. If � > (1=� � 1) =2, T2 plays
L; T3 plays H if in addition (2� �=�) � < 1=�� 1; but plays L if (2� �=�) � > 1=�� 1. If L is
the risk dominant action, T1 plays L. If � < (� � 1) =2, T2 plays L; T3 plays L if in addition
� + �2=2 < (� � 1) =2; but plays H if � + �2=2 > (� � 1) =2. If � > (� � 1) =2, T2 plays H; T3
plays L if in addition (2� ��) � < � � 1; but plays H if (2� ��) � > � � 1:

PROOF:
First suppose H is risk dominant (which implies that � < 1). T2 plays H rather than L if

g2 (0)
1

2
(uHL + uHH) + g2 (1)uHH > g2 (0)

1

2
(uLL + uLH) + g2 (1)uLH ;

which is equivalent to 1 + 2� < 1=�. Suppose this holds so that T2 plays H. Then T3 prefers
H over L whenever

g3 (0)
1

2
(uHL + uHH) + g3 (1)uHH + g3 (2)uHH

> g3 (0)
1

2
(uLL + uLH) + g3 (1)uLH + g3 (2)uLH ;



37

which simpli�es to 1 + 2� + �2 < 1=�. Suppose instead T2 plays L. Then T3 prefers H over L
whenever

g3 (0)
1

2
(uHL + uHH) + g3 (1)uHH + g3 (2)uHL

> g3 (0)
1

2
(uLL + uLH) + g3 (1)uLH + g3 (2)uLL;

which is equivalent to (2� �=�) � < 1=� � 1.
Now suppose L is risk dominant. Then T2 plays H rather than L if

g2 (0)
1

2
(uHL + uHH) + g2 (1)uHL > g2 (0)

1

2
(uLL + uLH) + g2 (1)uLL;

which is equivalent to 1 + 2� > �. Suppose that this holds so that T2 plays H. Then T3 prefers
H over L whenever

g3 (0)
1

2
(uHL + uHH) + g3 (1)uHL + g3 (2)uHH

> g3 (0)
1

2
(uLL + uLH) + g3 (1)uLL + g3 (2)uLH ;

which simpli�es to (2� ��) � > �� 1. If T2 instead plays L, then T3 prefers H over L whenever
� + �2=2 > (� � 1) =2.

Note that some of the conditions above are quadratic, implying that they may be satis�ed
both for low and high values of � .

OBSERVATION 12: (One-way communication) If H is the risk dominant action, then T1+
sends h and plays H as sender and responds to messages as receiver. If L is the risk dominant
action, then T1 sends l and plays L as sender and responds to messages as receiver. The behavior
of T2+ depends on the payo¤ structure of the game:
Case 1 (uLH > uLL): Let � � (uLL + uLH � uHL � uHH) =2 (uHL � uLH). If � < �, then T2
plays hl; L; L;Hi and T3 plays hl; L; L;Hi if (1 + �=2) � < � whereas T3+ plays hh;H;L;Hi if
(1 + �=2) � > �. If � > �, then T2+ plays hh;H;L;Hi.
Case 2 (uLH < uLL): If � < (� � 1) =2, then T2 plays hh; L; L;Hi and T3 plays as follows:

T3 plays hh; L; L;Hi if (1 + �=2) � < (� � 1) =2 and � <
p
�,

T3+ plays hh; L; L; Li if (1 + �=2) � < (� � 1) =2 and � >
p
�,

T3+ plays hh;H;L;Hi if (1 + �=2) � > (� � 1) =2 and � <
p
�,

T3+ plays hh;H;L; Li if (1 + �=2) � > (� � 1) =2 and � >
p
�.

If � > (� � 1) =2, then T2+ plays hh;H;L;Hi.

PROOF:
First let H be the risk dominant action. A T1 sender faces a randomizing receiver and

therefore plays H and sends h. A T1 receiver, on the other hand, responds to the sent message,
believing it comes from a truthful T0 opponent. By Lemma 1, T2+ plays the same strategy as
T1.
If instead L is the risk dominant action, a T1 sender instead sends and plays L, but responds

to messages as receiver. A T2 sender faces a tradeo¤ between playing L (the best response
against T0) and sending h and playing H (the best response against T1). The expected payo¤s
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from the three relevant sender strategies are:

� (hl; Li) = g2 (0)
1

2
(uLL + uLH) + g2 (1)uLH ;

� (hh;Hi) = g2 (0)
1

2
(uHL + uHH) + g2 (1)uHL;

� (hh; Li) = g2 (0)
1

2
(uLL + uLH) + g2 (1)uLL:

Suppose uLH > uLL so that hl; Li dominates hh; Li. Then a T2 sender plays hl; Li if

� <
(uLL + uLH)� (uHL + uHH)

2 (uHL � uLH)
= �,

but plays hh;Hi otherwise. T2 receivers face truthful T0 and T1 senders, so they respond to
messages. If � is above the threshold above, T2+ play hh;H;L;Hi. However, if � is below the
threshold, T3 senders trade o¤ truthfully playing L or H. They play L if (1 + �=2) � < � and
otherwise play H.
Suppose now that uLL > uLH so that T2 senders prefer sending h when they intend to play

L. They prefer doing so over hh;Hi whenever

� <
(uLL + uLH)� (uHL + uHH)

2 (uHL � uLL)
= (� � 1) =2.

T2 receivers face truthful senders, so they respond to messages. If � > (� � 1) =2, T2+ plays
hh;H;L;Hi. A T3 sender plays hh; Li rather than hh;Hi if (1 + �=2) � < (� � 1) =2.
A T3 receiver believes that an l message is truthful, so they play H in that case. An h message

comes either from a T0 or T3 When receiving a h message, the payo¤ from each action is:

� (Hjh) = g3 (0jh)uHH + g3 (2jh)uHL;
� (Ljh) = g3 (0jh)uLH + g3 (2jh)uLL:

So, T3 play hL;Hi if

� <

r
uLH � uHH
uHL � uLL

=
p
�;

and play hH;Hi otherwise.

Two-way communication in mixed motive games is particularly cumbersome to characterize
generally. The following observation therefore focuses on the behavior of T2. (For a particular
payo¤ con�guration, however, it is straightforward to derive the behavior of T3+ players.)

OBSERVATION 13: (Two-way communication) T1 sends h and l with equal probabilities and
responds to messages. Let � � (uHL � uLL) = (2uLH � uLL � uHL). If L is risk dominant
and � > � > 0, then T2 plays hh; L;Hi if � < �, hl; L; Li if � < � < �; and hh;H;Hi
if � > �. If both inequalites are violated, then T2 plays hh; L;Hi if � < � and hh;H;Hi if
� > �. If H is risk dominant and uLH + uHH > uLL + uHL, then T2 plays hl; L;Hi if � <
(uLH � uHH) = (2uHL � uLH � uHH) and hh;H;Hi if � > (uLH � uHH) = (2uHL � uLH � uHH).
If instead uLH + uHH < uLL + uHL, T2 plays hh; L;Hi if � < � and hh;H;Hi if � > �.

PROOF:
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T1 believes that the opponent is truthful and therefore sends random messages, but responds
to the received message. The strategy hl;H;Hi is dominated by hh;H;Hi and the expected
payo¤ for T2�s other strategies are:

� (hh; L; Li) = g2 (0)
1

2
(uLL + uLH) + g2 (1)uLL;

� (hh; L;Hi) = g2 (0)
1

2
(uHL + uLH) + g2 (1)

1

2
(uLL + uHL) ;

� (hh;H;Hi) = g2 (0)
1

2
(uHL + uHH) + g2 (1)uHL;

� (hl; L;Hi) = g2 (0)
1

2
(uHL + uLH) + g2 (1)

1

2
(uLH + uHH) ;

� (hl; L; Li) = g2 (0)
1

2
(uLL + uLH) + g2 (1)uLH :

Suppose H is risk dominant. Then hh;H;Hi dominates hl; L; Li and hh; L; Li. First suppose
that uLH + uHH > uLL + uHL so that hl; L;Hi dominates hh; L;Hi. T2 plays hh;H;Hi rather
than hl; L;Hi if

� >
uLH � uHH

2uHL � uLH � uHH
.

If instead uLL + uHL > uLH + uHH , then T2 plays hh;H;Hi rather than hh; L;Hi if

� >
uLH � uHH
uHL � uLL

= �.

Now consider the case when L is risk dominant. This implies that uLL > uHH , so hh; L;Hi
dominates hl; L;Hi and hh; L;Hi dominates hh; L; Li. There are three remaining strategies to
consider. T2 plays hh;H;Hi rather than hh; L;Hi if � > �. T2 may prefer to play hl; L; Li.
hl; L; Li preferred over hh; L;Hi whenever

� >
uHL � uLL

2uLH � uLL � uHL
= �;

given that the right hand side is positive (otherwise the condition cannot hold). hl; L; Li is
preferred over hh;H;Hi whenever

� <
(uLL + uLH)� (uHL + uHH)

2 (uHL � uLH)
= �:

Hence, in order for hl; L; Li to be optimal, � must be between � and � and the payo¤s must
satisfy � > � > 0.


