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Introduction

• Traditionally, students are assigned to public schools according to

where they live.

– Limited and unequal freedom of choices.

• Starting with Minnesota in 1987, several school districts adopted

school choice programs. (New York City, Boston, Cambridge, Charlotte,

Columbus, Denver, Seattle and St. Petersburg-Tampa)

• General idea gaining political support, but the exact method still

debated. The “strategy-proofness” has become a focal issue in the

redesign of Boston and NY programs.
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Before Redesign: “Boston” mechanism

• Students submit ordinal rankings. Schools assign seats to those who

listed them as first choices, according to their priorities. Not enough

seats, then use a lottery. Enough seats, then assign the remaining seats

to those (turned down by their top choices) who list them as second

choices .... The process ends when no students are rejected.

- How a student lists a given school in her ranking matters for her

chance of assignment at that school.

- But this choice induces “gaming” the system: Not strategy proof.

- Eliminating “gaming” is important from a practical as well as from

a fairness standpoint.
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Redesign: Gale-Shapley deferred acceptance algorithm (DA)

• Students rank schools. Schools rank students (based on priorities,

and lottery). Schools assign seats to those who listed them as first

choices, according to their priorities, but only tentatively. Move to

the next round in which all those previously held and the new applicants

are considered on the equal footing, and again seats are assigned ten-

tatively..... The process ends when no students are rejected, at which

point the tentative assignment become final.

⇒ Strategyproof: Listing the best school as a top choice doesn’t sac-

rifice her shot at less preferred schools.

• But strategy-proofness involves limiting students’ choice.

• But this cannot be the only rationale for DA....
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Welfare Rationale for DA

• When both sides have strict preferences, DA selects the “student

optimal” stable matching (SOSM); whereas the Boston may select any

stable matching (Ergin and Sonmez).

• But in practice, schools’ priorities are very coarse (e.g., “siblings” and

“walk zone”), and are indifferent to a large group of students. How do

we break a tie in DA?

• Two tie-breaking procedures

- STB: Single (common) tie-breaking for all the schools

- MTB: Multiple (separate) tie-breaking for each school
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Problems with DA When There are Ties

• Ex Post Welfare Issue (recognized by others): No strategyproof
mechanism implements SOSM.

• Ex Ante Cardinal Welfare issue (our focus): Ex post welfare (incl.
SOSM) less relevant than ex ante welfare. The lack of parent “choice”
with DA has real welfare consequences, well grounded on the parents’
sentiment expressed in BPS hearings:

I’m troubled that you’re considering a system that takes away
the little power that parents have to prioritize... what you call
this strategizing as if strategizing is a dirty word...

... if I understand the impact of Gale Shapley, ... I thought I un-
derstood that in fact the random number in fact [has] preference
over your choices...
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Example: Ex ante welfare

• 3 students, I = {1,2,3}, and 3 schools, S = {A,B,C}, each with

one seat to fill.

• The schools are indifferent to all three students. All students have

the same rankings: A � B � C, but with different vNM values:

v1
j v2

j v3
j

j = A 4 4 3
j = B 1 1 2
j = C 0 0 0

• Every assignment is SOSM and ex post Pareto efficient, so no differ-

ence between DA and Boston based on these criteria.
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• Under DA, all three submit true (ordinal) preferences, and they will
be assigned to the schools with equal probabilities.

→ EU1 = EU2 = EU3 = 5
3

• Pareto-dominated by the following assignment: Assign student 3 to
B, and students 1 and 2 randomly between A and C.

→ EU ′1 = EU ′2 = EU ′3 = 2 > 5
3

• Boston mechanism implements this latter matching:

- It allows one to affect tie-breaking, but this extra “choice” is
what led to the failure of strategy-proofness.

• How do we optimally balance the tradeoff between strategyproofness
and ex ante welfare?
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Our Proposal: Choice-Augmented Deferred Acceptance (CADA)

• (i) All students submit ordinal preferences, plus an “auxiliary message”

the name of one’s “target” school.

• (ii) Two random priority list of students are generated, labeled T and

R. A school’s priority list is determined so that (1) its inherent priorities

are respected; that (2) among those at tie, the students who named

the school as a target are listed first, according to T, and then those

who didn’t are listed according to R.

• Run the DA based on the ordinal preferences from (i) and the priority

lists from (ii).

⇒ Strategy-proof with respect to ordinal preferences; the gaming aspect

is limited to tie-breaking.
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- If the schools have strict priorities, the CADA coincides with DA,

implementing SOSM.

- If not, CADA does better than DA (in the sense made precise

later).... In the above example, 1 and 2 will name A for their target,

and 3 will name B for her target.

→ Best of both worlds...



Model

• There are n ≥ 2 schools, S = {1, ..., n}, each with a unit mass of seats

to fill.

• There are mass n of students who are indexed by vNM values v =

(v1, ..., vn) ∈ V = [0,1]n, with a measure µ that admits strictly positive

density in the interior of V.

• An assignment is a student’s probability distribution over S.

• An allocation is a function φ := (φ1, ..., φn) : V 7→∆ s.t.
∫
φi(v)dµ(v) =

1 for each i ∈ S.
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Ex Ante Welfare Standards

• Allocation φ ∈ X is Pareto efficient (PE) if there is no other allo-

cation in X that Pareto-dominates φ.

• Allocation φ ∈ X is Ordinally efficient (OE) if there is no other

allocation in X that ordinally-dominates φ. (NB: ordinal domination

means stochastically dominating for all agent types and strictly for some

positive measure.)

Fix any allocation φ and fix K ⊂ S. Call an allocation φ̃ a within K

reallocation of φ if φ̃ if it differs from φ in the probability shares of K.

(K measures the scope of markets.)

• For any K ⊂ S, an allocation φ ∈ X is PE (OE) within K if there is

no within K reallocation of φ that Pareto (ordinally) dominates φ. Say

pairwise PE if PE within every pair of schools.
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Characterization of Welfare Notions

• Define a binary relation Bφ on S:

iBφ j ⇔ ∃A ⊂ V, µ(A) > 0, s.t. vi > vj and φj(v) > 0, ∀v ∈ A.

• Allocation φ admits a trading cycle within K if there exist i1, i2, ...il ∈
K such that i1 Bφ i2, ..., il−1 Bφ il, and il B

φ i1.

Lemma 1: (Bogomolnaia-Moulin) An allocation φ is OE within K ⊂ S
if and only if φ does not admit a trading cycle within K.

Lemma 2: (i) If an allocation is PE (resp. OE) within K′, then it is is

PE (resp. OE) within K ⊂ K′;
(ii) An allocation is OE within K ⊂ S if it is PE within K.

(iii) If an allocation is OE, then it is pairwise PE.
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Welfare Properties of DA-STB and DA-MTB

Theorem 2: (i) (Che and Kojima (2008)) The DA-STB allocation is

OE, and is thus pairwise PE.

(ii) Generically, there exists no K ⊂ S with |K| > 2 such that the DA-

STB allocation is PE within K.

Theorem 3: (i) The DA-MTB allocation is not OE within every pair

of schools. (In fact, it is not even ex post PE within a pair of schools.)

(ii) There exists no K ⊂ S with |K| > 2 such that the DA-MTB alloca-

tion is OE within K.
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Intuition: Example Unit mass students of each type.

v1
j v2

j v3
j

j = 1 5 4 1
j = 2 1 2 5
j = 3 0 0 0

• DA-STB gives φS(v1) = φS(v2) = (1
2,

1
6,

1
3) and φS(v3) = (0, 2

3,
1
3). PE

within {S1, S2}.

• DA-MTB has φM(v1) = φM(v2) ≈ (0.392,0.274,0.333) and φM(v3) ≈
(0.215,0.451,0.333). Not OE within {S1, S2}. Type 1 and 2 may get

bad draw at S1 but good draw and S2, and the other way around for

type 3.

• DA-STB is NOT PE: Type 1 can exchange shares at 1 and 3 in

exchange for a share at 2, with type 2.
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Welfare Properties of CADA

Theorem 4: (i) The equilibrium allocation is OE, and thus pairwise

PE.

(ii) The allocation is PE within set K of “oversubscribed” schools (those

whose capacity does not exceed the measure of all who name them as

targets).

(iii) If all but one (n−1) schools are oversubscribed, then the equilibrium

allocation is PE.
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Proof idea: Fix an equilibrium φ∗ (whose existence is shown). In

equilibrium, each student with v can be seen to choose a within K

reassignment x = (x1, ..., xn) of φ∗ to

max
∑
i∈S

vixi

s.t. ∑
i∈S

pixi ≤
∑
i∈S

piφ
∗
i (v),

where pi is the mass of people naming i as the target, i.e., “shadow

price” of buying school i’s share.

The rest of the proof parallels the 1st Welfare Theorem: If there were

any within K reallocation of φ∗ that Pareto dominates it, then it is not

feasible. Q.E.D.
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• Remark: The parallel with the 1st Welfare Theorem is suggestive

of the economic benefit associated with the CADA: Students’ signal-

ing of their targets activates competitive markets within oversubscribed

schools, in which “congestion” serves as a price.

• When is a school oversubscribed?

Say a school is popular if the measure of students who prefer it the

most is as large as its capacity.

Proposition 3: Every popular school is oversubscribed.

Corollary: If all but one school are popular, then the CADA allocation

is PE.
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Overall three-way rankings:

DA-MTB: Not ex post PE; PE within some but not every pair of

schools.

DA-STB: OE, and pairwise PE.

CADA: OE, and PE within each pair and within oversubscribed schools.

If all but one school is popular, full PE is achieved.

18



Recall the Example

v1
j v2

j v3
j

j = 1 5 4 1
j = 2 1 2 5
j = 3 0 0 0

• CADA has φ∗(v1) = φ∗(v2) = (1
2,0,

1
2) and φ∗(v3) = (0,1,0). Schools

1 and 2 are popular, so φ∗ is PE.
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Special Case: Uniform Preferences

Theorem 5: Suppose all students have the same ordinal preferences.

For a DA with any random tie-breaking rule, there exists a CADA which

makes all students weakly better off than they are from the DA.

Intuition: DA produces random assignment, which a student can repli-

cate in CADA by randomizing over the “target” schools with probabili-

ties equal to the shares of the population choosing alternative schools

for their targets.
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Extension: Enriching the Auxiliary Message

• Our CADA is practical because of its simplicity. But the auxiliary

message can be expanded to include more than one school, perhaps

at the expense of becoming less practical.

• In general, the auxiliary message can include a rank order of schools

up to k ≤ n, with the tie broken in the lexicographic fashion accord-

ing to this rank order.

• We call the associated CADA a CADA of degree k.
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Example: “More is better” (4 schools, and two types of students) V =

{v1,v2}, each with µ(v1) = 3 and µ(v2) = 1.

v1
j v2

j

j = 1 20 20
j = 2 4 3
j = 3 1 2
j = 4 0 0

• CADA of degree 1: All students name S1, so φ∗(vj) = (1
4,

1
4,

1
4,

1
4),

j = 1,2.

• CADA of degree 2: All name S1 as Target 1; but type 1 students

name S2 and type 2 students name S3 respectively as Target 2.

Hence, φ∗∗(v1) = (1
4,

1
3,

1
12,

1
3) and φ∗∗(v2) = (1

4,0,
3
4,0). φ∗∗ Pareto

dominates φ∗.
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Example: “More is worse” µ(v1) = 3 and µ(v2) = 1.

v1
j v2

j

j = 1 12 8
j = 2 2 4
j = 3 1 3
j = 4 0 0

• CADA of degree 1: Type 1 students name S1 as target, and all

type 2 students name S2 as their target. Hence, φ∗(v1) = (1
3,0,

1
3,

1
3)

and φ∗(v2) = (0,1,0,0), which is PE.

• CADA of degree 2: Type 1 students choose school 1 and 2 as their

first and second targets, respectively. Type 2 students choose school 1

(instead of school 2!) as their first target and school 3 as their second

target. Hence, φ∗∗(v1) = (1
4,

1
3,

1
12,

1
3) and φ∗∗(v2) = (1

4,0,
3
4,0). Not

PE!
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Simulation

• 5 schools each with a capacity of 20, and 100 students.

• Student i’s vNM value for school j, vij:

vij = αuj + (1− α)uij

where uj is a common shock, uij is an idiosyncratic shock, and α ∈ [0,1]

is a “commonality” parameter. Averaged over 100 drawings of the

preference shocks, and 2000 draws for tie-breaking lottery.

• Four procedures: DA-STB, DA-MTB, CADA, CADA-Naive (Simply

picks one’s top choice as target).

• Without and with priorities

- Priorities: 50 have priority in the top choice, 30 have priority in second

choice, 20 have in third choice.
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Figure 1: Welfare as Percentage of the First Best Welfare (mean adjusted)
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Figure 2: Percentage of Students Getting Their First Choice
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Figure 3: Average Utility of Receivers of kth Choice, CADA vs DASTB
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Figure 4: Average Number of Popular Schools and Oversubsribed Schools
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Figure 6: Average Number of Students Selecting kth Choice as Target in CADA Equilibrium
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Figure 7: Welfare with Naive Players (mean adjusted)
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Practical Issues

• Naive students: the same welfare benefits

• Extra protection: “Opt out” choice included in the auxiliary mes-

sage; can make CADA Pareto dominate DA.

• Dynamic implementation:
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Conclusion

• We propose a new deferred acceptance procedure in which students
are allowed, via signaling of their preferences, to influence how they
are treated in a tie for a school.

- CADA combines desirable features of DA and the Boston mech-
anisms.

- CADA strikes a better balance between incentives and choice,
implementing a more efficient allocation than the DA without sac-
rificing the strategyproofness of ordinal preferences.

• The idea of “congestion” acting as a competitive market seems
novel and general applicable beyond school choice.

• Related to the idea of “linking” decisions (Jackson-Sonnenschein;
Casella-Palfrey).
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