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Abstract: Truthful revelation of preferences has emerged as a desideratum

in the design of school choice programs. Gale-Shapley’s deferred acceptance

mechanism is strategy-proof for students but limits their ability to communi-

cate their preference intensities. This results in ex-ante inefficiency when ties

at school preferences are broken randomly. We propose a variant of deferred

acceptance mechanism which allows students to influence how they are treated

in ties. It maintains truthful revelation of ordinal preferences and supports a

greater scope of efficiency.

Keywords: Gale-Shapley’s deferred acceptance algorithm, choice-augmented

deferred acceptance, tie breaking, ex ante Pareto efficiency.

1 Introduction

Public school choice has been a subject of intense research and policy debate in recent

years. The idea of expanding one’s choice of school beyond his/her residence area has

broad public support, as exemplified by the number of districts that offer parental choice
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over public schools.1 Yet, how to operationalize the idea of school choice remains actively

debated.

This debate, initiated by Abdulkadiroğlu and Sönmez (2003), is centered around a

popular method, the “Boston” mechanism, which was used by Boston Public Schools (BPS)

until the 2004-2005 school year to assign K-12 pupils to the city schools. Under the Boston

mechanism, each school assigns its seats in the order students rank that school during

registration. Specifically, each school accepts first those who rank it the first, and accepts

those who rank it the second, only when the seats are available, and so forth. Under this

system, a student’s ranking of a school matters crucially for her chance of assignment at

that school. This feature may engender strategic behavior in the families’ application. For

instance, a family may not list their most preferred school as the top choice if that school

is very popular among others: Ranking it at the top will not improve their chance with

that school appreciably, but it may rather jeopardize their shot at their second, or even

less, preferred school, which could have been available to them if they had ranked it at

the top instead. This incentive to “game the system” raises difficulties for families and

administrators alike.2

In 2005, BPS replaced the Boston mechanism with the student-proposing deferred ac-

ceptance (henceforth DA) mechanism. Originally proposed by David E. Gale and Lloyd

S. Shapley (1962), the DA has students apply to schools in the order they rank them, but

schools select the students based solely on their priorities with each school. Specifically, in

the first round students apply to their to top-ranked schools, and the schools select from

them according to their priorities, up to their capacities but only tentatively, and reject the

others. In the second round, those rejected by their top choice apply to their second-ranked

schools, and schools reselect from those held from the first round and from new applicants

up to their capacities (only based on the school’s ranking of them), again tentatively, and

reject the others. This process continues until no students are rejected, at which point the

tentative assignment becomes final. A crucial difference relative to the Boston is that a

student’s ranking of a school does not affect her chance of assignment at that school, once

he/she applies to that school in the process. This means that the families have dominant

strategies to report truthfully about their rankings, a property known as “strategyproof-

1Government policies that allow parents to choose schools for their children take various
forms, including interdistrict and intradistrict public school choice, offered widely across the US,
as well as open enrollment, tax credits and deductions, education savings accounts, publicly
funded vouchers and scholarships, private voucher programs, contracting with private schools, home
schooling, magnet schools, charter schools and dual enrollment. See an interactive map at
http://www.heritage.org/research/Education/SchoolChoice/SchoolChoice.cfm for a comprehensive list of
choice plans throughout the US.

2It also raises a fairness issue since not all families may be equally sophisticated at strategizing. Cite..
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ness” (Dubins and Freedman, 1981; Roth, 1982). For instance, top-ranking a very popular

school will not jeopardize one’s chance at less preferred schools in case he/she fails to get

into the top school.

Besides strategyproofness, the DA mechanism is well-justified in terms of student wel-

fare, if student and school preferences do not involve indifferences. Given strict preferences

on both sides, the DA algorithm produces the so-called student optimal stable matching —

a matching that is most preferred by every student among all stable matchings (Gale and

Shapley, 1962).3 By contrast, any stable matching may arise in a full-information Nash

equilibrium of the Boston mechanism (Ergin and Sönmez, 2006).

In practice, however, schools do not have strict preferences over students. For instance,

the Boston public schools prioritize applicants based on whether students have siblings

attending a given school or whether they live within its walk zone. This leaves many

students in the same priority class. Authors have recognized that no mechanism the a

The resulting indifferences in school preferences present challenges in attaining the dual

objectives of strategyproofness and welfare, for no strategy-proof mechanism implements a

student-optimal stable matching for every preference profile (Erdil and Ergin, forthcoming).

Furthermore, one has to break ties at school preferences in order to adopt the DA

mechanism, and any inefficiency associated with a realized tie-breaking can not be removed

ex post without harming students’ incentives ex ante (Abdulkadiroğlu, Pathak and Roth,

2006).4

that simplifies parents’ strategic choices by making it safe for them to state their true

preference lists. Although many parents recognized the possibility of strategic manipulation

of preferences under the Boston mechanism, some parents did see it as a merit, not as a

shortcoming of the mechanism. Indeed, at a public hearing by the BPS School Committee,

a parent argued:

I’m troubled that you’re considering a system that takes away the little power

that parents have to prioritize... what you call this strategizing as if strategizing

is a dirty word...5

As we will demonstrate, this sentiment reflects a legitimate welfare consideration.

Yet, these negative conclusions, and the rest of the literature on school choice, are

concerned with students’ ex post ordinal welfare, namely, how well a given procedure assigns

students based on their preference orderings for a realized tie-breaking. This perspective

3A matching is stable if no student or school can do strictly better by breaking off current matching
either unilaterally or by rematching with some other partner without making it worse off

4Also see Ehlers (2006) on matching with indifferences.
5Recording from Public Hearing by the School Committee, 05-11-04
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does not capture students’ ex ante welfare, i.e., how well a procedure does on average

across all realizations of tie-breaking, not just under some realization, and how efficiently it

resolves students’ conflicting interests based on their preference intensities, or their cardinal

utilities.

To illustrate why ex ante welfare matters, suppose there are three students, {1, 2, 3}, to

be assigned to three schools, {s1, s2, s3}, each with one seat. All students are ranked into

the same priority class at every school, and students’ preferences are represented by the

following von-Neumann Morgenstern (henceforth, vNM) utility values, where vij is student

i’s vNM utility value for school sj:

v1
j v2

j v3
j

j = 1 4 4 3

j = 2 1 1 2

j = 3 0 0 0

Every feasible matching that assigns each student to a school is stable due to the indif-

ferences at school preferences. Since the students have the same ordinal preferences, any

such assignment is also ex post Pareto efficient, hence student-optimal stable. Therefore,

there is no basis for comparing different procedures based on the ex post welfare criterion.

In particular, the stable improvement cycles algorithm (Erdil and Ergin, forthcoming),

which finds a student-optimal stable matching for every preference profile, has no bite in

this example. Yet, how the students’ conflicting interests are resolved matters greatly for

their ex ante welfare.

To see this, suppose that the ties at school preferences are broken as follows: Assign

each student a lottery number uniformly randomly. Whenever two students tie at a school,

break the tie in favor of the student with the better lottery number. Then the DA algorithm

works as follows in this example: At the first step, each student applies to her most preferred

school, which is s1. The student with the best lottery number is tentatively assigned to s1,

and the remaining two applicants are rejected by s1. Those who are rejected apply to their

next most preferred school, which is s2. Then the student with the better lottery number

is tentatively assigned to s2, and the other one is rejected, who then applies to her next

choice, s3, which admits her tentatively. There are no more rejections and the DA finalizes

all the tentative assignments. Since the DA mechanism is strategy-proof, all three submit

true ordinal preferences so that they are assigned to the schools with equal probabilities.

Hence, the students obtain expected utilities of EU1 = EU2 = EU3 = 5
3
.

It is easy to see that this assignment is ex ante Pareto-dominated by the following

assignment: Assign student 3 to s2, and students 1 and 2 randomly between s1 and s3,

which yields expected utilities of EU ′1 = EU ′2 = EU ′3 = 2 > 5
3
. Intuitively, starting from
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the random assignment, this latter assignment executes a trading of probability shares of

schools by transferring student 3’ share of schools 1 and 3 to students 1 and 2 in exchange

of the latter students’ shares of school 2. Such a trade is beneficial for all parties given

their preference intensities.

The Boston mechanism works like the DA mechanism with the exception that assign-

ments at every step are final under the Boston mechanism. Therefore, when students 1

and 2 submit their true preference rankings to the Boston mechanism, student 3 can secure

s2 by strategically ranking it as her first choice. In that case, students 1 and 2 apply to

s1 and student 3 applies to s2 at the first step of the mechanism. Then student 3 gets

assigned to s2, whereas one of 1 and 2 is rejected by s1. That student then applies to s2.

However, she is rejected by s2 since 1’s assignment at s2 is final. This produces the more

efficient matching above. Interestingly, this is the unique Nash equilibrium outcome of the

Boston mechanism.6 The feature of the Boston mechanism crucial for this outcome is that

a student can increase his probability of getting a school simply by ranking that school

higher in his choice list. This ability to influence one’s treatment in a competition is sup-

pressed in the DA, for a school never discriminates its applicants based on where they rank

that school in their choice lists. However, it is this latter property —nondiscrimination

of applicants based on choice rankings—that yields the incentives for truthful revelation

of preferences in DA. This suggests a tradeoff between incentives and ex ante efficiency.

Clearly, the DA is extreme in resolving this tradeoff; it guarantees truthful revelation of

preferences but denies students any “say” over how they should be treated by each school.

Surprisingly, some parents seem to have found this feature of DA as troublesome, as one

parent put it as follows at a BPS Public Hearing:

... if I understand the impact of Gale Shapley, and I’ve tried to study it and

I’ve met with BPS staff... And in trying to understand this ... I thought I

understood that in fact the random number in fact [has] preference over your

choices...7

The current paper suggests that there is a potentially better way to balance the tradeoff.

Appreciable welfare gain can be obtained by offering students simple and practical ways

to signal their preferences, with no sacrifice of strategy-proofness. We propose a practical

procedure that accomplishes this goal and a new efficiency notion that enhances our under-

standing and ability to compare various assignment mechanisms on the efficiency ground.

The next section illustrates our proposal.

6This does not contradict Ergin and Sönmez (2006)’s finding that the Boston mechanism is (weakly)
Pareto dominated by the DA, which relies on strict preferences by the schools.

7Recording from the BPS Public Hearing, 6-8-05

5



2 Choice-Augmented DA Algorithm: Illustration

Suppose the students have strict preferences over schools, and the schools have priorities

characterized by strict preferences over students. The (student-proposing) DA algorithm

is then described as follows: At the first step, each student applies to her most preferred

school. Every school tentatively admits its applicants in the order of its priority order of

the students. When all of its seats are assigned, it rejects the remaining applicants. In

general, each student who was rejected in the previous step applies to her next preferred

school. Each school considers the set of students it has tentatively admitted and the new

applicants. It tentatively admits from these students in the order of priority. When all of

its seats are assigned, it rejects the remaining applicants. The process terminates when no

student proposal is rejected.

Suppose now schools’ priorities are characterized by weak preferences. Then, ties must

be broken to generate strict school preferences for the DA algorithm to be employed.

There are two common methods of tie-breaking. Single tie-breaking randomly assigns every

student a single lottery number to break ties at every school, whereas multiple tie-breaking

randomly assigns a distinct lottery number to each student at every school. Clearly, a

DA algorithm is well defined with respect to the strict priority list generated by either

method. We refer the DA algorithms using single and multiple tie-breaking by DA-STB

and DA-MTB, respectively.

We propose an alternative way to break a tie, one that allows students to influence its

outcome based on their communication. The associated DA algorithm, which we refer as

Choice-Augmented Deferred Acceptance (henceforth, CADA), is described as follows:

• Step 1: All students submit ordinal preferences, plus an “auxiliary message, ”naming

one’s “target” school.

• Step 2: The schools’ strict priorities over students are generated based on their

inherent priorities and the students’ auxiliary messages, as follows. First, each stu-

dent is independently randomly assigned two lottery numbers. Call one target lottery

number and the other regular lottery number. Each school’s strict priority list is then

generated as follows: (i) First consider the students in the school’s highest priority

group. Within that group, rank at the top those who name the school as their target.

List them in the order of their target lottery numbers, and list below them the rest

(who didn’t name that school for target) according to their regular lottery numbers.

(ii) Move to the next highest priority group, and list them below in the same fashion,

and repeat this process until all students are ranked in a strict order.

• Step 3: The students are then assigned to schools via the DA algorithm, using
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each student’s ordinal preferences from Step 1 and each school’s strict priority list

compiled in Step 2.

To illustrate Step 2, suppose there are five students N = {1, 2, 3, 4, 5} and two schools

S = {A,B}, neither of which has inherent priority ordering over the students. Suppose

students 1, 3 and 4 named A for target and 2 and 5 named B for target, and that students

are ordered according to their target and regular lottery numbers as follows:

T(N) : 3− 5− 2− 1− 4; R(N) : 3− 4− 1− 2− 5.

Then the priority list for school A first reorders students {1, 3, 4}, who named that school

as target, based on T(N), to 3 − 1 − 4, and reorders the rest, {2, 5}, based on R(N) to

2− 5, which produces a complete list for A:

PA(N) = 3− 1− 4− 2− 5.

The priority list for B is determined as

PB(N) = 5− 2− 3− 4− 1.

The process of compiling the priority lists resembles the STB in that the same lottery

is used by different schools, but only within each group. Unlike STB, though, different

lotteries are used across different groups. This ensures that a student who has a bad draw

at her target school gets a “new lease of life” with another independent draw for the other

schools.8

Clearly, the deferred acceptance feature preserves stability and the incentives to reveal

the ordinal preferences truthfully; the gaming aspect is limited to manipulating the outcome

of tie-breaking. This limited introduction of “choice signaling” can however improve upon

the DA rule in a significant way. In the above example, the CADA implements the Pareto

superior matching: All students will submit the ordinal preferences truthfully, but 1 and 2

will choose s1 as their target, and 2 will choose s2 as her target. In this case, the CADA

resembles the Boston mechanism.

In general, CADA is different from the Boston mechanism. In fact, if schools have many

priorities (so their preferences are almost “strict”), then the auxiliary message would have

little bite; thus the CADA will very much resemble the DA. Furthermore, CADA delivers a

more efficient matching without sacrificing strategy-proofness. The rest of the paper makes

8Although the primary reason for our choice is technical, this choice also has additional benefit of
allaying a similar concern about the STB raised in the wake of the NYC redesign. One criticism against
STB was that if a student has a bad draw, then she will not have a low priority with just one or two
schools, but with every school she applies to. CADA mitigates this problem
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this sense precise. That is, we demonstrate the nature of welfare benefits that CADA will

have relative to the DA algorithms, when there are sufficiently numerous students and

numerous school seats.

Specifically, we consider a model of a “large” economy populated by a continuum of

students and a finite number of schools each with a continuum of capacities. We then

compare alternative procedures, DA-STB, DA-MTB and CADA, in terms of the scope

of efficiency achieved under different procedures. To illustrate our approach, suppose a

procedure determines for each student the probabilities of her getting assigned to alternative

schools. Call these her shares of schools. Then the “scope of efficiency” can be measured

by the set of schools whose shares cannot be traded among students in a way that benefits

all the students. The bigger this set is, arguably the more efficient the outcome is, with

the outcome being fully Pareto efficient if the set coincides with the entire set of schools.

Our main result is then stated in this term: The CADA mechanism supports a greater

scope of efficiency than the DA mechanisms with either tie-breaking procedure. Specifically,

the DA mechanisms supports efficient allocation of at most a pair of schools, whereas

CADA supports efficient allocation of a (weakly) bigger set of schools. In particular, CADA

entails efficient allocation among schools that are relatively popular—in the sense of being

oversubscribed by students in their target choice. The economics of this property closely

resembles that of competitive markets. Essentially, the students participating in CADA can

be seen as making purchasing decisions on the shares of schools. For instance, a student

can raise her share of a school, say A, by naming it for her target, but that lowers her

priority standing in other schools, say B and C, thus reducing her shares of those schools.

The exact tradeoffs faced by a student are determined by how many other students are

picking A, rather than B or C, for their targets. If there are many such students, then

raising a share of A is “expensive,” for it requires giving up large amounts of shares of B

and C. In other words, relative degrees of congestion at different schools act as “prices”

that regulate individuals’ decisions. In a “large” economy, students become price takers,

so the resulting allocation resembles that of competitive markets, which, as is well known,

yields an efficient allocation (among the oversubscribed schools).

In addition to showing the benefit of CADA, we also argue that DA-STB is more

desirable than DA-MTB from an ex ante welfare perspective. In particular, we show that

the former supports greater scope of efficiency than the latter. The choice between single

versus multiple tie-breaking has proven to be an important policy choice in high school

admissions in New York City.9 Our finding informs the choice between DA-STB and DA-

MTB in favor of the former.

The idea of CADA appears similar to the proposal by Sönmez and Ünver (2003) to

9See Abdulkadiroğlu, Pathak and Roth (2008) for a detailed discussion.
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imbed the DA algorithm in “course bidding”employed by some business schools. These

two proposals differ in the application, however, as well as in the nature of the inquiry: We

are interested in studying the benefit of adding a “signalling” element to the DA algorithm.

By contrast, their interest is in studying the effect of adding ordinal preferences and the

DA feature to the course bidding. In a broader sense, our paper is an exercise of mechanism

design without monetary transfers, and in fact it is closer in nature to the recent ideas of

“storable votes” (see Casella (2005)) and “linking decisions” (see Jackson and Sonnenschein,

forthcoming).10 Just like them, CADA “links” how a student is treated in a tie at one school

to how she is treated in a tie at another school, and this linking makes communication

credible. Clearly, applying the idea in a centralized matching is novel and differentiates

the current paper. There is a further difference. Jackson and Sonnenschein (forthcoming)

demonstrated the efficiency of linking when (linkable) decisions tend to infinity, relying

largely on the logic of the law of large numbers. To our knowledge, the current paper is the

first to characterize the precise welfare benefit of linking a fixed (finite) number decisions

(albeit with continuum of agents).

The rest of the paper is organized as follows. We present the formal model and welfare

criterion in Section 3, provide welfare comparison across the three alternative procedures

in Section 4. Section 5 presents simulation to quantify the welfare benefits of CADA.

Section 6 then considers the implication of enriching the message used in the CADA and

the robustness of our results to some students not behaving in a strategically sophisticated

way. Section 7 concludes.

3 Model and Basic Analysis

3.1 Primitives

There are n ≥ 2 schools, S = {1, ..., n}, each with a unit mass of seats to fill. There are

mass n of students who are indexed by vNM values v = (v1, ..., vn) ∈ V := [0, 1]n they

attach to the n schools. The set of student types, V , is equipped with a measure µ. We

assume that µ is absolutely continuous with strictly positive density in the interior of V .

Let τ k be any ordered list of any k schools, and let Πk be the set of all such ordered

lists of k schools, with their union denoted Π := ∪nk=1Πk. Let πk(v) be the type v-student’s

k most preferred schools (listed in the descending order of her preferences). Let mτk :=

µ({v ∈ V|πk(v) = τ k} be the measure of students whose ordinal preferences are τ k. By

the full support assumption, mτk > 0 for each τ k ∈ Πk ∀ k ≤ n. Hence, for each i ∈ S,

mi = µ({v ∈ V|π1(v) = i}) represents the measure of students whose most preferred school

10See also Che and Gale 1998 and 2000 for the effect of budgetary limits in mechanism design
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is i. It is useful to define the set

S∗∗ = {i ∈ S|mi ≥ mj∀j ∈ S}

of most popular school(s).

Finally, let m := {mτ}τ∈Πn be a profile of measures of all ordinal types. Let M :=

{{mτ}τ∈Πn|
∑

τ∈Πnmτ = n} be the set of all possible measure profiles. The set M has

n!− 1 dimensions. We say a property holds generically if it holds for a subset of m’s that

has the same Lebesque measure as M.

An assignment, denoted by x, is a probability distribution over S, and this is an element

of a simplex, ∆ := {(x1, ..., xn) ∈ Rn
+|
∑

i∈S xi = 1}. We are primarily interested in how

a procedure determines the assignment for each student ex ante prior to conducting the

lottery. To this end, we define an allocation to be a measurable function φ := (φ1, ..., φn) :

V 7→ ∆ such that
∫
φi(v)dµ(v) = 1 for each i ∈ S, with the interpretation that student v

is assigned by mapping φ = (φ1, ..., φn) to school i with probability φi(v). Let X denote

the set of all allocations.

3.2 Welfare Standards

We begin with two standard notions of ex ante welfare. To begin, we say allocation φ̃ ∈ X
weakly Pareto-dominates allocation φ ∈ X if, for almost every v,∑

i∈S

viφ̃i(v) ≥
∑
i∈S

viφi(v), (1)

and that φ̃ Pareto-dominates φ if the former weakly dominates the latter and the inequality

of (2) is strict for a positive measure of v’s. We also say φ̃ ∈ X ordinally-dominates φ ∈ X
if, for a.e. v, ∑

i∈πk(v)

φ̃i(v) ≥
∑

i∈πk(v)

φi(v), ∀k = 1, ..., n− 1, (2)

with the inequality being strict for some k, for a positive measure of v’s.

Definition 1. (i) An allocation φ ∈ X is Pareto efficient (PE) if there is no other

allocation in X that Pareto-dominates φ.

(ii) An allocation φ ∈ X is ordinally efficient (OE) if there is no other allocation

in X that ordinally-dominates φ.

For our purpose, it is useful to introduce additional welfare notions, those relating to the

scope of efficiency. To begin, fix an assignment x ∈ ∆, and a subset K ⊂ S of schools. An

assignment x̃ ∈ ∆ is said to be a within K reassignment of x if x̃j = xj for each j ∈ S\K,
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and let ∆K
x ⊂ ∆ be the set of all such reassignments. Then, a within K reallocation of an

allocation φ ∈ X is an element of a set

XK
φ := {φ̃ ∈ X |φ̃(v) ∈ ∆K

φ(v), a.e. v ∈ V}.

In words, a within-K reallocation of φ represents an outcome of students trading their

shares of schools only within K.

Definition 2. (i) For any K ⊂ S, an ex ante allocation φ ∈ X is Pareto efficient

(PE) within K if there is no within K reallocation of φ that Pareto dominates φ.

(ii) For any K ⊂ S, an ex ante allocation φ ∈ X is ordinally efficient (OE) within

K if there is no within K reallocation of φ that ordinal-dominates φ.

(iii) An allocation is pairwise PE (resp. pairwise OE) if it is PE (resp. OE) within

every K ⊂ S with |K| = 2.

These welfare criteria are quite intuitive. Suppose the students are initially endowed

with ex ante shares φ of schools but they can trade these shares amongst them. Can they

trade mutually beneficially if the trading is restricted to the shares of K? The answer is

no if allocation φ is PE within K. In other words, the size of the latter set represents the

restriction on the trading technologies and thus determines the scope of markets within

which efficiency is realized. The bigger the set is, the less restricted the agents are in the

scope of trading, so it means a more efficient allocation. Clearly, if an allocation is Pareto

efficient within the set of all schools, then it is fully Pareto efficient. In this sense, we can

view the size of such set as a measure of efficiency.

A similar intuition holds with respect to ordinal efficiency. In particular, ordinal effi-

ciency can be characterized by the inability to form a cycle of traders who beneficially swap

their probability shares of schools. Formally, let Bφ be the binary relation on S defined by

iBφ j ⇐⇒ ∃A ⊂ V , µ(A) > 0, s.t. vi > vj and φj(v) > 0,∀v ∈ A,

and say that φ admits a trading cycle within K if there exist i1, i2, ...il ∈ K such that

i1Bφ i2, ..., il−1Bφ il, and il Bφ i1. The next lemma is then adapted from Bogomolnaia and

Moulin (2001).

Lemma 1. An allocation φ is OE within K ⊂ S if and only if φ does not admit a trading

cycle within K.

Before proceeding further, we observe how different notions relate to one another.

Lemma 2. (i) If an allocation is PE (resp. OE) within K ′, then it is is PE (resp. OE)

within K ⊂ K ′;
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(ii) An allocation is OE within K ⊂ S if it is PE within K.

(iii) For any K with |K| = 2, if an allocation is OE within K, then it is PE within K.

(iv) If an allocation is OE, then it is pairwise PE.

Part (i) follows since a Pareto improving within-K reallocation of constitutes a Pareto

improving within-K ′ reallocation for any K ′ ⊃ K. Likewise, a trade cycle within any set

forms a trade cycle within its superset. Part (ii) follows since if an allocation is not ordinally

efficient within K, then it must admit a trading cycle within K, which easily implies there

being a Pareto improving reallocation. Part (iii) follows since, whenever there exist an

allocation that is not Pareto efficient within a pair of schools, there must be two groups

of agents who would benefit from swapping their probability shares of these schools, from

which the allocation must admit a trade cycle within that pair. Part (iv) then follows form

Part (iii).

These characterizations are tight. The converse of Part (iii) does not hold for any K

with |K| > 2. In the example from the introduction, the DA allocation is OE but not PE.

Likewise, an allocation that is PE within K need not be OE within any K ′ % K. To see

this, imagine a situation in which an allocation is Pareto improvable upon only via a trade

cycle that includes a school in K ′\K. In that case, the allocation may be PE within K yet

it will not be OE within K ′.

3.3 Alternative School Choice Procedures

We consider three alternative procedures for assigning students to the schools: (1) Deferred

Acceptance with Single Tie-breaking (DA-STB), (2) Deferred Acceptance with Multiple

Tie-Breaking (DA-MTB), and (3) Choice-Augmented Deferred Acceptance (CADA). These

procedures, introduced earlier, can be extended to the continuum of students in a natural

way.

The alternative procedures differ only by the way the schools break ties. The tie-

breaking rule is well-defined for DA-STB and DA-MTB, and it follows Step 2 of Section 2

in the case of CADA, except that these rules must be extended to our continuous economy

model. The formal descriptions are provided in Appendix A. Here, we offer the following

heuristic descriptions:

• DA-STB: The mechanism draws a single random number ω ∈ [0, n] for each student,

and a agent with a lower number has a higher priority than the ones with higher

numbers for each school.
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• DA-MTB: For each student, the mechanism draws n independent random numbers

(ω1, ..., ωn) from [0, n]n. The i-th component, ωi, of student’s random draw then

determines her priority at school i, with a lower number draw having a higher priority

than a higher number.

• CADA: The mechanism draws two random numbers (ωT , ωR) for each student.

School i then ranks those students who picked that school for their target, based on

their ωT draws and then ranks the others based on ωR draws (with a lower number

having a higher priority in both cases).

For each procedure, the DA algorithm is readily defined using the appropriate tie-

breaker and the students’ ordinal preferences as inputs. Appendix A provides a precise

algorithm, which is sketched here. At the first step, each student applies to her most

preferred school. Every school i tentatively admits up to unit mass from its applicants in

the order of its priority order, and reject the rest if there is any. In general, each student who

was rejected in the previous step applies to her next preferred school. Each school considers

the set of students it has tentatively admitted and the new applicants. It tentatively admits

up to unit mass from these students in the order of its priority, and rejects the rest. The

process converges when the set of students that are rejected has zero measure. Although

this process might not complete in finite time, it converges in limit, and the allocation in

the limit is well defined (see Theorem 10 of Appendix A). Further, each of the procedure

is ordinally strategy proof:

Theorem 1. (Ordinal strategy-proofness) In each of the three procedures, it is a

(weak) dominant strategy for each student to submit her ordinal preferences truthfully.

Proof: The proof follows from Theorem 11 in Appendix A.

3.4 Characterization of Equilibria

� DA-STB and DA-MTB

The DA-STB process induces a cutoff ci ∈ [0, n] for each school i such that a student

who ever applies to school i gets assigned to that school if and only if her (single) draw ω

is less than ci. The existence of such a cutoff follows from the fact that an applicant with

a lower draw can never be rejected by a school in favor of another applicant with a higher

draw. Therefore, in equilibrium each school has a cutoff in [0, n], and the n cutoffs can

be listed in an ascending order as (ĉ1, ..., ĉn), with ĉi ≤ ĉj for i < j. (The order may be

weak since the cutoff may be the same for several schools, in which case we simply repeat

the same number.) It is useful to establish that these cutoffs are uniquely determined by

m := {mτ}τ∈Πn and all distinct generically:
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Lemma 3. The cutoffs for the schools under DA-STB are uniquely determined by m, and

satisfies ĉ1 > 0 and ĉn = n. The most popular school(s) in S∗∗ have the lowest cutoff ĉ1.

For a generic m, the cutoffs are all distinct.

DA-MTB is similar to DA-STB, except that each student has independent draws

(ω1, ..., ωn), one for each school. The DA process again induces a cutoff ci ∈ [0, n] for

each school i such that a student who ever applies to school i gets assigned to it if and only

if her draw for school i, ωi, is less than ci. While the cutoffs under DA-STB are typically

different from those under DA-MTB, we must have at least one school whose cutoff is equal

to n.11 We call such a school the “worst” school. (There is no presumption that the worst

school under DA-STB is also the worst school under DA-MTB.)

� CADA

As with the two other procedures, given the students’ strategies on their messages, the

DA process induces cutoffs for the schools, one for each school in [0, 2n]. Of particular

interest is the equilibrium in the students’ choices of messages. Given Theorem 1, the

only nontrivial part of the students’ strategy concerns her “auxiliary message.” Let ν =

(ν1, ..., νn) : V 7→ ∆ denote the students’ mixed strategy, whereby a student with v “names

school i for her target” with probability νi(v). We first establishes existence of equilibrium.

Theorem 2. (Existence) There exists an equilibrium in pure strategies.

We say that a student applies to school i if she is rejected by all schools she lists ahead

of i in her (truthful) ordinal list. We say that a student subscribes to school i ∈ S if

she picks school i for her target and applies to that school during the DA process. (The

latter event depends on where she lists school i in her ordinal list and the other students’

strategies as well as the outcome of tie-breaking). Let ν̄∗i (v) be the probability that a

student v subscribes to school i in equilibrium. We say a school i ∈ S is oversubscribed if∫
ν̄∗i (v)dµ(v) ≥ 1 and undersubscribed if

∫
ν̄∗i (v)dµ(v) < 1. In equilibrium, there will be

at least (generically, exactly) one undersubscribed school which anybody can get in, if she

fails to get an any other schools she lists ahead of that school. Formally, a school w ∈ S is

said to be “worst” if its cutoff on [0, 2n] equals precisely 2n. Then, we have the following

lemma.

Lemma 4. (i) Any student who prefers the worst school the most is assigned to that school

with probability 1 in equilibrium. (ii) If her most preferred school is undersubscribed but

11If all cutoffs are strictly less than n, then there is a positive measure of students who are never assigned
to any school. There must be a school with its capacity unfilled, so that school’s cutoff cannot be less than
n, a contradiction.
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not the worst school, then she names that school for her target in equilibrium. (iii) For

almost every student with v such that π1(v) 6= w, ν∗(v) = ν̄∗(v) in equilibrium.

In light of Lemma 4-(iii), we shall refer to “picks a school i as target” simply as “sub-

scribes to school i.”

4 Welfare Analysis of Alternative Procedures

We compare ex ante welfare of three alternative procedures in this section. We begin with

DA-STB.

Theorem 3. (DA-STB) (i) In the DA-STB allocation, φS, the most popular school i ∈
S∗∗ is assigned only to the students who prefer that school the most.

(ii) φS is OE, and is thus pairwise PE.

(iii) For a generic m, there exists no K ⊂ S with |K| > 2 such that φS is PE within K.

These results are explained via Figure 1.

0

ω

· · ·· · ·cs∗∗ ci cj cw· · ·

Figure 1: Ordinal efficiency of DA-STB

Following Lemma 3, the cutoffs of the schools are deterministic, as depicted in the

figure. Suppose iBφ
S
j. Then, there must exist a positive measure of students who prefer

school i to school j but are assigned to j with positive probability. It must then follow

that ci < cj. Or else, any students who prefer school i can never be assigned to j. This is

because any such student will rank i ahead of j (by strategyproofness), so if she is rejected

by i, her draw must be ω > ci ≥ cj, not good enough to get assigned to j. Since the cutoffs

are (at least weakly) ordered, this means that φS cannot admit a trading cycle. Hence, it

is OE (and thus pairwise PE). The same logic also implies that the most popular school

can only be assigned to those who prefer it the most (as is claimed in Part (i)).

Most important, pairwise PE is, according to Part (iii), the most one can expect from

DA-STB. In otherwise, DA-STB produces no better ex ante efficiency performance than is

explainable by its ordinal efficiency. To see Part (iii), recall from Lemma 3 that the schools’

cutoffs are generically distinct. Take any set {i, j, k} with ci < cj < ck.

15



0 nci cj ck· · · · · · · · · · · ·

Figure 2: Ex ante Pareto inefficiency of DA-STB within {i, j, k}.

Then, by the full support assumption, there exists a positive measure of v’s satisfying

vi > vj > vk > vl for all l 6= i, j, k. These students will then have the positive chance of

being assigned to each school in {i, j, k}, for their draws will land in the intervals, [0, ci],

[ci, cj] and [cj, ck], with positive probabilities. Again, given the full support assumption,

such students will all differ in their marginal rate of substitution among the three schools.

Then, just as with the motivating example, one can construct a mutually beneficial trading

of shares of these schools among these students.

Remark 1. With finite students, the allocation from DA-STB is ex post Pareto efficient

but is not OE, but as the number of students and school seats grow to our limiting model,

the DA-STB allocation becomes arbitrarily close to being OE. This is an implication of

Che and Kojima (2008), who show that the random priority rule (which coincides with

our DA-STB) becomes indistinguishable from the probabilistic serial mechanism (which is

known to be OE) as the economy grows large. When the schools have inherent priorities,

the DA-STB is not even ex post Pareto efficient (Abdulkadiroglu et al., 2007).

Next, consider the DA-MTB. Let school w ∈ S be the worst school if its cutoff under

DA-MTB is n. There exists only one worst school for a generic m.

Theorem 4. (DA-MTB) (i) For n ≥ 3, a positive measure of seats at each school are

assigned to some students who do not prefer that school the most.

(ii) The allocation from DA-MTB is PE within {i, w} for each i ∈ S\{w}.

(iii) Generically, there exists no K ⊂ S\{w} with |K| > 1 such that the allocation from

DA-MTB is OE within K.

(iv) Generically, there exists no K ⊂ S with |K| > 2 such that the allocation from DA-

MTB is OE within K.

The main results follow from the failure of ex post Pareto efficiency in the DA-MTB.

This can be explained as follows. Take any two schools {i, j}, each of which is not a worst

school. Type i student may have a good draw at school j but a bad draw at school i (e.g.,

(ωi, ωj) in Figure 3); and the opposite may occur to a type j student (e.g., (ω′i, ω
′
j)).
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Figure 3: Pareto inefficiency within {i, j} under DA-MTB.

In this case, the former will be assigned to j and the latter to i, so both students will

benefit from swapping their assignments. This possibility arises with positive probability,

so the allocation admits a trade cycle i − j − i, and fails to be pairwise OE or pairwise

PE. To see Part (ii), suppose school j = w is the worst school. Then, cj = n. This means

that any students assigned to school i must prefer that school over school w. Hence, they

can never be better off from any within-{i, w} reassignment, so the allocation is PE within

{i, w} (by Lemma 2-(iii)).

Theorems 3 and 4 have an obvious implication.

Corollary 1. Assume n ≥ 3. Then, for a generic m, a PE allocation never arises from

the DA algorithm with either tie-breaking procedure.

We next turn to the CADA algorithm. The welfare properties of its allocation are

characterized as follows.

Theorem 5. (CADA) (i) Any equilibrium allocation of CADA is OE, and is thus pair-

wise PE.

(ii) Any equilibrium allocation of CADA is PE within the set of oversubscribed schools.

(iii) If all but one schools are oversubscribed, then the equilibrium allocation of CADA is

PE.

Theorem 5-(ii) and (iii) showcase the ex ante efficiency benefit associated with CADA.

As mentioned earlier, the benefit parallels that of a competitive market. Essentially, CADA

supports “competitive markets” for oversubscribed schools. Each student is given a “bud-

get” of unit probability she can allocate across alternative schools with the naming of a

target school. A given unit probability can buy different amounts of shares for different

schools, depending on how many others name those schools. If a mass zi ≥ 1 students

applies to school i, allocating a unit budget can only buy a share 1/zi. Hence, the relative

congestion at alternative schools, or their relative popularity, serves as relative “prices” for
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these schools. In a large economy, individual students take these prices as given, so the

prices play the usual role of allocating resources efficiently. It is therefore not surprising

that the proof follows the First Welfare Theorem.

Why are competitive markets limited only to oversubscribed schools? Why not under-

subscribed schools? The reason has to do with that one can get into an undersubscribed

school in two different ways: She can name it for her target, in which case she gets assigned

to it for sure; alternatively, she can name an oversubscribed school but the school rejects

her, in which case she may still get assigned to the undersubscribed school via the usual

DA channel. This means that no single price system regulates the students’ assignments to

the undersubscribed schools. Furthermore, a spill-over from the oversubscribed schools ac-

counts for assignment of some students to these schools. Consequently, competitive markets

do not extend to them.

Finally, Part (i) asserts ordinal efficiency for CADA. At first glance, this feature may be

a little surprising in light of the fact that different priority lists are used by different schools.

As is clear from DA-MTB, this feature is susceptible to ordinal inefficiency. This is not

the case, however, in the equilibrium of CADA. To see this, observe first that any student

who is assigned to an oversubscribed school with positive probability must strictly prefer

it to any undersubscribed school (or else she should have secured assignment to the latter

school by choosing it for her target). This means that we cannot have j Bφ
∗
i if school j is

undersubscribed and school i is oversubscribed. This means that if the allocation admits

any trading cycle, it must be within oversubscribed schools or within undersubscribed

schools. The former is ruled out by Part (ii) and the latter by the same argument as

Theorem 3-(ii).

The characterization of Theorem 5 is tight in the sense that there is generally no bigger

set that includes all oversubscribed schools and some undersubscribed school that supports

Pareto efficiency.12

12To see this, suppose there are four schools, S = {1, 2, 3, 4}, and four types of students V =
{v1,v2,v3,v4}, with µ(v1) = 3−ε

2 , µ(v2) = 1+ε
2 , µ(v3) = 3−ε

2 , and µ(v4) = 1+ε
2 where ε is a small

number.
v1

j v2
j v3

j v4
j

j = 1 10 10 20 20
j = 2 3 5 9 8
j = 3 1 4 8 1
j = 4 0 0 0 0

In this case, type 1 and 3 students subscribe to school 1, and type 2 and 4 students subscribe to school 2.
More specifically, the allocation φ∗ has φ∗(v1) = φ∗(v3) = ( 1

3−ε , 0,
2−ε

2(3−ε) ,
2−ε

2(3−ε) ) and φ∗(v2) = φ∗(v4) =
(0, 1

1+ε ,
ε

2(1+ε) ,
ε

2(1+ε) ). Although schools 1 and 2 are oversubscribed, this allocation is not PE within
{1, 2, 3} since type 1 students can trade probability shares of school 1 and 3 in exchange for probability
share at 2, with type 1 students. The allocation is not PE within {1, 2, 4} either, since type 3 students
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Theorem 5 refers to an endogenous property of an equilibrium, namely the set of

over/under-subscribed schools. We provide a sufficient condition for this property. Let

S∗ := {i ∈ S|mi ≥ 1}

be the set ofpopular schools which each cannot accommodate all the students who prefer

them the most. Note that a most popular school must be popular, i.e., S∗∗ ⊂ S∗.

It is easy to see that every school in S∗ must be oversubscribed in equilibrium. Suppose

to the contrary that school i ∈ S∗ is undersubscribed. Then, by Lemma 4-(ii), every

student with v with π1(v) = i must subscribe to i, a contradiction. Since each school in

S∗ is oversubscribed, the next result follows from Theorem 5.

Corollary 2. Any equilibrium allocation of CADA is PE within the set S∗ of popular

schools.

Corollary 2 provides a sufficient condition for a school to be oversubscribed. But it is

quite possible that a non-popular school can be oversubscribed in equilibrium. In particular,

if all students have the same ordinal preferences, then |S∗| = 1, so Corollary 2 has no bite.

Yet, the set of oversubscribed schools can be much bigger than S∗ even in this case. We can

provide some insight into this question, by introducing more structure into the preferences.

Suppose all students have the uniform ordinal preferences, with the schools indexed by

the uniform ranking. Letting VU := {v ∈ V|v1 > ... > vn}, the students will have the same

ordinal preferences if µ(VU) = µ(V). Define

VU2 :=

{
v ∈ VU

∣∣∣∑n
i=1 vi
n

< v2

}
.

Lemma 5. Assume µ(VU) = µ(V), then at least two schools are oversubscribed in the

CADA equilibrium if µ(VU2 ) ≥ 1.

Full Pareto efficiency may be achieved in some cases.

Corollary 3. The equilibrium allocation of CADA is PE if (i) all but one schools are

popular, or if (ii) n = 3 and all students have the same ordinal preferences and µ(VU2 ) ≥ 1

holds.

4.1 Comparison of Procedures

A three-way comparison emerges from the preceding analysis. It provides a formal sense

in which the CADA yields a better outcome than DA-STB, which in turn yields a better

can trade probability shares of school 1 and 4 in exchange for probability share at 2, with type 4 students.
Therefore {1, 2} is the largest set of schools that support Pareto efficiency.

19



outcome than DA-MTB. In particular, if the allocation from DA-MTB is PE within K ⊂ S,

then so is the allocation from DA-STB, although the converse does not hold; and if the

allocation from DA-STB is PE within K ′ ⊂ S, then so is the allocation from DA-STB,

although the converse does not hold.

Specifically, between the two DA algorithms, DA-STB assigns the seats of the most

popular school to those who prefer it the most, whereas this never happens with any school

under DA-MTB. Further, the allocation arising from DA-STB is PE within any two schools,

whereas the allocation from DA-MTB generically fails to be PE within two schools unless

they contain a worst school.

Meanwhile, the CADA allocation is Pareto efficient within a strictly bigger set of schools

than the allocations from DA algorithms, if there are more than two popular schools. The

following examples illustrate comparisons further.

Example 1. There are three schools, S = {1, 2, 3}, and three types of students V =

{v1,v2,v3}, each with µ(vi) = 1.

v1
j v2

j v3
j

j = 1 5 4 1

j = 2 1 2 5

j = 3 0 0 0

Notice that S∗∗ = {1} and S∗ = {1, 2}. It follows from Corollary 3 that the allocation

from CADA is Pareto efficient. More specifically, the equilibrium allocation is φ∗(v1) =

φ∗(v2) = (1
2
, 0, 1

2
) and φ∗(v3) = (0, 1, 0).

The allocation from DA-STB is PE within any pair of two schools: φS(v1) = φS(v2) =

(1
2
, 1

6
, 1

3
) and φS(v3) = (0, 2

3
, 1

3
).13 This allocation is not Pareto efficient since student 1

can trade probability shares of schools 1 and 3 in exchange for probability share at school

2, with student 2.

The allocation from DA-MTB is φM(v1) = φM(v2) ≈ (0.392, 0.274, 0.333) and φM(v3) ≈
(0.215, 0.451, 0.333).14 This is not PE within {1, 2}.

Example 2. There are three schools, S = {1, 2, 3}, and two types of students V = {v1,v2},
13Assuming that each student has a single uniform draw from [0, 3], the cutoff for school 1 is c1 = 1.5,

the cutoff for school 2 is c2 = 2, and the one for school 3 is 3.
14Again, assuming that each student has a uniform draw from [0, 3] for each school separately, the cutoff

for school 1 is c1 = 5−
√

7
2 ≈ 1.177, the cutoff for school 2 is c2 ≈ 1.354, and the one for school 3 is 3.
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with µ(v1) = 2 and µ(v2) = 1.

v1
j v2

j

j = 1 3 3

j = 2 1 2

j = 3 0 0

In this case, S∗ = S∗∗ = {1}. Yet, it follows from Corollary 3 that the allocation from

CADA is Pareto efficient. More specifically, the allocation φ∗ has φ∗(v1) = (1
2
, 0, 1

2
) and

φ∗(v2) = (0, 1, 0).

DA-STB and DA-MTB entail the same allocation φDA(v1) = φDA(v2) = (1
3
, 1

3
, 1

3
),

which is PE within any pair of two schools. (The result of Theorem 4-(iii) does not hold

for DA-MTB because the full-support assumption does not hold here.) This allocation is

not PE since type 1 students can trade probability shares of school 1 and 3 in exchange for

probability share at 2, with type 2 students.

Example 3. There are three schools, S = {1, 2, 3}, and two types of students V = {v1,v2},
each with µ(v1) = 2 and µ(v2) = 1.

v1
j v2

j

j = 1 10 10

j = 2 1 2

j = 3 0 0

In this example, the allocation arising from CADA is not PE. All students subscribe to

school 1 in equilibrium, so the allocation φ∗ is φ∗(v1) = φ∗(v2) = (1
3
, 1

3
, 1

3
), just as with

DA-STB and DA-MTB.

In fact, if all students have the uniform ordinal preferences (i.e., µ(V) = µ(VU)), then

we can show that the CADA (weakly) Pareto-dominates the DA.

Theorem 6. Suppose all students have the same ordinal preferences. The equilibrium

allocation of CADA (weakly) Pareto dominates the allocation arising from DA with any

random tie-breaking rule. If µ(VU2 ) > 0, then there exists a positive measure of students

who are strictly better off from the CADA algorithm.

5 Simulations

The theoretical results in the previous sections do not speak to the magnitude of efficiency

gains or loses in each mechanism. In this section, we numerically investigate these questions

via simulations, which also help highlight the sources of efficiency gains and loses.
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In our numerical model, we have 5 schools each with 20 seats and 100 students. Student

i’s vNM value for school j, vij, is given by

vij = αuj + (1− α)uij

where α ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, uj are common across students and

uij is specific to student i and school j. We will say that correlation among preferences

increases as α increases. For each α, we draw {uj} and {uij} uniformly randomly and

independently from the interval [0, 1] to construct student preferences. The similary among

student preferences increases as α gets closer to 1. In the extreme cases, there is no

correlation among preferences when α = 0, and and students have the same cardinal

preferences when α = 1. Given a cardinal utility profile, we simulate DA-STB and DA-

MTB, compute a complete information Nash equilibrium of CADA and the resulting CADA

outcome. We repeat that 100 times by drawing a new set of vNM utility values for each α.

In addition, we solve for a first best solution, which is a utilitarian maximum for each set of

vNM utility values. We compute welfare in an experiment as the average of the students’

expected utilities in that experiment.15

In Figure 1, we compare the three mechanisms to the first best solution. We plot the

welfare of each mechanism as the percentage of the welfare at the first best solution. Two

observations emerge from this figure. First, The welfare generated by each mechanism

follows a U-shaped pattern. Second, CADA outperforms DA-STB, which outperforms

DA-MTB at every value of α and the gap in performance between CADA and the other

mechanisms widens as α gets bigger. The intuition behind the U-shaped pattern can be

explained by focusing on the extreme values of α. When α = 0, the expected number of

students ranking a particular school as their first choice is close to the capcity at that

schools. As a result, all three mechanisms are likely to assign almost all students to their

first choices and all three perform almost equally well when α = 0. As α increases, more and

more students start ranking a particular school as their first choice. Therefore competition

for first choice schools increases and less and less students can be assigned to their first

choices. Consequently, welfare starts decreasing as α increases. When α = 1, all students

have the same cardinal preferences so any matching, therefore any mechanism, is ex ante

efficient. That explains the increase in welfare as α increases from moderate values to

α = 0.9. Figure 1 also exposes the welfare advantage of CADA. CADA outperforms DASTB

and DAMTB for all values of α. The welfare gain from CADA is smaller for α = 0. Again

this can be explained by the fact that most students are assigned to their first choices by

each mechanism due to extreme dissimilarity in preferences. The welfare gain of CADA

15See Appendix for a detailed explanation for the simulations and the computation of the numbers for
the figures.
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increases as α increases. This is due to the fact that competition for one’s first choice

increases as α increases. At those instances, who gets his first choice matters. While

DASTB and DAMTB determine this purely randomly, by incorporating students’ vNM

values in their decision making for their target schools, CADA outperforms DASTB and

DAMTB. Intuitively, if a student’s vNM value for a school increases, the likelihood of the

student selecting that school as target in an equilibrium of CADA, therefore the likelihood

of her getting that school, are expected to increase. This feature of CADA contributes to

welfare gains. The following two figures also confirm this intuition. Finally, the gap in

welfare across mechanisms shrinks at α = 0.9. Again this can be explained by the fact that

when preferences are extremely similar, i.e. α = 1, every matching is efficienct therefore

the welfare generated by each mechanism converges to the first best welfare as α gets closer

to 1.

Figure 2 gives further insight about the workings of the mechanisms. It shows the

percentage of students getting their first choices under each mechanism. First, DA-MTB

assigns significantly smaller numbers to first choices. This is due to the artificial stability

constraints created by multiple tie breaking, which also explains the bigger welfare loss

associated with DAMTB. The patterns for CADA and DA-STB are more revealing. In

particular, both assign almost the same number of students to their first choices for each

value of α. So, whereas the welfare differential in DAMTB can be explained by the decrease

in the number of students getting their first choices, the difference among the other two

can be explained partly by to which group of students the two mechanisms are assigning

first choices more frequently. To this end, Figure 3 shows the the ratio of the mean utility

of those who get their k-th choice under CADA to the mean utility of those who get their

k-th choice under DA-STB at the realized matchings, for k = 1, 2, 3. Accordingly, those

who get their k-th choice achieve a higher utility under CADA than under DASTB for each

k = 1, 2, 3. Note the much more emphasized difference for the receivers of second choice.

As one’s vNM for her second choice increases, that is, as her second choice becomes a good

alternative to her first choice, she is more likely to select her second choice as target in

order to avoid stiff competition at her first choice. As a result, she is more likely to get

her second choice, therefore those who get their second choices are more likely to achieve

higher utility under CADA. This self-selection is demonstrated in Figure 3. The same is

true for third choices as well, and more so as α gets larger, which is also demonstrated in

the figure.

Figure 4 shows that the number of oversubscribed schools is larger on average than

the number of popular schools. Note that the average number of oversubscribed schools is

larger than 2 at all values of α. Recalling our Theorems 2 and 5, DASTB is never Pareto

efficient within a set of more than 2 schools, whereas CADA is Pareto efficient within the set
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of oversubscribed schools. Then Figure 4 shows a greater scope of efficiency with CADA,

another main source of efficiency gain in CADA in comparison to DASTB. It is also worth

to note that the average number of oversubscribed schools exceeds 3 for α ≤ 0.4. This

implies that some of the reaized number of oversubsribed schools is equal to 4. At those

instances, CADA achieves full Pareto efficiency.

The equilibrium behavior of students in Figure 5 shows that more students pick their

lower ranked schools as target as α gets closer to 1. This monotone pattern in behavior

can be explained by the extent of competition over schools. As α, therefore similarity

among preferences, increases, more students have the same school as first choice. Therefore

competition for one’s first choice becomes more intense. This gives students incentive to

compete for their second, third and even fourth choices by selecting them as their target

school in CADA.16 This also explains the widening gap between the number of popular

schools and the number of oversubscribed schools as α goes to 1 in Figure 4. Note that

there exist some realizations of the vNM values with positive probability, under which some

students pick their forth choices in equilibrium when α is large.

Next, we numerically investigate CADA when students have priorities at schools. To

this end, we introduce schools priorities as follows: Each school has two priority classes, high

priority and low priority. For each preference profile above, we assume that 50 students have

high priority in their first choice and low priority in their other choices, 30 students have

high priority in their second choice and low priority in their other choices, and 20 students

have high priority in their third choice and low priority in their other choices.17 For easier

reference, if a student has high priority at a school, we refer that school as that student’s

neighborhood school. We compute a complete information Nash equilibrium of CADA.

Furthermore, we simulate DASTB. In this case, however, priorities introduce inefficiency,

that is the matching produced by DASTB or CADA does not need to be student-optimal.

Therefore, after computing a DASTB outcome, we find a student optimal stable matching

that Pareto dominates the outcome of DASTB via Erdil and Ergin’s (forthcoming) stable

improvement cycles algorithm, which we refer as the DASTB+SIC outcome.

In Figure 6, we compare CADA, DASTB and DASTB+SIC to the first best solution

which maximizes the sum of utilities by ignoring priorities. We plot the welfare of each

mechanism as the percentage of the welfare at the first best solution. Accordingly, CADA

outperforms DA-STB for all values of α. DASTB+SIC outperforms CADA up to α = 0.4.

However, note that this comes at the expense of incentives, as there is no student-optimal

and strategy-proof stable mechanism (Erdil and Ergin, forthcoming). When there is more

similarity among preferences, that is α = 0.5, CADA catches up with DASTB+SIC and

16Note that it is never optimal to select the fifth(last) choice as target.
17This assumption is in line with empirical observation in Boston.
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outperforms it as α gets bigger. In fact, DASTB+SIC loses its advantage over DASTB as

α gets bigger. This is due to the fact that the extent of inefficiency associated with DASTB

diminishes as α goes to one. In particular, in the extreme case of α = 1, every matching is

student optimal so that the stable improvement cycles algorithm has no bite. In contrast,

CADA allocates schools more efficiently than DASTB+SIC does for higher values of α.

DASTB+SIC assigns more students to their first choices than CADA does for low values

of α. The difference vanishes for large values of α. The equilibrium behavior of students

under CADA is similar, more and more students pick their lower ranked schools as their

target as α gets bigger.18 However, Figure 7 shows that more students utilize their target

choice for their neighborhood schools. The intuition behind this result is subtle. As more

and more students pick their lower ranked choices as their target in equilibrium, it becomes

tougher to compete for lower ranked schools especially for students who do not have high

priority in their lower ranked schools. In turn, those students pick their first choice more

frequently, which is their neighborhood school. However, this increases the competition at

first choice schools for students whose first choices are not their neighborhood schools. In

turn, they pick their lower ranked neighborhood schools as their target. In equilibrium,

more students pick their neighborhood schools as their target for larger values of α.

In summary, some similarity among preferences is expected in real-life school choice

programs. However, at those instances student optimality, therefore DASTB+SIC, has

little bite in improving ex ante efficiency. At those instances, CADA allocates schools more

efficiently from an ex ante point of view even though its outcome may be inefficient ex

post. CADA achieves this efficiency gain without harming student incentives, whereas ex

post student optimality necessarily implies the loss of strategy-proofness.

6 Discussion

6.1 Enriching the Auxiliary Message

The auxiliary message can be expanded to include more than one school, perhaps at the

expense of some practicality. In general, the auxiliary message can include a rank order of

schools up to k ≤ n, with the tie broken in the lexicographic fashion according to this rank

order: A student is reordered to be ahead of another one at the priority list of school i ∈ S
if and only if the former ranks it higher than the latter in the auxiliary message. We call

the associated CADA a CADA of degree k.

It is worth noting that the CADA of degree n coincides with the Boston mechanism if

the schools have no priorities and if all students have the same ordinal preferences. Such

18Additional graphs are available from the authors up on request.
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an enriching of the auxiliary message does not alter the qualitative features of CADA. In

particular, an argument analogous to that of Theorem 6 applies to CADA of any degree,

which has a rather surprising implication:

Theorem 7. If all students have the same ordinal preferences and the schools have no prior-

ities, then the Boston mechanism weakly Pareto dominates the DA algorithm. If µ(VU2 ) > 0,

then there exists a positive measure of students who are strictly better off from the Boston

mechanism than from a DA algorithm with any random tie-breaking procedure.

Expanding the auxiliary message may complicate the deliberation on the part of stu-

dents and may be practically cumbersome. The beauty of CADA is that the auxiliary

message can be kept as simple as practically manageable, if necessary, to k = 1 as has been

assumed before. What are the benefits from adding more schools in the message? Some

observations are easy to make. First, enriching the message does not generally guarantee

full Pareto efficiency. Consider Example 3 again. Allowing the students to include the

second message, or even a third message, does not make any difference: All students will

pick school 1 as their first target and school 2 as their second target, and the precisely the

same allocation will arise in equilibrium (which also coincides with one arising from DA-

STB). The enriching of message can have a second-order effect, though. The first example

illustrates the benefit side.

Example 4. (More is better) There are 4 schools, S = {1, 2, 3, 4}, and two types of

students V = {v1,v2}, each with µ(v1) = 3 and µ(v2) = 1.

v1
j v2

j

j = 1 20 20

j = 2 4 3

j = 3 1 2

j = 4 0 0

With CADA of degree 1, all students subscribe to school 1, so the allocation is completely

random with φ∗(vj) = (1
4
, 1

4
, 1

4
, 1

4
), j = 1, 2. With CADA of degree 2, all students pick

school 1 as their first target; but type 1 students pick school 2 as their second target whereas

type 2 students pick school 3 as their second target. Consequently, the allocation becomes

φ∗∗(v1) = (1
4
, 1

3
, 1

12
, 1

3
) and φ∗∗(v2) = (1

4
, 0, 3

4
, 0). This allocation φ∗∗ Pareto dominates φ∗,

although the former is not Pareto efficient.

A richer message need not be always better. A richer message space generates more

opportunities for a student to self select at different tiers of schools. But the alternative

opportunities may work as substitutes and militate each other. For instance, an opportunity
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to self select at a lower tier of schools may reduce a student’s incentive to self select at a

higher tier of schools, even though the latter kinds of self selection may be more important

from the social welfare perspective. This kind of “crowding out” arises in the next example.

Example 5. (More is worse) There are 4 schools, S = {1, 2, 3, 4}, and two types of

students V = {v1,v2}, with µ(v1) = 3 and µ(v2) = 1.

v1
j v2

j

j = 1 12 8

j = 2 2 4

j = 3 1 3

j = 4 0 0

Consider first CADA of degree 1. Here, all type 1 students choose school 1 as their

target, and all type 2 students choose school 2 as their target. In other words, the latter type

of students self select into the second popular school. The resulting allocation is φ∗(v1) =

(1
3
, 0, 1

3
, 1

3
) and φ∗(v2) = (0, 1, 0, 0). The expected utilities are EU1 = 4.33 and EU2 = 4.

In fact, this allocation is Pareto optimal.

Suppose now CADA of degree 2 is used. In equilibrium, type 1 students choose school

1 and 2 as their first and second targets, respectively. Meanwhile, type 2 students choose

school 1 (instead of school 2!) as their first target and school 3 as their second target. Here,

the opportunity for type 2 students to self select at a lower tier school (school 3) blunts their

incentive to self select at a higher tier school (school 2). The resulting allocation is thus

φ∗∗(v1) = (1
4
, 1

3
, 1

12
, 1

3
) and φ∗∗(v2) = (1

4
, 0, 3

4
, 0), which yield expected utilities of EU

1
= 3.75

and EU
2

= 4.25. This allocation is not PE since type 2 students can trade probability shares

of school 1 and 3 in exchange for probability share at 2, with type 1 students.

Even though φ∗ does not Pareto dominate φ∗∗, the former is PE whereas the latter is not.

Further, the former is superior to the latter in the Utilitarian sense (recall that students’

payoffs are normalized so that they aggregate to the same value for both types): the former

gives aggregate utilities of 17, the highest possible level, whereas the latter gives 15.5 (which

is 0.5 above the level that would arise from random assignment).

The last example suggests that the benefit from enriching the message space is not

unambiguous. This is a potentially important point. In practice, expanding a message space

adds a burden on the parents to be strategically more sophisticated. Hence avoiding such

a demand for strategic sophistication is an important quality for a procedure to succeed.

This makes the simple CADA (i.e., of degree 1) quite appealing. That this practical benefit

may not even involve a welfare sacrifice is reassuring about the simple CADA.
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6.2 Strategic Naivety

Since CADA involves some “gaming” aspect, albeit limited to tie-breaking, a natural con-

cern is that not all families may be strategically competent. This concern has arisen in

the context of the Boston mechanism. It has been observed that some significant percent-

age of families have played suboptimal strategies, for instance, wasting their second top

choices to schools that are so popular that students can get in those schools by listing

them as top choices. Such mistakes may arise because of the lack of knowledge about

how the system works or the difficulty with assessing how popular schools are. The same

concern may arise with respect to CADA, in that some families may not understand well

the role the auxiliary message plays in the system and/or they may not judge accurately

how over/undersubscribed various schools will turn out.

It is thus important to investigate how the CADA will perform when some families

are not strategically sophisticated. To this end, we consider students who are “naive” in

the sense that they always name their most preferred schools for target in the auxiliary

message. Naming the most preferred school appears to be a simple, but reasonable, choice

when she/he is unsure about the popularity of alternative schools or unclear about the

role the auxiliary message plays in the assignment. Such a strategy will indeed be a best

response for many situations, particularly if the first choice is distinctively better than

the rest of the choices, so it could be a good approximation. We assume that there is a

positive measure of students who are naive in this way, and the others know the presence

of these students and their behavior, and respond optimally against them. Surprisingly,

the presence of naive students do not affect the main welfare results in a qualitative way.

Theorem 8. In the presence of naive students, the equilibrium allocation of CADA satisfies

the following properties:

(i) The allocation is OE, and is thus pairwise PE.

(ii) The allocation is PE within the set K of oversubscribed schools.

(iii) If every student is naive, then the allocation is PE within K ∪ {l} for any undersub-

scribed school l ∈ J := S\K.

Theorem 8-(i) and (ii) are qualitatively the same as the corresponding parts of Theorem

5, except for Part (iii) of Theorem 5.19 Of course, the set of oversubscribed schools need

not be the same when some fraction of students are naive, so (even) these results do not

admit direct comparison between the case of fully rational students and the current case.

In particular, Theorem 8-(iii) does not mean that the Pareto efficient set of schools is larger

19Suppose there are three schools, S = {1, 2, 3}, and three types of students V = {v1,v2,v3}, with
µ(v1) = µ(v2) = µ(v3) = 1.
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when all students are naive than when there are no naive students. When every student

is naive, the set of oversubscribed schools coincides with the set of popular schools. When

no students are naive, however, the former is always weakly larger than the latter and can

be strictly larger (Recall Examples 1 and 3).

Nevertheless, the efficiency statement is very similar. In particular, Lemma 4-(ii) re-

mains valid in the current context, implying that any popular schools must be oversub-

scribed here as well. Hence, the same conclusion as Corollary 2 holds.

Corollary 4. In the presence of naive students, the equilibrium allocation of CADA is PE

within the set S∗ of popular schools.

We also investigate numerically the impact of naive players on average welfare via

simulations. To this end, we assume that a certain number of students play naively and

select their first choice as their target schools. Other students play their best responses in

a complete information Nash equilibrium. We run this simulation with 50 naive students,

with 75 naive students and with 100 (all) naive students. Figure 7 reports the average

percentage welfare with respect to to the first best with zero, 50, 75 and 100 (all) naive

students. The welfare patterns are similar. A bigger number of strategic players yields a

more efficient outcome. It is worth to note that CADA continues to outperform DA-STB

even when all players are naive.

6.3 CADA with “Safety Valve”

The preceding subsection has seen that the main welfare property of CADA remains valid

even when an arbitrary proportion of the student population behaves naively. This does

not mean, however, that naive students are not disadvantaged by the others who may make

strategic use of the message. It thus makes sense to provide an extra safeguard to those

who may feel unsure about how to play the CADA game. This can be done by augmenting

v1
j v2

j v3
j

j = 1 10 10 10
j = 2 1 8 9
j = 3 0 0 0

Suppose type 1 and 2 students are sophisticated while type 3 students are all naive. In this case, type 1
and 3 students submit school 1, and type 2 students submit school 2 as their target. Then, the resulting
ex ante allocation has φ∗(v1) = φ∗(v3) = ( 1

2 , 0,
1
2 ) and φ∗(v2) = (0, 1, 0). Although schools 1 and 2 are

oversubscribed, this allocation is not PE since it will be Pareto improving for type 2 students to trade
probability share of school 2 in exchange for probability shares at schools 1 and 3, with type 3 (naive)
students. Therefore, Theorem 5-(iii) does not extend to the case in which we have both sophisticated and
naive students.
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the message space to allow for an “exit option” and to treat those who invoke such an

option as if they are participating in the standard DA algorithm. Specifically, the CADA

can be modified as follows.

• All students submit ordinal preferences and auxiliary messages. In the auxiliary

message, a student can name a target school or say “Opt Out.”

• Random ordering of students are generated according to the standard method (e.g.,

STB). Then, run DA-STB using this priority list. (If a school has inherent priorities,

the random list is used only to break a tie within the same priority class.) Assign

those who have picked “Opt Out” according to this procedure.

• Assign the remaining students to the remaining seats, using the CADA algorithm.

Specifically, construct the choice-augmented priority list for each school, as described

before (using two random lists). Then, the assignment is made via the DA algorithm

using the choice-augmented priority.

Clearly, this modified algorithm gives each student the option of achieving precisely the

same lottery of assignments as she receives from the DA-STB. But she can choose to send

an active signal and do better.

Theorem 9. The CADA with the safety option makes every student (weakly) better off

than he/she is from the DA-STB.

6.4 Dynamic Implementation

As noted, the welfare benefit of CADA originates from the competitive markets it induces.

Unlike the usual markets where there are explicit prices, however, in the CADA-generated

markets, students’ beliefs about the relative popularity of schools act as the prices. Hence,

for the CADA to have the desirable welfare benefit, the students beliefs must be reason-

ably accurate. In practice, the students’ preferences tend to reflect the reputations that

schools have developed; thus, as long as the school reputations are stable, they can serve

as reasonably good proxies for the prices. Nevertheless, the students may not share the

same beliefs and the beliefs may not be accurate, in which case CADA procedure will not

implement the CADA equilibrium precisely.

The CADA equilibrium can be implemented more precisely by making the (shadow)

prices more explicit and by facilitating students’ ability to respond to them. Suppose, after

submitting their ordinal preferences (which is an once and for all decision), the students

can be asked to submit their auxiliary message in a dynamic fashion.
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In Round 1, the students submit the names of their target schools. At the end of Round

1, the students are allowed to see the population distribution of target school choices.20 In

Round m ≥ 2, the students are allowed to change their auxiliary messages. If the number

of students who have changed their auxiliary messages from the previous round is less than

some (pre-specified) threshold, then their choices in Round m become final, and CADA is

run, just as before, to produce a matching. If the number exceeds the threshold, then the

population distribution of choices is announced, and they move on to Round m+ 1.

Under this dynamic mechanism, a student’s choice matters only when most of the other

students do not alter their choices. It is thus optimal for students to simply best respond

to the announced distribution of population choices in the previous round. Clearly, the

resulting best-response dynamics will lead to a Nash equilibrium (i.e., a CADA equilibrium

discussed earlier), whenever the process converges. Although our dynamic process likely

converge in practice, activity rules can be added to facilitate the convergence. For instance,

limit cycles can be eliminated by preventing some small fraction of randomly selected

students from returning back to their original choices after deviating from them once or

twice.

7 Conclusion

In this paper, we propose a new deferred acceptance procedure in which students are al-

lowed, via signaling of their preferences, to influence how they are treated in a tie for a

school. This new procedure, choice-augmented DA algorithm (CADA), makes the most of

two existing procedures, the Gale-Shapely’s deferred acceptance algorithm (DA) and the

Boston mechanism. While the DA achieves the strategyproofness, an important property

in the design of school choice programs, it limits students’ abilities to communicate their

preference intensities, which entails an ex ante inefficient allocation when schools are indif-

ferent among students with the same ordinal preferences. The Boston mechanism, on the

other hand, is responsive to the agents’ cardinal preferences and may achieve more efficient

allocation than the DA, but fails to satisfy strategyproofness. We show that, by allow-

ing students to influence tie-breaking via additional communication, CADA implements a

more efficient ex ante allocation than the standard DA algorithms, without sacrificing the

strategyproofness of ordinal preferences.

20Alternatively, the clearinghouse may compute and display the probabilities of assignment to different
schools that would arise (from the CADA) from each choice, assuming that no other student alters her
auxiliary message.
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[4] Abdulkadiroğlu, A., Pathak, P., Roth, E., and Sönmez, T. (2006b), “Changing the

Boston Mechanism: Strategyproofness as Equal Access,” Unpublished manuscript,

Harvard University.
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Appendix A: Extensions of Algorithms to the Contin-

uous Environment

It is convenient to explicitly model the randomizing device used to break the ties. For our

purpose, it is sufficient to consider a vector ω = (ω1, ..., ωn) ∈ [0, n]n =: Ω of uniformly

and independently generated numbers. (The vector of ω will be sufficiently rich enough to

model the procedures we study.) Formally, we augment the type space by incorporating

the random draw to V × Ω =: Θ, with its generic element denoted θ := (v, ω), and endow

it with a product measure η = µ × ξ1 × ... × ξn, where ξi is a uniform measure satisfying

ξ([0, ωi]) = ωi
n

for each ωi ∈ [0, n]. This formalism avoids appealing to the law of large

numbers (on the continuum of agents), by ensuring that a fraction ωi
n

of the student mass

draws ωi or less on each i-th random variable. A student of type θ = (v, ω) is then

interpreted as having values v and drawing a vector ω. The student never observes ω, so

her action required by the procedure will be measurable with respect to only v; whereas

(part or all of) ω component is “discovered” by the schools for their use in tie-breaking.

An ex post allocation is a measurable function ψ := (ψ1, ..., ψn) : Θ 7→ ∆ such that

ψi(θ) ∈ {0, 1} and that
∫
ψi(θ)η(dθ) = 1 for each i ∈ S. Namely, ψ assigns a student with

v to school j upon drawing ω such that ψj(v, ω) = 1. Let Y be the set of all ex post

allocations. Later, we shall describe how each procedure generates an ex post allocation.

Some procedures may not use the entire vector of ω, so the ex post allocation they produce

may be measurable with respect to only some components of ω.

We define the alternative DA procedures here.

Ordinal preferences. In any DA algorithm, every student submits a ranking of

schools. Formally, students’ ordinal preferences are represented by a measurable function

P : Θ → Πn, where P (v, ω) ∈ Πn is an ordered list of n schools (ordered not necessarily

according to true preferences). Since the ω is unobserved by the students (at least at the

time of submitting the ordinal preferences), we require that P (v, ω) = P (v′, ω′) whenever

v = v′. We say a DA algorithm is ordinally strategy-proof if it is a (weak) dominant

strategy for each student with v to choose P (v, ω) = πn(v).

School priorities (tie-breaking rules). We introduce a tie-breaker function which

determines the priority of each student for each school as a function of the random draw

(as well as their auxiliary message in the case of CADA), in the event of a tie. Formally,

tie-breaker function for school i is a bounded measurable function Fi : Θ 7→ R, such that a

student θ′ is interpreted as having a higher priority than student θ if Fi(θ
′) < Fi(θ). A tie-

breaker is a profile F = {Fi : i ∈ S} of tie-breaker functions. Specifically, the tie-breakers

for DA-STB, DA-MTB, and CADA are determined as follows:
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• DA-STB: The STB rule uses the same tie-breaker function for all schools. This is

modeled by a tie-breaker with

Fi(v, ω1, ..., ωn) = ω1,

θ = (v, ω1, ..., ωn), for every school i ∈ S. In other words, a draw’s draw ω1 serves as

a priority number for all schools. Heuristically, a real number ω1 is drawn randomly

from an interval [0, n], for each student, which then serves as her priority score.21

• DA-MTB: The MTB rule produce a randomly and independently drawn priority list

for each school. This is modeled by a tie-breaker, with

Fi(v, ω1, ..., ωn) = ωi,

for i ∈ S and for each θ = (v, ω1, ..., ωn). In other words, for each student, a vector

(ω1, ..., ωn) of independent draws determines her priority scores at different schools.

• CADA: In CADA, each student sends an auxiliary message of a target school (in

addition to their ordinal preferences over schools). Given a (measurable) strategy

profile s : V → S determining the auxiliary message for each intrinsic type v, the

tie-breaker function for school i is given by

Fi(v, ω1, ..., ωn) =

{
ω1 if s(v) = i

n+ ω2 if s(v) 6= i

That is, under Fi, ties are broken first in favor of students who report i as their target

school, within them according to the random draw ω1, and then ties among the rest

are broken according to a random draw ω2 + n (where n act as a “penalty score” n).

Clearly, Fi is a measurable function since ω1 and s are measurable.

Definition of DA algorithms: Given ordinal preferences P and a tie-breaker F =

{Fi : i ∈ S}, a DA algorithm is defined as follows. First, we define a measurable function

ChFi over subsets of Θ as the set of best ranked students for school i ∈ S according to Fi
from a given set up to the capacity. Formally, for any measurable X ⊂ Θ, let

ChFi(X) := sup{Y ⊂ X|η(Y ) ≤ 1, Fi(θ) < Fi(θ
′),∀θ ∈ Y, θ′ ∈ X\Y }

denote the set of students chosen from X such that the set does not exceed the capacity

and that the chosen students have a higher priority than those not chosen.

21This heuristics invokes a law of large numbers, but our formal method does not rely on it for we assume
a well-behaved randomization device.
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Next, we define the DAF (deferred acceptance) mapping. Consider first a mapping

Q : Θ → Π, where Q(θ) is an ordered list of any k ≤ n schools. (Recall P (θ) is a special

case involving the full set of schools.) The DA mapping, Q′ = DAF(Q) ∈ Π is determined

as follows. Every student with θ applies to her most preferred school in Q(θ). Every school

i (tentatively) admits from its applicants in the order of Fi. If all of its seats are assigned,

it rejects the remaining applicants. If a student θ is rejected by i, Q′(θ) is obtained from

Q(θ) by deleting i in Q(θ). If a student θ is not rejected, then Q′(θ) = Q(θ). More formally,

let Ti(Q) = {θ ∈ Θ : i is ranked first in Q(θ)} be the set of students that rank i as first

choice. Note that Ti(Q) is measurable. Then each school i admits students in ChFi(Ti(Q))

and rejects students in Ti(Q)\ChFi(Ti(Q)). If θ ∈ Ti(Q)\ChFi(Ti(Q)) for some i ∈ S, then

Q′(θ) is obtained from Q(θ) by deleting i from the top of Q(θ); otherwise Q′(θ) = Q(θ).

Since Q is a measurable function, Q′ is also measurable.

Repeated application of the DAF mapping gives us the DA algorithm. That is, given

a problem (P,F), let Q0 = P and define Qt = DAF(Qt−1) for t > 0. Then Qt converges

almost everywhere to some measurable Q∗ (Theorem 10 below). The matching can be then

found by assigning θ to its top choice of Q∗(θ). Formally, define a mapping ψ(P,F) : Θ 7→ ∆

such that ψ
(P,F)
i (θ) = 1 if i is the top choice of Q∗(θ), and ψ

(P,F)
i (θ) = 0 otherwise. Since

the schools’ capacities are respected in each round and also in the limit, the mapping must

be an ex post allocation.

We present two main results:

Well-definedness of the Procedure. The existence of ψ(P,F) follows from the next

theorem.

Theorem 10. For every (P,F), DAtF(P ) converges almost everywhere to some measurable

Q∗ : Θ→ Π.

Proof. Define the set of rejected students as Rt = {θ : θ ∈ Ti(Qt)\ChFi(Ti(Qt)) for some

i ∈ S}. Then η(Rt) goes to zero as t goes to infinity. Otherwise, if η(Rt) ≥ κ > 0 for all

t, all the schools in every student’s preference would be deleted in finite time because of

finiteness of the number of schools, which in turn would imply that η(Rt) goes to zero, a

contradiction. Therefore, DAtF(P ) converges almost everywhere to some Q∗. Since every

Qt = DAtF(P ) is measurable, Q∗ is also measurable.

Ordinal Strategy-proofness. Fix arbitrary ordinal preferences P . Let P−v : V\{v} →
Πn denote the ordinal preferences of all students but v determined by P. Recall that

πn(v) ∈ Πn represents the truthful ordinal preference induced by v, that is πn(v) lists i

before j if and only if vi > vj. To simplify the notation, let ψP := ψ(P,F), with F sup-

pressed, and let ψ∗ := ψ(πn,P−[·],F) denote the matching outcome for any given type when it
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submits its ordinal preferences truthfully and the others report P . When students report

P , a student with type v receives expected utility of

Eω

[
v · ψP (v, ω)

]
.

Theorem 11. For every (P,F), it is a (weak) dominant strategy for every student to submit

her ordinal preferences truthfully to DA, that is, for all v ∈ V, P ,

Eω [v · ψ∗(v, ω)] ≥ Eω

[
v · ψP (v, ω)

]
.

Proof. It suffices to show that, for all θ = (v, ω),

v · ψ∗(v, ω) ≥ v · ψP (v, ω).

Suppose to the contrary that

v · ψ∗(v, ω) < v · ψP (v, ω), (3)

for some θ = (v, ω) and P . We show that there exists a finite many-to-one matching

problem for which a DA algorithm fails strategy-proofness, which will then constitute a

contradiction to the standard strategy-proofness result (Dubins and Friedman, 1981; Roth,

1982).

To begin, fix any K ∈ N+, and construct a discretization of (P, F ) for θ as follows: For

every z = (z1, ..., zn) and y = (y1, ..., yn) where zi, yj ∈ {0, ..., K}, consider a set

Θz,y =

{
(ṽ, ω̃) ∈ Θ :

zi
K
≤ ṽi ≤

zi + 1

K
,
nyj
K
≤ ω̃j ≤

n(yj + 1)

K
, i, j ∈ S

}
.

Let ηK,min = min
Θz,y

η(Θz,y), and let #Θz,y be the integer part of η(Θz,y)

ηK,min
.

Pick #Θz,y students in total from every set Θz,y at random without repetition. Let

{θl} denote the set of students that are picked. If |{θ
l}|
n

is not an integer, pick additional

students from the larger sets until obtaining an integer |{θ
l}|
n
. Note that the number of

additional students to be picked this way is less than n and n is fixed, therefore this will be

negligible in the limit as K goes to infinity. Now consider the problem in which the set {θl}
of students are to be assigned to a set S of schools each with capacity |{θ

l}|
n
. Each student

θl = (vl, ωl)’s strict ordinal preference is given by P (θl). The schools’ strict preferences are

given by F . Denote this problem by ({θl}, S, P,F)K , and the associated ex post allocation

ψPK . As K goes to infinity, ({θl}, S, P,F)K approximate (Θ, S, P,F) arbitrarily closely.

Hence, ψPK →a.e ψ
P and ψ

πn(v),P−v

K →a.e. ψ
∗ as K → ∞. Hence, if (3) holds, then there

exists K such that

v · ψ∗K(v, ω) < v · ψPK(v, ω).

This contradicts the fact that, in every finite problem, submitting true preferences to the

student-proposing deferred acceptance mechanism is a dominant strategy for every student

(Dubins and Friedman, 1981; Roth, 1982).
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Appendix B: Proofs of the Main Results

Proof of Lemma 3. Consider the first cutoff ĉ1. Suppose this is the cutoff for school

i. Take any student. If the student’s top choice is not i. Then, if she ever gets to school

i — meaning she is turned down by schools she lists ahead of i — then it means that her

draw ω > ci, so she will never get into school i. This means that only students whose most

preferred school is i can only get assigned to school i. It then follows that mi · ĉ
1
i

n
= 1,

so ĉ1
i = n

mi
. For ĉ1 to be the lowest cutoff, we must have ĉ1 = n

maxi∈Smi
. Hence, a most

popular school has the lowest cutoff. We conclude that ĉ1 is uniquely determined by m

(more precisely, by max{mi}, which is a function of m). Since maxi∈Smi ≥ 1, ĉ1 ∈ (1, n].

We work recursively to define the rest of the cutoffs. Suppose that cutoffs {ĉj}, j < k,

are uniquely determined by m such that ĉi ≤ ĉj ≤ n for all 1 ≤ i < j ≤ k − 1. Let the

cutoff ĉj, j ≤ k − 1, be the cutoff of school κ(j) ∈ S, where κ : {1, ..., k − 1} 7→ S is

one-to-one. We now determine ĉk uniquely as a function of m and establish ĉk ≥ ĉk−1. Let

Sk−1 := {j|j = κ(j′) for some j′ ≤ k− 1} be the associated set. Suppose that the cutoff ĉk

determines the cutoff of school i ∈ S\Sk−1. Then, arguing as before, a student who prefers

a school j ∈ S\(Sk−1 ∪ {i}) to each school in Sk−1 ∪ {i} never stands a chance to get in i.

(Clearly, κ, Sk−1 and ĉj all depend on m, which we suppress for convenience.)

For any nonempty subset S ′ ⊂ Sk−1, let Π̂(S ′) be the set of all permutations of S ′. Let

χ(S ′) := {j ∈ S ′|κ−1(j) ≥ κ−1(j′),∀j′ ∈ S ′} be the school which has the highest index in

Sk−1, meaning that χ(S ′) will be the school that has the largest cutoff among S ′ (yet still

has a lower cutoff than ĉk. Then, for school i to have cutoff ĉk, the cutoff must be ĉk = ĉki ,

where ĉki satisfies

mi ·
ĉki
n

+
∑

S′⊂Sk−1

 ∑
τ⊂Π̂(S′)

m(τ,i)

(
ĉki − ĉχ(S′)

n

) = 1,

or

ĉki =
n+

∑
S′⊂Sk−1

[
ĉχ(S′)

(∑
τ⊂Π̂(S′) m(τ,i)

)]
mi +

∑
S′⊂Sk−1

(∑
τ⊂Π̂(S′) m(τ,i)

) .

Let ĉk := min{n,minj∈S\Sk−1 ĉkj}, and i = κ(k) := arg minj∈S\Sk−1 ĉkj . Note that this

definition conforms to the case of k = 1. We must have

mi ·
ĉk

n
+

∑
S′⊂Sk−1

 ∑
τ⊂Π̂(S′)

m(τ,i)

(
ĉk − ĉχ(S′)

n

) ≤ 1, (4)

where the inequality holds with equality if ĉk < n. We next show that ĉk ≥ ĉk−1. Suppose
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to the contrary that ĉk < ĉk−1 ≤ n. We can rewrite (4) (with equality) as

mi ·
ĉk

n
+

∑
S′⊂Sk−2

 ∑
τ⊂Π̂(S′)

m(τ,i)

(
ĉk − ĉχ(S′)

n

)+

∑
S′⊂Sk−1,S′ 6⊂Sk−2

 ∑
τ⊂Π̂(S′)

m(τ,i)

(
ĉk − ĉχ(S′)

n

) = 1.

Hence,

mi ·
ĉk

n
+

∑
S′⊂Sk−2

 ∑
τ⊂Π̂(S′)

m(τ,i)

(
ĉk − ĉχ(S′)

n

) ≥ 1,

from which it follows that ĉki ≤ ĉk < ĉk−1, contradicting the definition of ĉk−1.

Let l ∈ S\Sn−1 be the last school left. We prove ĉnl = n. Recall

ĉnl =
n+

∑
S′⊂Sn−1

[
ĉχ(S′)

(∑
τ⊂Π̂(S′) m(τ, l)

)]
ml +

∑
S′⊂Sn−1

(∑
τ⊂Π̂(S′) m(τ, l)

) . (5)

The denominator of (5) measures of all students, so it equals n.22 The second term in the

numerator of (5) becomes, when divided by n,

∑
S′⊂Sn−1

 ĉχ(S′)

n

 ∑
τ⊂Π̂(S′)

m(τ,l)

 ,
which measures all students who are assigned to Sn−1 and thus equals the sum of all terms

on the left side of (4) across k = 1, ..., n− 1. It thus follows that

∑
S′⊂Sn−1

 ĉχ(S′)

n

 ∑
τ⊂Π̂(S′)

m(τ,l)

 ≤ n− 1. (6)

Substituting (6) into (5) gives

ĉnl ≤
n+ n(n− 1)

n
= n.

To prove ĉnl = n, suppose ĉnl < n. Then, by monotonicity, ĉk ≤ ĉn ≤ ĉnl < n, so (4) must

hold with equality for all k = 1, ..., n − 1, which means that (6) must hold with equality.

Therefore, ĉnl = n, a contradiction. We conclude that ĉn = ĉnl = n.

22The denominator consists of measures of all students whose most preferred school is l, and of all the
student whose second preferred school is l, and so on and so forth, thus telescoping to the sum of all
students.
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Although it is possible for ĉk = ĉk+1 for some i = 1, ..., n− 1, it is easy to see that this

is not generic. If ĉk = ĉk+1, this means that there are i 6= j such that ĉki = ĉk+1
j , which

entails a loss of dimension for m within M. Hence, the Lebesque measure of the set of m’s

involving such a restriction is zero. It thus follows that ĉi < ĉj if i < j for a generic m.

Proof of Theorem 2. The proof is a direct application of Theorem 2 of Mas-Colell (1984).

Proof of Lemma 4. Part (i) follows trivially since such a student can name that school

as the target and get assigned to it with probability one. To prove part (ii) consider any

student of type v, whose values are all distinct. There are µ-a.e. such v. Suppose her

most-preferred school π1(v) =: i is undersubscribed and not a worst school. It is then her

best response to pick i as her target, since doing so can guarantee assignment to i for sure,

whereas choosing some other school as the target may result in assignment to some other

school. Hence, the student must be choosing i as her target in equilibrium.

To prove part (iii), consider any v (with distinct values), such that π1(v) 6= w. Suppose

first ν∗i (v) > 0 for some oversubscribed school i. It follows from the above observation

that her most preferred school must be an oversubscribed school (not necessarily i). Given

the distinct values, she must strictly prefer school i to all undersubscribed schools. Hence,

she lists i ahead of all undersubscribed schools in her ordinal list. Whenever she picks i,

she will fail to place in any oversubscribed schools other than i that she may list ahead

of i, so she will apply to school i with probability one. Suppose next ν∗j (v) > 0 for some

undersubscribed school j. Then, the student must prefer j to all other undersubscribed

schools, so she will apply to j with probability one whenever she fails to place in any

oversubscribed school she may list ahead of j in the ordinal list. Whenever she picks j as

her target, she is surely rejected by all oversubscribed schools she may list ahead of j, so

she will apply to j with probability one. We thus conclude that ν∗(v) = ν̄∗(v) for µ-a.e.

v.

Proof of Theorem 3:

Part (i): By definition, the most popular school has the lowest cutoff say ĉ1. No student

whose most preferred school is not the most popular school will never be assigned to that

school, since whenever she fails to get into a more preferred school than the most popular

school, she must have a draw ω > ĉ1.

Part (ii): Let ψS be the ex post allocation arising from DA-STB. We show there is

no ex post allocation that Pareto dominates ψS. To this end, list S = {i1, ..., in} in the

ascending order of the equilibrium cutoffs of the scores (with the schools with the same

cutoff listed in an arbitrary order), i.e., ik has a weakly lower cutoff than il if k < l. Any
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student assigned to a school say ik ∈ S must have listed that school ahead of every school

il with l > k (i.e., a weakly higher cutoff) in the ordinal ranking; or else, she could never

have been assigned to ik. Given the ordinal strategyproofness (Theorem 11), almost all

these students must be strictly worse off from being reassigned to any school il with l > k.

Suppose to the contrary that an ex post allocation, say ψ̃, Pareto dominates ψS. There

must be a school ik ∈ S such that a positive measure of θ’s assigned to ik under ψS must

be assigned to some other school(s) under ψ̃. Let ik∗ be such a school with the smallest

cutoff index k∗. Then, almost all types reassigned from ik∗ must be reassigned to school

il, with l > k∗, under ψ̃. Almost all such student type must be strictly worse off from the

reassignment. Hence, ψ̃ cannot Pareto dominate ψ∗, a contradiction.

Part (iii): By Lemma 3, for a generic m, the cutoff scores are distinct. Fix any such

m, and let ĉ1 < ... < ĉn be the cutoff scores. Let κ̄ : S 7→ S be a permutation such that

ĉi = ĉiκ̄(i), and let τ̄ = (κ̄(1), ..., κ̄(n)) be the resulting list of schools. Now consider the set

of Vτ̄ := {v ∈ V|vκ̄(i) > vκ̄(j) if i < j} student types that have the same preference order

as τ̄ . We first prove that any such student type has positive probability of assigning to

every school in DA-STB. This can be shown as follows. By the full support assumption,

mτ̄ = µ(Vτ̄ ) > 0. For any school i ∈ S, a student type v ∈ Vτ̄ will be assigned to that

school whenever her draw ω lies in between ĉκ̄
−1(i)−1 and ĉκ̄

−1(i) (let ĉ0 ≡ 0), since her draw

will not be low enough to get in any school she prefers but low enough to get in i. Hence,

her probability of getting assigned to school i is ĉκ̄
−1(i)−ĉκ̄−1(i)−1

n
> 0 since the cutoffs are

distinct.

Take any K = {k1, k2, k3} ⊂ S. We show that the DA-STB allocation φS fails to be

PE within K. Consider again the student type v ∈ Vτ̄ . Without loss, vk1 > vk2 > vk3 for

any such type. By the above observation, φSki(v) > 0 for i = 1, 2, 3. By the full support

assumption, there is a Pareto dominating within-K reallocation of φS among the student

types in Vτ̄ . Those with a high vk2 relative to (vk1 , vk3) sell shares at (k1, k3) in exchange for

an increased share at k2, with those with a low vk2 relative to (vk1 , vk3). We thus conclude

that there exists no K with |K| = 3 such that φS is PE within K. The statement holds

then by Lemma 2-(i) and (iii).

Proof of Theorem 4:

Part (i): For generic m, there are at least two schools, say i and j, whose cutoffs are

strictly below n, so a positive measure of those who prefer either of these schools the most

are not assigned to that school. A positive measure of those who prefer i the most but

not assigned to i have k ∈ S\{i} as the second most preferred school and are assigned to

it with positive probability. Similarly, a positive measure of those who prefer j the most

but not assigned to j have i as the second most preferred school and are assigned to it

41



with positive probability. Hence, a positive measure of seats at every school are assigned

to those who do not prefer that school the most.

Part (ii): Fix any i ∈ S\{w}. Any student who prefers school w to school i, ranks

w higher than school i. Since w is the worst school with cutoff score n, such a student is

never assigned to school i. Consequently, any students who are assigned to school i are

those who prefer i to w. Hence, almost all of those assigned to i under DA-MTB will be

strictly worse off from getting reassigned w. This proves that there is no within-{i, w} ex

post reallocation of the DA-MTB allocation that Pareto dominates it. Hence, by Lemma

2-(iii), the DA-MTB allocation is OE and PE within {i, w} for any i ∈ S\{w}.

Part (iii): Choose any two schools {i, j} for i, j ∈ S\{w}. Generically, there are a

positive measure of students whose best school is i and the second best is j and a positive

measure of students whose best school is j and the second best is i, respectively. Since

neither school i nor j is a worst school, their cutoffs are strictly less than n. Hence, a

positive measure of the former type is assigned to school j and a positive measure of the

latter type is assigned to school i. Clearly, the allocation from DA-MTB is not OE within

{i, j}. The result follows from Lemma 2-(i) and (iii).

Part (iv): This part follows directly from Part (iii) since any three schools include two

schools that are not the worst school and since generically there is only one worst school.

Proof of Theorem 5: Proof of Part (i) builds on that of part (ii), so it will appear last.

Throughout, we let K and J be the sets of over- and under-subscribed schools.

Part (ii): Let ν∗(·) be an equilibrium, and let φ∗(·) be the ex ante allocation induced

by ν∗(·). For any v ∈ V , consider an optimization problem:

[P (v)] max
x∈∆K

φ∗(v)

∑
i∈S

vixi

subject to ∑
i∈K

pixi ≤
∑
i∈K

piφ
∗
i (v),

where pi ≡ max{
∫
ν∗i (ṽ)dµ(ṽ), 1}.

We first prove that φ∗(v) solves [P (v)]. This is trivially true for any v with π1(v) = w

since xi = φ∗i (v) = 0, i ∈ K must hold by Lemma 3 (ii). Based on this observation, in the

rest of the proof, we will restrict attention to students whose most preferred school is not

the worst school.

Consider now any x ∈ ∆K
φ∗(v) satisfying the constraint of [P (v)], and suppose a type

v-student faces all others playing their parts of the equilibrium strategies ν∗ under the

original CADA game. Consider a strategy called si in which she picks school i ∈ S as her
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target in her auxiliary message and submits it as her top choice in her ordinal list, and

but submits truthful ordinal list otherwise. If type v plays strategy si, then she will be

assigned to school i with probability

1

max{
∫
ν∗i (ṽ)dµ(ṽ), 1}

=
1

pi
.

If i ∈ J , this probability is one. If i ∈ K, then she will be rejected by school i with positive

probability. In that event, she will pass through the DA process according to her true

ordinal preferences, and will be assigned based on her non-target draw of score ω2. Since

she will never be assigned to any other schools in K, she will only be assigned to a school

in J . Which school in J she is assigned to is determined solely by ω2 (holding fixed the

student’s ordinal rankings), and her draw of ω2 is independent of her draw of ω1 (which

determined her assignment to i). Hence, the conditional probability of a student getting

assigned to j ∈ J , is the same, regardless of which oversubscribed school i ∈ K turned him

down. Note let that conditional probability be φ̄∗j(v). Obviously,
∑

j∈J φ̄
∗
j(v) = 1.

In summary, when playing si, i ∈ K she will be assigned to school j ∈ J with probability(
1− 1

pi

)
φ̄∗j(v).

Suppose now the type v student randomizes by choosing “strategy si” with probability

yi := pixi, for each i ∈ K, and with probability

yj := ν∗j (v) +

[∑
i∈K

(v∗i (v)− pixi)
(

1− 1

pi

)]
φ̄∗j(v),

for each j ∈ J . Observe yj ≥ 0 for all j ∈ S. This is obvious for j ∈ K. For j ∈ J , this

follows since the terms in the square brackets are nonnegative:∑
i∈K

(v∗i (v)− pixi)
(

1− 1

pi

)
=
∑
i∈K

(piφ
∗
i (v)− pixi)

(
1− 1

pi

)

=

[∑
i∈K

pi(φ
∗
i (v)− xi)

]
−

[∑
i∈K

(φ∗i (v)− xi)

]
=
∑
i∈K

pi(φ
∗
i (v)− xi)

≥ 0,

where the first inequality is implied by Lemma 3-(iii), the third equality holds since x ∈
∆K
φ∗(v), and the last inequality follows from the fact that x satisfies the constraint of [P (v)].
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Further,

∑
i∈S

yi =
∑
i∈K

pixi +
∑
j∈J

[
ν∗j (v) +

[∑
i∈K

(v∗i (v)− pixi)
(

1− 1

pi

)]
φ̄∗j(v)

]

=
∑
i∈K

pixi +
∑
j∈J

ν∗j (v) +
∑
i∈K

[
(ν∗i (v)− pixi)

(
1− 1

pi

)](∑
i∈J

φ̄∗j(v)

)

=
∑
i∈K

pixi +
∑
j∈J

ν∗j (v) +
∑
i∈K

[
(ν∗i (v)− pixi)

(
1− 1

pi

)]
=
∑
i∈K

ν∗i (v) +
∑
j∈J

ν∗j (v) +
∑
i∈K

(φ∗i (v)− xi)

=
∑
i∈S

ν∗i (v) = 1.

The third equality holds since
∑

i∈J φ̄
∗
i (v) = 1, the fourth is implied by Lemma 4-(iii), and

the fifth follows since x ∈ ∆K
φ∗(v), (which implies

∑
i∈K xi =

∑
i∈K φ

∗(v)).

By playing the mixed strategy (y1, ..., yn), the student is assigned to school i ∈ K with

probability
yi
pi

= xi,

and to each school j ∈ J with probability

yj +

[∑
i∈K

yi

(
1− 1

pi

)]
φ̄∗j(v)

= ν∗j (v) +

[∑
i∈K

(ν∗i (v)− pixi)
(

1− 1

pi

)]
φ̄∗j(v) +

[∑
i∈K

pixi

(
1− 1

pi

)]
φ̄∗j(v)

= ν∗j (v) +

[∑
i∈K

ν∗i (v)

(
1− 1

pi

)]
φ̄∗j(v)

= ν∗j(v) +

[∑
i∈K

ν∗i (v)

(
1− 1

pi

)]
φ̄∗j(v)

= φ∗j(v) = xj.

In other words, the student v can replicate any x ∈ ∆K
φ∗(v) that satisfies

∑
i∈K pixi ≤∑

i∈K piφ
∗
i (v) by playing a strategy available in the CADA game. Since φ∗(·) solves the

CADA game and is still feasible in more constrained problem [P (v)], it must solve [P (v)].

Moreover, since µ is atomless and [P (v)] has a linear objective function on a convex set,

φ∗(v) must be the unique solution to [P (v)] for µ-a.e. v.
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We prove the statement of the theorem by contradiction. Suppose to the contrary that

there exists an allocation φ(·) ∈ XK
φ∗ that Pareto dominates φ∗(·). Then, for µ-a.e. v, φ(v)

must either solve [P (v)] or violate the constraint. For µ-a.e. v, the solution to [P (v)] is

unique and coincides with φ∗(v). Therefore, we must have∑
i∈K

piφi(v) ≥
∑
i∈K

piφ
∗
i (v), (7)

for µ-a.e. v. Further, there must exist a set A ⊂ V with µ(A) > 0 such that each student

v ∈ A must strictly prefer φ(v) to φ∗(v), which must imply (since φ∗(v) solves [P (v)])∑
i∈K

piφi(v) >
∑
i∈K

piφ
∗
i (v), ∀v ∈ A. (8)

Combining (7) and (8), we get∫ ∑
i∈K

piφi(v)dµ(v) >

∫ ∑
i∈K

piφ
∗
i (v)dµ(v)

⇔
∑
i∈K

pi

∫
φi(v)dµ(v) >

∑
i∈K

pi

∫
φ∗i (v)dµ(v). (9)

Now since φ(·) ∈ X , for each i ∈ S,∫
φi(v)dµ(v) = 1 =

∫
φ∗i (v)dµ(v).

Multiplying both sides by pi and summing over K, we get∑
i∈K

pi

∫
φi(v)dµ(v) =

∑
i∈K

pi

∫
φ∗i (v)dµ(v),

which contradicts (9). We thus conclude that φ∗ is Pareto optimal within K.

Part (iii): Consider the following maximization problem for every v ∈ V :

[P (v)] max
x∈∆

∑
i∈S

vixi

subject to ∑
i∈K

pixi ≤ 1. (10)

When we have only one undersubscribed school, called school n, the allocation xn is

completely pinned down by the allocation among n− 1 oversubscribed schools, that is,

xn = 1−
∑
i∈K

xi.
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Therefore, an allocation x ∈ ∆ is feasible in CADA game if (and only if) (10) holds.

Now consider the following maximization problem:

[P
′
(v)] max

x∈∆

∑
i∈S

vixi

subject to ∑
i∈K

pixi ≤
∑
i∈K

piφ
∗
i (v). (11)

Since φ∗(·) solves less constrained problem [P (v)] and is still feasible in [P
′
(v)], it must

be an optimal solution for [P
′
(v)]. The rest of the proof is shown by the same argument

as in Part (i).

Part (i): The argument in the text already established that the allocation cannot admit

a trading cycle that includes both oversubscribed and unsubscribed schools. It cannot admit

a trading cycle comprising only oversubscribed schools, since the allocation is PE within

these schools, by Part (ii), making it OE within the schools, by Lemma 2-(ii). It cannot

admit a trading cycle comprising only undersubscribed schools, since the logic of Theorem

3-(ii) implies that it is OE within undersubscribed schools. Since the allocation cannot

admit any trading cycle, it must be OE.

Proof of Lemma 5. We can show that, if a school j > 1 is oversubscribed, then school j−1

is oversubscribed. (Those who pick j as target should have picked j, giving a contradiction.)

It then suffices to show that at least schools {1, 2} are oversubscribed. Suppose not.

Then, only school 1 is oversubscribed in equilibrium. Suppose mass m2 < 1 of students

pick school 2 as their target; and all other mass n − m2 pick school 1 as their target.

(No student picks school j > 2, since picking school 2 will guarantee enrollment, which

dominates choosing any school j > 2.) Pick any student with v such that
Pn
i=1 vi
n

< v2. If

the student picks school 2, she can guarantee the payoff of v2. If the student picks school

1, she can get

v1
1

n−m2

+ v2
1−m2

n−m2

+ (
n∑
i=3

vi)
1

n−m2

= (
n∑
i=1

vi)
1

n−m2

− v2
m2

n−m2

,

which is less than v2. Hence, all such students must be choosing 2 as their target. Since

there is more than unit mass of such students, school 2 cannot be undersubscribed, which

contradicts the hypothesis that only school 1 is oversubscribed.

Proof of Theorem 6: Consider first a DA algorithm with any random tie-breaking. Since

all students submit the same rank order over schools, they all must be assigned to each

school with the same probability. In other words, the allocation must be

φDA(v) = (
1

n
, ...,

1

n
) for all v.
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Consider now CADA algorithm. Let ν∗(v) ∈ ∆ be the equilibrium mixed strategy

adopted by type v. Then, a measure

α∗i :=

∫
ν∗i (v)dµ(v)

of students pick i ∈ S for their target in equilibrium. The equilibrium induces a mapping

ϕ∗ : S 7→ ∆, whereby a student is assigned to school j with probability ϕ∗j(i) if she picks i

for her target.

Since in equilibrium, the capacity of each school is filled, we must have, for each j ∈ S,∑
i∈S

α∗iϕ
∗
j(i) = 1. (12)

That is, a measure α∗i of students pick i for their target, and a fraction ϕ∗j(i) of those is

assigned to school j. Summing the product over all i then gives the measure of students

assigned to j, which must equal its capacity, 1.

Consider a student with any arbitrary v ∈ V . Suppose she randomizes in her auxiliary

message by choosing school i with probability

yi :=
α∗i∑
j α
∗
j

=
α∗i
n
.

Then, the probability that she will be assigned to any school k is∑
j

yjϕ
∗
k(j) =

∑
j

α∗j
n
ϕ∗k(j) =

1

n
,

where the second equality follows from (12). That is, she can replicate the same ex ante

assignment with the randomization strategy as φDA(v). Hence, the student must be at

least weakly better from CADA. This proves the first statement.

We next prove the second statement. There are two cases. Suppose first school 2 is

undersubscribed. Then, each student with v ∈ VU2 can pick school 2 for her target and

guarantee assignment to school 2. The resulting payoff, v2, exceeds
∑

i∈S
vi
n

(since v ∈ VU2 ),

so every such student must be strictly better off in CADA than in the DA and we are done.

Suppose therefore school 2 is oversubscribed. Then, school 1 must be also oversubscribed.

This means that α∗2 ∈ [1, n) in the CADA equilibrium.

[TO BE COMPLETED.]

Proof of Theorem 8: Part (i) is precisely the same as Part (i) of Theorem 5 and is

the consequence of Part (ii) below and Part (ii) of Lemma 2 (which does not depend on

whether the students are naive or not). Hence it is omitted. To prove Part (ii), it is useful
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to establish the following lemma. As before, let φ∗ denote the ex ante allocation arising

from the CADA game and let K and J = S\K be respectively the sets of oversubscribed

and undersubscribed schools in equilibrium.

Lemma N: Any reassignment of φ∗(v) within K will make a naive student with v strictly

worse off, for almost every v.

Proof: Consider a naive student with v. Assume without loss of generality that she

prefers i strictly over all other schools (i.e., vi > vj, ∀j 6= i). (This is without loss of

generality since the values are distinct for almost every student type.) Since the student is

naive, she subscribes to school i with probability 1. If school i is undersubscribed, then the

result is trivial since φ∗k(v) = 0 for all k ∈ K. Hence, suppose school i is oversubscribed.

Then, any reassignment x ∈ ∆K
φ∗(v) must satisfy∑

j∈K

xj = φ∗i (v)

Since vi > vj ∀j 6= i, for any x ∈ ∆K
φ∗(v), x 6= φ∗i (v), we must have∑

j∈K

xjvj <
∑
j∈K

xjvi = φ∗i (v)vi,

which implies that the student must be strictly worse off from any such reassignment. ‖

We are now ready to prove Parts (ii) and (iii):

Part (ii): We make use of the proof of Theorem 5. By Lemma N, a type-v naive

student’s assignment from the CADA, φ∗(v), is a unique solution to [P (v)], for a.e. v,

even without the constraint ∑
i∈K

pixi ≤
∑
i∈K

piφ
∗
i (v). (13)

Since φ∗(v) is feasible under (13), this must be a unique solution to [P (v)].

For a non-naive student with a.e. v, the proof of Theorem 5 follows directly, so φ∗(v),

is also a unique solution of [P (v)]. Since the equilibrium assignment of both types solves

[P (v)], the rest of the argument in the proof of Theorem 5 applies, proving that we φ∗ is

PE within K. ‖

Part (iii): Again let φ∗ be the ex ante allocation arising from CADA. Suppose to the

contrary that there exists a within-K ∪ {l} reallocation φ̃ of φ∗ that Pareto dominates φ∗.

By Part (ii), φ∗ is PE within K, so φ̃l(v) 6= φ∗l (v) for a positive measure of v, which in

turn implies that there exists a set A ⊂ V with µ(A) > 0 such that φ̃l(v) > φ∗l (v) for each
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v ∈A. Since φ̃(v) ∈ ∆
K∪{l}
φ∗(v) ,

∑
j∈K∪{l} φ̃j(v) =

∑
j∈K∪{l} φ

∗
j(v), so∑

j∈K

φ̃j(v) <
∑
j∈K

φ∗j(v) for all v ∈A.

Assume without loss that v satisfies vi > vj for all i ∈ K and for all j 6= i. (i 6= l since

φ̃l(v) > φ∗l (v) is impossible if i = l.) Then, the type-v student’s expected payoff from φ̃ is∑
j∈S

φ̃j(v)vj =
∑
j∈K

φ̃j(v)vj + φ̃l(v)vl +
∑

j∈J\{l}

φ∗j(v)vj

<
∑
j∈K

φ̃j(v)vi +
(
φ̃l(v)− φ∗l (v)

)
vi + φ∗l (v)vl +

∑
j∈J\{l}

φ∗j(v)vj

=

 ∑
j∈K∪{l}

φ̃j(v)− φ∗l (v)

 vi +
∑
j∈J

φ∗j(v)vj

=
∑
j∈S

φ∗j(v)vj.

Since this inequality holds for almost every v ∈ A, and since µ(A) > 0, φ̃ cannot Pareto

dominate φ∗.

Appendix C: Simulations

There are 5 schools each with a capacity of 20 seats and 100 students. Fix α. We indepen-

dently draw 100 sets of vNM values for students. Let {vsij} denote a draw of vNM values,

where superscript s denote the draw and vsij denotes student i’s vNM value for school j.

Given a draw {vsij}, fix the mechanism, define the following: psij is the probability that

student i is assigned school j under the mechanism. rsi (k) is the school that is ranked k-th

in i’s preference list. P s is the set of popular schools. Os is the set of oversubscribed schools

in an equilibrium of CADA with no naive players.

Given the mechanism, for each draw s, we calculate the following:

vs =
1

100

∑
i

∑
j

psijv
s
ij

where vs is the mean utility of all students.

A first best or utilitarian maximum solves

vsFB =
1

100
max
{p̂sij}

∑
i

∑
j

p̂sijv
s
ij
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Let {p̄sij} denote a solution to the first best. There may be multiple solutions, we arbitrarily

pick one.

Furthermore, we calculate

πs1 =
1

100

∑
i

∑
j

psij.1(rsi (1) = j)

where πs1 is the average probability of assigning a student her first choice.

In the CADA experiments with naive players, we divide the set of students into two:

N is the set of naive players who always pick their first choice as target, and S is the

set of strategic/sophisticated players who play their best response strategies given others’

strategies. We calculate the mean-utilities accordingly.

We also compute the number of students picking their k-th choice as their target school

in equilibrium, which we denote by T sk , k ∈ {1, 2, 3, 4}
Given a draw {vsij}, the set P s is determined trivially. Next we describe how the other

numbers are computed.

A single tie breaker is a list of 100 randomly drawn numbers, one for each student. Under

DA-STB the ties at a school are broken according to students’ single random numbers. In

CADA, we draw two single tie breakers, one to be used to break ties at one’s target school,

the other to be used at one’s other schools. A multiple tie breaker is a list of 100× 5 = 500

randomly drawn numbers, one for each student at each school. Under DA-MTB, the ties

at a school are broken according to students’ tie breaker numbers at that school.

For each draw {vsij}, we independently draw 2,000 single tie breakers for DA-STB, and

an additional set of 2,000 single tie breakers for CADA, and 2,000 multiple tie breakers for

DA-MTB. Then psij for a mechanism is computed by

Number of tie breakers at which i is assigned j

2, 000

The equilibrium of CADA is computed with single tie breakers being fixed. Given the

strategies of other students, a student’s best response is found by computing that student’s

expected utility over those tie breakers. Then Os, the set of oversubscribed schools, is

found by using students’s equilibrium target schools. In experiments with naive players,

naive players’ target schools are fixed at their first choice.

Note that we are approximating the equilibrium by drawing (two sets of) 2,000 indepen-

dent tie-breakers. The exact numbers are computed by considering 100! single tie-breakers

and (100!)5 multiple tie breakers, which is beyond the capabilities of our computational

resources. Any further increase in the number of tie breakers beyond 2,000 does not in-

crease the precision of our compuations significantly. Also, we are picking an equilibrium

arbitrarily from a set of possibly multiple equilibria.
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For each zs ∈ {vs, vsFB, πs1, T s1 , T s2 , T s3 , T s4 , |P s|, |Os|}, we compute the average of zs by

z =
1

100

100∑
s=1

zs

Note that we drop all “s” from a variable to denote its mean over 100 iterations of an

experiment.

We report 100 v
vFB

in our welfare figures.
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Figure 1: Welfare as Percentage of First Best
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Figure 2: Percentage of Students Getting Their First Choice

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

alpha

CADA DASTB DAMTB



Figure 3: Average Utility of Receivers of kth Choice, CADA vs DASTB
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Figure 4: Average Number of Popular Schools and Oversubsribed Schools
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Figure 5: Average Number of Students Selecting kth Choice as Target in CADA Equilibrium
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Figure 6: Welfare as Percentage of First Best - With Priorities
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Figure 7: Percentage of Students Selecting Their Neighborhood School as Target
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Figure 8: Welfare with Naive Players as Percentage of First Best
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