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Abstract

Elections with sequential voting, such as presidential primaries, are widely-

thought to possess momentum effects, where the choices of early voters influence

the behavior of later voters. Momentum may take time to build, and can depend

on how candidates perform in each stage relative to expectations. This paper

develops a rational theory of behavior in sequential elections that accounts for these

phenomena. We analyze an election with two candidates in which some voters are

uncertain about which candidate is more desirable. Voters obtain private signals

and vote in a sequence, observing the history of votes at each point. We show

that, regardless of the voting rule, voters can herd on a candidate with positive

probability, and such a “bandwagon” can occur with probability approaching one

in large electorates. Our theory is distinct from the standard information cascades

literature because voting is a collective decision problem, and consequently voters

have forward-looking incentives to consider the actions of those after them.
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“...when New Yorkers go to vote next Tuesday, they cannot help but

be influenced by Kerry’s victories in Wisconsin last week. Surely those

Wisconsinites knew something, and if so many of them voted for Kerry, then

he must be a decent candidate.”

— Duncan Watts in Slate Magazine

1 Introduction

Many elections take place over time. The most prominent example lies at the heart of

the American presidential selection process: the primaries. A series of elections by which

a party nominates its candidate for the general presidential election, the primaries are

held sequentially across states over a few months. On a smaller scale, but also explicitly

sequential, are the roll-call voting mechanisms used by city councils and Congressional

bodies. A more subtle example is the general U.S. presidential election itself, where the

early closing of polls in some states introduces a temporal element into voting.

In contrast, most theoretical models of voting are static. The distinction between

simultaneous and sequential elections is not just of theoretical interest, but also relevant

to policy. It is often suggested that in sequential elections, voters condition their choices

on the acts of prior voters. Such history dependence is believed to result in momentum

effects: the very fact that a particular alternative is leading in initial voting rounds

may induce some later voters to select it who would have otherwise voted differently.

Moreover, voting behavior in primaries suggests that candidates are judged by how they

perform relative to expectations: a surprisingly good performance in an early primary

may generate more momentum than an anticipated victory (Popkin, 1991).

The beliefs in momentum and performance relative to expectations have shaped elec-

toral policy and strategy. Some U.S. states aim to hold their primaries early in the

process,1 campaign funds and media attention are disproportionately devoted to initial

primaries,2 and candidates strategically attempt to gain surprise victories. For exam-

ple, Hamilton Jordan, who would become Jimmy Carter’s White House Chief of Staff,

outlined the importance of a surprise victory in New Hampshire in a memorandum two

years before Carter’s campaign: “...a strong surprise in New Hampshire should be our

1For instance, since 1977, New Hampshire law has stated that its primary is to be the first in the
nation. As a result, the state has had to move its primary, originally in March, earlier in the year to
remain the first. New Hampshire’s primary was held on February 20 in 1996, February 1 in 2000, and
then January 27 in 2004 to compete with front-loaded primaries in other states.

2Bartels (1988) and Gurian (1986) document how a substantial share of the media’s attention and
candidates’ campaign resources are devoted to New Hampshire even though the state accounts for merely
4 out of 538 total electoral votes.
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goal, which would have a tremendous impact on successive primaries...” This assessment

is supported by the analysis of Bartels (1988), who simulates Carter’s national popularity

prior to his victory in New Hampshire and predicts that Carter would have lost the 1976

nomination to George Wallace had the primaries been held simultaneously in all states.

The 1984 Democratic primaries featuring Gary Hart and Walter Mondale exemplifies

that voters judge candidates’ performances relative to expectations. Expected to have

support in Iowa, Mondale’s victory with close to 50% of the caucus votes in this state

was largely overshadowed by Gary Hart’s ability to garner about 17% of the votes. Even

though Hart’s performance in Iowa was far inferior to Mondale’s on an absolute scale,

Hart had performed much better than expected. This garnered him momentum, and

Hart proceeded to win the following primaries in Vermont and New Hampshire (Bartels,

1988).

This paper provides an informational theory of behavior in sequential elections that

generates dynamics with momentum effects. Specifically, we consider a sequential version

of a canonical election environment (Feddersen and Pesendorfer, 1996, 1997). There

are two candidates, and a finite population of voters who vote in an exogenously fixed

sequence, each observing the entire history of prior votes. The candidate who receives

the majority of votes wins the election. There are two kinds of voters: Neutrals and

Partisans. Neutrals desire to elect the “correct” or better candidate, which depends

on the realization of an unknown state variable. Partisans, on the other hand, wish to

elect their exogenously preferred candidate regardless of the state. Whether a voter is

Neutral or Partisan is her private information, and each voter receives a private binary

signal that contains some information about the unknown state.

In this setting, we formalize an informational theory of voting that is built on the

simple but powerful logic that if (some) initial voters use their private information in

deciding how to vote, the voting history provides useful information to later voters.

We show that a simple form of history-dependent strategies constitutes fully rational

behavior. This equilibrium generates rich momentum effects where a leading candidate

is judged relative to his expected partisan support, and some voting histories can cause

future voters to entirely ignore their private information, with Neutrals simply joining

“bandwagons” for one of the candidates.3

The notion of rational voting bandwagons is reminiscent of the herd-cascade liter-

ature initiated by Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992).

3Loosely speaking, we say that momentum exists if, conditional on a voter’s own private information,
the probability that she votes for a candidate is increasing in how many votes the candidates has
accrued in the past; we say that a bandwagon begins at some point if all future voters discard their
private information about the state entirely for some history of votes but not others.
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However, the strategic issues involved are very different. In standard herd-cascade mod-

els, a player’s payoffs do not directly depend on the actions of others; the only externality

is informational. Thus, agents have no strategic reason to consider the impact of their

actions on future agents’ choices, and optimal behavior for any agent is necessarily that of

a backward-looking Bayesian. In contrast, an election is a game with payoff interdepen-

dencies: a voter’s payoffs are determined by the collective outcome, which can depend

on the votes of those before and after her. A strategic voter determines her optimal

action by conditioning on being pivotal. A vote can be pivotal in two distinct ways

in sequential elections. First, just as in simultaneous voting, it can affect the electoral

outcome in the event that all other votes are tied. Second, and unique to sequential

voting, a vote can affect the behavior of future voters and thereby cause a domino effect

that changes the outcome of the election. Since a rational voter takes into account the

implications of these ties and domino effects in assessing how to vote, the sequential vot-

ing environment inherently presents forward- and backward-looking incentives to players.

Therefore, the possibility of bandwagons or information cascades here is distinct from

the standard herd-cascade literature.

Formally, our main contribution is to characterize a Perfect Bayesian equilibrium that

generates rational herding in a sequential election. In this equilibrium, Posterior-Based

Voting (PBV), a voter uses all currently available information—her prior, signal, and the

observed history of votes—to form her expectation of which candidate is better for her,

and votes for this candidate. That is, in the PBV equilibrium, each voter behaves like a

backward-looking Bayesian of the standard herding model. Such behavior may appear

myopic since it ignores a voter’s forward-looking incentives. We establish, however, that

this behavior is in fact optimal even for a strategic voter who conditions on being pivotal

(given that others are playing PBV). Moreover, for generic parameters, PBV is a strict

equilibrium; thus, it does not rely on the choice of how to resolve indifferences among

players, and is robust to small perturbations of the model.

Though simple, PBV generates rich dynamics. Play is inherently dependent on his-

tory, and voters update their beliefs about which candidate is better based upon the

voting history. Accordingly, PBV generates momentum effects, where the prospects for

a candidate can ebb and flow during the course of an election as a function of the voting

history. The possibility of partisanship in our model implies that in the PBV equili-

bium, the performance of a candidate is judged relative to his ex-ante expected partisan

support. Thus, even though a candidate may be trailing in the absolute vote lead on the

equilibrium path, he may have momentum because he has outperformed expectations.

In large elections, bandwagons for a candidate form with very high probability, where
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Neutral voters vote for a candidate independent on their private information. Indeed,

a bandwagon can even form on a candidate who is trailing in the election. This sheds

some light on the case of Gary Hart mentioned earlier, or the example of Bill Clinton,

who famously termed himself the “comeback kid” and garnered momentum even after

finishing second in the 1992 Democratic New Hampshire primary.

The essence of why PBV is an equilibrium is that when other voters follow PBV, if a

deviation were to change the outcome of the election, the subsequent profile of votes does

not generate enough public information to outweigh a voter’s posterior that is computed

from her observed history and private signal. In fact, this logic is so pervasive that

PBV is a (generically strict) equilibrium for all anonymous and monotonic voting rules,

and not simply majority rule. Momentum can therefore be the outcome of equilibrium

behavior independent of the voting rule. PBV is robust to uncertainties over the size

of the voting population and remains an equilibrium regardless of the beliefs voters have

about the final population size. This is attractive in the context of large elections.

Our analysis demonstrates that momentum can arise from voters’ desire to elect the

right candidate. Though the informational model here contributes to the understanding

of electoral dynamics, we do not wish to suggest that it captures the entire story. We

abstract from institutional details such as campaign finance and media attention that

certainly have important implications for sequential elections. Having said that, it is

difficult to shed light on why both financial and media resources are devoted to the first

few elections without making specific assumptions about voting behavior. Insofar as

the purpose of many elections—especially primaries—is to provide and aggregate infor-

mation, it would be interesting to embed these institutional aspects in an informational

model similar to the one here.

The plan for the remainder of the paper is as follows. Section 2 lays out the model,

and Section 3 derives the main results about PBV strategies and equilibrium. We discuss

various implications and extensions of our analysis in Section 4. Section 5 concludes.

All formal proofs are deferred to the Appendix. In the rest of this introduction, we

discuss the relationship of our work to recent papers on sequential elections.

1.1 Related Literature

This paper lies at the intersection of the literatures on rational herding, following Baner-

jee (1992) and Bikhchandani, Hirshleifer, and Welch (1992), and the strategic informa-

tion aggregation approach to elections, following Austen-Smith and Banks (1996) and

Feddersen and Pesendorfer (1996, 1997). Both literatures share a common interest in

understanding how dispersed information is aggregated in a decentralized environment.
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We build upon these literatures, dealing with issues that arise both in strategic voting

and social learning. While there have been a few recent papers on related matters, it is

helpful to place our contribution by noting that the possibility of a purely informational

explanation for voting bandwagons has received little theoretical attention.4

In an important contribution, Dekel and Piccione (2000) study a model of strategic

voting and that show a class of symmetric equilibria of their simultaneous voting games

remain equilibria of corresponding sequential voting games. Naturally, such equilibria

feature history-independent voting. It is easy to misinterpret this result as implying

that when a voter conditions on being pivotal in a sequential voting environment, the

observed history of votes is irrelevant to her voting decision.5 However, being pivotal

in a sequential voting game generally obviates useful learning only if other voters are

playing history-independent strategies. In the PBV equilibrium of our model, strategic

voters do learn from previous voters and act as if they are pivotal. The general point is

that when other voters are using history-dependent strategies, the information contained

in being pivotal can vary with the voting history. In our parsimonious environment, this

yields the simple form of PBV equilibrium; in more general structures, more complex

history-dependent behavior may arise.

Aside from learning and information, there are other possible reasons that could in-

duce voters to exhibit bandwagon effects. Some early work in political science discusses

assumptions such as a psychological desire to vote for the eventual winner to explain

momentum (e.g. Berelson, Lazarsfeld, and McPhee, 1954). In a formalization of this

approach, Callander (2004) derives bandwagon equilibria in a model with an infinite pop-

ulation of voters, each of who is partially motivated to elect the better candidate, and

partially motivated to simply vote for the eventual winner. His analysis and results rely

on the assumption that every voter has at least a small desire to conform to the choice of

the majority. Indeed, Callander (2004, p. 2) himself notes that his bandwagon equilib-

ria “cannot be driven solely by an informational incentive to elect the better candidate.”

Since the bandwagons in our PBV equilibrium are driven purely by informational con-

siderations, the logic and formal arguments behind his equilibria and ours are distinct.

We believe that it is important to establish a benchmark model of momentum when

voters do not have exogenous preferences to coordinate their choice, not least because

4To our knowledge, Fey (2000) and Wit (1997), are the only others papers to formally examine this
issue. Both authors concluded that under “reasonable restrictions”, bandwagons could not arise. We
contrast our results with theirs in Section 4.3.

5For example, based on the results of Dekel and Piccione (2000), Battaglini (2005, p. 455) says that
“strategic voters do not learn from previous voters because they act as if they are pivotal”, and Feddersen
and Pesendorfer (1999, p. 10574) conclude that the “informational difference [between sequential and
simultaneous elections] is irrelevant, because all strategic voters condition their vote on being pivotal”.
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the empirical evidence on whether voters possess conformist motivations is inconclusive.6

Moreover, our models generate different implications. For instance, bandwagons in our

model can begin on a trailing candidate, whereas this can never happen in Callander

(2004). Since candidates being judged relative to expectations is an important aspect

of the rhetoric surrounding momentum, this is a contribution of the approach adopted

here.

Other papers have examined sequential elections from complementary perspectives to

ours. Klumpp and Polborn (2006) use a contest model of competition between candidates

to develop a campaign finance model of momentum; they find that initial victories can

create asymmetric incentives for candidates to compete in subsequent elections. Morton

and Williams (1999, 2001) have discussed how momentum may arise due to the winnowing

of multiple candidates in a primary election, and their approach focuses primarily on

questions of coordination between different groups of voters. While not focusing on

questions of momentum, Battaglini (2005) and Battaglini, Morton, and Palfrey (2005)

theoretically and experimentally investigate the implications of voting costs on behavior

in simultaneous and sequential elections.

2 Model

We consider a voting game with a finite population of n voters, where n is odd. Voters

vote for one of two candidates, L or R, in a fixed sequential order, one at a time. We

label the voters 1, . . . , n, where without loss of generality, a lower numbered voter votes

earlier in the sequence. Each voter observes the entire history of votes when it is her

turn to vote. The winner of the election, denoted W ∈ {L,R}, is selected by simple

majority rule. The state of the world, ω ∈ {L, R}, is unknown, but individuals share a

common prior over the possible states, and π > 1
2

is the ex-ante probability of state L.

Before voting, each voter i receives a private signal, si ∈ {l, r}, drawn from a Bernoulli

distribution with precision γ (i.e., Pr(si = l|ω = L) = Pr(si = r|ω = R) = γ), with

γ > π.7 Individual signals are drawn independently conditional on the state.

In addition to being privately informed about her signal, a voter also has private

information about her preferences: she is either an L-partisan (Lp), a Neutral (N), or an

6See the discussion in Bartels (1988, pp. 108–112). Kenney and Rice (1994) attempt to test the
strength of various explanations for momentum, including both the preference for conformity theory
and an informational theory similar to the one proposed here. They find some support for both,
although neither is statistically significant; their methodology highlights the difficulties involved in such
an exercise.

7This implies that any individual’s signal is more informative than the prior. Our analysis will carry
over with obvious changes to cases where the signal precision is asymmetric across states of the world.
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R-partisan (Rp). We denote this preference type of voter i by ti. Each voter’s preference

type is drawn independently from the same distribution, which assigns probability τL > 0

to preference type Lp, probability τR > 0 to Rp, and probability τN > 0 to the Neutral

type, N , where τL + τR + τN = 1. The preference ordering over candidates is state

dependent for Neutrals, but state independent for Partisans. Specifically, payoffs for

voter i are defined by the function u(ti,W, ω) as follows:

u (Lp, W, ω) = 1{W=L} for ω ∈ {L, R}
u (Rp, W, ω) = 1{W=R} for ω ∈ {L,R}
u (N,L, L) = u (N, R, R) = 1

u (N, L, R) = u (N, R, L) = 0

Therefore, a voter of preference type Cp (C ∈ {L,R}) is a Partisan for candidate C,

and desires this candidate to be elected regardless of the state of the world. A Neutral

voter, on the other hand, would like to elect candidate C ∈ {L, R} if and only if that

candidate is the better one, i.e. if the state ω = C. Note that each voter cares about her

individual vote only instrumentally, through its influence on the winner of the election.

We now clarify the role of two modeling choices.

Partisans. The Partisan types here are analogous to those in a number of papers

in the literature, such as Feddersen and Pesendorfer (1996, 1997) and Feddersen and

Sandroni (2006). Nevertheless, Partisans are not necessary for the existence of a history-

dependent equilibrium. We analyze the game without Partisans—pure common value

elections—in Section 4.3 and show that Posterior-Based Voting remains an equilibrium of

that game. While some of the sequential voting literature has restricted attention to the

case of pure common values, we believe that the presence of Partisanship is relevant both

theoretically and in practice. Partisans introduce private values into the electoral setting,

an element that is important in real-world elections.8 Although we have formalized

Partisans as those without a common value element to their preferences whatsoever,

this is only for expositional convenience. All that is necessary for our results is that,

under complete information, an L-Partisan needs at least three net signals in favor of

candidate R to prefer electing candidate R over L (and analogously for an R-Partisan),

independently of the population size. In contrast, a Neutral needs only one net signal

in favor of a candidate to prefer that candidate being elected. Partisans, therefore, may

8For example, in the context of presidential primaries, while some voters in a party hope to nominate
the party candidate who is more electable in the general presidential election, there are others who may
not be so sophisticated and simply wish to select a particular party candidate without considering the
general election.
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have a common value component to their preferences; it is simply that their preferences

(or priors) are biased in favor of one candidate, although not necessarily to the extent

that sufficient information cannot change their views. The presence of Partisans allows

our model to generate rich momentum effects, including the feature that a candidate’s

performance is judged relative to expectations in a non-trivial way.

Information Structure. The binary information structure chosen here is the canonical

focus in both the voting literature (e.g. Austen-Smith and Banks, 1996; Feddersen and

Pesendorfer, 1996) and the social learning literature (e.g. Bikhchandani, Hirshleifer, and

Welch, 1992). Due to its prevalence and the complexities of studying history-dependent

equilibria in sequential voting, this important benchmark is our focus here. Nonetheless,

the issue of richer information structures is certainly important, and we discuss this in

conclusion.

Denote by G (π, γ, τL, τR; n) the sequential voting game defined above with prior π,

signal precision γ, preference type parameters τL and τR, and n voters. Throughout

the subsequent analysis, we use the term equilibrium to mean a (weak) Perfect Bayesian

equilibrium of this game (Fudenberg and Tirole, 1991). Let hi ∈ {L,R}i−1 be the

realized history of votes when it is voter i’s turn to act; denote h1 = φ. A pure strategy

for voter i is a map vi : {Lp, N, Rp} × {L,R}i−1 × {l, r} → {L,R}. We say that a voter

i votes informatively following a history hi if vi (N, hi, l) = L and vi (N, hi, r) = R. The

posterior probability that voter i places on state L is denoted by µi(h
i, si).

3 Posterior-Based Voting

3.1 Definition and Dynamics

We begin the analysis by introducing Posterior-Based Voting (PBV) and characterizing

its induced dynamics. This characterization allows us to demonstrate that such behavior

is an equilibrium in Section 3.2. Let v = (v1, . . . , vn) denote a strategy profile and

vi = (v1, . . . , vi−1) denote a profile of strategies for all players preceding i.

Definition 1. A strategy profile, v, satisfies (or is) Posterior-Based Voting (PBV) if for

every voter i, type ti, history hi, signal si, and for any W,W ′ ∈ {L,R},

1. Eω[u(ti,W, ω)|hi, si;v
i] > Eω[u(ti,W

′, ω)|hi, si;v
i] ⇒ vi(ti, h

i, si) = W

2. Eω[u(ti, L, ω)|hi, si;v
i] = Eω[u(ti, R, ω)|hi, si;v

i] ⇒
{

vi(ti, h
i, l) = L

vi (ti, h
i, r) = R

8



PBV is a property of a strategy profile. A PBV strategy refers to a strategy for a

player that is part of a PBV profile.

The first part of the definition requires that given the history of votes and her private

signal, if a voter believes that electing candidate L (R) will yield strictly higher utility

than electing candidate R (L), then she votes for candidate L (R). In other words, in a

PBV profile, each voter updates her beliefs about candidates using all currently available

information (taking as given the strategies of previous voters), and then votes for the

candidate she currently believes to be best for her. This coincides with what would be

rational behavior in a traditional herding environment without payoff interdependencies.

Since Partisan voters have a preference ordering over candidates that is independent of

the state of the world, the definition immediately implies that Partisans vote for their

preferred candidate in a PBV profile, independent of signal and history. Whenever a

Neutral voter’s posterior is µi(h
i, si) 6= 1

2
, she votes for the candidate she believes to be

strictly better.

Part two of the definition is a tie-breaking rule.9 It requires that when a Neutral

voter has posterior µi(h
i, si) = 1

2
, she vote informatively. In doing so, she reveals her

signal to future voters. While we choose this tie-breaking rule to facilitate exposition,

it does not play a significant role in our analysis. Any choice of how to break ties only

matters for a non-generic constellation of parameters (π, γ, τL, τR). For a generic tuple,

(π, γ, τL, τR), when PBV is played, it will never be the case that there is a Neutral voter

with posterior µi(h
i, si) = 1

2
. Remark 1 in Appendix A formalizes this point.

The above discussion implies that the behavior of voter i in the PBV profile can be

summarized as follows:

vi(Lp, h
i, si) = L

vi(Rp, h
i, si) = R

vi(N, hi, si) =

{
L if µi(h

i, si) > 1
2

or {µi(h
i, si) = 1

2
and si = l}

R if µi(h
i, si) < 1

2
or {µi(h

i, si) = 1
2

and si = r}

PBV is sophisticated insofar as voters infer as much as possible from the past history,

taking into account the strategies of preceding players. However, the construction of

PBV is nevertheless myopic. Since voters are influenced by the voting history in the

PBV profile, a strategic voter who conditions on being pivotal should account for how

her vote affects the decisions of those after her. The requirement of PBV, on the other

9Note that the tie from the standpoint of PBV does not imply that the voter is strategically indifferent
between her choices, because the relevant posterior for PBV is not conditioned on being pivotal.
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hand, is simply that a voter cast her vote for the candidate she would wish to select based

on what she currently knows. This distinction between myopic and strategic reasoning

makes it unclear, a priori, that PBV can be an equilibrium. We take up that question in

Section 3.2, showing that it indeed is; for the moment, however, let us trace the dynamics

induced by PBV.

Since the behavior of Partisans is trivial, we focus on the play of Neutrals. Voter

1, if Neutral, votes informatively, since signals are more informative than the prior. All

subsequent Neutral voters face a simple Bayesian inference problem: conditional on the

observed history and their private signal, what is the probability that the state is L?

Consider i > 1 and a history h̃i where all preceding Neutrals (are assumed to) have voted

informatively, with h̃i containing k votes for L and i−k−1 votes for R. For any history,

we define the public likelihood ratio, λ (hi), as the ratio of the public belief that the state

is L versus state R after the history hi: λ (hi) =
Pr(ω=L|hi)
Pr(ω=R|hi)

. By Bayes Rule, for the

history h̃i,

λ
(
h̃i

)
=

π

(1− π)

(
τL + τNγ

τL + τN (1− γ)

)k (
τR + τN (1− γ)

τR + τNγ

)i−k−1

(1)

The public likelihood ratio above captures how informative the history h̃i is, given

the postulated behavior about preceding voters. Since γ > 1 − γ, the ratio is strictly

increasing in k, i.e. seeing a greater number of votes for L strictly raises Neutral voter i’s

belief that L is the better candidate. Partisanship makes the public history noisy: when

τL ' τR ' 0, the ratio is close to its maximum, which is informationally equivalent to

voter i having observed k signal l’s and i − k − 1 signal r’s. On the other hand, when

τL ' τR ' 1
2
, the ratio is approximately π

1−π
, reflecting a public history only slightly

more informative than the prior. The Neutral voter i combines the information from the

public history, hi, with that of her private signal, si, to determine her posterior belief,

µi (h
i, si), that the state is L. By Bayes Rule,

µi (h
i, si)

1− µi (h
i, si)

= λ
(
hi

) Pr (si|ω = L)

Pr (si|ω = R)

Since the signal precision of si is γ, it follows that for λ (hi) ∈
[

1−γ
γ

, γ
1−γ

]
, an l signal

translates into a posterior belief no less than 1
2

that the state is L and an r signal translates

into a posterior belief no less than 1
2

that the state is R. However, for λ (hi) > γ
1−γ

,

both signals generate posterior beliefs strictly greater than 1
2

that the state is L, and thus

in PBV, a Neutral voter i would vote uninformatively for candidate L. Similarly, for

λ (hi) < 1−γ
γ

, voter i’s posterior favors R regardless of her private signal, and a Neutral

10



i thus votes uninformatively for candidate R.

In sum, PBV prescribes the following behavior: Neutrals vote informatively until

the public likelihood ratio, λ (hi), no longer lies in
[

1−γ
γ

, γ
1−γ

]
; when this happens, all

future Neutrals vote uninformatively for the candidate favored by the posterior—they

herd. There are several points to be emphasized about the nature of these herds. First,

even after a herd begins for a candidate, Partisans continue to vote for their preferred

candidate. Thus, it is always possible to see votes contrary to the herd, and any such

contrarian vote is correctly inferred by future voters as having come from a Partisan.

Second, once herding begins, the public likelihood ratio remains fixed because all voting

is uninformative. Therefore, once a herd begins, its length does not influence the beliefs

held by subsequent voters; independent of the population size, the (private) posterior

belief of any voter lies within
(

(1−γ)3

γ3+(1−γ)3
, γ3

γ3+(1−γ)3

)
and is therefore bounded away from

0 and 1. Third, at any history where the winner of the election is yet undecided, a

herd forming on, say, candidate L, does not immediately imply a victory for L. This is

because if all subsequent voters are R-partisans (an event of positive probability), R will

in fact be elected. Fourth, it is possible for a herd to form on a candidate who is trailing

because the informational content of the voting history is not limited to merely whether

a candidate is leading, but also how that candidate is performing relative to the ex-ante

distribution of private preferences. This is illustrated by the following example.

Example 1. Let n ≥ 6, π = 2
3
, γ = 3

4
, τL = 0.1, and τR = 0.45. Suppose voters play

the PBV profile, and voter 6 observes the history h6 = (R, R, R, L, L). Straightforward

calculations show that given this history, voters 1 through 5 must have voted informatively

if Neutral. Due to the relatively small partisan support for candidate L, the two votes for

L from voters 4 are 5 are sufficient to overturn the impact of the 3 votes for R from voters

1 through 3 in terms of influencing voter 6’s posterior. In fact, even if voter 6 receives an

r signal, she believes that candidate L is the better candidate. Thus, regardless of signal,

voter 6’s vote is uninformative, and by induction, all future Neutrals vote for candidate

L. The bandwagon on L has formed even though L is trailing in the election.

The discussion so far of dynamics was couched in terms of beliefs. For our equilibrium

analysis, we need a characterization in terms of the voting history. It is convenient to use

two state variables that summarize the impact of history on behavior. For any history,

hi, the vote lead for candidate L, ∆ (hi), is defined recursively as follows:

∆(h1) = 0; for all i > 1, ∆(hi) = ∆
(
hi−1

)
+

(
1{vi−1=L} − 1{vi−1=R}

)
(2)

The second state variable, called the phase, summarizes whether learning is ongoing
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in the system (denoted phase 0), or has terminated in a herd for one of the candidates

(denoted phase L or R). The phase mapping is thus Ψ : hi → {L, 0, R}, and defined by

the following transition mapping:

Ψ
(
h1

)
= 0; for all i > 1, Ψ

(
hi

)
=





Ψ (hi−1) if Ψ (hi−1) ∈ {L,R}
L if Ψ (hi−1) = 0 and ∆ (hi) = nL (i)

R if Ψ (hi−1) = 0 and ∆ (hi) = −nR (i)

0 otherwise

(3)

Note that herding phases, Ψ ∈ {L,R}, are absorbing. The sequences nL (i) and

nR (i) in the phase map equation (3) are determined by explicitly considering posteriors,

corresponding to our earlier discussion of the public likelihood ratio. For example,

assuming that all prior Neutrals voted informatively, nL (i) is the smallest vote lead for

candidate L such that at a history hi with ∆ (hi) = nL (i), the public history in favor of

L outweighs a private signal r. Therefore, the threshold nL (i) is the unique integer less

than or equal to i− 1 that solves

Pr
(
ω = L|∆ (

hi
)

= nL (i)− 2, si = r
) ≤ 1

2
< Pr

(
ω = L|∆ (

hi
)

= nL (i) , si = r
)

(4)

If it is the case that a history hi with ∆ (hi) = i− 1 is outweighed by signal r, we set

nL (i) = i. Similarly, the threshold nR (i) is the unique integer less than or equal to i

that solves

Pr
(
ω = L|∆ (

hi
)

= −nR (i) + 2, si = l
) ≥ 1

2
> Pr(ω = L|∆ (

hi
)

= −nR (i) , si = l) (5)

where again, implicitly, it is assumed that all prior Neutrals voted informatively. If it is

the case that a signal l outweighs even that history hi where ∆ (hi) = − (i− 1), we set

nR (i) = i.

We summarize with the following characterization result (all proofs are in the Ap-

pendix).

Proposition 1. Every game G (π, γ, τL,τR; n) has a unique PBV strategy profile. For

each i ≤ n, there exist thresholds, nL (i) ≤ i and nR (i) ≤ i, such that if voters play PBV

in the game G (π, γ, τL,τR; n), then a Neutral voter i votes

1. informatively if Ψ (hi) = 0;

2. uninformatively for C ∈ {L,R} if Ψ (hi) = C,
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where Ψ is as defined in (3). The thresholds nL (i) and nR (i) are independent of

the population size, n.

When voters play the PBV strategy profile, a herd develops if and only if there is

a history hi such that Ψ (hi) 6= 0. To study how likely this is, assume without loss of

generality that the true state is R. Fixing play according to PBV, the realized path of

play is governed by the draw of preference-types and signals. Consequently, the public

likelihood ratios can be viewed as a stochastic process, which we denote 〈λi〉, where each

λi is the public likelihood ratio when it is voter i’s turn to act. It is well-known (e.g.

Smith and Sorensen, 2000) that this stochastic process is a martingale conditional on

the true state, R. By the Martingale Convergence Theorem, the process 〈λi〉 converges

almost surely to a random variable, λ∞. Since PBV is informative and the public

likelihood is bounded away from 0 and ∞ so long as Ψ = 0, convergence of the public

likelihood ratio requires that Ψ ∈ {L,R} in the limit, i.e. herds eventually occur with

probability 1. This intuition underlies the following result for our finite voter game.

Theorem 1. For every (π, γ, τL, τR) and for every ε > 0, there exists n < ∞ such that

for all n > n, if voters play PBV, then Pr[Ψ (hn) 6= 0 in G (π, γ, τL, τR; n)] > 1− ε.

3.2 PBV Equilibrium

In this section, we establish that PBV is an equilibrium of the sequential voting game. In

fact, we prove a stronger result. Say that the election is undecided at history hi if both

candidates still have a chance to win the election given the history hi. An equilibrium is

strict if conditional on others following their equilibrium strategies, it is uniquely optimal

for a voter to follow her equilibrium strategy at any undecided history.10 We show that

not only is PBV an equilibrium, but moreover, it is generically a strict equilibrium.

Theorem 2. The PBV strategy profile is an equilibrium, and generically, is strict.

There are two points to emphasize about PBV equilibrium. Strictness for generic

parameters implies that its existence does not rely upon how voter indifference is resolved

when the election remains undecided. Given that others are playing PBV, a strategic

10This definition is non-standard, but is the appropriate modification of the usual definition for voting
games. Usually, a strict equilibrium of a game is one in which a deviation to any other strategy makes
a player strictly worse off (Fudenberg and Tirole, 1991). A sequential voting game (with n ≥ 3) cannot
possess any strict equilibria in this sense, because after any history where a candidate has captured
sufficiently many votes to win the election, all actions yield identical payoffs. That is, only histories
where the election remains undecided are strategically relevant to voters. Our definition of strictness
restricts attention to these histories.
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voter follows PBV not because she is indifferent between or powerless to change the

outcome, but rather because deviations yield strictly worse expected payoffs. Strictness

also implies that the equilibrium is robust to small perturbations of the model. Second,

because Partisan voters always vote for their preferred candidates in the PBV equilibrium,

every information set is reached with positive probability. Therefore, off-the-equilibrium-

path beliefs play no role in our analysis, and PBV is a Sequential Equilibrium (Kreps

and Wilson, 1982).

It may be surprising that PBV is an equilibrium even within our simple model, for at

least two reasons. First, PBV is the generalization of of sincere voting (Austen-Smith

and Banks, 1996) when moving from simultaneous to sequential voting in incomplete

information environments, because PBV prescribes voting for the candidate currently

thought to be better, without conditioning on being pivotal. However, as is well-known

from the analysis of Austen-Smith and Banks (1996) and Feddersen and Pesendorfer

(1996), sincere behavior is not generically an equilibrium in the simultaneous voting ver-

sion of our model. Secondly, and related, behavior is myopic in the PBV profile, whereas

strategic optimality must account for the forward-looking incentives in the game. In par-

ticular, a Neutral voter in the learning phase of the election faces the following tradeoff

when deciding to vote informatively, as prescribed by PBV. On the one hand, the public

history in the learning phase is not sufficiently informative so as to overturn her private

signal received. The benefit of voting informatively, then, is voting in the direction

favored by her current posterior. On the other hand, the cost of voting informatively is

that it may push future voters towards herding and/or push the election towards being

decided, suppressing valuable information possessed by later Neutrals. Given the myriad

of ways in which a voter could be pivotal, resolving this tradeoff for every possible vote

lead and for each private signal that a Neutral voter may face in the learning phase is a

priori quite complicated.

In light of these considerations, the remainder of this section provides a detailed sketch

of why PBV is an equilibrium. Readers more interested in robustness and other issues

can skip forward to Section 4.

Sketch of the equilibrium argument. For simplicity, we consider a symmetric level of

partisanship, τL = τR. Symmetry induces thresholds nL (j) and nR (j) that do not vary

across voters; instead, they can be denoted simply as constants nL > 0 and nR > 0. We

also restrict attention here to generic parameters of the game, where it can be shown

that when others follow PBV, a voter is never indifferent at any undecided history. (We

clarify the details concerning genericity in the Appendix, where our formal results and

proofs also deal with the general case in which τL can differ from τR.)
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To see that PBV is an equilibrium, consider a voter acting when the election is

undecided, and assume that all others players are playing PBV. Note that such a voter

is pivotal with strictly positive probability. We will argue that the following three kind of

behaviors are uniquely optimal, depending on the voter’s preference type and the phase

of the election:

(i) Partisans vote for their preferred candidate;

(ii) In the herding phase for L (R), Neutrals vote uninformatively for L (R);

(iii) In the learning phase, Neutrals vote informatively.

Point (i) above is a consequence a monotonicity property of PBV: when others play

PBV, a voter can never increase the probability of a future L vote, say, by herself voting

R rather than L.11 Turning to point (ii), consider the incentives for a Neutral voter i in

a herding phase. Since all subsequent voting after voter i is completely uninformative,

conditioning on being pivotal does not change i’s posterior beliefs about the state of the

world. Consequently, i strictly prefers to vote on the basis of her current posterior,

µi(h
i, si). By construction of the phase map, a herding phase on candidate L (analo-

gously for R) implies that i’s posterior is strictly higher on L than R regardless of her

private signal. Therefore, it is strictly optimal for Neutral i to vote uninformatively for

L.

It remains to establish optimality of (iii): a Neutral voter i votes informatively in

the learning phase, when Ψ (hi) = 0. As previously noted, the incentive compatibility

constraint for i concerns the tradeoff between myopically optimal behavior and inducing

informative behavior from future Neturals. Lemma 5 in the Appendix shows that if

the incentive constraints are satisfied (strictly) at histories hi in which voting for L or

R immediately starts a herd and/or ends the election, then the incentive constraints are

satisfied (strictly) at all other histories in the learning phase. Therefore, the trade-

off is most stark for the Neutral voter i who faces ∆ (hi) = nL − 1 and si = l (or

∆ (hi) = −nR + 1 and si = r), since voting for candidate L (or R) in this situation ends

social learning altogether.

Accordingly, we need only to show it is strictly optimal for i to vote informatively

even when she immediately triggers a herd. Consider the case where voter i receives

signal l and faces undecided history hi where Ψ (hi) = 0 and ∆ (hi) = nL − 1. (The

11 This monotonicity does not hold in an arbitrary strategy profile. Thus, eliminating weakly-
dominated strategies is not sufficient to guarantee that Partisans vote for their preferred candidate,
unlike the case of a simultaneous election. It is in fact possible to construct sequential voting equilibria
(in undominated strategies) where a Partisan votes against her preferred candidate.
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argument is analogous for the case where ∆ (hi) = −nR + 1 and si = r.) Assuming

that others are playing PBV, the impact of i’s vote can be assessed for any vector of

realizations of preference types and signals among the future voters. The set of type-

signal realizations in which voter i is pivotal, denoted as Pivi, consist of all those vectors

where vi = L results in L winning the election and vi = R results in R winning.12 Since

hi is undecided, Pivi 6= ∅. Denote the set of type-signal profiles where vi = R results in

a herd for candidate C ∈ {L,R} as ξC ; let the set of type-signal profiles where no herd

forms after vi = R be denoted ξ̃. The proof is completed by showing that i’s posterior

conditional on being pivotal and on each of the three mutually exclusive and exhaustive

events, ξL, ξR, or ξ̃, is greater than 1
2
.13

Consider the event ξR ∩ Pivi. Because voting is uninformative once the cascade

begins, Pr
(
ω = L|ξR, P ivi, h

i, l
)

= Pr
(
ω = L|ξR, hi, l

)
. Since ∆ (hi) = nL−1, the event

ξR can happen only if following vi = R, candidate R subsequently gains a lead of nR

votes in the learning phase. This requires that after i’s vote, R receive an additional

nL + nR − 2 votes over L in the learning phase. Since L has a vote lead of nL − 1 prior

to i’s vote, conditioning on ξR in effect reveals a net total of nR − 1 votes for R in the

learning phase (not counting i’s vote since that is a deviation). By definition of nR, i’s

belief given her own signal si = l and nR − 1 votes for R in the learning phase is strictly

in favor of L. In other words, Pr
(
ω = L|ξR, P ivi, h

i, l
)

> 1
2
.

Now consider the events ξL∩Pivi and ξ̃∩Pivi: amongst voters i+1, . . . n, candidate

R can receive at most nL +nR−2 votes over candidate L; otherwise, an R-cascade would

start. By the same logic as before, it follows that Pr
(
ω = L|ξ̃, P ivi, h

i, l
)

> 1
2
.

Therefore, conditional on her observed history, signal, and being pivotal, voter i

believes candidate L to be the better candidate with probability strictly greater than 1
2
.

Since voting L leads to a strictly higher probability of L winning the election, it is strictly

optimal for voter i to vote L, even though such a choice ends the learning phase.14

12In general, there are strategy profiles where i can be pivotal in a way that vi = L results in R
winning, whereas vi = R results in L winning. This is not possible in PBV because as we noted earlier,
PBV features a weak monotonicity of subsequent votes in i’s vote.

13The simplification that τR = τL ensures that the posterior conditional on a herd forming for a
candidate is invariant to when the herd begins.

14 That an individual triggers a herd based on purely informational considerations highlights an
important aspect of our analysis. In most of the bandwagon equilibria analyzed by Callander (2004),
were the individual whose vote begins the herd to assess simply her informational incentives, she would
strictly prefer to not cast a vote that induces herding. So as to overcome the informational incentives
that preclude herding, Callander (2004) introduces an exogenous preference among voters to vote for the
winner, and in his model, this exogenous “...preference to conform is critical to the existence of voting
bandwagons....” (p. 2). In contrast, in our model, bandwagons emerge purely from voters’ desires to
aggregate information and elect the candidate that is better for them.
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4 Discussion

While our parsimonious model departs in important ways from sequential elections in

practice, the rich form of history-dependent behavior that we derive is similar to what is

often attributed to voting behavior in sequential elections. In the context of presidential

primaries, Bartels (1988) and Popkin (1991) argue that voters keep careful track of how

candidates have performed relative to expectations when deliberating how to vote, and

that the information provided to voters during the primaries is dominated by horse-

race statistics that document candidates’ performance in preceding states. Our results

identify an informational rationale for voters to track candidates’ performance, and to

assess the quality of a candidate relative to his expected partisan base.15 We do not

suggest that this is the only motivation for history-dependent behavior; certainly, there

are a number of others reasons that lie outside the scope of our analysis.

4.1 Other Equilibria and Population Uncertainty

It is natural to wonder whether PBV belongs to a larger class of equilibria that result

in herds. Appendix C considers a class of profiles that generalizes PBV by varying the

threshold of beliefs that induce herding: this is the set of Cut-point Voting (CPV) strategy

profiles introduced by Callander (2004). In PBV, a Neutral voter i votes informatively

if and only if λ (hi)—the public likelihood ratio that the state is L given history hi—

lies in
[

1−γ
γ

, γ
1−γ

]
and herds appropriately when λ (hi) lies outside this interval. CPV

generalizes by PBV by permitting arbitrary such intervals, including the possibility of

no herding at all, where the interval is [0,∞). We prove that for generic parameters,

any equilibrium in the class of CPV profiles involves herding with probability 1 in large

elections (Theorem 5); however, there is no guarantee that there generally exists any

CPV equilibrium apart from PBV. In the special case in which the expected partisan

base for the candidates is equal (τL = τR), for almost all values of π and γ, the only

history-dependent CPV equilibrium in large elections is in fact PBV (Proposition 5).

From a different point of view, Dekel and Piccione (2000) have shown that a class

of sequential voting games possess history-independent equilibria that are equivalent

in outcomes to symmetric equilibria of otherwise identical simultaneous voting games.

Their main insight applies to the model considered here and is as follows. For any

parameter set (π, γ, τL, τR, n), the simultaneous voting analog of our model possesses a

symmetric equilibrium where each Partisan voter votes for her preferred candidate, and

15This informational theory corresponds to cue-taking behavior identified by Bartels (1988), Kenney
and Rice (1994), and Mutz (1997) in their empirical studies of momentum.
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each Neutral votes for a candidate on the basis of a signal-dependent probability. In

the sequential voting game, consider a strategy profile where, independent of history,

every voter plays the same strategy as in the above construction. The insight of Dekel

and Piccione (2000) is that because all voters are acting independently of history, and

each vote is pivotal with positive probability, the events in which a voter is pivotal is

identical in both the simultaneous and sequential games; therefore, since the profile is an

equilibrium of the simultaneous game, it is also an equilibrium of the sequential game.16

The existence of the history-independent equilibrium is certainly an important theo-

retical benchmark. Ultimately, as to whether individuals vote using history-independent

or dependent strategies is an empirical matter that cannot be settled here. Our per-

spective is not that a sequential election must result in bandwagons and momentum, but

rather to ask whether momentum that is believed to exist in many sequential elections

can be understood from an informational perspective.

As in many models of payoff interdependency, the multiplicity of equilibrium also

emerges as an artifact of a simple model that assumes common knowledge of many

parameters. As argued by, for example, Myerson (1998, 2000), it is unrealistic to assume

that in large elections, each voter knows exactly how many other voters there are in the

game. While some models of simultaneous elections (e.g. Myerson, 1998, 2000; Feddersen

and Pesendorfer, 1996) incorporate this possibility, existing models of sequential elections

assume that the size of the electorate is commonly known. In principle, population

uncertainty can play a significant role in voting behavior in sequential elections: based on

the history, a voter can update her beliefs about how many others are participating, and

at least, set a lower bound on the number of other voters. In spite of the complexities

introduced by population uncertainty, PBV remains an equilibrium of the sequential

voting game, as we detail below.

We define an election with population uncertainty as follows. Suppose there is a

countably infinite set of available voters, indexed by i = 1, 2, .... Nature first draws the

size of the electorate, n, according to probability measure ν with (possibly unbounded)

support on the natural numbers. The draw is unobserved by any agent. A voter is

selected to vote if and only if her index i is no larger than n. All those who are selected

to vote do so sequentially, in a roll-call order, only observing the history of votes, and

receiving no information about the numbers of voters to follow. The rest of the game, in

terms of preferences, information, and how outcomes are determined, remains as before.

We define a game with population uncertainty as G (π, γ, τL, τR; ν).

16Using the approach of Feddersen and Pesendorfer (1997), it can be shown that this equilibrium
achieves full information equivalence, aggregating information efficiently in large elections.
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The structure of population uncertainty formulated above is general, encompassing

the kinds of population uncertainty that have been considered in simultaneous elections,

such as Poisson distributions (Myerson, 1998) and binomial distributions (Feddersen and

Pesendorfer, 1996). Nevertheless, the logic for why PBV remains an equilibrium is

straightforward. Consider the decision faced by a voter i who observes history hi, signal

si, and assumes that all other voters who are selected to vote will behave according to

PBV. Voter i can assess her best response by conditioning on every possible realization

of population size that is weakly larger than i. By Theorem 2, for every such realization,

voter i would wish to vote according to PBV. Since the behavior prescribed by PBV is

independent of the population size, the result follows.

Proposition 2. For every game G (π, γ, τL, τR; ν), the PBV strategy profile is an equi-

librium.

It is interesting to note that in sequential voting games with a sufficient degree of

population uncertainty, there generally cannot exist a symmetric equilibrium in which

all voters who are selected to vote play the same strategy. The reason is that by learning

about (lower bounds on) the population size, the incentives for voters at different stages

of the election are quite different. In particular, a symmetric equilibrium of the simulta-

neous election with population uncertainty does not generally remain an equilibrium of

the corresponding sequential election. A thorough examination of sequential elections

with population uncertainty is left for future research, including issues such as whether

all equilibria generally feature history dependence, or if there are also equilibria where

behavior varies by voter position without depending on the voting history.

4.2 Other Voting Rules

Generally, equilibria of elections are sensitive to the choice of voting rule, and this has

been illustrated in the case of simultaneous elections by the important contributions

of Austen-Smith and Banks (1996) and Feddersen and Pesendorfer (1998). Holding

fixed a strategy profile, changing the voting rule affects the profiles of votes in which

one is pivotal, and can therefore change one’s posterior conditional on being pivotal.

Surprisingly, however, PBV is an equilibrium in our sequential voting game for any voting

rule, for all parameters. Furthermore, a large class of voting rules are asymptotically

equivalent in terms of the electoral outcome they induce.

We study the class of voting rules termed q-rules, where if the fraction of votes for L

strictly exceeds some number q ∈ [0, 1], then L wins the election. Let G (π, γ, τL, τR; n, q)
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denote the sequential voting game with parameters (π, γ, τL, τR; n) where votes are ag-

gregated according to the q-rule. Since the PBV strategy profile is defined independently

of the voting rule, for two different rules q and q′, PBV generates identical behavior in the

games G (π, γ, τL, τR; n, q) and G (π, γ, τL, τR; n, q′). In fact, with minor modifications

to the proof of Theorem 2, the following can be shown.

Theorem 3. PBV is an equilibrium for any q-rule, and generically, is a strict equilib-

rium.

While it is straightforward to see that changing the voting rule leaves the incentives of

Partisan voters or Neutrals in the herding phases unchanged for any q-rule, the incentives

of Neutral voters to vote informatively in the learning phase would seem to be affected

because the vote profiles for which one is pivotal differs across voting rules. However, the

crucial point about PBV is that even if a voter’s deviation in the learning phase changes

the outcome, the subsequent profile of votes never generates enough public information to

overturn one’s posterior based on the private signal and available public history, regardless

of the voting rule. This is because the thresholds for herding in PBV are independent

of the voting rule, and the information that can be extracted from future voters’ actions

is determined by these thresholds.

Theorem 3 raises the question of how changes in the voting rule affect the electoral

outcome when voters vote according to PBV. When voters play PBV, different rules

may yield different (distributions over) electoral outcomes. However, the following result

shows that voting rules can be partitioned into three classes such that all rules within any

class are asymptotically ex-ante equivalent: they elect the same winner with probability

approaching 1 in large voting games.

Theorem 4. Fix any parameters π, γ, τL, τR, and assume that for any n, q, voters play

PBV in the game G(·; n, q). For any ε > 0, there exists n̄ such that for all n > n̄,

(a) |Pr(L wins in G (·; n, q)− Pr(L wins in G (·; n, q′)| < ε for all q, q′ ∈ (τL, 1− τR);

(b) Pr (L wins in G (·; n, q)) > 1− ε for all q ∈ [0, τL);

(c) Pr (L wins in G (·; n, q)) < ε for all q ∈ (1− τR, 1].

Parts (b) and (c) of Theorem 4 are not surprising given the presence of Partisans: in

PBV, the probability with which any voter votes L is at least τL and at most (1− τR).

Therefore, in any sufficiently large voting game, L wins with probability approaching 1 if

q < τL and loses with probability approaching 1 if q > (1− τR). The important result

is part (a) of Theorem 4: all “interior” voting rules—where outcomes are not determined

asymptotically by Partisanship alone—are nevertheless asymptotically equivalent. The
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intuition relies on the fact that for all such voting rules, once Neutrals begin herding on

a candidate, that candidate wins with probability approaching one in large electorates.

Therefore, all of these interior rules are asymptotically equivalent once a herd begins on a

particular candidate. Asymptotic ex-ante equivalence of these voting rules then follows

from the observation that the probability of a herd beginning on a particular candidate

is independent of the voting rule (since PBV behavior is defined independently of the

voting rule), and by Theorem 1, this probability approaches 1 in large games.17

It is interesting to contrast Theorems 3 and 4 with the message of Dekel and Piccione

(2000). By showing that (responsive) equilibria of a simultaneous election are outcome-

equivalent to equilibria of a voting game with any timing structure, Dekel and Piccione

(2000) have demonstrated that strategic behavior can be unaffected by the timing of

a voting game. In these history-independent equilibria, conditioning on being pivotal

negates any usefulness from observing the history of votes; necessarily such equilibria

are sensitive to the choice of voting rule. Theorem 3 demonstrates that the opposite

effect can prevail in sequential environments: regardless of the voting rule, if others vote

according to PBV, conditioning on being pivotal does not contain more payoff-relevant

information than the public history and one’s private signal. That PBV is an equilibrium

across all the voting rules and renders all interior voting rules asymptotically equivalent

in sequential frameworks illustrates the striking difference between static and dynamic

elections.

4.3 Pure Common Value Elections

We have thus far studied a model where some voters are Neutral, and others are Partisan;

in contrast, some of the prior papers on sequential voting games have considered pure

common value environments, where every voter is Neutral (e.g. Fey, 2000; Wit, 1997;

Callander, 2004). Before comparing our results with this earlier research, we should

emphasize a few points. First, Partisans in our model are not automatons, and the

fact that they vote for their preferred candidate irrespective of history or signal is an

equilibrium phenomenon (recall fn. 11). Second, although we have formalized Partisans

as preferring a candidate regardless of the state of the world, this was purely for expo-

sitional purposes. It leaves our analysis unchanged to model Partisans and Neutrals as

sharing the same state-dependent rankings over candidates, but simply specifying that

17In fact, this argument shows that Theorem 4 can be strengthened to an ex-post statement: under
PBV, for almost all realized profiles of type-signal vectors, all “interior” voting rules are asymptotically
equivalent, and all “extremal” voting rules result in one of the candidates winning with probability
approaching 1 in large elections.
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Partisan preferences (or priors) be sufficiently biased in favor of one candidate, while re-

maining responsive to the state of the world. Consequently, even if all voters—Neutrals

and Partisans—would agree on the preferred candidate for almost all profiles of publicly

observable signals in large elections, our results apply. Third, some element of private

values is surely an important aspect of elections in practice, and modeling this aspect

adds richness to the theory. Therefore, our interest is in elections with a confluence

of common and private values; we address the pure common values case primarily to

highlight the connection with previous work.

Fix a triple (π, γ, n), i.e. a prior, signal precision, and population size, and suppose

that τL = τR = 0. In this game, let PBV0 refer to the strategy profile that is the limit

of PBV as τL, τR → 0. It is straightforward to verify that in PBV0, the herding phase

occurs when ∆ (hi) ∈ {1,−2}. Our main results extend as follows.18

Proposition 3. For any q-rule, if τL = τR = 0, there is an equilibrium where voters

players PBV0.

While the limit of PBV remains an equilibrium of the pure common value election, its

properties differ in one important respect from that of PBV when τL and τR are strictly

positive. Since Partisans vote for their preferred candidates regardless of history in

the PBV equilibrium, there is positive probability that any future vote may be contrary

to the herd once it has begun. On the other hand, in the PBV0 equilibrium of the

pure common values election, once a herd begins (necessarily on the candidate who is

leading), every vote thereafter is for the leading candidate. Consequently, a vote for

the losing candidate is an off-the-equilibrium-path action after a herd has begun under

pure common values. This implies that some of the beliefs that sustain the equilibrium

are necessarily off-the-equilibrium-path beliefs, and a theory of “reasonable” beliefs now

becomes necessary: if voters see a vote going against a herd, how should they interpret

it, and given their interpretation, would voters still wish to herd?

A natural place to begin would be to investigate the implications of standard forward

induction belief-based refinements for signaling games such as the Intuitive Criterion,

D1 (Cho and Kreps, 1987), or Divinity (Banks and Sobel, 1987). However, none of

these refinements have bite in this environment. To see why, consider the even stronger

refinement criterion of Never a Weak Best Response (Kohlberg and Mertens, 1986). If

future voters interpret a deviation from a herd as being equally likely to come from a

voter with signal si = l as from a voter with signal si = r, then future voters should not

update their beliefs at all based on i’s vote, and hence it is a weak best response for voter

18For the particular case of majority rule, versions of this result appear in Fey (2000) and Wit (1997).
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i to deviate from the herd regardless of her signal. Given this, the belief that a deviation

is equally likely to come from either signal-type of voter i survives Never a Weak Best

Response, which is the strongest of standard dominance-based belief refinements.

In contrast, the aforementioned papers that consider common value sequential voting

impose the following belief restriction: if a voter i votes for R once an L-herd has begun,

every subsequent voter must believe that si = r; similarly, if i votes for L once an R-

herd has begun, every subsequent voter must believe that si = l. Under this belief

restriction—henceforth referred to as Perpetual Revelation—Fey (2000) and Wit (1997)

showed that under majority rule, at least one voter with a signal that opposes a herd

would wish to deviate out of the herd and reveal her signal to future voters. This logic

can be extended to all non-unanimity voting rules. Hence, in the pure common value

setting, imposing Perpetual Revelation halts momentum by inducing anti-herding for at

least one voter.

Without recourse to standard belief-based refinements, we find restrictions on off-

path beliefs in the pure common values game somewhat ad hoc. As it not our goal to

refine the equilibrium set under pure common values, we are agnostic on what the “right”

equilibrium in this case is.19,20

5 Conclusion

This paper has proposed an informational theory of momentum and herd behavior in

sequential voting environments. Our model is that of a binary election where a propor-

tion of the voters seek to elect the better candidate, and the remainder have partisan

preferences. The central result is that there exists a generically strict equilibrium that

leads to herding with high probability in large elections. In this equilibrium, voters

learn from the voting history , and use this information to update on optimally to cast

their vote. The behavior exhibited in this equilibrium can explain why voters rationally

judge candidates relative to expectations. Our results raise various issues that deserve

19Off-path beliefs can also be interpreted as the limit of the beliefs in nearby games that are not pure
common value elections. For example, the off-path belief of ignoring votes contrary to a herd happens
to be the limit of the game with rational partisans, or alternatively, as the limit of a model without
partisans but where players mechanically tremble with some small probability; similarly, Perpetual
Revelation emerges as a limit to behavior in elections in which a vanishing proportion of voters are
“truthful types” who mechanically reveal their signals. We are interested in rational partisans because
of their empirical relevance in real-world elections, and the predictions they generate for rich momentum
effects.

20Ultimately, this is an empirical question, to the extent pure common value environments are of
empirical interest. Hung and Plott (2001) report experiments on such a setting with a majority rule,
and find evidence of herding in almost 40% of experimental rounds.
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further study, some of which have been already mentioned in Section 4. We conclude

by highlighting some others.

The binary signal structure we have studied is the canonical framework for both social

learning models and the information aggregation approach to elections. In this setting,

we have have been able to identify a history-dependent equilibrium in the form of PBV.

Although the binary signal structure is an essential benchmark, it is important to under-

stand the extent to which the results here generalize to richer informational structures in

which there are a variety of private and public signals. The challenge, however, stems

from the payoff interdependencies inherent to elections. Due to the forward-looking

incentives in sequential voting, richer information structures tremendously complicate

the analysis of inferences to be drawn from the myriad of ways a voter may be pivotal

in a history-dependent strategy profile.21 This contrasts with standard models with-

out payoff interdependencies, where even a continuum of signals presents no difficulty to

equilibrium characterization, adding challenges only to outcome dynamics (Smith and

Sorensen, 2000). We note by way of examples in Appendix B that PBV may or may

not be an equilibrium depending upon the specification of parameters in richer settings,

illustrating the need to consider more complex forms of history-dependent strategies in

richer environments.

Our focus in this paper has been on elections with only two options. Given the nature

of the candidate winnowing process in the U.S. presidential primaries, it is important to

understand the dynamics of sequential voting with more than two candidates. We are

currently exploring this idea.

We have also restricted attention here to an environment where voting is entirely

sequential, one voter at a time, largely for purposes of tractability. Though there are

elections of this form—for example, roll-call voting mechanisms used in city councils

and legislatures—there are many dynamic elections, such as the primaries, that feature

a mixture of simultaneous and sequential voting. To what extent such games possess

history-dependent equilibria with similar qualitative features is a significant question for

future research.

This paper has abstracted away from the role of institutions, and concentrated on

voters as being the sole players. Certainly, in practice, there are other forces involved in

dynamic elections, many of which are strategic in nature, such as the media, campaign

finance contributors, and so forth. By examining the potential for sequential voting

alone to create momentum, our model provides a benchmark to understand the impact

21The results of Dekel and Piccione (2000) can still be applied to yield history-independent equilibria
in some cases.
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of different institutions on sequential elections.

Finally, we note that voting is but one context where social learning with payoff

and information externalities can arise. Many environments of economic interest—

such as dynamic coordination games, timing of investments, or network choice—feature

sequential decision-making, private information that has social value, and payoff inter-

dependencies (cf. Dasgupta, 2000; Neeman and Orosel, 1999). Our results contribute to

a better understanding of social learning when there are incentives to reveal or distort

one’s information to successors.
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Appendix A: Proofs

We begin with preliminaries that formally construct the thresholds nL (i) and nR (i) for

each constellation of parameters (π, γ, τL, τR), and each index i. Define the functions

f (τL, τR) ≡ τL + (1− τL − τR) γ

τL + (1− τL − τR) (1− γ)

where the domain is τL, τR ∈ [
0, 1

2

)
. It is straightforward to verify that f strictly

exceeds 1 over its domain.

For each positive integer i and any integer k where |k| < i and i − k is odd, define

the function gi (k) = (f (τL, τR))k
(

f(τL,τR)
f(τR,τL)

) i−k−1
2

. Note that for a history hi where

∆ (hi) = k and all prior Neutrals voted informatively and Partisans voted for their

preferred candidates, gi (k) =
Pr(hi|ω=L)
Pr(hi|ω=R)

; thus gi(k) =
(

1−π
π

)
λ (hi), as defined in equation

(1) in the text. Plainly, gi (k) is strictly increasing in k.

For a given (π, γ, τL, τR), define {nL (i)}∞i=1 as follows. For all i such that gi (i− 1) ≤
(1−π)γ
π(1−γ)

, set nL (i) = i. If gi (i− 1) > (1−π)γ
π(1−γ)

, we set nL (i) to be the unique integer that

solves:

gi (nL (i)− 2) ≤ (1− π) γ

π (1− γ)
< gi (nL (i)) (6)

Since gi (− (i− 1)) is strictly less than (1−π)γ
π(1−γ)

, and gi (k) is strictly increasing in k, a

unique solution exists to (6).

Similarly, we define {nR (i)}∞i=1 as follows. For all i such that gi (− (i− 1)) ≥
(1−π)(1−γ)

πγ
, set nR (i) = i. If gi (− (i− 1)) < (1−π)(1−γ)

πγ
, set nR (i) to be the unique

integer that solves:

gi (−nR (i) + 2) ≥ (1− π) (1− γ)

πγ
> gi (−nR (i)) (7)

As before, since gi(k) is strictly increasing in k, and gi (i− 1) = (f(τL, τR))i−1 ≥ 1 >
(1−π)(1−γ)

πγ
, a unique solution exists to (7).

These values of nL(i) and nR(i) define Ψ (·) as in equation (3) from the text.

A.1 Proposition 1

The claim is obviously true for voter 1 as Ψ (h1) = 0 ∈ (−nR(1), nL(1)), and by con-

struction, a PBV strategy involves a Neutral voter 1 voting informatively. To proceed

by induction, assume that the claim about behavior is true for all Neutral voter j < i.
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Case 1: Ψ (hi) = 0: All preceding neutrals have voted informatively. It is straight-

forward to see that the posterior µ (hi, si) = µ
(
h̃i, si

)
if ∆ (hi) = ∆

(
h̃i

)
and Ψ (hi) =

Ψ
(
h̃i

)
= 0 (i.e., so long as all preceding neutrals have voted informatively, only vote

lead matters, and not the actual sequence). Thus, we can define µ̃i (∆, si) = µ (hi, si)

where ∆ = ∆(hi). By Bayes’ rule,

µ̃i (∆, l) =
πγgi (∆)

πγgi (∆) + (1− π) (1− γ)

Simple manipulation shows that µ̃i (∆, l) ≥ 1
2
⇔ gi (∆) ≥ (1−π)(1−γ)

πγ
. This latter

inequality holds since by hypothesis, Ψ (hi) = 0, and therefore, ∆ ≥ −nR (i) + 1. If

µ̃i (∆, l) > 1
2
, then Condition 1 of the PBV definition requires that Neutral voter i vote

L given si = l; if µ̃i (∆, l) = 1
2
, then Condition 2 of the PBV definition requires that

Neutral voter i vote L given si = l.

Similarly, using Bayes’ rule,

µ̃i (∆, r) =
π (1− γ) gi (∆)

π (1− γ) gi (∆) + (1− π) γ

Simple manipulation shows that µ̃i (∆, r) ≤ 1
2
⇔ gi (∆) ≤ (1−π)γ

π(1−γ)
. The latter inequal-

ity holds since by hypothesis, Ψ (hi) = 0, and therefore, ∆ ≤ nL − 1. If µ̃i (∆, r) < 1
2
,

then Condition 1 of the PBV definition requires that Neutral voter i vote R given si = r;

if µ̃i (∆, r) then Condition 2 of the PBV definition requires that Neutral voter i vote R

given si = r.

Case 2: Ψ (hi) = L. Then all Neutrals who voted prior to the first time Ψ took

on the value L voted informatively, whereas no voter voted informatively thereafter.

Let j ≤ i be such that Ψ (hj) = L and Ψ (hj−1) = 0; therefore, ∆ (hj) = nL (j).

Then, µ (hj, sj) = µ̃j (nL (j) , sj). Since all voting after that of (j − 1) is uninforma-

tive, µ (hi, si) = µ (hj, si) = µ̃j (nL (j) , si). A simple variant of the argument in Case 1

implies that µ̃j (nL (j) , l) > 1
2
, and therefore Condition 1 of the PBV definition requires

that Neutral voter i vote L given si = l. Consider now si = r. Since gj (nL (j)) > (1−π)γ
π(1−γ)

,

it follows that µ̃j (nL (j) , r) > 1
2
, and therefore Condition 1 of the PBV definition requires

that Neutral voter i vote L even following si = r.

Case 3: Ψ (hi) = R. Then all Neutrals who voted prior to the first time Ψ took on

the value R voted informatively, whereas no voter voted informatively thereafter. Let

j ≤ i be such that Ψ (hj) = R and Ψ (hj−1) = 0; therefore, ∆ (hj) = −nR (j). Then,

µ (hj, sj) = µ̃j (−nR (j) , sj). Since all voting after that of (j − 1) is uninformative,

µ (hi, si) = µ (hj, si) = µ̃j (−nR (j) , si). A simple variant of the argument in Case
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1 implies that µ̃j (−nR (j) , r) < 1
2
, and therefore Condition (1) of the PBV definition

requires that Neutral voter i vote R given si = r. Consider now si = l. Since

gj (−nR (j)) < (1−π)(1−γ)
πγ

, it follows that µ̃j (−nR (j) , l) < 1
2
, and therefore Condition 1

of the PBV definition requires that Neutral voter i vote R even following si = l.

A.2 Tie-breaking does not arise generically

Remark 1. As promised in the text, we argue here that the tie-breaking Condition (2)

of the PBV definition only matters for a non-generic set of parameters (π, γ, τL, τR).

Observe that from the proof of Proposition 1, the posterior of voter i having observed

a history hi and private signal si is 1
2

if and only if Ψ (hi) = 0 and gi (∆ (hi)) ∈{
(1−π)(1−γ)

πγ
, (1−π)γ

π(1−γ)

}
. For any particular (π, γ, τL), this occurs for at most a countable

collection of τR. Therefore, for a given (π, γ), the set

Γπ,γ ≡
{

(τL, τR) ∈
(

0,
1

2

)2

: gi (∆) ∈
{

(1− π) (1− γ)

πγ
,
(1− π) γ

π (1− γ)

}
for some i ∈ Z+ and |∆| ≤ i

}

is isomorphic to a 1-dimensional set. Thus, the need for tie-breaking arises only for a

set of parameters (π, γ, τL, τR) of (Lebesgue) measure 0.

A.3 Theorem 1

The proof of Theorem 1 consists of two steps: first, we show that there must almost surely

be a herd in the limit as the population size n → ∞; second, we show that this implies

the finite population statement of the Theorem. Assume without loss of generality that

the true state is R. (If the true state is L, one proceeds identically, but using the inverse

of the likelihood ratio λi).

Step 1: As discussed in the text, by the Martingale Convergence Theorem for non-

negative random variables (Billingsley, 1995, pp. 468–469), λi
a.s.→ λ∞ with Support (λ∞) ⊆

[0,∞). Define Λ̄ ≡ [0, b] ∪ [
b̄,∞)

and Λ = [0, b) ∪ (
b̄,∞)

, where b (resp. b̄) is the likeli-

hood ratio such that the associated public belief that the state is L causes the posterior

upon observing signal l (resp. r ) to be exactly 1
2
. Note that by their definitions, b < 1

2

< b̄. To prove that there must almost surely be a herd in the limit, it needs to be shown

that eventually 〈λi〉 ∈ Λ almost surely.22

We claim that Support (λ∞) ⊆ Λ̄. To prove this, fix some x /∈ Λ̄ and suppose

towards contradiction that x ∈ Support (λ∞). Since voting is informative when λi = x,

22To be clear, when we say that 〈λi〉 eventually lies (or does not lie) in some set S almost surely, we
mean that with probability one there exists some k < ∞ that for all i > k, λk ∈ (/∈) S.
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the probability of each vote is continuous in the likelihood ratio around x. Moreover,

the updating process on the likelihood ratio following each vote is also continuous around

x. Thus, Theorem B.2 of Smith and Sorensen (2000) applies, implying that for both

possible votes, either (i) the probability of the vote is 0 when the likelihood ratio is x; or

(ii) the updated likelihood ratio following the vote remains x. Since voting is informative,

neither of these two is true—contradiction.

The argument is completed by showing that Pr (λ∞ ∈ Λ) = 1. Suppose not, towards

contradiction. Then since Support (λ∞) ⊆ Λ̄, it must be that Pr
(
λ∞ ∈ {

b, b̄
})

>

0. Without loss of generality, assume Pr (λ∞ = b) > 0; the argument is analogous if

Pr
(
λ∞ = b̄

)
> 0 . Observe that if λm < b for some m, then by definition of b and PBV,

λm+1 = λm < b and this sequence of public likelihood ratios converges to a point less

than b. Thus Pr (λ∞ = b) > 0 requires that for any ε > 0, eventually 〈λi〉 ∈ [b, b + ε)

with strictly positive probability. But notice that by the definition of b, if λi = b then

voter i votes informatively under PBV and thus if λi = b, either λi+1 < b (if vi = R) or

λi+1 = 1
2

(if vi = L). By continuity of the updating process in the public likelihood ratio

on the set
[
b, b̄

]
, it follows that if ε > 0 is chosen small enough, then λi ∈ [b, b + ε) implies

that λi+1 /∈ [b, b + ε). This contradicts the requirement that for any ε > 0, eventually

〈λi〉 ∈ [b, b + ε) with strictly positive probability.

Step 2: Since λi
a.s.→ λ∞, λi converges in probability to λ∞, i.e. for any δ, η > 0, there

exists n < ∞ such that for all n > n, Pr (|λn − λ∞| ≥ δ) < η. Since Pr (λ∞ ∈ Λ) = 1,

for any ε > 0, we can pick δ > 0 small enough such that

Pr
(
λ∞ ∈ [0, b− δ) ∪ (

b̄ + δ,∞))
> 1 − ε

2
. Pick η = ε

2
. With these choices of δ and

η, the previous statement implies that there exists n < ∞ such that for all n > n,

Pr (λn ∈ Λ) > 1− ε, which proves the theorem.

A.4 Theorem 2

We need various intermediate steps to prove Theorem 2. Throughout, to prove that

PBV is an equilibrium, we assume that the relevant history is undecided since all actions

at a decided history yield the same payoffs. We first prove that following PBF is strictly

optimal for Partisan voters (conditional on others playing PBV strategies).

Definition 2. (Winning Prob.) For a history hi, let P (Ψ (hi) , ∆ (hi) , n− i + 1, ω) be

the probability with which L wins given the phase Ψ (hi), the vote lead ∆ (hi), the number

of voters who have not yet voted (n− i + 1), and the true state is ω.

Note that once Ψ (hi) ∈ {L,R}, all players are voting uninformatively, and therefore,

P (Ψ (hi) , ·) is independent of state. For the subsequent results, let K denote n− i, and
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∆ denote ∆ (hi). Throughout, for any history hj and candidate C, we use the notation

Ψ(hj, C) to indicate Ψ(hj+1) where hj+1 is the history following hj and vj = C.

Lemma 1. For all hi, P (Ψ (hi, L) , ∆ + 1, K, ω) ≥ P (Ψ (hi, R) , ∆− 1, K, ω) for all

ω ∈ {L,R}. The inequality is strict if K > ∆− 1.

Proof. Consider any realized profile of preference types and signals of the remaining K

voters given true state ω (conditional on the state, this realization is independent of

previous voters’ types/signals/votes). In this profile, whenever a voter i votes for L

given a vote lead ∆ − 1, he would also vote L given a vote lead ∆ + 1. Thus, if the

type-signal profile is such that L wins given an initial lead of ∆ − 1, then L would also

win given an initial lead of ∆ + 1. Since this applies to an arbitrary type-signal profile

(of the remaining K voters, given state ω), it follows that P (Ψ (hi, l) , ∆ + 1, K, ω) ≥
P (Ψ (hi, r) , ∆− 1, K, ω). That the inequality is strict if K > ∆−1 follows from the fact

that with positive probability, the remaining K voters may all be Partisans, with exactly

∆ more R-partisans than L-partisans. In such a case, L wins given initial informative

vote lead ∆ + 1, whereas R wins given initial informative vote lead ∆− 1. ¤

Lemma 2. If all other players are playing PBV and the election is undecided at the

current history, it is strictly optimal for a Partisan to vote for her preferred candidate.

Proof. We will begin by showing that an L-partisan always votes L if others are playing

PBV strategies. By voting L, an L-partisan’s utility is:

µ
(
hi, si

)
P

(
Ψ

(
hi, L

)
, ∆ + 1, K, L

)
+

(
1− µ

(
hi, si

))
P

(
Ψ

(
hi, L

)
, ∆ + 1, K, R

)

If she voted R, her utility is

µ
(
hi, si

)
P

(
Ψ

(
hi, R

)
, ∆− 1, K, L

)
+

(
1− µ

(
hi, si

))
P

(
Ψ

(
hi, R

)
, ∆− 1, N, R

)

It follows from Lemma 1 that the L-partisan voter i strictly prefers to vote L when the

election is undecided (i.e. K > ∆− 1).

The same arguments apply mutatis mutandis to see that R-partisans strictly prefer

to vote R when the election is undecided. ¤

To show that following PBV is optimal for a Neutral voter (conditional on others

following PBV strategies), we need to describe the inferences a Neutral voter makes

conditioning on being pivotal. As usual, let a profile of type and signal realizations for

all other voters apart from i be denoted

(t−i, s−i) ≡ ((t1, s1) , ..., (ti−1, si−1) , (ti+1, si+1) , ..., (tn, sn))
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Given that other players are playing PBV, for any realized profile (t−i, s−i), i’s vote deter-

ministically selects a winner because PBV does not involve mixing. For a vote by voter

i, Vi ∈ {L,R}, denote the winner of the election x (Vi; (t−i, s−i)) ∈ {L, R}. Then, denote

the event in which voter i is pivotal as Pivi = {(t−i, s−i) : x (L; (t−i, s−i)) 6= x (R; (t−i, s−i))}.
By arguments identical to Lemma 1, for a given profile (t−i, s−i), if a subsequent voter

after i votes L following Vi = R, then she would also do so following Vi = L. Therefore,

Pivi = {(t−i, s−i) : x (L, (t−i, s−i)) = L and x (R, (t−i, s−i)) = R} (8)

Let U (Vi|hi, si) denote a Neutral voter i’s expected utility from action V ∈ {L,R}
when she faces a history hi and has a private signal, si. If Pr (Pivi|hi, si) = 0, then no

action is sub-optimal for voter i. If Pr (Pivi|hi, si) > 0, i’s vote changes her expected

utility if and only if her vote is pivotal. Therefore, in such cases,

U
(
V |hi, si

)
> U

(
Ṽ |hi, si

)
⇔ U

(
V |hi, si, P ivi

)
> U

(
Ṽ |hi, si, P ivi

)
for V 6= Ṽ

It follows from equation (8) that U (L|hi, si, P ivi) = Pr (ω = L|hi, si, P ivi) and U (R|hi, si, P ivi) =

1 − Pr (ω = L|hi, si, P ivi). Therefore, if Pr (ω = L|hi, l, P ivi) > 1
2
, it is strictly optimal

for a Neutral voter i to vote for L, and if Pr (ω = L|hi, l, P ivi) < 1
2
, it is strictly optimal

for a Neutral voter i to vote R.

Lemma 3. If all other players are playing PBV and the election is undecided at the

current history, hi, it is strictly optimal for a Neutral voter i to vote for candidate C if

Ψ(hi) = C, for all C ∈ {L,R}.

Proof. Consider a history, hi, where Ψ (hi) = L. Since all future Neutral voters vote

uninformatively for L, Pr (ω = L|hi, si, P ivi) = Pr (ω = L|hi, si), which by construction

strictly exceeds 1
2

for all si (since Ψ (hi) = L). Therefore, a Neutral voter strictly prefers

to vote L. An analogous argument applies when Ψ(hi) = R. ¤

Lemma 4. If all other players are playing PBV and the election is undecided at the

current history, hi, it is (generically, strictly) optimal for a Neutral voter i to vote infor-

matively when Ψ (hi) = 0 and ∆(hi) ∈ {−nR (i + 1) + 1, . . . , nL (i + 1)− 1}.

The proof proceeds in a series of steps. We first use an intermediate lemma (Lemma

5) to show that if the incentive constraints hold for certain voters at certain histories of

the learning phase, then they hold for all other possible histories in the learning phase.

This simplifies the verification of many incentive constraints to that of a few important

constraints. We then verify that those constraints also hold in Lemmas 6, 9, and 10.
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Lemma 5. Consider any hi where Ψ (hi) = 0 and ∆ (hi) = ∆. Then if it is incentive

compatible for Neutral voter (i + 1) to vote informatively when ∆ (hi+1) ∈ {∆− 1, ∆ + 1},
then it is incentive compatible for Neutral voter i to vote informatively when ∆ (hi) = ∆.

Moreover, if the incentive compatibility condition for Neutral voter (i + 1) holds strictly

at least in one of the two cases when ∆ (hi+1) ∈ {∆− 1, ∆ + 1}, then it holds strictly for

Neutral voter i.

Proof. We prove that it is optimal for i to vote L given signal si = l; a similar logic holds

for optimality of voting R with signal r. It is necessary and sufficient that

µ̃i (∆, l) [P (0, ∆ + 1, K, L)− P (0, ∆− 1, K, L)]

− (1− µ̃i (∆, l)) [P (0, ∆ + 1, K, R)− P (0, ∆− 1, K, R)]
≥ 0 (9)

Define the state-valued functions p (·) and q (·)

p (ω) =

{
τL + (1− τL − τR) γ if ω = L

τL + (1− τL − τR) (1− γ) if ω = R

q (ω) =

{
τR + (1− τL − τR) (1− γ) if ω = L

τR + (1− τL − τR) γ if ω = R

Since voter i + 1 votes informatively if Neutral (because both ∆ + 1 and ∆ − 1 are

non-herd leads), the probability that i + 1 votes L and R in state ω is p (ω) and q (ω)

respectively. Noting the recursive relation

P
(
Ψ

(
hi

)
, ∆, K + 1, ω

)
= p (ω) P

(
Ψ

(
hi, L

)
, ∆ + 1, K, ω

)
+q (ω) P

(
Ψ

(
hi, R

)
, ∆− 1, K, ω

)

it follows that the above inequality holds if and only if

0 ≤ µ̃i (∆, l)

[
(P (Ψ (hi, L, L) , ∆ + 2, K − 1, L)− P (0, ∆, K − 1, L)) p (L)

+ (P (0, ∆, K − 1, L)− P (Ψ (hi, R,R) , ∆− 2, K − 1, L)) q (L)

]

− (1− µ̃i (∆, l))

[
(P (Ψ (hi, L, L) , ∆ + 2, K − 1, R)− P (0, ∆, K − 1, R)) p (R)

+ (P (0, ∆, K − 1, R)− P (Ψ (hi, R, R) , ∆− 2, K − 1, R)) q (R)

]

Dividing by p (R) (1− µ̃i (∆, l)), the above is equivalent to

0 ≤
(

µ̃i(∆,l)
1−µ̃i(∆,l)

p(L)
p(R)

[P (Ψ (hi, L, L) , ∆ + 2, K − 1, L)− P (0, ∆, K − 1, L)]

− [P (Ψ (hi, L, L) , ∆ + 2, K − 1, R)− P (0, ∆, K − 1, R)]

)

+

(
µ̃i(∆,l)

1−µ̃i(∆,l)
q(L)
p(R)

[P (0, ∆, K − 1, L)− P (Ψ (hi, R, R) , ∆− 2, K − 1, L)]

− q(R)
p(R)

[P (0, ∆, K − 1, R)− P (Ψ (hi, R, R) ∆− 2, K − 1, R)]

)
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We now argue that each of the two lines of the right hand side above is non-negative.

1. Since µ̃i(∆,l)
1−µ̃i(∆,l)

= πγ
(1−π)(1−γ)

gi (∆) and p(L)
p(R)

= f (τL, τR), it follows that

µ̃i (∆, l)

1− µ̃i (∆, l)

p (L)

p (R)
=

πγ

(1− π) (1− γ)
gi+1 (∆ + 1)

=
µ̃i+1 (∆ + 1, l)

1− µ̃i+1 (∆ + 1, l)

Since IC holds for voter i + 1 with vote lead ∆ + 1, observe that if the election is

undecided for i + 1,
µ̃i+1(∆+1,l)

1−µ̃i+1(∆+1,l)
≥ P (Ψ(hi,L,L),∆+2,K−1,R)−P (0,∆,K−1,R)

P (Ψ(hi,L,L),∆+2,K−1,L)−P (0,∆,K−1,L)
, which proves

that the first line of the desired right hand side is non-negative. If the election is

decided for i + 1 with vote lead ∆ + 1, then the first line of the desired right hand

side is exactly 0.

2. Using the previous identities,

µ̃i (∆, l)

1− µ̃i (∆, l)

q (L)

q (R)
=

πγ

(1− π) (1− γ)
gi+1 (∆− 1)

=
µ̃i+1 (∆− 1, l)

1− µ̃i+1 (∆− 1, l)

Since IC holds for voter i + 1 with vote lead ∆ − 1, observe that if the election is

undecided for i− 1, then
µ̃i+1(∆−1,l)

1−µ̃i+1(∆−1,l)
q(L)
q(R)

≥ P (0,∆,K−1,R)−P (Ψ(hi,R,R),∆−2,K−1,R)

P (0,∆,K−1,L)−P (Ψ(hi,R,R),∆−2,K−1,L)
, and

thus the second line of the desired right hand side is non-negative. If the election

is decided for i + 1 with vote lead ∆− 1, then the second line of the desired right

hand side is exactly 0.

Observe that if incentive compatibility holds strictly for voter i + 1 in either one of

the two cases, then at least one of the two lines of the right hand side is strictly positive,

and consequently inequality (9) must hold strictly. ¤

By the above Lemma, we are left to only check the incentive conditions for a Neutral

voter i with undecided history hi such that Ψ(hi) = 0, but voter i + 1 will not vote

informatively when Neutral if either vi = L or vi = R. This possibility can be divided

into two cases:

1. either i’s vote causes the phase to transition into a herding phase; or

2. i is the final voter (i = n) and ∆(hn) = 0.
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Lemma 6 below deals with the latter case; Lemmas 9 and 10 concern the former.

(Lemmas 7 and 8 are intermediate steps towards Lemma 9.)

Lemma 6. If there exists a history hn such that Ψ (hn) = 0 and ∆ (hn) = 0, then it is

incentive compatible for voter n to vote informatively. For generic parameters of the

game, the incentive compatibility conditions hold strictly.

Proof. Since ∆ (hn) = 0 and n is the final voter, Pr (ω = L|hn, sn, P ivn) = Pr (ω = L|hn, sn).

Since Ψ (hn) = 0, Pr (ω = L|hn, l) ≥ 1
2
≥ Pr (ω = L|hn, r). Therefore, voting informa-

tively is incentive compatible. Recall from Remark 1 that Pr (ω = L|hn, sn) = 1
2

for some

sn ∈ {l, r} only if (π, γ, τL, τR) is such that (τL, τR) ∈ Γπ,γ, which is a set of (Lebesgue)

measure 0. If (τL, τR) /∈ Γπ,γ, then given that Ψ (hn) = 0, Pr (ω = L|hn, l) > 1
2

>

Pr (ω = L|hn, r), and therefore for generic parameters, voting informatively is strictly

optimal for voter n. ¤

Lemma 7. Consider any hi where Ψ (hi) = 0 and ∆ (hi) = ∆. Then, P (Ψ (hi, l) , ∆ + 1, K, L) ≥
P (Ψ (hi, l) , ∆ + 1, K, R) and P (Ψ (hi, r) , ∆− 1, K, L) ≥ P (Ψ (hi, r) , ∆− 1, K, R) im-

plies P (0, ∆, K + 1, L) ≥ P (0, ∆, K + 1, R).

Proof. Simple manipulations yield

P (0, ∆, K + 1, L)− P (0, ∆, K + 1, R)

=
p (L) P (Ψ (hi, l) , ∆ + 1, K, L) + q (L) P (Ψ (hi, r) , ∆− 1, K, L)

− [p (R) P (Ψ (hi, l) , ∆ + 1, K,R) + q (R) P (Ψ (hi, r) , ∆− 1, K, R)]

≥ p (L) P (Ψ (hi, l) , ∆ + 1, K, L) + q (L) P (Ψ (hi, r) , ∆− 1, K, L)

− [p (L) P (Ψ (hi, l) , ∆ + 1, K, R) + q (L) P (Ψ (hi, l) , ∆− 1, K, R)]

=
p (L) [P (Ψ (hi, l) , ∆ + 1, K, L)− P (Ψ (hi, l) , ∆ + 1, K,R)]

+q (L) [P (Ψ (hi, r) , ∆− 1, K, L)− P (Ψ (hi, r) , ∆− 1, K, R)]

≥ 0

where the first inequality uses the fact that p (L) ≥ p (R) and P (∆ + 1, K, R) ≥
P (∆− 1, K,R); and the last inequality uses the hypotheses of the Lemma. ¤

Lemma 8. For all hi, P (Ψ (hi) , ∆, K + 1, L) ≥ P (Ψ (hi) , ∆, K + 1, R).

Proof. Base Step: The Claim is true when K = 0. To see this, first note that ∆ must

be even for P (Ψ (hi) , ∆, 1, ω) to be well-defined. If ∆ 6= 0 (hence |∆| ≥ 2), then

P (Ψ (hi) , ∆, 1, L) = P (Ψ (hi) ,∆, 1, R). For ∆ = 0, we have P (0, 1, L) = p (L) >

p (R) = P (0, 1, R).
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Inductive Step: For any K ≥ 2, the desired inequality trivially holds if ∆ ∈ {−nR, nL}
because P (nL, K, L) = P (nL, K,R) and P (−nR, K, L) = P (−nR, K, R). So it remains

to consider only ∆ ∈ {−nR + 1, . . . , nL − 1}. Assume inductively that P (∆ + 1, K − 1, L) ≥
P (∆ + 1, K − 1, R) and P (∆− 1, K − 1, L) ≥ P (∆− 1, K − 1, R). [The Base Step

guaranteed this for K = 2.] Using the previous Lemma, it follows that P (∆, K, L) ≥
P (∆, K, R) for all ∆ ∈ {−nR + 1, . . . , nL − 1}. ¤

Lemma 9. Consider history hi such that ∆ (hi) = nL (i + 1)− 1 and Ψ (hi) = 0. Then

if all other voters are playing PBV, and a neutral voter i receives signal r, it is strictly

optimal for her to vote R. Analogously, if ∆ (hi) = −nR (i + 1) + 1, and if all other

voters are playing PBV, and a neutral voter i receives signal l, it is strictly optimal to

vote L.

Proof. Consider hi such that ∆ (hi) = nL (i + 1)− 1 = ∆, and Ψ (hi) = 0. For it to be

strictly optimal for the voter to vote informatively, it must be that

µ̃i (∆, r) P (0, ∆− 1, K, L) + (1− µ̃ (∆, r)) (1− P (0, ∆− 1, K, R))

> µ̃i (∆, r) P (L, ∆ + 1, K, L) + (1− µ̃i (∆, r)) (1− P (L, ∆ + 1, K,R))

which is equivalent to

µ̃i (∆, r)

1− µ̃i (∆, r)
<

P (L, ∆ + 1, K, R)− P (0, ∆− 1, K, R)

P (L, ∆ + 1, K, L)− P (0, ∆− 1, K, L)
(10)

By Lemma 8, P (0, ∆− 1, K, L) ≥ P (0, ∆− 1, K, R), and by definition, P (L, ∆ + 1, K, R) =

P (L, ∆ + 1, K, L). Therefore, the right-hand side of (10) is bounded below by 1. Since

Ψ (hi) = 0, µ (hi, r) = µ̃i (∆, r) < 1
2
, the left-hand side of (10) is strictly less than 1, es-

tablishing the strict inequality. An analogous argument applies to prove the case where

∆ (hi) = −nR (i + 1) + 1 and si = l. ¤

Lemma 10. Consider history hi such that ∆ (hi) = nL (i + 1)−1 and Ψ (hi) = 0. Then

if all other voters are playing PBV, and a neutral voter i receives signal l, it is optimal

for her to vote L. Analogously, if ∆ (hi) = −nR (i + 1) + 1, and if all other voters are

playing PBV, and a neutral voter i receives signal r, it is optimal to vote R. For generic

parameters of the game, the optimality is strict.

Proof. Consider the information set where Ψ (hi) = 0, ∆ (hi) = nL (i + 1)−1, and si = l.

By the discussion in the text (p. 31), it suffices to show that Pr (ω = L|hi, l, P ivi) ≥ 1
2
.

For any i, and for any k > i, let ξΨ
k be the set of types {(tj, sj)}j 6=i that is consistent

with history hi, induces
(
Ψ

(
hk−1

)
, Ψ

(
hk

))
= (0, Ψ) where Ψ ∈ {L,R} after vi = R,
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and where i’s vote is pivotal. Let KΨ =
{
k > i : ξΨ

k 6= ∅}. Denote by ξ0
∆ the set of

types {(tj, sj)}j 6=i that are consistent with hi, induces Ψ (hn) = 0 and ∆ (hn+1) = ∆ < 0

after vi = R, and where i’s vote is pivotal. Let K0
∆ =

{
∆ : ξ0

∆ 6= ∅}. Observe that

since the event (hi, P ivi) = ∪Ψ

(∪k∈KΨξΨ
k

)∪
(
∪∆∈K0

∆
ξ0

∆

)
, by the definition of conditional

probability

Pr
(
ω = L|hi, l, P ivi

)
=

∑

Ψ∈{L,R}

∑

k∈KΨ

Pr
(
ξΨ

k |hi, l, P ivi

)
Pr

(
ω = L|ξΨ

k , l
)

+
∑

∆∈K0
∆

Pr
(
ξ0

∆|hi, l, P ivi

)
Pr

(
ω = L|ξ0

∆, l
)

We will argue that Pr (ω = L|hi, l, P ivi) ≥ 1
2

by showing that Pr
(
ω = L|ξL

k , l
)

> 1
2

for each k ∈ KL, Pr
(
ω = L|ξR

k , l
) ≥ 1

2
for each k ∈ KR, and Pr

(
ω = L|ξ0

∆, l
) ≥ 1

2
for

each ∆ ∈ K0
∆.

Consider k ∈ KL: ξL
k denotes a set of signal-type realizations that induce an L-herd

after the vote of voter (k − 1) (and meet the aforementioned conditions). Since only

votes in the learning phase are informative,

Pr
(
ω = L|ξL

k , l
)

= Pr
(
ω = L|l, Ψ (

hk−1
)

= 0, ∆
(
hk

)
= nL (k)

)

Given that vi = R, the informational content of this event is equivalent to a history h̃k−1

where ∆
(
h̃k−1

)
= nL (k) + 1, and all Neutrals are assumed to have voted informatively.

Therefore,

Pr
(
ω = L|ξL

k , l
)

=
πγgk−1 (nL (k) + 1)

πγgk−1 (nL (k) + 1) + (1− π) (1− γ)

Observe that gk−1 (nL (k) + 1) > gk (nL (k)) > (1−π)γ
π(1−γ)

. Therefore, Pr
(
ω = L|ξΨ

k , l
)

>
γ2

γ2+(1−γ)2
> 1

2
.

Now consider k ∈ KR: ξR
k denotes a set of signal-type realizations that induce an R-

herd after the vote of voter (k − 1) (and meet the aforementioned conditions). As before,

only votes in the learning phase contain information about the state of the world; thus,

Pr
(
ω = L|ξR

k , l
)

= Pr
(
ω = L|l, Ψ (

hk−1
)

= 0, ∆
(
hk

)
= −nR (k)

)
. Given that vi = R,

the informational content is equivalent to a history h̃k−1 where ∆
(
h̃k−1

)
= −nR (k) + 1,

and all neutrals are assumed to have voted informatively. Therefore,

Pr
(
ω = L|ξR

k , l
)

=
πγgk−1 (−nR (k) + 1)

πγgk−1 (−nR (k) + 1) + (1− π) (1− γ)

As by assumption, ∆
(
hk−1

)
= −nR (k)+1 and Ψ

(
hk−1

)
= 0, we have gk−1 (−nR (k) + 1) ≥
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(1−π)(1−γ)
πγ

. Therefore, Pr
(
ω = L|ξR

k , l
) ≥ 1

2
.

Now consider the event ∆ ∈ K0
∆: ξ0

∆ denotes a set of signal-type realizations that

induce no herd and a final vote lead of ∆ < 0. Therefore,

Pr
(
ω = L|ξ0

∆, l
)

=
πγgn (∆ + 1)

πγgn (∆ + 1) + (1− π)

Since ∆ (hn) ∈ {∆− 1, ∆ + 1}and Ψ (hn) = 0, we have gn (∆ + 1) ≥ (1−π)(1−γ)
πγ

, and

therefore Pr
(
ω = L|ξ0

∆, l
) ≥ 1

2
.

We use the above three facts to deduce that Pr (ω = L|hi, l, P ivi) ≥ 1
2
: observe that

∑

Ψ∈{L,R},k∈KΨ

Pr
(
ξΨ

k |hi, l, P ivi

)
+

∑

∆∈K0
∆

Pr
(
ξ0

∆|hi, l, P ivi

)
= 1

Therefore, Pr (ω = L|hi, l, P ivi) is a convex combination of numbers that are bounded

below by 1
2
.

An analogous argument can be made to ensure optimality at the information set

where ∆ (hi) = −nR (i + 1) + 1 and si = r.

We complete the proof by explaining why the incentive constraints are satisfied strictly

for generic parameters of the game. From the arguments above, indifference arises only

if there exists some k ≤ n and history hk such that Pr
(
ω = L|hk, sk

)
= 1

2
. Recall from

Remark 1 that this can hold only if (π, γ, τL, τR) is such that (τL, τR) ∈ Γπ,γ, which is

a set of (Lebesgue) measure 0. If (τL, τR) /∈ Γπ,γ, then for every k, Ψ
(
hk

)
= 0 implies

that Pr
(
ω = L|hk, l

)
> 1

2
> Pr

(
ω = L|hk, r

)
. Therefore, for generic parameters of the

game, following PBV is strictly optimal for voter n regardless of history. ¤

Lemmas 5, 6, 9, and 10 establish Lemma 4: conditional on all others playing according

to PBV, it is optimal for Neutrals to vote informatively in the learning phase. Observe

that generic parameters of the game yield strict optimality of the incentive conditions in

Lemmas 6 and 10, and therefore, by Lemma 5, all the incentive conditions in the learning

phase hold strictly generically.

A.5 Theorem 3

The result follows from minor modifications of Theorem 2; in particular, modifying

Lemma 6 to Ψ (hn) = 0 and ∆ (hn) ∈ {bqnc , dqne}.
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A.6 Theorem 4

We consider a PBV strategy profile and consider two threshold rules q and q′ where

τL < q < q′ < 1− τR. Given a profile of n votes, let Sn denote the total number of votes

cast in favor of L.

Pick ε > 0. From Theorem 1, we know that there exists k̄ such that for all k ≥ k̄,

Pr
(
Ψ

(
hk

)
= L

)
+ Pr

(
Ψ

(
hk

)
= R

)
> 1 − ε

2
. Pick any k ≥ k̄. By the Weak Law of

Large Numbers, for every κ > 0, limn→∞ Pr
(∣∣Sn

n
− (1− τR)

∣∣ < κ|Ψ (
hk

)
= L

)
= 1 and

limn→∞ Pr
(∣∣Sn

n
− τL

∣∣ < κ|Ψ (
hk

)
= R

)
= 1. Pick some κ < min {(1− τR)− q′, q − τL}.

There exists some n̄ > k such that for all n ≥ n̄, Pr
(∣∣Sn

n
− (1− τR)

∣∣ < κ|Ψ (
hk

)
= L

)
>

1 − ε
2

and Pr
(∣∣Sn

n
− τL

∣∣ < κ|Ψ (
hk

)
= R

)
> 1 − ε

2
. Observe that by the choice of κ,∣∣Sn

n
− (1− τR)

∣∣ < κ implies that L wins under both rules q and q′ whereas
∣∣Sn

n
− τL

∣∣ < κ

implies that L loses under both rules q and q′. For any n ≥ n̄, we have

|Pr(L wins in G (π, γ, τL, τR; n, q)− Pr(L wins in G (π, γ, τL, τR; n, q′)|

<

∣∣∣∣∣∣
∑

x∈{L,R}
Pr

(
Ψ

(
hk

)
= x

)
Pr

(
Sn

n
∈ (q, q′] |Ψ (

hk
)

= x

)∣∣∣∣∣∣
+

ε

2

< ε

which proves part (a) of the Theorem.

For part (b), consider any q < τL. The probability with which a voter votes L is at

least τL. Therefore, invoking the Weak Law of Large Numbers, limn→∞ Pr
(

Sn

n
< q

)
= 0.

The argument is analogous for part (c).

A.7 Proposition 3

We must first describe PBV0 precisely. When τL = τR = 0, for every i, we can simplify

to gi (k) =
(

γ
1−γ

)k

. Since γ
1−γ

> (1−π)γ
π(1−γ)

> 1 > 1−γ
γ

> (1−π)(1−γ)
πγ

>
(

1−γ
γ

)2

, the herding

thresholds compute as

(nL (i) , nR (i)) =





(1, 1) if i = 1

(1, 2) if i > 1 is even

(2, 2) if i > 1 is odd

Therefore, PBV0 prescribes that for any voter i with Ψ (hi−1) = 0, Ψ (hi) 6= 0 if and

only if ∆ (hi) ∈ {1,−2}. As discussed in the text, if Ψ (hi) = L (R), no voter thereafter

votes for R (L) on the path of play. Since PBV0 is defined as the limit of PBV, it specifies

that any off-path vote is simply ignored and does not affect the public belief. We omit
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the verification that this profile is an equilibrium for any q-rule: the logic parallels that

of Theorems 2 and 3 (especially Lemmas 3 and 4).

Appendix B: Richer Information Structures

Examples 2 and 3 consider particular games with richer information structures: in the

former, PBV is an equilibrium, while in the latter, PBV is not an equilibrium.

Example 2. Consider a sequential voting game with 3 voters where π = 1
2
, τL = τR = 0,

so that there are no Partisans.23 A Neutral voter can be one of two types : a Guru (G),

who obtains a perfectly informative signal, or a Follower (F), who obtains a signal of

precision γ = 3
5
. Conditional on being Neutral, a voter is a Guru with probability

τG = 4
5

and a Follower with probability 1
5
. We claim that PBV is a strict equilibrium

in this environment. To see this, we start by describing PBV behavior. Gurus vote

informatively regardless of history. As usual, voter 1 votes informatively. Regardless of

how 1 votes, if voter 2 is a Neutral Follower, her posterior for both l and r signals will

favor the candidate that 1 votes for. Therefore, in a PBV profile, voter 2 will vote the

same way as voter 1 if 2 is a Neutral Follower. Consequently, if voter 2 votes against

the vote of voter 1, then voter 3 can conclude that voter 2 is a Neutral Guru, and PBV

prescribes her to vote the same way as voter 2 if she is a Neutral Follower. Now, we

consider optimality of PBV. The incentives for voter 3 are trivial, so we focus on the

incentives for voter 2. If voter 2 is a Guru, then by voting informatively, she ensures that

the better alternative is selected regardless of history. Suppose that voter 1 has voted R

and voter 2 is a Follower with an l signal. By voting for R, voter 2 ensures that L wins

the election whereas by voting for L, a Follower voter 3 will (incorrectly) infer that 2 is a

Guru. Voter 2’s expected utility from voting R computes as 23
26

; instead, voter 2’s expected

utility from voting L is 107
130

< 23
26

. Consequently, voter 2 has strict incentives to vote in the

direction of her posterior even though this ends the election. Similarly, straightforward

computations show that voter 1 strictly prefers to vote informatively conditional on future

play being according to PBV.

Example 3. Consider the same structure as in Example 2, but with τR = 1
2
. PBV is no

longer an equilibrium. To prove this, suppose voters are playing PBV, and suppose that

voter 1 has voted R, and voter 2 is a Neutral Follower with signal r. Given the history

and private signal, voter 2’s posterior favors R, and PBV therefore prescribes that she

23The example can easily be modified to have both kinds of partisans with small probabilities, because
PBV is a strict equilibrium.
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vote for R. By following PBV, she immediately determines the winner of the election as

R. Voter 2’s expected payoff from voting R is therefore approximately 8
11

. On the other

hand, if she deviates from PBV and votes for L, she makes voter 3 pivotal. If voter 3

is a Neutral Follower (and follows PBV), voter 3 will vote L uninformatively; therefore,

by voting L, voter 2 knows that R will win if and only if voter 3 is an R-Partisan or a

Neutral Guru who observes an r signal. Consequently, voter 2’s expected payoff from

voting L computes as 87
110

, which is strictly greater than her payoffs from voting R. It is

optimal for her to deviate from PBV following voter 1’s vote for R.

Appendix C: Cut-Point Voting

In this Appendix, we consider the class of Cut-Point Voting (CPV) strategy profiles

introduced by Callander (2004). While this class does entail some restrictions, it covers

a range of strategy profiles, generalizing PBV to permit behavior ranging from fully

informative to uninformative voting (for Neutrals). We prove that for generic parameters,

any equilibrium within this class leads to herding with high probability in large elections.

This result is of interest because it suggests that our conclusions concerning momentum

are more general beyond the PBV equilibrium, with the important caveat that we do

not know whether non-PBV but CPV equilibria generally exist. Indeed, Proposition 5

shows that in the special case where τL = τR and for generic values of (π, γ), PBV is the

only history-dependent CPV equilibrium of large voting games.

To define a CPV profile, let µ (hi) ≡ Pr (ω = L|hi), so that µ (hi) denotes the public

belief following history hi.

Definition 3. A strategy profile, v, is a Cut-Point Voting (CPV) strategy profile if there

exist 0 ≤ µ∗ ≤ µ∗ ≤ 1 such that for every voter i, history hi, and signal si,

vi

(
N, hi, si

)
=

{
L if µ (hi) > µ∗ or {µ (hi) ≥ µ∗ and si = l}
R if µ (hi) < µ∗ or {µ (hi) ≤ µ∗ and si = r}

vi

(
Lp, h

i, si

)
= L

vi

(
Rp, h

i, si

)
= R

In a CPV strategy profile, Neutrals vote according to their signals alone if and only

if the public belief when it is their turn to vote lies within [µ∗, µ
∗]; otherwise, a Neutral

votes for one of the candidates independently of her private signal. Denote a CPV profile

with belief thresholds µ∗ and µ∗ as CPV (µ∗, µ
∗). These thresholds define the extent to
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which a CPV profile weighs past history relative to the private signal: CPV (0, 1) corre-

sponds to informative voting (by Neutrals) where history never influences play, whereas

CPV (1− γ, γ) corresponds to PBV. Similarly, CPV (0, 0) and CPV (1, 1) represent

strategy profiles where every Neutral votes uninformatively for candidate L and R re-

spectively. Therefore, CPV captures a variety of behavior for Neutrals.

A CPV equilibrium is an equilibrium whose strategy profile is a CPV profile. While

we are unable to derive a tight characterization of what non-PBV but CPV profiles—if

any—constitute equilibria, we can nevertheless show that generically, large elections lead

to herds with high probability within the class of CPV equilibria.

Theorem 5. For every (π, γ, τL, τR) such that τL 6= τR, and for every ε > 0, there exists

n < ∞ such that for all n > n, if voters play a CPV equilibrium, Pr[a herd develops in

G (π, γ, τL, τR; n)] > 1− ε.

Proof. We argue through a succession of lemmas that there exist µ∗ < 1 and µ∗ > 0

such that when τL 6= τR, in a large enough election, a CPV (µ∗, µ
∗) is an equilibrium

only if µ∗ < µ∗ < µ∗ < µ∗. This suffices to prove the Theorem, because then, the

arguments of Theorem 1 apply with trivial modifications. Note that in all the lemmas

below, it is implicitly assumed when we consider a particular voter’s incentives that she

is at an undecided history.

For any CPV (µ∗, µ
∗), we can define threshold sequences {ñL(i)}∞i=i and {ñR(i)}∞i=i

similarly to {nL(i)}∞i=i and {nR(i)}∞i=i, except using the belief threshold µ∗ (resp. µ∗) in

place of the PBV threshold γ (resp. 1−γ). That is, for all i such that gi (i− 1) ≤ (1−π)µ∗
π(1−µ∗) ,

set ñL (i) = i. If gi (i− 1) > (1−π)µ∗
π(1−µ∗) , we set ñL (i) to be the unique integer that solves

gi (ñL (i)− 2) ≤ (1−π)µ∗
π(1−µ∗) < gi (ñL (i)). For all i such that gi (− (i− 1)) ≥ (1−π)(µ∗)

π(1−µ∗)
, set

ñR (i) = i. If gi (− (i− 1)) < (1−π)µ∗
π(1−µ∗)

, set ñR (i) to be the unique integer that solves

gi (−ñR (i) + 2) ≥ (1−π)µ∗
π(1−µ∗)

> gi (−ñR (i)). Given these thresholds sequences ñL and ñR,

we define the phase mapping Ψ̃ : hi → {L, 0, R} in the obvious way that extends the PBV

phase mapping Ψ. We state without proof the following generalization of Proposition 1.

Proposition 4. Fix a parameter set (π, γ, τL, τR, n). For each i ≤ n, if voters play

CPV (µ∗, µ
∗) in the game G (π, γ, τL,τR; n), there exist sequences {ñL(i)}∞i=i and {ñR(i)}∞i=i

satisfying |ñC(i)| ≤ i such that a Neutral voter i votes

1. informatively if Ψ̃ (hi) = 0;

2. uninformatively for L if Ψ̃ (hi) = L;

3. uninformatively for R if Ψ̃ (hi) = R;
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where Ψ̃ is the phase mapping with respect to ñL and ñR. The thresholds ñL (i)

and ñR (i) do not depend on the population size, n.

Lemma 11. There exists µ̄∗ < 1 and µ∗ > 0 such that in any CPV (µ∗, µ
∗),

1. if µ∗ ≥ µ̄∗ then ñL(i) > nL(i) for all i such that nL (i) < i;

2. if µ∗ ≤ µ∗, then −ñR(i) < −nR(i) for all i such that −nR (i) > −i.

Proof. Define µ̄∗ by the equality µ̄∗
1−µ̄∗ = γ

1−γ
f(τL, τR)f(τR, τL) and define µ∗ by

µ∗
1−µ∗

=
1−γ

γ
(f (τL, τR) f (τR, τL))−1. We give the argument for part (1); it is similar for part

(2). It is straightforward to compute from the definition of gi(·) that for any k (such

that |k| < i and i−k is odd), gi(k− 2)f(τL, τR)f(τR, τL) = gi(k). Suppose µ∗ > µ̄∗ and

there is some i with ñL(i) ≤ nL(i) < i . By the definitions of nL(i) and ñL(i), and the

monotonicity of gi(k) in k,

gi(nL(i)− 2) = gi(nL(i)) [f(τL, τR)f(τR, τL)]−1

≥ gi(ñL(i)) [f(τL, τR)f(τR, τL)]−1

>
(1− π) µ∗

π(1− µ∗)
[f(τL, τR)f(τR, τL)]−1

≥ (1− π) γ

π (1− γ)

contradicting the definition of nL (i) which requires that gi(nL(i)− 2) ≤ (1−π)γ
π(1−γ)

. ¤

Lemma 12. If all Neutral voters play according to a CPV profile, it is uniquely optimal

for an L-partisan to vote L and an R-partisan to vote R.

Proof. This follows from the weak monotonicity imposed by CPV; trivial modifications

to the argument in Lemma 2 establish this result. ¤

Lemma 13. In a large enough election, CPV (0, 1) is not an equilibrium unless τL = τR.

Proof. Suppose all voters play CPV strategy (0, 1). Without loss of generality assume

τL > τR; the argument is analogous if τL < τR. Let ς t (n) denote the number of voters

of preference-type t ∈ {L,R,N} when the electorate size is n. Denote τN = 1− τL− τR.

Suppose voter 1 is Neutral and has received signal l. She is pivotal if and only if

amongst the other n− 1 voters, the number of L votes is exactly equal the number of R

votes. Let ςN,s (n) denote the number of Neutrals who have received signal s ∈ {l, r}.
Under the CPV profile (0, 1), voter 1 is pivotal if and only if ςN,r (n) − (ςN,l (n)− 1) =
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ςL (n)−ςR (n). By the Weak Law of Large Numbers, for any ε > 0 and any t ∈ {L,R, N},
limn→∞ Pr

(∣∣∣ ςt(n)
n
− τ t

∣∣∣ < ε
)

= 1. Consequently, since τL > τR, for any ε > 0 and k > 0,

there exists n̄ such that for all n > n̄, Pr (ςL (n)− ςR (n) > k) > 1− ε. Thus, denoting

Piv1 as the set of preference-type and signal realizations where the Neutral voter 1 with

si = l is pivotal, we have that for any ε > 0 and k > 0, there exists n̄ such that for

all n > n̄, Pr (ςN,r (n)− ςN,l (n) > k|Piv1) > 1 − ε. Since Pr (ω = L|ςN,r (n) , ςN,l (n))

is strictly decreasing in ςN,r (n) − ςN,l (n), it follows that by considering k large enough

in the previous statement, we can make Pr (ω = L|Piv1) < 1
2

in large enough elections.

Consequently, in large enough elections, voter 1 strictly prefers to vote R when she is

Neutral and has received si = l, which is a deviation from the CPV strategy (0, 1). ¤

Lemma 14. In a large enough election, CPV (µ∗, µ
∗) is not an equilibrium if either

µ∗ > 1
2

or µ∗ < π.

Proof. If µ∗ > π, then the first voter votes uninformatively for R if Neutral, and conse-

quently, all votes are uninformative. Thus, conditioning on being pivotal adds no new

information to any voter. Since µ1 (h1, l) > π > 1
2

(recall that h1 = φ), voter 1 has

an incentive to deviate from the CPV strategy and vote L if she is Neutral and receives

signal s1 = l.

If µ∗ ∈
(

1
2
, π

]
, let hk+1 be a history of k consecutive R votes. It is straightforward

that for some integer k ≥ 1, µ
(
hk

) ≥ µ∗ > µ
(
hk+1

)
. Since an R-herd has started when

it is voter k+1’s turn to vote, conditioning on being pivotal adds to information to voter

k + 1. Suppose voter k + 1 is Neutral and receives sk+1 = l. Then since an R-herd

has started, she is supposed to vote R. But since µk+1

(
hk+1, l

)
> µ

(
hk

) ≥ µ∗ > 1
2
, she

strictly prefers to vote L.

If µ∗ < π, the argument is analogous to the case of µ∗ > π, noting that µ1 (h1, r) < 1
2

because γ > π. ¤

Lemma 15. In a large enough election, CPV (µ∗, 1) is not an equilibrium for any µ∗ ∈
(0, π].

Proof. Suppose CPV (µ∗, 1) with µ∗ ∈ (0, π] is an equilibrium. Consider a Neutral voter

m with signal sm = r and history hm such that µ (hm) ≥ µ∗ but µ (hm+1) < µ∗ following

vm = R. (To see that such a configuration can arise in a large enough election, consider

a sequence of consecutive R votes by all voters.) Voter m is supposed to vote R in the

equilibrium. We will show that she strictly prefers a deviation to voting L in a large

enough election.

Claim 1: If the true state is R, then following vm = L, the probability of an R-herd

converges to 1 as the electorate size n → ∞. Proof : Recall that the likelihood ratio
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stochastic process λi
a.s.→ λ∞ (where the domain can be taken as i = m + 1,m + 2, . . .).

Since voter i votes informatively if and only if λi ≥ µ∗
1−µ∗

, the argument used in proving

Theorem 1 allows us to conclude that Support (λ∞) ⊆
[
0, µ∗

1−µ∗

]
and Pr

(
λ∞ = µ∗

1−µ∗

)
= 0.

Consequently, there is a herd on R eventually almost surely in state R.

Claim 2: Pr (Pivm|ω = R) converges to 0 as the electorate size n → ∞. Proof : To

be explicit, we use superscripts to denote the electorate size n, e.g. we write Pivn
m instead

of Pivm. Denote

Xn = {(t−m, s−m) ∈ Pivm : L-herd after vm = L, R-herd after vm = R}
Y n = {(t−m, s−m) ∈ Pivm : no herd after vm = L, R-herd after vm = R}
Zn = {(t−m, s−m) ∈ Pivm : R-herd after vm = L and vm = R}

We have Pivn
m = Xn∪Y n∪Zn; hence it suffices to show that Pr (Xn) → 0, Pr (Y n) →

0, and Pr (Zn) → 0. That Pr (Xn) → 0 and Pr (Y n) → 0 follows straightforwardly from

Claim 1. To show that Pr (Zn) → 0, let Ψn
k denote the phase after voter k has voted,

i.e. when it is voter k + 1’s turn to vote. For any n, consider the set of {(tj, sj)}n
j=m+1

such that after vm = L, Ψn
n 6= L; denote this set Ξn. Partition this into the sets that

induce Ψn
n = 0 and Ψn

n = R, denoted Ξn,0 and Ξn,R respectively. Clearly, Zn ⊆ Ξn,R.

For any ε, for large enough n, regardless of m’s vote, Pr (Ψn
n = 0) < ε by Claim 1, and

thus, Pr (Ξn,0) < ε. Now consider any n′ > n. Zn′ ⊆ Ξn because if there is a L-herd

following vm = L with electorate size n, there cannot be an R-herd following vm = L with

electorate size n′. Thus, Pr
(
Zn′

)
= Pr (Ξn,0) Pr

(
Zn′|Ξn,0

)
+ Pr

(
Ξn,R

)
Pr

(
Zn′|ΞR

n

)
<

ε+Pr
(
Ξn,R

)
Pr

(
Zn′|ΞR

n

)
for large enough n. We have Pr

(
Zn′|Ξn,R

)
=

Pr
(
Zn′ ∩ Ξn,R

)

Pr (Ξn,R)
.

It is straightforward to see that Pr
(
Zn′ ∩ Ξn,R

) → 0 as n′ → ∞, using the fact that

τL < 1−τL and invoking the Weak Law of Large Numbers similarly to Lemma 13. Note

that Pr
(
Ξn,R

)
is bounded away from 0 because if sufficiently many voters immediately

after m are R-partisans, then an R-herd will start regardless of m’s vote. This proves

that Pr
(
Zn′

) → 0.

Claim 3: If the true state is L, then following vm = L, the probability that L

wins is bounded away from 0 as the electorate size n → ∞. Proof : Define ξ (hi) =
Pr(ω=R|hi)
Pr(ω=L|hi)

; this generates a stochastic process 〈ξi〉 (i = m + 1,m + 2, . . .) which is a

martingale conditional on state L, and thus 〈ξi〉 a.s.→ ξ∞. Note that ξm+1 < 1−µ∗
µ∗

since µ (hm) ≥ µ∗ and vm = L. Since voter i votes informatively if and only if

ξi ∈
(
0, 1−µ∗

µ∗

]
, the argument used in proving Theorem 1 allows us to conclude that

Support (ξ∞) ⊆ {0} ∪
[

1−µ∗
µ∗

,∞
)

and Pr
(
ξ∞ = 1−µ∗

µ∗

)
= 0. Suppose towards contradic-
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tion that 0 /∈ Support (ξ∞). This implies E [ξ∞] > 1−µ∗
µ∗

. By Fatou’s Lemma (Billingsley,

1995, p. 209), E [ξ∞] ≤ limn→∞ E [ξn]; since for any n ≥ m + 1, E [ξn] = ξm+1, we have
1−µ∗

µ∗
< E [ξ∞] ≤ ξm+1 < 1−µ∗

µ∗
, a contradiction. Thus, 0 ∈ Support (ξ∞), and it must

be that Pr (ξ∞ = 0) > 0. The claim follows from the observation that for any history

sequence where ξi (h
i) → 0 it must be that ∆ (hi) →∞.

Consider the expected utility for voter m from voting R or L respectively, conditional

on being pivotal: EUm (vm = R|Pivm) = Pr (ω = R|Pivm) and EUm (vm = L|Pivm) =

Pr (ω = L|Pivm). Thus, she strictly prefers to vote L if and only if Pr (ω = L|Pivm) >

Pr (ω = R|Pivm), or equivalently, if and only if Pr (Pivm|ω = L) > Pr (Pivm|ω = R) 1−µm(hm,r)
µm(hm,r)

.

By Claim 2, Pr (Pivm|ω = R) converges to 0 as electorate grows. On the other hand,

Pr (Pivm|ω = L) is bounded away from 0, because by Claim 3, the probability that L

wins following vm = L is bounded away from 0, whereas if vm = R, a R-herd starts and

thus the probability that R wins converges to 1 as the electorate size grows. Therefore, in

a large enough election, Pr (Pivm|ω = L) > Pr (Pivm|ω = R) 1−µm(hm,r)
µm(hm,r)

, and it is strictly

optimal for m to vote L following his signal sm = r, which is a deviation from the CPV

strategy. ¤

Lemma 16. In a large enough election, CPV (0, µ∗) is not an equilibrium for any µ∗ ∈
[π, 1).

Proof. Analogous to Lemma 15, it can be shown here that in a large enough election

there is a voter who when Neutral is supposed to vote L with signal l, but strictly prefers

to vote R. ¤

Lemma 17. In a large enough election, CPV (µ∗, µ
∗) is not an equilibrium if µ∗ ∈ [µ̄∗, 1)

and µ∗ ∈ (0, 1
2
].

Proof. Fix an equilibrium CPV (µ∗, µ
∗) with µ∗ ∈ [µ̄∗, 1) and µ∗ ∈ (0, 1

2
]. By Lemma

11, ñL(i) > nL(i) for all i. Consider a Neutral voter m with signal sm = r and history

hm such that µ (hm) ≥ µ∗ but µ (hm+1) < µ∗ following vm = R. (To see that such a

configuration can arise in a large enough election, consider a sequence of consecutive R

votes by all voters.) Voter m is supposed to vote R in the equilibrium. We will show

that she strictly prefers a deviation to voting L in a large enough election.

First, note that by following the argument of Theorem 1, it is straightforward to

show that regardless of m’s vote, a herd arises with arbitrarily high probability when the

electorate size n is sufficiently large. Define Xn, Y n, and Zn as in Lemma 15, where

n indexes the electorate size. Plainly, Pr (Y n) → 0. The argument of Claim 2 in

Lemma 15 implies with obvious modifications that Pr (Zn) → 0. Finally, Pr (Xn) 9 0
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because there exists m′ > m such that if vi = L for all i ∈ {m + 1, . . . ,m′}, then

Ψn
m′ = L, and Pr (vi = L for all i ∈ {m + 1, . . .m′}) ≥ (τL)m′−m > 0. Since Pivn

m =

Xn∪Y n∪Zn, we conclude that as n →∞, Pr (Xn|Pivn
m) → 1, whereas Pr (Y n|Pivn

m) → 0

and Pr (Zn|Pivn
m) → 0. Consequently, for any ε > 0, there exists n̄ such that for all

n > n̄,

|EUm (vm = L|Xn, sm = r)− EUm (vm = L|Pivn
m, sm = r)| < ε

and

|EUm (vm = R|Xn, sm = r)− EUm (vm = R|Pivn
m, sm = r)| < ε

Therefore, it suffices to show that for any n > m,

EUm (vm = L|Xn, sm = r) > EUm (vm = R|Xn, sm = r) ,

or equivalently, Pr (ω = L|Xn, sm = r) > Pr (ω = R|Xn, sm = r). For any k ∈ {m + 1, . . . , n},
define

Xn
k =

{
(t−m, s−m) ∈ Pivn

m : Ψn
k−1 = 0 but Ψn

k = L after vm = L, Ψn
n after vm = R

}

Clearly, this requires ñL (k + 1) < k + 1. For i 6= j, Xn
i ∩ Xn

j = ∅, but Xn =

∪n
k=m+1X

n
k , and thus Pr (ω|Xn, sm = r) = ∪n

k=m+1 Pr (ω|Xn
k , sm = r) Pr (Xn

k |Xn). It

therefore suffices to show that for any k ∈ {m + 1, . . . , n}, Pr (ω = L|Xn
k , sm = r) >

Pr (ω = R|Xn
k , sm = r). Given that vm = L, the informational content of Xn

k is equiva-

lent to a history hk+1 where ∆
(
hk+1

)
= ñL (k + 1)− 2, and all neutrals are assumed to

have voted informatively. Therefore,

Pr (ω = L|Xn
k , sm = r) =

πγgk+1 (ñL (k + 1)− 2)

πγgk+1 (ñL (k + 1)− 2) + (1− π) (1− γ)

Since ñL (k + 1) < k + 1 and ñL(i) > nL(i) for all i, it must be that ñL(k + 1)− 2 ≥
nL(k + 1). Consequently,

Pr (ω = L|Xn
k , sm = r) ≥ πγgk+1 (nL (k + 1))

πγgk+1 (nL (k + 1)) + (1− π) (1− γ)

>
1

2

where the second inequality is by the definition of nL (k + 1). ¤

Lemma 18. In a large enough election, CPV (µ∗, µ
∗) is not an equilibrium if µ∗ ∈ [π, 1)

and µ∗ ∈
(
0, µ∗

]
..
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Proof. Analogous to Lemma 17, it can be shown here that in a large enough election

there is a voter who when Neutral is supposed to vote L with signal l, but strictly prefers

to vote R. ¤

While the above theorem shows that for generic constellation of parameters, a CPV (µ∗, µ
∗)

profile is an equilibrium in large elections if and only if µ∗ < µ∗ < µ∗ < µ∗, we do not

know whether there exists any CPV equilibrium that meets that restriction other than

PBV. In the special case in which τL = τR, we now show that for generic values of

(π, γ), the only history-dependent CPV equilibrium of large elections is indeed PBV.24

Proposition 5. Suppose that τL = τR = τ . Then for almost all (π, γ, τ), the only

history-dependent CPV equilibrium of large elections is PBV.

Proof. Consider a sufficiently large election and a history-dependent CPV equilibrium

with thresholds µ∗ and µ∗. For the profile to be history-dependent requires either µ∗ 6= 0

or µ∗ 6= 1. All the other arguments of Theorem 5 apply, and therefore µ∗ < µ∗ < µ∗ < µ∗.

This establishes that there exists i such that herding thresholds ñL (i) < i and ñR (i) < i.

The hypothesis that τL = τR = τ implies that gi (∆) = (f (τ , τ))∆, independent of i.

Therefore, ñL (i) = ñL (j) for all voters i, j such that |i− j| is even and i, j > ñL (i); and

analogously for the sequence {ñR (i)}∞i=1.

Step 1: We first argue that for each i, ñL (i) ≥ nL (i). Suppose towards contradiction

that there exists i such that ñL (i) < nL (i). For generic values of (π, γ, τ), since g is

monotonic in its argument, gi (ñL (i)) ≤ gi (nL (i)− 2) < (1−π)γ
π(1−γ)

.25 Consider undecided

history hi in which Ψ̃ (hi−1) = 0 and ∆ (hi) = ñL (i); the CPV profile prescribes that all

subsequent Neutral voters vote L regardless of signal. Suppose that voter i is Neutral and

receives signal r: as in Lemma 3, since all subsequent voters are voting uninformatively,

Pr (ω = L|hi, r, P ivi) = Pr (ω = L|hi, r) which can be verified as less than 1
2

because

gi (ñL (i)) < (1−π)γ
π(1−γ)

. Therefore, conditioning on being pivotal, voter i would prefer to

deviate from the CPV and vote R. An analogous argument establishes that ñR (i) ≥
nR (i).

Step 2: The proof is completed by showing that there cannot be an i with either

ñL (i) > nL (i) or ñR (i) > nR (i). Suppose otherwise: in particular, that there is a voter

i∗ with ñL (i∗) > nL (i∗) (the argument is analogous for the R thresholds, hence omitted).

Let k = max {i : nL (i) = i} denote the voter with the highest index who never herds for

24To be clear, a pure strategy profile is history-dependent if there exist some voter i, type ti, signal
si, and histories hi, h̃i such that both histories are undecided and vi

(
ti, si, h

i
) 6= vi

(
ti, si, h̃

i
)
.

25The role that genericity plays is in establishing the strictness of the second inequality. Given a
(π, γ), gi (k) = (f (τ , τ))k is in

{
(1−π)γ
π(1−γ) ,

(1−π)(1−γ)
πγ

}
for only countably many τ .
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L in any history in a PBV profile (it is straightforward to show such a k exists). Let

J = {i : i > k and ñL(i) = nL(i)}. By Step 1, we can restrict attention to the case

where for any i such that i > k and i /∈ J , ñL(i) > nL(i). There are two exclusive and

exhaustive cases to consider.

First, assume J = ∅. Consider the choice of voter m given signal sm = r and history

hm such that Ψ̃ (hm) = 0 and Ψ̃ (hm, R) = R. An argument analogous to that in Lemma

17 establishes that for sufficiently large populations, voter m would strictly prefer to

deviate from the CPV prescription and vote L.

Second, assume J 6= ∅. Since ñL(i) = ñL(i+2) for any i > k, it must be that if j ∈ J

then j+1 /∈ J ; moreover ñL (j + 2m + 1) = ñL (j + 1) > nL (j + 1) = nL (j + 2m + 1) for

all positive integers m. We also note that if j ∈ J , gj+1 (ñL (j) + 1) = (f (τ , τ))ñL(j)+1 >
(1−π)µ∗
π(1−µ∗) , and consequently ñL (j + 1) ≤ ñL (j)+1. Similarly, nL (j + 1) ≥ nL (j)−1, and

therefore, ñL (j + 1) = nL (j) + 2 since ñL (j) = nL (j). Thus, for j ∈ J , Ψ̃ (hj+1) = L

implies that Ψ̃ (hj) = L, and similarly Ψ (hj) = L implies that Ψ (hj−1) = L. For j′ > k

and j′ /∈ J , let ∆̄ denote nL (j′). The foregoing establishes that under PBV, L-herds

can begin only on those voters with indices j′ > k and not in the set J and are triggered

when the vote lead reaches ∆̄; however under the candidate CPV, L-herds begin only on

those voters with indices j ∈ J and are triggered when the vote lead reaches ∆̄ + 1. Let

us consider the incentives of voter m, hm such that
(
Ψ̃ (hm) , ∆ (hm)

)
=

(
0,−∆̃

)
, and

Ψ̃ (hm, R) = R, and sm = r in the candidate CPV profile. Suppose that voter m deviates

and votes L, and consider the event in which this deviation triggers a future L-herd. An

L-herd begins if and only if following the deviation, there are on net
(
∆̃− 1

)
+

(
∆̄ + 1

)

more votes for L; since ∆ (hm) = −∆̃, an L-herd following a deviation reveals an excess

of ∆̄ votes for L. Voter m’s posterior conditional on her signal, deviation, and the

subsequent L-herd is therefore π(1−γ)(f(τ ,τ))∆̄

π(1−γ)(f(τ ,τ))∆̄+(1−π)γ
> 1

2
, since by construction, a vote

lead of ∆̄ suffices to trigger an L-herd in a PBV profile. Therefore, conditional on a

deviation inducing a future L-herd, voter m believes that it is more probable that ω = L.

Using arguments from Lemma 17, voter m then strictly prefers to vote L in sufficiently

large elections, contrary to the prescription of CPV. ¤
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