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Abstract

This paper reports an experimental study of trading networks, in
which exchange is intermediated by traders who form a chain of links
between the initial owner of the assets and ultimate owner of the as-
sets. Traders choose bid and ask prices and trades are executed by the
computer once subjects have submitted their strategies. Networks are
incomplete in the sense that each trader can only exchange assets with
a limited number of other traders. The greater the incompleteness of
the network, the more intermediation is required to transfer the assets
between initial and final owners. The uncertainty of trade in networks
constitutes a potentially important market imperfection. As a result,
the inferences subjects must draw in order to make optimal decisions
are quite subtle. Nevertheless, we find that the competitive prices can
account for the pricing behavior observed in the laboratory in variety
of networks and trading protocols. Furthermore, significant differences
can be identified in the pricing behavior of subjects in different net-
works, and different trading protocols lead to different dynamics.
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1 Introduction

Markets play a central role in economic theory and practice, but economic
models often give short shrift to the important institutional details of mar-
kets. For example, costly intermediation (“frictions”) plays a crucial role in
many financial markets and yet the standard model is a centralized auction
market where everyone trades simultaneously at a single location. While
stock exchanges and other financial markets are usually assumed to be good
approximations to the theoretical ideal of frictionless markets, recent the-
oretical research has begun to recognize that financial markets contain in-
teresting and important frictions. Financial networks, which are crucial for
the allocation of resources in society, are a natural example to study, but
results are applicable to any model of exchange which shares the same basic
network structure.

Gale and Kariv (2007) contribute to a more realistic theory by developing
a model of financial networks. The network is represented by a connected
graph in which the nodes represent agents (traders) and the edges represent
the possibility of trade between the agents linked by the edge. When the
network is incomplete, it may be necessary for an asset to follow a circuitous
route from the initial seller to the ultimate buyer. The more incomplete the
network, the more intermediate trades are required to achieve an efficient
allocation. Gale and Kariv (2007) show that, in the limit as the economy
becomes frictionless, the market outcome is efficient. Introducing frictions
provides an important source of market imperfection which can lead to a
market breakdown.

In this paper, we exploit the methods of experimental economics to ex-
plore the properties of a simple trading network. Empirical research can
tap either real-world data from large-scale markets or small-scale laboratory
data. The strengths of data from the real world are its relevance and avail-
ability. Its main weakness is that in real-world settings we observe behavior
but not preferences, technologies, or private information. In the laboratory,
by contrast, we can control subjects’ preferences, technology and private
information. Consequently, laboratory data are especially useful for testing
the efficiency of different markets, and for comparing market structures and
market institutions. Thus, the clarity that is achieved by putting a market
under the microscope is well worth the effort and the necessary simplifica-
tion.

The theory involves a number of different elements, each of which raises
questions about subjects will behave in the laboratory. Will subjects bargain
as the theory suggests? Will subjects behave rationally or will it be necessary
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to allow for bounded rationality? Will intermediaries’ uncertainty about the
possibility of reselling the asset lead to a coordination failure? In this paper,
we study a market in which the number of traders is small, the networks
are simple, and the trading mechanism is closer to the well known auction
paradigm than to the bargaining paradigm. The design is stable and easy to
understand and provides us with an insight into how experimental networks
behave. Using this design, we test how useful the theory is in interpreting
the observed behavior, and study the efficiency of pricing and trade using a
variety of network architectures.

A parametric example may clarify the experimental design. Suppose
there are nine subjects arranged in the rectangular array with three rows
and three columns illustrated in Figure 1. In addition to the human traders,
there is a computer-generated seller (CGS) and a computer-generated buyer
(CGB). Each node represents a trader and the edges between the nodes
indicate trading possibilities. The network architecture in Figure 1 indicates
that trades are restricted to adjacent rows but, subject to these constraints,
any pattern of trading links is allowed. That is, each member of the top
row can trade with the CGS and with every member of the middle row;
each member of the middle row can trade with every member of the top
and bottom rows; and each member of the bottom row can trade with every
member of the middle row and with the CGB.

[Figure 1 here]

The CGS is endowed with a single unit of an indivisible asset. The nine
traders are endowed with 100 tokens each. Buyers use these tokens to pay
for the asset and sellers receive these tokens in exchange for the asset. The
CGB is also assumed to have an endowment of 100 tokens. The asset has
no value to the CGS or to the nine traders. The CGB values the asset
at 100 tokens. So the surplus (gains from trade) generated by transferring
the asset from the CGS to the CGB is equal to 100 tokens. Each trader
simultaneously chooses a bid (the price at which he is willing to buy the
asset) and an ask (the price at which he is willing to sell the asset). The
bids and asks must lie between 0 and 100 tokens. The ask of the CGS is
fixed at 0 and the bid of the CGB is fixed at 100.

Once the bids and asks have been determined, trades are executed as
follows. Beginning at the top of the network, the CGS and the top row
exchange the asset. The asset goes to the trader with the highest bid. If
two or more traders choose the highest bid, the asset is allocated randomly
between them (with equal probabilities). The top-row seller (the trader who
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bought the asset from the CGS) sells the asset to the middle-row trader
with the highest bid that is at least as high as the seller’s ask. Again, ties
are broken randomly. If every bid is less than the seller’s ask, no trade
takes place and the game ends with the seller holding the asset. Exchange
between the middle and bottom rows is executed similarly. Finally, if the
asset reaches the bottom row, the asset will be transferred to the CGB
because the CGB’s bid of 100 is at least as great as the seller’s ask. When
the asset is traded, the price paid for the asset is the average of the bid and
the ask. The corresponding amount of tokens is transferred from the buyer
to the seller.

This example gives a good sense of the advantages of the experimen-
tal design. First, it defines a normal form game. Secondly, because the
game is played in normal form, it can be played repeatedly in a relatively
short amount of time, generating a large data set. Thirdly, the platform is
sufficiently flexible to allow us to study a variety of network architectures,
transaction pricing rules, and payoff functions. The baseline treatment (B)
uses the 2 × 3 and 3 × 3. When the asset is traded, the price paid for the
asset is the average of the bid and the ask. The corresponding amount of
tokens is transferred from the buyer to the seller. At the end of an exper-
imental session, one trading period is chosen at random to determine the
subjects’ payoffs. A subject’s earnings in this period equal his initial en-
dowment of 100 tokens plus his trading profit (positive or negative). The
subject’s payment is equal to the greater of his earnings minus 90 tokens and
10 tokens. Thus, the payoff function does not deduct subjects’ full trading
losses from their earnings. The experimental design section discusses the
variety of other treatments that are available.

Our results can be summarized under three headings:

• Convergence. Since the underlying trading game is essentially a Bertrand
pricing model, there is a unique Nash equilibrium in which all bid and
ask prices are equal to 100 and trading profits are zero, except in
the top row, where the CGS is restricted to ask 0 and profits are
50. In the auction treatment (A), which uses the 1 × 3 network and
thus corresponds to a simple auction, convergence to the equilibrium
price occurs in the first few periods and the bids remain at that level
throughout the game, apart from occasional experimental deviations.
In the 2 × 3 and 3 × 3 networks used in the baseline treatment, con-
vergence is slower but prices very rapidly reach the neighborhood of
the competitive price. The slower convergence is due to the greater
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amount of intermediation required for the asset to reach the CGB.

• Efficiency. Strategic uncertainty (about what other subjects will do)
inevitably requires a period of learning and during this period trades
may not be completed. Further, even later in the game trade may
break down if subjects make mistakes about the prices that are likely
to be bid or asked by their opponents. On the whole, trade is approx-
imately efficient in the sense that, it tends to be lower in the early
trading periods and rises as subjects become more confident about the
behavior of other agents and as the prices bid and asked convergence
to competitive equilibrium prices. In the 1 × 3 network, there is no
possibility of incomplete trades, since there is only one row. In the
2×3 and and 3×3 networks, efficiency is very high. Given the incom-
pleteness of these networks, which requires intermediate trades, and
the strategic form of the game, which does not allow for recontract-
ing, the subjects’ ability to coordinate on an efficient outcome is quite
striking.

• Sensitivity. We study a number of variants to test the sensitivity of the
results to the amount of competition (reducing the number of columns
in the network), the pricing rule (setting the transaction price equal
the buyer’s bid), the payoff function (deducting more trading losses
from subjects’ earnings), and the symmetry of the network architec-
ture (introducing asymmetry in the availability of counterparties to
trade with). Although convergence and efficiency are somewhat af-
fected by each of these changes, the equilibrium properties continue
to have predictive power. Among other things, we note that (i) less
competition may lead to slower convergence and lower efficiency, and
(ii) trading losses and bid-pricing rule reduce competition by making
bidders less aggressive and thus lower efficiency.

The rest of the paper is organized as follows. A discussion of the related
literature is provided in Section 2. We describe the theoretical model and
the experimental design in Section 3. The results are contained in Section
4. Some concluding remarks and important topics for further research are
contained in Section 5. Sample experimental instructions are reproduced in
Section 6.
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2 Related Literature

The paper contributes to the enormous body of work on experimental mar-
kets. Following the seminal papers of Forsythe, Palfrey and Plott (1982,
1984), and Plott and Sunder (1982, 1988) numerous experimental papers
analyzed many aspects of asset markets.1 In contrast to the existing lit-
erature, our project will develop the first systematic experimental test of
the role of network structure in determining the efficiency of markets since
the incompleteness of the network provides an important form of market
imperfection.

Although network experiments in economics are recent, there is now a
large experimental literature on the economics of networks.2 To the best of
our knowledge, all of the previous contributions have quite different focuses
than ours. The most closely related paper is by Charness, Corominas-Bosch
and Fréchette (2005), who investigate how the network structure affects the
outcomes and dynamics of ultimatum bargaining. Following the model of
Corominas-Bosch (2004), they decompose a network of buyers and sellers
into two simple sub-graphs and test whether it matters how a single edge is
added between these two groups of traders.

We provide a couple of fundamental innovations over previous work.
Most importantly, previous experimental studies on networks have been re-
stricted to very simple and relatively extreme network architectures. Our
primary methodological contribution is an experimental platform that pro-
vides a computerized graphical representation of networks and allows sub-
jects to make large numbers of decisions in a wide range of situations. This
enables us to systematically collect more and richer data about networks
than has been possible in the past. The applications of this platform have
not been exhausted by the present paper. The experimental set up can be
adapted to the analysis of a larger class of networks and there are many
important questions that remain to be explored.

3 Theory and Design

In this section, we describe the theory on which the experimental design is
based and the design itself.

1Sunder (1995) provides a comprehensive discussion of the experimental work on asset
markets.

2Kosfeld (2004) surveys the experimental work in economics, and Goyal (2004) and
Jackson (2004) provide recent surveys of the theoretical work.
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3.1 The trading game

The trading game consists of a finite number of players, indexed by k =
1, ...,K, arranged in a rectangular network consisting of m rows and n
columns. An example of a 3× 3 network is illustrated in Figure 1 above. A
single player is located at each node and the edges connecting the nodes in-
dicate that the corresponding players can trade with each other. In addition
to the human players, there are two computer-generated players, called the
computer-generated seller (CGS) and the computer-generated buyer (CGB).
The CGS has one unit of an indivisible asset which he is willing to sell for
zero and the CGS is willing to buy the asset for v > 0 units. Most of the
networks we consider are symmetric and satisfy the following properties.
Only the players in row i = 1 can purchase the asset from the CGS. The
players in row i > 1 can buy the asset from any of the players in row i− 1
and the players in row i < m can sell the asset to any of the players in row
i+1. Only players in the last row can sell the asset to the CGB. A strategy
for each player k consists of the announcement of an asking price (ak) at
which he would be willing to sell one unit of the asset and a bid price (bk)
at which he would be willing to purchase one unit of the asset. The bid and
ask prices are restricted to the interval [0, v] so the strategy set for player k
is simply Sk = [0, v]× [0, v] and the set of strategy profiles is S = ×K

k=1Sk.
Trades are executed as follows. The asset is transferred from the CGS to

the player row 1 who has the highest bid. If there is more than one player
with the highest bid, the asset is allocated randomly among the winning
bidders. The player who receives the asset pays the CGS an amount equal
to αbk where bk is the winning bid and 0 ≤ α ≤ 1 is a constant. In each row
1 < i < m, trade is only possible if the asset is held by one of the players in
row i − 1, whom we call the seller. Trade takes place if at least one bid in
row i is greater or equal to the seller’s asking price. The asset is transferred
to the highest bidder. If more than one player has the highest bid, the asset
is allocated randomly among the winning bidders. The player who receives
the asset transfers an amount equal to αbk + (1− α) ak0 , where bk is the
winning bid and ak0 is the seller’s asking price. If no bid is at least as high
as the seller’s asking price, no trade takes place and the asset remains with
the seller. If a player in row m receives the asset, he sells it to the CGB for
a price equal to αv + (1− α) ak, where ak is the seller’s asking price.

A player’s payoff is equal to his trading profit, that is, the amount he
receives from selling the asset minus the amount he pays for it. A player
who does not manage to buy the asset receives a payoff of zero. A player
who buys the asset for a positive price and fails to sell it receives a negative
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payoff. Denote a typical player’s strategy by σk = (ak, bk) and a strategy
profile by σ = {σk} = (a, b), where a = {ak} and b = {bk}. Denote player
k’s payoff by πk (σ) = πk (a, b). A Nash equilibrium is a strategy profile σ∗

such that for any player k,

πk (σ
∗) ≥ πk

¡
σk, σ

∗
−k
¢

for any σk ∈ Sk. It is not hard to see that the usual Bertrand competition
result holds. Suppose that there are at least two players in each row. Then,
in any Nash equilibrium, the asset passes, by means of a sequence of trades,
from the CGS to the CGB — in other words, the market is efficient — and
in each equilibrium trade the transaction price is equal to v (except for the
first row, where the transaction price is αv).

3.2 Experimental design and procedures

All the experimental sessions were conducted at the Center for Experimen-
tal Social Science (C.E.S.S.) at New York University (NYU). The subjects
were recruited from the undergraduate student body of the Collage of Arts
and Sciences at NYU. Subjects read the instructions silently (reproduced
in Section 6), after which the instructions were read aloud by one of the
experiment administrators. Subjects were invited to ask questions during
the verbal instruction period. No subject reported difficulty understanding
the procedures or using the computer interface. Each experimental session
lasted a little more than one hour. A $5 participation fee and subsequent
earnings, which averaged about $20, were paid in private at the end of the
session.

Each experimental session consisted of 30 independent trading periods.
The network structure and the trading protocol were held constant through-
out a given experimental session. At the beginning of each session, each
subject was randomly and independently assigned to one row of the net-
work. This determined his type, which remained constant throughout the
experiment. At the beginning of each trading period, the computer would
randomly form networks by assigning subjects to the various nodes in the
network. Top row subjects were assigned to top row nodes, middle row types
to middle row nodes, and so on, but the assignments were otherwise random
and subjects had an equal probability of being selected for each node and
network.

Subjects were informed of the network structure, the trading protocol,
and the payoff function. At the beginning of a trading period, they would
be informed of their position in the network to which they were assigned
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and then would be asked to choose a bid price (the price at which they were
willing to buy one unit of an asset) and an ask price (the price at which
they were willing to sell one unit of the asset). Prices were denominated
in terms of tokens which would be converted into dollars at the end of the
experiment. Each subject had an initial endowment of 100 tokens and was
allowed to choose any number (including decimals) between 0 and 100 as a
bid or ask price. Subjects knew the asking price of the CGS (0 tokens) and
the bid price of the CGB (100 tokens).

The computer program dialog window is shown in Section 6. The main
features of the computer interface are: the large window at the left of the
screen, which displays the network and the price and trading information;
the View Results button in the top right corner of the screen, which allows
subjects to recall the price and trading information from any previous trad-
ing period; the Bid and Ask fields at the right of the screen, where subjects
enter the prices at which they are willing to buy and sell; and the message
window in the lower left corner of the screen. In each period, subjects are
required to enter their bids and asks in the respective fields and click the
Submit button. After all subjects entered a bid and ask price, the computer
executed the feasible trades according to the trading protocol. Then they
saw the results of the trade in their network. After they have all clicked the
OK button, the next trading period begins.

At the end of the experiment, the computer selected one trading period
at random, where each period had an equal probability of being chosen,
and the subject was paid an amount based on the number of tokens earned
in that period. The subject’s earnings in the chosen trading period would
equal the initial endowment of 100 tokens, plus the trading profits (positive
or negative) defined as the difference between the revenue from selling the
asset (zero if the asset was not sold) and the cost of buying the asset (zero
if the asset was not purchased). The payoff was defined by the formula

payoff = 10 +max {0, trading profit} (1)

Payoffs were calculated in terms of tokens and then converted into dollars.
The payoff function (1), which is used in most experimental treatments,

represents a compromise between two conflicting objectives. On the one
hand, we would like subjects to be rewarded on the basis of (positive or
negative) trading profits, just like market traders. On the other hand, if we
allow traders to keep their entire earnings, they have a strong incentive to
remain passive, since they can earn an amount equal to their endowment
without trading at all. The only way to remove the incentive for passivity
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is to subtract most of the endowment from their earnings before calculating
their compensation, but this has the effect of removing the possibility of
substantial losses too. As with most compromises, this one leaves us dissat-
isfied, but we have experimented with a payoff function that allows for more
losses and find that the behavior is not too different.

Our experimental design consists of a baseline treatment followed by a
number of variations to test the sensitivity of our results with respect to the
degree of competition, the pricing rule, the payoff function, and finally the
effect of asymmetry in the network architecture. The baseline treatment
(B) uses the 2×3 and 3×3 networks, the mean-price rule (α = 0.5), and the
payoff function (1). The auction treatment (A) is identical to the baseline
treatment except that it only uses the 1 × 3 network. Within the auction
and baseline treatments, only the number of rows in the network is varied.
Adding rows increases the amount of intermediation required to capture
the surplus available, which allows us to test the responsiveness of pricing
behavior to trading uncertainty.

The competition treatment (C) is the same as the baseline treatment
except that it uses the 2× 2 and 3× 2 networks. In respect, these networks
allow us to test the robustness of the results of the 2× 3 and 3× 3 networks
in the baseline treatment to a reduction in the amount of competition in
each network, where we identify competition with the number of traders in
each row. The bid-price treatment (P) uses the 2× 3 and 3× 2 networks to
test the robustness of the results of the baseline and competition treatments
to a change in the definition of the transactions price by setting it equal
to the successful bid (α = 1). Further, the asymmetric treatment (S), uses
a simple asymmetric 2 × 2 network to explore the effects of asymmetry on
pricing behavior. This network is identical to the symmetric 2× 2 network
used in the competition treatment except that one of the nodes in the top
row is connected to only one of the nodes in the bottom row.

The loss treatment (L) further tests the robustness of the results by using
the 3× 2 network and a payoff function that deducted more trading losses
from subjects’ earnings. More specifically, compare the payoff function (1),
we increase the constant term and reducing the lower bound on trading
profits such that

payoff = 50 +max {−40, trading profit} . (2)

Hence, if a subject makes a trading loss of more than 40, his payoff will be
equal to 10 tokens. If the trading profit is non-negative, his payoff will be at
least 50, that is, 40 tokens more than under payoff function (1). Other things
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being equal, under payoff function (2), payoffs are higher, but the incentive
to trade may be smaller. The fact that the subject can now earn 50 tokens
for sure by not trading, creates a significant risk of loss from trading. Figure
2 and the diagram below summarizes the experimental design. The entries
of the form a/b/c represent the number of networks, the number of subjects,
and the number of observations per row.

Exp. Networks # of obs.

B
2× 3
3× 3

6/54/270
6/54/180

A 1× 3 5/15/150

C
2× 2
2× 3

9/36/270
6/36/180

P
2× 3
3× 2

6/36/180
6/36/180

S 2× 2 8/32/240

L 3× 2 6/36/180

[Figure 2 here]

4 Experimental Results

In this section, we present our experimental results. The novel feature of
our design is the presence of intermediation. We first explore the effect of
intermediation, measured by the number of rows in the network, on prices in
the baseline treatment (B). Then, we consider the robustness of the results
to changes in the amount of competition (C), measured by the number of
columns in the network, the pricing rule (P), the payoff function (L), and the
asymmetry of the network architecture (S). Finally, we compare the levels of
efficiency, measured as the fraction of completed trades, across treatments
and networks. The aim of the analysis is provides us with an insight into
how experimental networks behave, as well as to test the usefulness of the
theory for interpreting behavior in the laboratory.

4.1 Data description

We begin by providing an overview of some important features of the ex-
perimental data, which we summarize by reporting average bid, ask and
transaction prices in a number of ways. Each experiment consists of 30
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trading periods. To economize on space and to facilitate comparison across
treatments and networks, instead of showing the data from each trading
period, we have grouped the trading periods into terciles, corresponding to
early periods (1—10), intermediate periods (11—20) and late periods (21—30).
Table 1 presents the data for each tercile as a separate sub-panel. Each en-
try is the mean and standard deviation over the tercile, the treatment and
the row from the m× n network used in the treatment.

[Table 1 here]

Table 1A shows the average winning bids and Table 1B shows the average
maximum bids. The difference between the maximum bid and the winning
bid occurs because there is no winning bid in the case where no trade occurs
(the maximum bid is less than the corresponding ask). Similarly, Table 1C
shows the average winning asks and Table 1D shows the average maximum
asks. The winning ask is the asking price of a subject who actually has
the asset and is successful in trading. The maximum ask, by contrast,
is the maximum asking price, whether or not a trade actually occurred.
Additionally, Table 1E shows the average transaction price. The transaction
price corresponding to row i is the actual amount paid for the asset by the
subject in row i. If no trade occurs, the transaction price is not defined and is
not included in the average. A cursory examination of the data indicates two
broad facts about the behavior observed in the laboratory: First, although
the difficulty of solving the problem of trading in networks is sometimes
massive, prices generally converge to the competitive equilibrium prices.
And, secondly, trade is very efficient, in the sense that the asset typically
reaches the CGB and the surplus is realized.

4.2 Prices

The auction treatment (A) uses 2 × 3 network and the baseline treatment
(B) uses the 2× 3 and 3× 3 networks. Since there are three bidders in each
row, any equilibrium of the trading game is efficient and the price at which
the asset is traded in equilibrium is equal to 50 in the top row (the ask of the
CGS is fixed at 0) and 100 in other rows (see Appendix I for details). In an
experimental setting, there are many reasons why we do not at first observe
the equilibrium transaction prices. Perhaps the most important reason is
strategic uncertainty: a subject bidding for an asset has little information
about the price at which he can re-sell the asset, unless he happens to be in
the bottom row and can sell the asset to the CGB for the price of 100.
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4.2.1 Convergence

Uncertainty about the resale price may cause subjects to shave their bids
to protect themselves against the possibility of selling at a loss, or failing to
sell at all. Although subjects are randomly matched with different subjects
each trading period, as the game is repeated, they can learn from experience
and their uncertainty diminishes. As a result, competition may be expected
to increase and eventually cause convergence of the actual price to its equi-
librium level. This is exactly what we observe in the baseline treatment.
Result 1 summarizes the effect of repetition on the average winning bid, ask
and transaction prices.

Result 1 (convergence) In the baseline treatment, the average winning
bid and ask prices are initially far below their equilibrium values, but
they converge rapidly after several repetitions. Transaction prices, be-
ing the average of winning bids and asks, also converge rapidly to the
equilibrium values, with the exception of the bottom row of the 3 × 3
network, where the average transaction price actually falls between the
second and third terciles.

The relevant support for Result 1 comes from Table 1. The average
winning bids converge especially fast. In the second and third terciles, all
bids are all within one percent of the equilibrium bid of 100. The average
winning asks converge more slowly, but by the third tercile they are within
one percent of 95 in the top row and within one percent of the equilibrium
ask of 100 in the bottom row of each network. Only in the middle row of the
3×3 network there is a curious drop in the winning asks in the third tercile.
Overall, given subjects’ uncertainty about the possibility of reselling the
asset, it take remarkably little time to prices to converge. The maximum
bids and asks should show similar patterns (in practice, the patterns are
almost identical once we aggregate by tercile). Next, we look more closely
at the effect of the network architecture on pricing by comparing behavior
in corresponding rows across network and in different rows within a given
network.

4.2.2 Intermediation

We first examine the pricing behavior of subjects belonging to corresponding
rows across network. The 1× 3 network used in the auction treatment (A)
and the 2× 3 and 3× 3 networks used in the baseline treatment (B) differ
only in the number of rows. The more rows, the greater the amount of
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intermediation required to transfer the asset from the CGS to the CGB. One
might expect that more intermediation would reduce the rate of convergence
to the equilibrium price, but that does not appear to be the case. In fact,
pricing behavior is quite robust to variation in the number of rows in the
network. Result 2 summarizes the behavioral regularities in this regard by
comparing average winning bids and asks in rows that have similar positions
relative to the CGB.

Result 2 (intermediation) The rates of convergence of the average win-
ning bids and asks to the equilibrium value are not significantly differ-
ent in the corresponding rows of the three networks in the baseline and
auction treatments, that is, the 1× 3 network and the bottom rows of
the 2×3 and 3×3 networks, and the top and middle rows of the 2×3
and 3× 3 networks, respectively.

The support for Result 2 comes again from Table 1. We reorganize this
information below. For the bid prices (top panel), the only case where the
rate of convergence differs is during the first tercile, where the top row of
the 2× 3 network has significantly lower bids than in the middle row of the
3 × 3 network. For the ask prices (bottom panel), there is some variation
in the first tercile, but in later terciles the corresponding rows have similar
prices, except for the odd drop in asking prices in the middle row of the
3× 3 network in the last tercile. Apart from this small difference, the asks
in corresponding rows do not differ significantly across networks after the
first tercile. Note that we do not include the asks in the bottom rows in
each network, since subjects very quickly realized that they could ask for
100 from the CGB. Figure 3 below presents, turn by turn, the data on the
average winning bids.

Average wining bids
Network Row 1 2 3

1× 3 1 95.9 100 100

2× 3 2 90.0 99.9 100

3× 3 3 97.2 100 100

2× 3 1 77.4 99.9 100

3× 3 2 88.2 99.9 100

Average wining asks
Network Row 1 2 3

2× 3 1 70.7 87.8 94.3

3× 3 2 80.1 90.8 80.3
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[Figure 3 here]

4.2.3 Spreads

Another interesting feature of the network architecture is the price spread
between different rows of a given network. Again, the critical factor is the
uncertainty about resale as measured by the distance from the CGB. In the
auction treatment (A), which uses the 1 × 3 network, the successful buyer
knows that he can always sell the asset to the CGB for the price of 100.
Thus, the absence of uncertainty guarantees aggressive bidding in line with
the predictions of equilibrium. By contrast, in the 2× 3 and 3× 3 network
used in the baseline treatment (B), subjects cannot be sure of the price at
which they can resell the asset. This strategic uncertainty would tend to
depress the bids and asks, and suggest that, in the 3×3 network for example,
the transaction prices between first row seller and the second row buyer will
be lower than the transaction prices between the second row seller and the
third row buyer. Our next result provides information about the evolution
of transaction prices within each network in the baseline treatment.

Result 3 (spreads) The average transaction prices in a given network are
increasing in the row index for each network in the baseline treatment
and in each tercile, with the exception of the 3× 3 network, where in
the third tercile the average transaction price is lower in the bottom
row than in the middle row.

Evidence for Result 4 is also provided by Table 1. We present the relevant
data from Table 1 below by comparing the average transaction prices across
rows within a given network and tercile. Recall that the pricing rule in
the baseline treatment (α = 0.5) and the fact that the CGS always asks 0
together imply that the cost of the asset to the winning bidder in the first
row is never more than 50. This makes it hard to compare bids in the first
row with bids in the subsequent rows. For this reason we prefer to compare
transaction prices between rows. Furthermore, because the bidders in the
second row pay a price that depends on the seller’s ask as well as on their
bids, they may be inclined to keep their bids lower than if they were buying
from the CGS. In any case, the first row subjects can only make a profit if
they sell the asset for more than they paid for it and this suggests that the
transaction price between the CGS and the first row will be lower than the
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transaction price between the first row and the second row.

Average transaction prices
Network Row 1 2 3

2× 3 1 38.7 49.9 50.0

2× 3 2 80.3 93.9 97.2

3× 3 1 38.8 49.9 50.0

3× 3 2 81.0 92.9 97.7

3× 3 3 88.6 95.4 90.2

Summarizing, the data from the auction (A) and baseline (B) treatments
show that the experimental design is stable and easy to understand, allow-
ing us to test the basic elements of the theory, most importantly, whether
observed behavior corresponds to the equilibrium predictions of the theory.
Overall, it appears that there are strong forces leading subjects to the equi-
librium of the game. Further, the convergence comes from below, that is,
subjects begin by bidding and asking low prices and gradually raise their
prices as they become more confident about the behavior of other subjects
and as the bid and ask prices convergence to equilibrium level.

4.3 Sensitivity

In what follows, we consider a number of variations on the baseline treatment
with a view to testing the robustness of the results to different aspects of
the experimental design.

4.3.1 Competition

In the 2 × 3 and 3 × 3 networks used in the baseline treatment (B), there
are three bidders (n = 3) in each row. In theory, Bertrand competition
will guarantee an equilibrium price of 100 as long as there are at least two
bidders in each row. In the laboratory, we do not necessarily expect perfectly
competitive behavior when the number of bidders is small. It is therefore of
particular interest to see whether the results of the baseline treatment hold
up when we reduce the number of subjects in each row. To this end, in the
competition treatment (C), we reduce the number of bidders in each row
from three to two (n = 2), but keep all other parameters the same as in
the baseline treatment. Specifically, we compare, row by row, the 2× 3 and
3× 3 networks used in the the baseline treatment with the 2× 2 and 3× 2
networks used in the competition treatment, respectively. Our next results
report that, within a given row, in the 2× 3 and 2× 2 networks there is no
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significant difference between the pricing behaviors, but the situation clearly
reverses, particularly in early periods, in the 3× 3 and 3× 2 networks.

Result 4 (competition) Comparing networks with low (n = 2) and high
(n = 3) competition, the rates of convergence of the average winning
bids and asks are not significantly different in the 2× 3 and 2× 2 net-
works. In the 3×3 and 3×2 networks, the differences are larger. As a
result, the price spreads between transaction prices are more noticeable
in the 3× 2 network, especially in the top and middle rows.

Support for Result 4 is also based on the data from Table 1. Below, we
compare, row by row, the data from Table 1 on the average winning bids (top
panel) and asks (middle panel), and the transaction prices (bottom panel) in
the baseline and competition treatments. The 2×3 and 2×2 networks have
very similar bidding and asking behavior. The situation is more complex
when there is more intermediation. In the 3×3 and 3×2 networks, there are
interesting and significant differences in the average winning bids and asks
in the top and middle rows, but not in the bottom row. As a result, average
transaction prices show the same patterns when competition is high (n = 3)
as when it is low (n = 2), though the levels are different, in particular, in
the 3× 3 and 3× 2 networks.

An exception occurs in the transaction price between the middle and
bottom rows of the 3× 3 network in the third tercile. In this case, because
of the curious drop in the winning asks in the middle row, the transaction
price is surprisingly low, lower than the transaction price between the same
rows in the 3 × 2 network. With this exception, the general pattern is
that competition increases the transaction price in any given row. That
is, the rates of convergence are slower in the 3 × 2 network than in the
3×3 network so less competition does make a difference here. Nevertheless,
behavior reach the neighborhood of equilibrium at the end of the experiment
also when competition is low. Figure 4 below presents, in graphical form,
the data on the average winning bids.

Average wining bids

Networks Row 1 2 3

2× 3 vs. 2× 2 1 77.4− 70.9 99.9− 94.4 100− 99.9
2× 3 vs. 2× 2 2 90.0− 89.9 99.9− 96.9 100− 98.4
3× 3 vs. 3× 2 1 77.7− 36.6 99.9− 65.4 100− 91.7
3× 3 vs. 3× 2 2 88.2− 58.5 99.9− 78.5 100− 91.5
3× 3 vs. 3× 2 3 97.2− 84.4 100− 96.7 100− 98.9
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Average wining asks

Networks Row 1 2 3

2× 3 vs. 2× 2 1 70.7− 76.5 87.8− 85.1 94.3− 85.8
2× 3 vs. 2× 2 2 94.5− 97.5 97.0− 99.9 99.8− 100
3× 3 vs. 3× 2 1 73.9− 50.3 85.9− 71.5 95.4− 87.4
3× 3 vs. 3× 2 2 80.1− 70.8 90.8− 88.8 80.3− 96.3
3× 3 vs. 3× 2 3 99.9− 97.3 100− 99.8 98.2− 99.9

Average transaction prices

Networks Row 1 2 3

2× 3 vs. 2× 2 1 38.7− 35.4 47.2− 47.4 50.0− 50.0
2× 3 vs. 2× 2 2 80.3− 83.2 93.9− 91.0 97.2− 92.1
3× 3 vs. 3× 2 1 38.8− 18.3 49.9− 32.7 50.0− 45.9
3× 3 vs. 3× 2 2 81.0− 54.4 92.9− 75.0 97.7− 89.5
3× 3 vs. 3× 2 3 88.6− 77.6 95.4− 92.8 90.2− 97.6

[Figure 4 here]

4.3.2 Pricing rule

In the baseline (B) and competition (C) treatments, the price paid for the
asset is the average of the bid and the ask (α = 0.5), and the corresponding
amount of tokens is transferred from the buyer to the seller. The bid-price
treatment (P), which uses the 2 × 3 and 3 × 2 networks, differs from the
same networks in the baseline and competition treatments only in setting the
transaction price equal to the bid price (α = 1). Intuitively, this could slow
convergence to equilibrium by making subjects less willing to bid aggres-
sively. Nevertheless, our next result reports that the rates of convergence
are quite similar under bid-price and average pricing rules. Since in the
bid-price treatment we set the transaction price equal to the successful bid,
we restrict attention to the evolution of the average winning bids. Below,
we reorganize the evidence for the result, which is also presented in Figure
5 below.

Result 5 (pricing rule) In the 2×3 network, there are no significant dif-
ferences between the rates of convergence to equilibrium bid prices in
the bid-price and baseline treatments, especially in the second and third
terciles. In the 3 × 2 network, the rates of convergence in the com-
petition treatment are slightly higher than in the bid-price treatment,
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except in the top row in the third tercile where the difference is more
significant.

Average wining bids

Treatments Row 1 2 3

B vs. P 1 77.4− 89.4 99.9− 98.5 100− 99.4
B vs. P 2 90.0− 95.1 99.9− 98.8 100− 99.5
C vs. P 1 36.6− 35.8 65.4− 57.8 91.7− 70.0
C vs. P 2 58.5− 62.1 78.5− 76.8 91.5− 85.2
C vs. P 3 84.4− 79.2 96.7− 86.6 98.9− 91.4

[Figure 5 here]

4.3.3 Payoffs

The particular payoff function used in the Auction (A), baseline (B), com-
petition (C) and bid-price (P) treatments discussed above excludes the pos-
sibility of substantial trading losses. The loss treatment (L) uses a payoff
function that deducts more trading losses from subjects’ earnings than in
the other treatments. Consequently, it seems plausible to expect that price
convergence will be slower than in the baseline treatment or fail to occur
completely. Our next result confirms this conjecture and shows that losses
have the most significant effect on convergence, because they make subjects
less willing to bid aggressively for the asset. We can thus conclude that
price convergence can be achieved upon repetition, but not in all market
environments.

The evidence for the result is given below by comparing the average
winning bids (top panel), asks (middle panel) and transaction prices (bottom
panel) in the loss and competition (C) treatments, using the 3× 2 network.
In each case, the prices corresponding to the loss treatment are lower and
the gap between the two treatments often widens over time. Furthermore, in
the loss treatment, convergence to the equilibrium price has not occurred by
the end of the experiment and it is not clear that further repetitions would
lead to complete convergence. Also note that although the differences in the
third row are smaller than in the other rows, except for an upturn toward
the end of the experiment, there is no clear indication of convergence to the
equilibrium price in the loss treatment. Finally, Figure 6 also presents, turn
by turn, the data on the average winning bids. Summarizing,
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Result 6 (payoffs) In all three rows of the 3×2 network, the rates of con-
vergence in the loss treatment are much slower than in the competition
treatment and in some cases fails to converge.

Average wining bids

Treatments Row 1 2 3

C vs. L 1 36.6− 26.9 65.4− 38.8 91.7− 51.3
C vs. L 2 58.5− 53.3 78.5− 62.2 91.5− 70.0
C vs. L 3 84.4− 70.0 96.7− 73.9 98.9− 80.0

Average wining asks

Networks Row 1 2 3

C vs. L 1 50.3− 43.7 71.5− 53.1 87.4− 60.8
C vs. L 2 70.8− 62.9 88.8− 68.2 96.3− 73.1
C vs. L 3 97.3− 94.7 99.8− 98.1 99.9− 95.9

Average transaction prices

Networks Row 1 2 3

C vs. L 1 18.3− 13.4 32.7− 19.4 45.9− 25.6
C vs. L 2 54.4− 78.5 75.0− 57.7 89.5− 65.4
C vs. L 3 77.6− 66.5 92.8− 71.0 97.6− 76.6

[Figure 6 here]

4.3.4 Asymmetry

So far we have looked at networks in which each row is completely connected
to the adjacent rows, that is, all possible links are assumed to be present.
These networks have the advantage of symmetry, that is, the nodes in a
given row are essentially identical. This symmetry allows us to pool the
data generated by the subjects in a given row. Nevertheless, there are many
other architectures we can study and this will be an interesting extension of
our current work. Most importantly, there are many interesting questions
that can only be answered using an asymmetric network architecture, such
as what are the differences in price setting behavior among subjects who
have different numbers of trading partners.
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The asymmetric network we included is very simple, but it gives some
hints as to the kinds of phenomena that might be found in more complex
asymmetric networks. In one respect, our treatment does not fully exploit
the asymmetry of the network when it comes to price setting because, in
order to make the computer program easier to use, subjects could only
choose a single bid and ask price for all their potential trading partners. In
a symmetric network this may not be very restrictive since, from the point
of view of a single subject, the buyers and sellers are essentially the same.
In an asymmetric network, the assumption is restrictive, because a buyer
may want to offer different prices to different potential sellers depending on
the amount of competition the buyer faces.

For simplicity, the asymmetric treatment (S) uses the 2 × 2 network,
which was also used in the competition treatment (C). The symmetric (left
panel) and asymmetric (right panel) 2×2 networks are illustrated in Figure
7 below. We label the top row nodes 11 and 12 and the bottom row nodes 21
and 22 and assume that in the asymmetric network 11 is connected to both
21 and 22, whereas 12 is connected only to 22. Thus, 22 is a monopsonist if
12 has the asset, and a duopsonist if 11 has it. Then it seems likely that 22
will exploit his “bargaining power” by offering lower bids, even though he
has to offer the same price to 11 and 12, and he may lose the asset to 21 if
his bid is too low. But against this he weighs the extra profits he will get if
12 has the asset.

[Figure 7 here]

Our next results report that what appears to happen is that the price-
setting behavior of the subjects is symmetric in each row. The effect of 22’s
“bargaining power” is simply to lower all prices compared to the symmetric
network. The support for the result comes from Table 2 below. Table 2
below provides a first indication by summarizing the average bids and asks
for the different nodes in the asymmetric 2×2 network by tercile. As claimed
above, we see that the behavior of 11 and 12 is very similar, as is the behavior
of 21 and 22. In addition, Table 3 shows the average winning bids, asks and
transaction prices for different trading paths in the asymmetric network (for
trades between 11 and 21, between 11 and 22, and between 12 and 22) and
compares the results to the data from the asymmetric network. Again we
find the prices are generally independent of the path taken. Thus, the effect
of asymmetry on prices tend to propagate through the network as a change
in prices in one part of the network affects what traders are prepared to
bid and ask elsewhere. There also appear to be some asymmetries in the

21



proportion of trades corresponding to each of these paths, but given the
similarity of the pricing behavior, it is hard to ascribe any clear meaning to
these asymmetries, even assuming they are significant. Concluding,

Result 7 (asymmetry) The pricing behavior of subjects in a given row in
the asymmetric 2 × 2 network is very symmetric. The effect of the
network asymmetry is revealed by generally lower prices and slower
convergence compare to the symmetric 2× 2 network.

[Table 2 here]
[Table 3 here]

4.4 Efficiency

The uncertainty of trade in networks provides an important source of market
imperfection. Thus, the efficiency of trade is one of the main concerns in the
study trading in networks. The goal is to identify how the network architec-
ture influences the efficiency of trade. The greater the incompleteness of the
network, the more intermediation is required to achieve an efficient outcome.
The cost and uncertainty of intermediation provide an important source of
market imperfection. Recall that trade between two rows requires that at
least one bid is higher than or equal to the seller’s ask. Thus, strategic
uncertainty (about what other subjects will do) inevitably requires a period
of learning and during this period trades may not be completed. Further,
even later in the experiment trade may break down if subjects make mis-
takes about the prices that are likely to be bid or asked by their opponents.
Clearly, the transaction prices only effect the distribution of the surplus
among traders. Efficiency depends only on whether the asset reaches the
CGB and the surplus is realized. The efficiency of trade is reported in Ta-
ble 4, which displays, row by row, the fraction of completed trades in each
tercile of periods for each treatment and network. The first row is excluded
because there is no possibility of incomplete trades.

[Table 4 here]

On the whole, we are pleasantly surprised by the extent of trading. In
the baseline treatment (B), the level of efficiency is generally higher in the
2 × 3 network than in the 3 × 3 network (the degree of intermediation is
higher). Also, the level of efficiency increases significantly through the three
terciles in the 3×3 network, but is quite high and essentially flat in the 2×3
network. This suggests that it takes subjects longer to learn to coordinate
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when there is more intermediation. Reducing the amount of competition by
reducing the number of bidders in each row reduces efficiency, but not by
much. Comparing the 2 × 3 network from the baseline treatment with the
2× 2 network from the competition treatment (C), we see that efficiency is
lower in the 2× 2 network in the first and second tercile, but the difference
is not significant by the last tercile. Similarly, comparing the 3× 3 network
with the 3×2 network, we see that efficiency is lower in the 3×2 network in
each tercile, though the differences are quite small. Thus, we conclude that
more intermediation or less competition can lower the efficiency of trade.

Changing the transaction price from the average of the winning bid and
ask to the winning bid price reduces efficiency in both the 2× 3 and 3× 2
network used in the bid-price treatment (P) compare to the corresponding
networks in the baseline and competition treatments. One of the interesting
features of the bid-price treatment is that efficiency declines slightly from
the first to the third tercile in the 2×3 network, whereas in the 3×2 network
efficiency increases sharply from the first to the second tercile and increases
modestly between the second and third terciles. In the loss treatment (L),
efficiency is lower, as one would expect. In the 3 × 2 network used in the
competition treatment, efficiency is steadily increasing over time, whereas
in the same network in the loss treatment, efficiency increases and then
decreases. In the first tercile, the efficiency in the loss treatment is higher,
but in the second and third treatment it is lower than in the competition
treatment. Finally, efficiency is much lower in the first tercile in the 2 × 2
network used in the asymmetric treatment (S) than in the same network
used in the competition treatment, but the gap narrows in the second and
third terciles. Our last result summarizes this discussion.

Result 8 (efficiency) On the whole, efficiency of trade is very high. The
levels of efficiency appear to be lower when there is more intermedi-
ation or less competition. Further, that trading rules are important
for efficiency: when the transaction price equal to the bid price, sub-
jects experience trading losses or asymmetric trading links, the level of
efficiency appears to be lower.

5 Conclusion

In this paper we examine the effects of intermediation and competition on
different properties of the market behavior. So far we have almost exclusively
looked at rectangular arrays in which each row is completely connected to
the adjacent rows, that is, all possible links are assumed to be present. There
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are many other architectures we can study and this will be an interesting
extension of the current paper. In addition, there are many other questions
that can be addressed using this design or variations thereof. An important
class of phenomena requires us to introduce randomness. Here we mention
three possibilities.

• Random endowments. A trader’s endowment places an upper limit on
what he can bid for an asset and serves as a “liquid constraint.” By
making endowments random we introduce liquidity shocks which will
change pricing both directly, by constraining bids, and indirectly by
reducing competition for bidders and lowering resale prices for inter-
mediaries.

• Random graphs. Random graphs are intrinsically interesting because
they introduce uncertainty about the availability of counterparties to
trade with. They also give rise to interesting strategic phenomena. For
example, if the number of bidders in an auction is uncertain and with
positive probability the number of bidders is one, the only equilibrium
involves mixed strategies. Further, randomness can propagate through
the network as a change in prices in one part of the network affects
what traders are prepared to bid and ask elsewhere.

• Random values. Uncertainty about the values assigned to the asset by
the CGS and the CGB introduces uncertainty about the probability of
trade and the possibility of learning the value of the asset over time.
Our simple framework can provide insight into how these important
phenomena will be affected by network architectures.

Furthermore, there is a vast number of interesting network architectures.
While the small networks we studied are very insightful, especially in exper-
imental contexts, the development of the theory depends on properties of
networks that can be generalized. In order to determine which factors are
important in explaining market behavior, it will be necessary to investigate
a large class of networks in the laboratory. Fortunately, our novel experi-
mental design, employing graphical representations of networks of traders,
enables us to do this systematically and efficiently. More experiments can
provide us a great opportunity to test the predictions of the theory and,
at the same time, evaluate and develop our experimental methodology. In
addition to testing theories, we also hope to study the effects of variables
about which our existing theory has little to say.
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6 Sample Instructions (Baseline 2× 3)
This is an experiment in the economics of decision-making. Research foun-
dations have provided funds for conducting this research. Your payoffs will
depend on your decisions and the decisions of the other participants, as well
as on chance. If you follow the instructions and make careful decisions, you
may earn a considerable amount of money.

The entire experiment should be complete within an hour and a half.
At the end of the experiment you will be paid privately. At this point, take
a minute to write down the number of the computer you are using as it
appears on the top of the monitor. At the end of the experiment, you will
use your computer number to claim your earnings.

At this time, you will receive $5 as a participation fee. Details of how
you will make decisions will be provided below. During the experiment we
will speak in terms of experimental tokens instead of dollars. Your payoffs
will be calculated in terms of tokens and then translated at the end of the
experiment into dollars at the following rate:

1 Token = 1 Dollar

The experiment is divided into 30 independent and identical trading
periods. In each period, you will be asked to submit bids (prices at which
you are willing to buy) and asks (prices at which you are willing to sell) for a
single unit of an indivisible asset. Trades take place in a set of interconnected
markets represented by a six-person network. You will only be able to trade
with participants to whom you are connected in this network.

The experiment starts by having the computer randomly assign each
subject to one of two rows: top or bottom. You have an equal probability of
being assigned to each row and your row assignment will remain unchanged
throughout the experiment. Before the start of each period, you will be
randomly assigned to one of the positions in one of the networks. The
positions are labeled with the letters A through F . The top row consists of
positions (A, B, C), and the bottom row consists of positions (D, E, F ).

Each period starts by having the computer randomly form six-person
networks by selecting one participant of type-A, one of type-B, one of type-
C, and so on. If you were initially designated a top row player, you will be
assigned to a top row position in one of the networks, and similarly if you
are a bottom row player. Your type (A, B, C, D, E, F ) will be displayed
in the top right hand corner of the program dialog window (see attachment
1).
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[Attachment 1 here]

The networks formed in each period depend solely upon chance and are
independent of the networks formed in any of the other periods. That is, in
any network each top-row participant is equally likely to be chosen as type-
A participant for that network, and similarly with participants of types B
and C. Likewise, in any network each bottom-row participant is equally
likely to be chosen as type-D participant for that network, and similarly
with participants of types E and F .

Note again that your row assignment will remain unchanged through-
out the experiment but your type and network may change from period to
period. In each period, it depends solely on chance.

The network is displayed in the large window that appears in the center
of the program dialog window (see attachment 1). A line segment between
any two types indicates that they are connected and, hence, are allowed to
trade. The arrowhead points from the seller to the buyer. In the network
used in this experiment, each of the types in the top row (A, B, C) can
trade with each of the types in the bottom row (D, E, F ) and vice versa.

The asset is initially held by a computer-generated seller. The computer-
generated seller is always willing to sell one unit of the asset for a price of
zero tokens. In addition, there is a computer-generated buyer who is always
willing to buy one unit of the asset at a price of 100 tokens. The computer-
generated seller can only sell the unit to the types in the top row (A, B, C).
The computer-generated buyer can only buy the unit from the types in the
bottom row (D, E, F ). Note that the computer-generated seller and buyer
do not appear in the network displayed in the program dialog window (see
attachment 1).

A trading period

Next, we will describe in detail the process that will be repeated in all 30
periods and the user interface that you will use to make your decisions. Each
period starts by having the computer randomly form six-person networks by
selecting one participant of each type (A, B, C, D, E, F ). At the start of
each period, each participant receives an endowment of 100 tokens. You
will use these tokens to pay for the asset when you buy and will receive
these tokens in exchange for the asset when you sell. The trading protocol
is defined by the following rules.

All trades must move the asset “downward”:
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• The types in the top row can only buy from the computer-generated
seller and can only sell to the bottom row. For example, type A can
buy from the computer generated seller and can sell to types D, E or
F .

• The types in the bottom row can only buy from the top row and sell
to the computer-generated buyer. For example, type D can buy from
types A, B or C and sell to the computer-generated seller.

In each period, you will be asked to submit a single bid and a single ask
to the sellers and buyers with whom you are allowed to trade:

• You will submit a single bid to the sellers to whom you are connected
by the network, indicating the price at which you are willing to buy
one unit of the asset.

• You will submit a single ask to the buyers to whom you are connected
by the network, indicating the price at which you are willing to sell
one unit of the asset.

When you are ready to make your decisions, use the mouse to position
the cursor in the Bid Input field on the right of the dialog window (see at-
tachment 1) and use the keyboard to enter the number (including decimals)
of tokens between 0 and 100 that you wish to bid. You enter a price in
the Ask Input field the same way. Once you have entered the bid and ask,
confirm your decisions by clicking the Submit button. Once you have clicked
the Submit button, your decisions cannot be revised.

When everyone has submitted their sealed bid and ask, you will observe
the bids and asks of all other participants, the actual prices at which the
asset was traded and the sequence of trades. This information is displayed
in the large window that appears in the center of the dialog window (see
attachment 2). Bids and asks are colored blue, and the actual prices at
which the asset was traded are colored green. The letter to the left of each
price indicates whether it is an ask (A) or a bid (B). Each bid is displayed
above the type of participant who has submitted this bid, and each ask is
displayed below the type of participant who has submitted this ask. The
asks of the computer-generated seller and bids of the computer-generated
buyer are indicated by CA and CB, respectively.

[Attachment 2 here]
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Trades are executed sequentially. First, trades between the computer-
generated seller and the buyers in the top row take place, followed by trades
between the seller in the top row and the buyers in the bottom row, and
followed by trades between the seller in the bottom row and the computer-
generated buyer. At each stage, a trade occurs only if a buyer has submitted
a bid that is at least as high as the seller’s ask. If there is more than one
bid that is greater than or equal to the asking price, the asset is transferred
from the seller to the buyer with the highest bid. If two buyers tie for the
highest bid, the asset will be assigned to one of the buyers at random. The
buyer pays the seller the number of tokens equal to the average of the bid
and ask. Trading stops at any stage where no buyer bids as much as the
seller’s ask. In that case, the asset remains with the seller.

This completes the first of 30 trading periods. To move on to the sec-
ond period, press the OK button on the bottom right hand corner of the
program dialog window. Note that after one minute the program will move
automatically to the second period, but you will always be able to review
the results of this period later in the experiment by choosing it and clicking
on the View Results button on the top right hand corner of the program di-
alog window (see attachment 2). After letting you observe the results of the
first period, the second period will start by having the computer randomly
forming new groups of participants in networks.

This process will be repeated until all the 30 independent and identi-
cal trading periods are completed. Throughout the experiment please pay
careful attention to the messages window at the bottom of the program di-
alog window (see attachment 1). At the end of the last round, you will be
informed the experiment has ended.

Payoffs

Your trading profit in each period can be summarized by the formula:

Profit = (selling price) - (buying price)

The buying price is the actual price you paid for the asset if you traded and
zero otherwise. The selling price is the actual price you received for the asset
if you sold the asset and zero if you did not trade or if you bought and did
not sell. Your total earnings in each trading period are equal to your initial
endowment of 100 tokens plus your trading profits, positive or negative.

Your final payoff in the experiment is determined as follows. At the end
of the experiment, the computer will randomly select one period in which to
execute the trades “for real”. The period selected depends solely on chance.
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If the number of tokens you earned in that period is less than 100, you will
receive 10 tokens to keep. If the number of tokens you earned in that period
is at least 100, you will receive that amount minus 90 tokens to keep. At
the end of the experiment, the tokens will be converted into money. Each
token will be worth $1. You will receive your payment as you leave the
experiment.

Rules

Please do not talk with anyone during the experiment. We ask everyone
to remain silent until the end of the last round. Your participation in the
experiment and any information about your earnings will be kept strictly
confidential. Your payments receipt and participant form are the only places
in which your name and social security number are recorded. If there are no
further questions, you are ready to start. An instructor will approach your
desk and activate your program.
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Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 95.9 2.36 -- -- -- --
B 2×3 77.4 2.55 90.0 1.07 -- --
B 3×3 77.7 2.71 88.2 1.63 97.2 0.84
C 2×2 70.9 1.95 89.9 0.88 -- --
C 3×2 36.6 1.45 58.5 1.83 84.4 1.43
P 2×3 90.0 1.62 95.1 0.93 -- --
P 3×2 40.0 1.71 65.0 1.71 79.2 1.27
L 3×2 26.9 1.68 53.3 1.47 70.0 1.89
S 2×2 54.6 2.15 61.6 1.79 -- --

Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 100.0 0.00 -- -- -- --
B 2×3 99.9 0.11 99.9 0.06 -- --
B 3×3 99.9 0.09 99.9 0.04 100.0 0.04
C 2×2 94.4 0.97 96.9 0.32 -- --
C 3×2 65.4 1.21 78.5 0.77 96.7 0.42
P 2×3 98.3 0.24 98.8 0.21 -- --
P 3×2 60.4 1.28 77.4 1.01 86.6 0.55
L 3×2 38.8 3.01 62.2 2.03 73.9 2.02
S 2×2 73.8 1.94 76.9 1.20 -- --

Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 100.0 0.00 -- -- -- --
B 2×3 100.0 0.00 100.0 0.00 -- --
B 3×3 100.0 0.00 100.0 0.00 100.0 0.00
C 2×2 99.9 0.03 98.4 0.23 -- --
C 3×2 91.7 0.98 91.5 0.54 98.9 0.19
P 2×3 99.4 0.09 99.5 0.08 -- --
P 3×2 70.5 0.75 85.2 0.66 91.4 0.42
L 3×2 51.3 4.03 70.0 2.28 80.0 1.96
S 2×2 86.4 1.52 85.8 0.93 -- --

Row 1

Row 1

Row 1

Row 2

Row 2

Row 2

Row 3

Row 3

Row 3

Table 1A: Average winning bid
(by treatment, network, row, and tercile)

Periods 1-10

Periods 11-20

Periods 21-30



Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 95.9 2.36 -- -- -- --
B 2×3 82.5 2.33 88.8 1.14 -- --
B 3×3 77.7 2.71 87.5 1.62 96.4 0.72
C 2×2 70.9 1.95 89.1 0.89 -- --
C 3×2 36.6 1.45 56.5 1.55 82.6 1.71
P 2×3 90.0 1.62 95.0 0.85 -- --
P 3×2 40.0 1.71 61.8 1.58 76.7 1.05
L 3×2 26.9 1.68 51.3 1.42 65.2 2.02
S 2×2 54.6 2.15 60.4 1.50 -- --

Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 100.0 0.00 -- -- -- --
B 2×3 100.0 0.00 99.9 0.08 -- --
B 3×3 99.9 0.09 99.9 0.04 99.8 0.08
C 2×2 94.4 0.97 96.3 0.40 -- --
C 3×2 65.4 1.21 78.3 0.73 96.5 0.40
P 2×3 98.3 0.24 98.7 0.20 -- --
P 3×2 60.4 1.28 77.0 0.98 86.6 0.52
L 3×2 38.8 3.01 63.4 1.91 75.1 1.84
S 2×2 73.8 1.94 77.5 1.08 -- --

Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 100.0 0.00 -- -- -- --
B 2×3 100.0 0.00 99.5 0.30 -- --
B 3×3 100.0 0.00 100.0 0.00 100.0 0.00
C 2×2 99.9 0.03 98.3 0.23 -- --
C 3×2 91.7 0.98 91.6 0.52 98.7 0.21
P 2×3 99.4 0.09 99.4 0.09 -- --
P 3×2 70.5 0.75 84.6 0.63 91.5 0.35
L 3×2 51.3 4.03 70.2 2.10 80.9 1.66
S 2×2 86.4 1.52 87.9 0.84 -- --

Row 1

Row 1
Periods 21-30

Row 2 Row 3

Row 1 Row 2 Row 3
Periods 11-20

Row 2 Row 3

Periods 1-10

Table 1B: Average maximum bid
(by treatment, network, row, and tercile)



Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 98.1 1.48 -- -- -- --
B 2×3 70.7 1.41 94.5 1.51 -- --
B 3×3 73.9 2.32 80.1 4.53 99.9 0.12
C 2×2 76.5 1.55 97.5 1.00 -- --
C 3×2 50.3 1.66 70.8 2.03 97.3 1.00
P 2×3 66.8 4.39 89.9 3.89 -- --
P 3×2 50.6 1.39 66.8 1.20 83.4 2.25
L 3×2 43.7 1.73 62.9 2.03 94.7 1.39
S 2×2 47.5 1.61 92.3 1.59 -- --

Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 95.0 2.92 -- -- -- --
B 2×3 87.8 1.41 97.0 1.60 -- --
B 3×3 85.9 2.62 90.8 3.63 100.0 0.00
C 2×2 85.1 2.00 99.9 0.04 -- --
C 3×2 71.5 1.21 88.8 0.59 99.8 0.07
P 2×3 70.6 4.76 84.6 5.05 -- --
P 3×2 62.2 1.88 61.9 4.32 94.8 0.80
L 3×2 53.1 2.12 68.2 2.15 98.1 0.91
S 2×2 61.4 1.60 98.6 0.49 -- --

Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 94.1 2.71 -- -- -- --
B 2×3 94.3 0.84 99.8 0.16 -- --
B 3×3 95.4 1.26 80.3 5.16 98.2 1.72
C 2×2 85.8 1.22 100.0 0.03 -- --
C 3×2 87.4 0.67 96.3 0.34 99.9 0.03
P 2×3 67.4 5.72 86.3 4.85 -- --
P 3×2 70.2 2.15 71.3 3.07 97.1 0.62
L 3×2 60.8 2.01 73.1 2.27 95.9 2.86
S 2×2 65.5 1.83 99.9 0.03 -- --

Table 1C: Average winning ask
(by treatment, network, row, and tercile)

Periods 1-10
Row 1 Row 2 Row 3

Periods 11-20
Row 1 Row 2 Row 3

Periods 21-30
Row 1 Row 2 Row 3



Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 99.5 0.50 -- -- -- --
B 2×3 80.2 1.27 98.3 0.61 -- --
B 3×3 82.1 2.03 93.5 1.15 100.0 0.00
C 2×2 83.3 1.15 98.6 0.79 -- --
C 3×2 54.3 1.44 71.6 1.61 96.8 1.48
P 2×3 89.2 1.48 99.3 0.52 -- --
P 3×2 61.2 1.62 72.2 1.34 92.6 1.21
L 3×2 45.7 1.46 65.3 1.58 91.5 2.13
S 2×2 60.7 1.88 94.7 1.38 -- --

Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 100.0 0.00 -- -- -- --
B 2×3 97.4 0.56 100.0 0.00 -- --
B 3×3 97.6 0.45 99.9 0.07 100.0 0.00
C 2×2 91.6 0.58 100.0 0.02 -- --
C 3×2 74.4 0.90 91.2 0.50 100.0 0.04
P 2×3 86.5 2.89 100.0 0.00 -- --
P 3×2 69.3 1.28 80.4 0.86 97.2 0.60
L 3×2 58.7 2.45 72.2 1.94 99.7 0.19
S 2×2 70.4 1.57 100.0 0.00 -- --

Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 100.0 0.00 -- -- -- --
B 2×3 99.7 0.15 100.0 0.00 -- --
B 3×3 99.6 0.11 100.0 0.02 100.0 0.00
C 2×2 92.2 0.79 100.0 0.00 -- --
C 3×2 89.0 0.61 97.3 0.25 100.0 0.02
P 2×3 89.8 2.46 100.0 0.00 -- --
P 3×2 78.2 0.92 85.4 0.70 98.7 0.38
L 3×2 64.7 2.13 77.3 1.96 99.7 0.21
S 2×2 77.5 1.21 100.0 0.00 -- --

Table 1D: Average maximum ask
(by treatment, network, row, and tercile)

Periods 1-10
Row 1 Row 2 Row 3

Periods 11-20
Row 1 Row 2 Row 3

Periods 21-30
Row 1 Row 2 Row 3



Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 48.0 1.18 -- -- -- --
B 2×3 38.8 1.27 80.5 1.10 -- --
B 3×3 38.9 1.35 81.3 1.84 88.7 2.35
C 2×2 35.7 0.97 83.4 1.09 -- --
C 3×2 18.5 0.73 54.5 1.69 77.8 1.55
P 2×3 90.0 1.62 95.1 0.93 -- --
P 3×2 40.0 1.71 65.0 1.71 79.2 1.27
L 3×2 13.6 0.84 48.6 1.51 66.7 1.89
S 2×2 27.5 1.07 54.8 1.44 -- --

Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 50.0 0.00 -- -- -- --
B 2×3 49.9 0.06 94.0 0.71 -- --
B 3×3 50.0 0.04 92.9 1.31 95.5 1.83
C 2×2 47.4 0.48 91.2 1.04 -- --
C 3×2 32.8 0.61 75.2 0.86 92.9 0.41
P 2×3 98.3 0.24 98.8 0.21 -- --
P 3×2 60.4 1.28 77.4 1.01 86.6 0.55
L 3×2 19.5 1.51 57.9 2.03 71.2 2.06
S 2×2 37.1 0.98 69.4 1.12 -- --

Exp. Mean Std. Err. Mean Std. Err. Mean Std. Err.
A 1×3 50.0 0.00 -- -- -- --
B 2×3 50.0 0.00 97.3 0.41 -- --
B 3×3 50.0 0.00 97.8 0.63 90.2 2.58
C 2×2 50.0 0.02 92.2 0.64 -- --
C 3×2 46.0 0.48 89.5 0.58 97.6 0.23
P 2×3 99.4 0.09 99.5 0.08 -- --
P 3×2 70.5 0.75 85.2 0.66 91.4 0.42
L 3×2 25.8 2.03 65.4 2.11 76.8 2.05
S 2×2 43.4 0.76 75.9 1.03 -- --

Table 1E: Average transaction price
(by treatment, network, row, and tercile)

Periods 1-10
Row 1 Row 2 Row 3

Periods 11-20
Row 1 Row 2 Row 3

Periods 21-30
Row 1 Row 2 Row 3



(by trader and period tercile)
# of obs = 80

Ask/Bid Mean Ask/Bid Mean Ask/Bid Mean
Bid 43.58 Bid 65.88 Bid 82.36
Ask 52.78 Ask 63.59 Ask 68.05
Bid 44.80 Bid 63.64 Bid 76.89
Ask 52.91 Ask 59.30 Ask 66.46
Bid 54.41 Bid 73.76 Bid 84.51
Ask 87.85 Ask 99.10 Ask 99.98
Bid 54.21 Bid 72.33 Bid 80.64
Ask 86.05 Ask 99.21 Ask 99.94

(by path and period tercile)

Tercile # of obs. Path Fraction Bid Ask Price
11 - 21 0.28 62.53 51.80 57.17
11 - 22 0.22 67.08 48.50 57.79
12 - 22 0.56 58.74 44.63 51.69
11 - 21 0.34 78.65 58.91 68.78
11 - 22 0.21 79.29 68.71 74.00
12 - 22 0.59 74.61 59.94 67.27
11 - 21 0.41 87.33 64.17 75.75
11 - 22 0.32 84.09 69.36 76.73
12 - 22 0.35 85.00 65.42 75.21

Table 2: Average bids and asks in the asymmetric network

Node Periods 1-10 Periods 11-20 Periods 21-30

Table 3: Average bids, asks and transaction prices in the asymmetric network

11

12

21

22

1-10

11-20

21-30

54

68

74



Exp. Mean Std. Err. Mean Std. Err.
B 2×3 0.9 0.03 -- --
B 3×3 0.9 0.04 0.7 0.06
C 2×2 0.8 0.04 -- --
C 3×2 0.7 0.06 0.7 0.06
P 2×3 0.9 0.04 -- --
P 3×2 0.7 0.06 0.6 0.06
L 3×2 0.8 0.05 0.6 0.07
S 2×2 0.7 0.05 -- --

Exp. Mean Std. Err. Mean Std. Err.
B 2×3 1.0 0.01 -- --
B 3×3 1.0 0.02 0.9 0.04
C 2×2 0.9 0.03 -- --
C 3×2 0.9 0.04 0.9 0.04
P 2×3 0.9 0.04 -- --
P 3×2 0.9 0.04 0.8 0.06
L 3×2 0.9 0.05 0.8 0.06
S 2×2 0.9 0.04 -- --

Exp. Mean Std. Err. Mean Std. Err.
B 2×3 1.0 0.02 -- --
B 3×3 1.0 0.00 1.0 0.02
C 2×2 0.9 0.02 -- --
C 3×2 0.9 0.03 0.9 0.04
P 2×3 0.9 0.05 -- --
P 3×2 0.9 0.05 0.8 0.05
L 3×2 0.9 0.05 0.7 0.07
S 2×2 0.9 0.03 -- --

Periods 21-30
Row 2 Row 3

Periods 11-20
Row 2 Row 3

Table 4: The fraction of completed trades
(by treatment, network, row, and tercile)

Periods 1-10
Row 2 Row 3



Figure 1: The 3×3 network 
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Figure 2: The experimental design 
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Figure 3A: The effect of intermediation
(Average winning bids in the A1×3 network and the bottom rows of the B2×3 and B3×3 networks, by turn)
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Figure 3B: The effect of intermediation
(Average winning bids in the top row of the B2×3 network and middle row of the B3×3 network, by turn)
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Figure 4A: The effect of competition
(Average winning bids in the top row of the B2×3 and C2×2 networks, by turn)
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Figure 4B: The effect of competition
(Average winning bids in the bottom row of the B2×3 and C2×2 networks, by turn)
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Figure 4C: The effect of competition
(Average winning bids in the top row of the B3×3 and C3×2 networks, by turn)
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Figure 4D: The effect of competition
(Average winning bids in the middle row of the B3×3 and C3×2 networks, by turn)
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Figure 4E: The effect of competition
(Average winning bids in the bottom row of the B3×3 and C3×2 networks, by turn)
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Figure 5A: The effect of pricing rule
(Average winning bids in the top row of the B2×3 and P2×3 networks, by turn)
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Figure 5B: The effect of pricing rule
(Average winning bids in the bottom row of the B2×3 and P2×3 networks, by turn)
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Figure 5C: The effect of pricing rule
(Average winning bids in the top row of the C3×2 and P3×2 networks, by turn)
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Figure 5D: The effect of pricing rule
(Average winning bids in the middle row of the C3×2 and P3×2 networks, by turn)
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Figure 5F: The effect of pricing rule
(Average winning bids in the bottom row of the C3×2 and P3×2 networks, by turn)
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Figure 6A: The effect of losses
(Average winning bids in the top row of the C3×2 and L3×2 networks, by turn)
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Figure 6B: The effect of losses
(Average winning bids in the middle row of the C3×2 and L3×2 networks, by turn)
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Figure 6C: The effect of losses
(Average winning bids in the bottom row of the C3×2 and L3×2 networks, by turn)
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Figure 7: The symmetric (right) and asymmetric (left) 2×2 networks 
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