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Abstract

We characterize the revenue maximizing allocation mechanism for a risk neutral
seller that owns N , possibly heterogeneous, objects and faces I risk neutral buyers with
very general preferences, which allow for complements, substitutes and externalities.
Buyers care about the entire allocation of the objects, even if they do not win any, so
the auction outcome may a¤ect them also when they do not to participate, and these
non-participation payo¤s may very well depend on their type. The main novel message
of our analysis is that with type-dependent non-participation payo¤s, the revenue max-
imizing assignment of objects can crucially depend on the outside options that buyers
face. Outside options can therefore a¤ect the degree of e¢ ciency of revenue maximizing
auctions. We show that sometimes an optimal mechanism will allocate the objects in
an ex-post e¢ cient way, and other times buyers will obtain objects more often than
it is e¢ cient. Our characterization rings a bell of caution. Modeling buyers�outside
options as being independent of their private information, is with loss of generality and
can lead to quite misleading intuitions. Keywords: Optimal Multi Unit Auctions, Type
Dependent Outside Options, Externalities, Mechanism Desigǹ. JEL D44, C7, C72.
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1. Introduction

This paper characterizes revenue maximizing allocation mechanisms for multiple objects,
allowing for buyers to care about the entire allocation of them, not merely the ones they
obtain. Since buyers may care about the �nal allocation of the objects, even if they do
not win any, the auction outcome may a¤ect them also when they do not to participate.
Non-participation payo¤s may then very well depend on their type. Our formulation hence
allows for externalities that can be type and identity dependent. Objects can be hetero-
geneous, and they can be simultaneously complements for some buyers and substitutes for
others. Applications range from the allocation of positions in teams, to the allocation of
airport take-o¤ and landing slots, privatization, advertising and many more. Despite its
generality the problem is tractable. The main novel message of our analysis is that, with
type-dependent non-participation payo¤s, the revenue maximizing assignment of objects
can crucially depend on the outside options that buyers face. Outside options can therefore
a¤ect the degree of e¢ ciency of revenue maximizing auctions. We show that sometimes an
optimal mechanism will allocate the objects in an ex-post e¢ cient way. Other times, an
optimal mechanism will overallocate objects, in the sense that buyers will obtain objects
more often than it is e¢ cient. Our characterization rings a bell of caution. Modeling buyers�
outside options as being independent of their private information, is with loss of generality
and can lead to quite misleading intuitions.1

From the just mentioned results, one can see that our analysis exhibits features that con-
tradict well-known intuitions of monopoly theory.2 There, a revenue maximizing monopolist
faces a trade-o¤ between revenue maximization and e¢ ciency, and he sacri�ces e¢ ciency
to increase revenue by restricting the supply below the level that is socially desirable. In
contrast, in this paper we have a monopolist that does not always face the trade-o¤ between
revenue maximization and e¢ ciency. We show that in some cases the seller can increase
both revenue and e¢ ciency by designing appropriate outside options. Moreover, our analy-
sis shows that a revenue maximizing seller will sometimes sell �too much�compared to the
socially desirable level. These two new insights are due to the fact that non-participation
payo¤s can depend on buyers�types.

We now illustrate with a simple example how appropriately chosen outside options can
increase the e¢ ciency of revenue maximizing mechanisms. Suppose that a small company
in Silicon Valley develops a valuable new technology. This company does not have the
necessary infrastructure to reap the bene�ts of this technology, so it is essentially worthless
for it. There is, however, a large �rm, (say company A), that is willing to purchase it.
From all companies, company A can put the technology to better use, irrespective of its

1The case of type-independent non-participation payo¤s is quite special, because an optimal mechanism
will allocate the goods in the same way irrespective of the outside options that buyers face. This allocation
is almost always ine¢ cient.

2Such a comparison is legitimate since the seller in our model is a multiproduct monopolist who instead
of choosing revenue maximizing prices, is choosing revenue maximizing mechanisms.
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cost realization, therefore giving the technology to it maximizes the sum of consumer and
producer surplus. The value of the new technology to company A is unknown to the
developer, but it is commonly known that it depends on company A�s cost parameter and
it is given by 500; 000�500; 000c: The developer assesses that the cost c takes equally likely
values between 0 and 1. If company A does not get the technology and no-one else does
either, A�s payo¤ is zero: From the classical papers on optimal auctions, developed by Riley
and Samuelson (1981) and Myerson (1981), we know that the best that the developer can
do is to make a take-it-or leave-it o¤er to company A of $250; 000. Then company A will
get the invention only if its cost parameter is below 1

2 . This maximizes ex-ante expected
revenue, which is $125; 000; but of course it is half the time ine¢ cient, because the developer
is stuck half the time with a worthless (for it) invention, whereas company A would generate
non-negative payo¤ for all cost realizations.

Now suppose that the developer can make the invention publicly available by making it
open source. The payo¤ of company A in that case depends on its cost parameter and it is
given by 100; 000�1; 000; 000c. So, if A is very e¢ cient (c < 1

10), it would prefer the invention
to become open-source, instead of the seller keeping it, since 100; 000 � 1; 000; 000c > 0.
If costs are higher than that level, company A fears that smaller �rms could be �ercer
competitors, so it prefers that the invention does not become available to anyone. If the
developer considers threatening company A, in case A drops out of the sale, which threat
should it use? The answer is not obvious since the developer does not know company A�s
cost parameter, so it does not know which alternative �hurts more.�3 In this paper we show
that the optimal threat is to tell A that in the event it does not participate, the seller keeps
the invention with probability 1

2 , and makes it open source with probability
1
2 . Faced with

this lottery, then company A always participates, and more importantly at the revenue
maximizing mechanism is ALWAYS awarded the invention at a price of $450,000. Thus,
the open source option, even though is never implemented, has an extraordinary e¤ect on
the revenue maximizing allocation. It guarantees a higher expected revenue ($450,000), and
makes the mechanism e¢ cient. This is one of the main economic messages of this paper:
when outside options depend on the buyers�private information, the way the objects will
be allocated crucially depends on what outside options buyers face. If the payo¤ from
open sourcing did not depend on A0s cost parameter, the seller could have generated more
revenue, but the allocation of the invention at the optimal mechanism would be identical
and as ine¢ cient, as in the case where open sourcing were not an option.4 This example

3Both of these threats are credible. In case �rm A does not participate in the sale, the seller in this
example is indi¤erent between keeping the invention and making it open source. In fact, since there is
nothing else the seller can do in that case, both these options are optimal from her perspective and hence
credible.

4 If A0s payo¤ from open sourcing were independent of its type, say it were �$100; 000; then, from the
work of Jehiel, Moldovanu and Stacchetti (1996), JMS (1996), we know that the developer by threatening
company A to make the invention open source, can extract payments even if company A does not get the
technology, so long as it does not become open source. In this case the optimal auction will have an entry
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highlights the crucial role of outside options on the degree of e¢ ciency of revenue maximizing
mechanisms.

Apart from these insights, the generality of our model allows for an elegant description
of a large number of allocation problems. It is unique because it not only allows for multiple
heterogeneous goods, type-dependent outside options and externalities, it also allows for the
goods to be simultaneously complements for some buyers and substitutes for others. We
now list a few of the potential applications of our model.

� Allocation of rights to a new technology. Our model may o¤er useful insights on the
debate about how new technologies or ideas should be sold. In the example just discussed,
we saw the crucial role of the presence of the open source option on the e¢ ciency properties
of the revenue maximizing mechanisms: it increased both revenue and e¢ ciency. This is an
important area, since the way property rights are assigned on new ideas and technologies
does not only a¤ect the way the particular ideas will be implemented in practice, but also
the incentives to produce new ones.

� Auctioning of advertisement slots on the internet, TV or radio. Airtime for advertise-
ments on TV and radio is often priced using conventional mechanisms. However, exploiting
the presence of externalities is not far from what we already observe in reality. In Germany
during the soccer world cup, advertisement slots were sold by category. For instance a slot
was allocated only to brewing companies. Then a potential buyer knew a priori that if it
did not buy the slot it will go to a competitor. Nowadays, companies like Yahoo! and
Google auction-o¤ their advertising slots and are thinking of optimal ways to do so. Our
model �ts very well many aspects of the problem these companies face: they are selling
many advertising slots that can be heterogeneous, some slots may be substitutes and some
complements of one another, and clearly buyers care about the slots that their competitors
obtain.

� Team Formation. Our model can be used to study a type of procurement auction where
the buyer is an organization, (consulting �rm, sports team), that wants to hire individuals
to perform a task as a team. The compensation that an individual requires depends on
who else will join the team. For instance, if individuals joining consist of gurus in the �eld,
someone may consider the experience of working with such people so important, that he
may be willing to participate with minimal compensation. On the other hand, if team
members are of very poor quality the compensation that he requires may be higher.5

Other applications include �rm take-overs,6 allocation of airport take-o¤ and landing

fee of $100,000 and then a take-it-or-leave-it o¤er of $250,000. In this case too, company A will get the new
technology when it�s cost is below 1

2
. Now the expected revenue for the developer will be higher and it will

be $225,000, but the optimal auction is ine¢ cient, since there is trade only half the time, exactly as in the
case without the open sourcing option.

5These insights can be useful when one thinks about academic hiring. Clearly academics care a lot about
the quality of their colleagues in absolute sense, and also relatively, meaning how good is the match.

6Externalities are of huge importance in �rm take-overs: Recently (February 2004), Cingular bought
AT&T wireless for $41 billion after a bidding war with Vodafone. Some perceive that the big winner of
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slots, and optimal bundling. We �nish with a historical application.
� A historical application. The praetorian guard realized the additional bene�ts of run-

ning an auction when negative externalities are present. In the year 196 A.D. they killed
the emperor Pertinax and, making a break with �tradition,�decided not to hand over the
title on someone else for a �xed price, but to run an auction. Historians7 cite the fact that
there was heavy overbidding, since participants were afraid that in case of not winning the
auction, they would be killed by the next emperor, since they would be potential conspira-
tors. This is an example of extreme negative externalities! The experiment was successful
from the point of view of the guard, since the auction generated very high revenue, but was
not repeated, probably since Didius Iulianus (the winner) lasted only 65 days as emperor
and was killed after that, making next bidders reluctant to participate in another auction
of this sort.

We now give a brief description of the general setup and the results.

Outline of Setup and Results

In Section 3 we introduce the model. Our analysis starts in Section 4 by establishing
properties of feasible mechanisms, that is mechanisms that satisfy incentive, voluntary par-
ticipation, and resource constraints. Using properties of feasible mechanisms, we can write
the seller�s expected revenue as the sum of two terms; a term that weights the virtual sur-
plus of each allocation with the probability that this allocation will prevail for each vector
of cost realizations, and a term that is the sum of the payo¤s that accrue to the worst type
of each buyer. In contrast to the classical work on optimal auctions where virtual surpluses
are buyer speci�c, here they are allocation speci�c and may depend on the whole vector
of types, since every buyer may be a¤ected by an allocation. A more important di¤erence
though, is that the payo¤ that accrues to a buyer at his worst possible type can depend
on the assignment rule that the seller wants to implement, whereas in the classical case
this term is a constant. This dependence is due to the fact that a buyer�s payo¤ from not
participating in the mechanism may depend on his type.

Section 5 characterizes revenue maximizing mechanisms. When the payo¤ to a bidder�s
worst type is linear in the allocation rule, the seller�s objective function looks a lot like in
the classical problem (see Myerson (1981)), but with modi�ed virtual surpluses. The most
important di¤erence, is the fact that the modi�ed virtual surplus can be strictly greater
than the actual surplus generated from some allocation. This will induce to the seller to sell
more than it is e¢ cient. In the �regular case�, that is the case where pointwise optimization
leads to an incentive compatible mechanism, the optimal auction assigns probability one
to the allocation of objects with the highest virtual surplus. In contrast though, with

this sale will be Verizon even though it was not a participant in the auction (NY Times February 17, 2004
�Verizon Wireless May Bene�t From Results of Auction�).

7This is stated by Edward Gibbon, (1737-94), English historian, in his book "The History of the Decline
and Fall of the Roman Empire."
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the classical work on optimal auctions, our problem may fail to be �regular�even if virtual
surpluses are strictly monotonic in a buyer�s own type. This new challenge is due to the fact
that each buyer cares about more than one allocation, and his payo¤s from each of these
allocations depend on his type. We provide a su¢ cient condition for the problem to be
regular, which generalizes Myerson�s condition. When this condition is violated, one cannot
use the standard �ironing technique,�because incentive compatibility may be violated, even
if virtual surpluses are monotonic (and hence trivially �ironed�). In a companion paper,
we illustrate how one proceed in such cases and establish that the revenue maximizing
assignment of objects requires randomization between allocations.8

Continuing in Section 5, we examine the case where the seller�s expected revenue depends
nonlinearly in the assignment rule. In this case pointwise optimization cannot be used, but
we argue that the problem has enough structure that allows the use of variational methods.
There is no general formula that one can obtain for the revenue maximizing assignment
rule. Still there are some general properties of the solutions and some techniques that can
be useful.9 Finally, in Section 6 we present two largely self contained examples. A reader
may get a �avor of our �ndings by looking directly at these examples.

To summarize, our model is tractable despite its generality and has a very large number
of potential applications. Moreover, our analysis highlights the importance of carefully
chosen outside options. They do not only increase revenue but may also increase e¢ ciency!
This issue seems to be known to practitioners, as it is suggested by the design of the UK
spectrum auctions,10 see for instance Klemperer (2004).

2. Related Literature

This paper is primarily related to the literature on optimal auction for multiple objects,
and to the literature on agency problems with type-dependent outside options. It is also
related to the work on mechanism design with externalities and the work on mechanism
design with endogenous market structure.

Optimal Multi-Unit Auctions
The literature on optimal multi-unit auctions either models this problem as one where a

buyer�s type is single dimensional or as one where a buyer�s type is a vector. Among others,
when private information is single dimensional, Maskin and Riley (1989) analyze the case of
unit demands and continuously divisible goods, Gale (1990) the case of discrete goods and
supperadditive valuations and, �nally, Levin (1997) the case of complements. As in these
papers, uncertainty in our model is single dimensional and buyers are risk neutral, but we
allow for many goods, (that can be bundled any way the seller likes), multi-unit demands

8For more information on this point see Figueroa and Skreta (2006b).
9More details on that can be found in an earlier version of this paper, Figueroa and Skreta (2005).
10We are grateful to Sushil Bikhchandani for pointing this out.
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and payo¤ functions that allow for complements, substitutes and externalities.
Types are multidimensional in Englebrech-Wiggans (1988), who proves revenue equiv-

alence assuming linear payo¤s and in Krishna and Perry (2000), who prove it in a more
general setting. Armstrong (2000) and Avery and Hendershott (2000) allow for multidi-
mensional uncertainty but because of the di¢ culties that arise, the analysis only allows two
types. Jehiel and Moldovanu (2001) point out that when uncertainty is multidimensional, a
revenue maximizing allocation mechanism will allocate the goods ine¢ ciently even if buy-
ers are ex-ante symmetric.11 The characterization of the optimum with multi-dimensional
types is extremely di¢ cult. Signi�cant progress has been made, but no analytical solution
nor general algorithm is known. This paper is less general in the dimensionality of the
types, but much more general in all other dimensions.

Agency Problems with Type-dependent Outside Options
Lewis and Sappington (1989) study an agency problem where the outside option of

the agent is type-dependent. Among other things, the fact that the critical type is not
necessarily the �worst� one mitigates the ine¢ ciencies that arise from contracting under
private information. This feature also appears in our analysis. In a similar scenario, Jullien
(2000) uses a dual approach to characterize properties of the optimal mechanism such as
the possibility of separation, non-stochasticity, etc. In our work we also examine a di¤erent
set-up with multiple agents, where the mechanism designer can also choose the outside
options.

Mechanism Design with Externalities
Jehiel, Moldovanu and Stacchetti, (JMS) (1996) study optimal auction with type-

independent externalities in a single unit environment.12 Ase¤ and Chade (2003) analyze
a problem where there are two units, buyers demand a single unit, their payo¤s are linear
in types, and externalities are identity-, but not type-dependent. Brocas (2005) examines
a scenario with one good, two buyers with linear payo¤s and type-dependent externali-
ties. JMS (1999) consider the design of optimal auctions of a single unit in the presence
of type-dependent externalities. The type of each buyer is a vector, where each component
indicates his/her utility as a function of who gets the object. The multi-dimensionality of
types makes the solution of the general problem intractable.

Optimal Auction Design with Endogenous Market Structure
Our model captures scenarios of auctions with endogenous market structure and gener-

alizes previous work by Dana and Spier (1994), and Milgrom (1996).13

11These observations are provided without a complete characterization of the optimum.
12General models allowing for type dependent externalities like those of Jehiel-Moldovanu (2001b), and

Krishna and Perry (2000) are concerned with the design of e¢ cient mechanisms.
13Gale (1990) also considers a variation of this problem but because he imposes a very strong super-

additivity condition to the pro�t function, he shows that an optimal mechanism always gives all the �permits�
to at most one buyer, so the market structure is always a monopoly.
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3. The model

A risk neutral seller owns N indivisible, possibly heterogeneous, objects that are of 0 value
to her and faces I risk-neutral buyers. Both N and I are �nite natural numbers. The seller
(indexed by zero) can bundle these N objects in any way she sees �t. An allocation z is an
assignment of objects to the buyers and to the seller. It is a vector with N components,
where each component stands for an object and it speci�es who gets it, therefore the set
of possible allocations is �nite and given by Z � [I [ f0g]N . Buyer i�s valuation from
allocation z is denoted by �zi (ci; c�i) and it depends on buyer i

0s cost parameter ci and
on the cost parameters of all the other buyers c�i. Values are therefore interdependent.
Buyer i�s cost parameter ci is private information and is distributed on Ci = [ci; ci], with
0 � ci � ci <1, according to a distribution Fi that has a strictly positive and continuous
density fi. All buyers� types are independently distributed. We use f(c) = �i2Ifi(ci);
where c 2 C = �i2ICi and f�i(c�i) = �j2I

j 6=i
fj(cj).

We assume that, for all i 2 I, �zi (�; c�i) is decreasing, convex and di¤erentiable for all
z and c�i: We impose no restrictions on how �i depends on z nor c�i. This formulation
allows for buyers to be demanding many objects, which may be complements or substitutes,
and for externalities. It is very well possible that �zi (ci; c�i) 6= 0 even when the allocation z
does not include any objects for i. An instance of that is a situation where buyers are �rms
competing in di¤erent markets, and whatever happens in the current sale will a¤ect their
positioning and interaction relative to the other buyers in other markets. More importantly,
an allocation may a¤ect buyer i even if he is not taking part in the auction, which implies
that non-participation payo¤s may depend on i0s type. Type-dependent non-participation
payo¤s are the key force behind our new insights.

The objective of the seller is to design a mechanism that maximizes expected revenue,
and buyers aim to maximize expected surplus.

Mechanisms

By the revelation principle we know that, for a given set of participating buyers, the seller
can without loss of generality restrict attention to incentive compatible direct revelation
mechanisms.

A direct revelation mechanism, (DRM); M = (p; x) consists of an assignment rule
p : C �! �(Z) and a payment rule x : C �! RI .

The assignment rule speci�es the probability of each allocation for a given vector of
reports. We denote by pz(c) the probability that allocation z is implemented when the
vector of reports is c. Observe that the assignment rule has as many components as the
number of possible allocations. The payment rule x speci�es, for each vector of reports c;
a vector of payments, one for each buyer. We now proceed to describe the seller�s and the
buyers�payo¤s.
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Payo¤s from Participation

The interim expected utility of a buyer of type ci when he participates and declares c0i
is

Ui(ci; c
0
i; (p; x)) = Ec�i

"X
z2Z
(pz(c0i; c�i)�

z
i (ci; c�i))� xi(c0i; c�i)

#
:

Payo¤s from Non-Participation - Non-Participation Assignment Rules

The payo¤ that accrues to buyer i from non participation depends on what allocations
that will prevail in that case, and on his type ci. We denote by Z�i the set of allocations
that are feasible14 when buyer i refuses to participate. The assignment rule that prevails is
denoted by p�i and it maps C�i to �(Z�i). In this case i´s payo¤ is given by

U i(ci; p
�i) = Ec�i

24 X
z2Z�i

(p�i)z(c�i)�
z
i (ci; c�i)

35 ;
where (p�i)z denotes the probability assigned to allocation z by p�i. The fact that i0s
non-participation payo¤s depend on his type is probably the most crucial feature of our
model.

A non-participation assignment rule speci�es a p�i for each i 2 I. The seller chooses
p�i out of the set of admissible non-participation assignment rules which we call P�i: If p�i
is exogenously given, as in most of the mechanism design literature, then P�i is a singleton.
If the seller can choose p�i, then the elements of P�i depend on her commitment power.
If the seller can commit ex-ante on p�i, then P�i contains all the assignment rules that
are possible when i is not around, namely P�i = fp�i : C�i ! �(Z�i)g.15 If the seller
does not have such commitment power, then P�i contains all the assignment rules that are
feasible and optimal when i is not around. It is worthwhile stressing that the new insights
we obtain do not hinge upon how non-participation payo¤s are determined.

We proceed to describe the timing.

Timing

Stage 0: The seller chooses a mechanism (p; x) and p�i; for all i
Stage 1: Buyers decide whether to participate or not. If all participate,

they report the types and the mechanism determines the assignment of objects
and the payments. If buyer i decides not to participate, the objects are assigned
according to fp�ig: If more than one buyers fail to participate, we assume that
the seller keeps the objects.

14For example in the case that the seller cannot force buyer i to get objects, Z�i � Z is the subset of
allocations where i does not obtain any objects.
15An instance of this scenario is used in JMS (1996), where there is one object and type independent

outside options.
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It is also easy to see that it is without loss of generality to assume that all buyers
participate for all realizations of their types. The seller can easily replicate an assignment
of the objects when buyer i is not participating, by simply having i participate and giving
him no objects.16

We think of this capturing a one-shot scenario. Given that others participate and tell
the truth about their types, is it a best response for buyer i to participate and tell the truth
about his type? In such a one-shot scenario, buyers are not making inferences about the
types of buyer i in the event that buyer i does not participate.

We now provide a formal de�nition of what it entails for a direct revelation mechanism
to be feasible.

Feasible Mechanisms

De�nition 1. (Feasible Mechanisms) For a given non-participation assignment rule,
(p�i)i2I ; we say that a mechanism (p; x) is feasible i¤ it satis�es

(IC) �incentive constraints,�a buyer�s strategy is such that
Ui(ci; ci; (p; x)) � Ui(ci; c0i; (p; x)) for all ci; c0i 2 Ci; and i 2 I
(PC) �voluntary participation constraints,�
Ui(ci; ci; (p; x)) � U i(ci; p�i) for all ci 2 Ci; and i 2 I
(RES) �resource constraints�

P
z2Z

pz(c) = 1; pz(c) � 0 for all c 2 C

Summarizing, feasibility requires that p and x are such that buyers (1) prefer to tell
the truth about their cost parameter, (2) buyers choose voluntarily to participate in the
mechanism and (3) p is a probability distribution over Z.17

We now state the seller�s problem.

The Seller�s Problem

With the help of the revelation principle the seller�s problem can be written as

max

Z
C

IX
i=1

xi(c)f(c)dc (1)

subject to (p; x) being �feasible.�

This completes the description of our model and the seller�s problem. We proceed with
the analysis of it. Proofs of the results not presented in the main text can be found in the
Appendix.

16Here we implicitly assume that the set of possible allocations Z is larger when more buyers participate.
This is automatically satis�ed when Z = fI [ f0ggN :
17Notice that Z contains the allocation where the seller keeps all the objects, thus

P
z2Z

pz(c) = 1:
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4. Analysis of the Problem

This section contains the main analysis of the problem. The seller�s objective is to maximize
expected revenue subject to incentive, participation and resource constraints. We start by
investigating the implications of these constraints.

Implications of Incentive Compatibility

Given a DRM (p; x) buyer i0s maximized payo¤,

Vi(ci) = max
c0i

Z
C�i

(
X
z2Z

pz(c0i; c�i)�
z
i (ci; c�i)� xi(c0i; c�i))f�i(c�i)dc�i;

is convex, since it is a maximum of convex functions. In the next Lemma we show that the
incentive constraints translate into the requirement that the derivative of Vi

Pi(ci) �
Z
C�i

X
z2Z

pz(ci; c�i)
@�zi (ci; c�i)

@ci
f�i(c�i)dc�i;

(more precisely a selection from its subgradient, which is single valued almost surely),
evaluated at the true type is weakly increasing.18 See Figure 1.

insert figure 1 here.

Lemma 1 For a given non-participation assignment rule, (p�i)i2I ; a mechanism (p; x) is
incentive compatible i¤

Pi(c
0
i) � Pi(ci) for all c0i > ci (2)

Vi(ci) = Vi(ci; p; p
�i)�

ciR
ci

Pi(s)ds for all ci 2 Ci (3)

With the help of Lemma 1 and using standard arguments, we can write buyer i�s ex-
pected payment as a function of the assignment rule p, and the payo¤ that accrues to his
worst type,19 Vi(ci; p; p�i)Z
C
xi(c)f(c)dc =

Z
C

X
z2Z

pz(ci; c�i)

�
�zi (ci; c�i) +

Fi(ci)

fi(ci)

@�zi (ci; c�i)

@ci

�
f(c)dc� Vi(ci; p; p�i):

Let

Jz(c) �
IX
i=1

[�zi (ci; c�i) +
Fi(ci)

fi(ci)

@�zi (ci; c�i)

@ci
]:

18 In the classical case, where there is only one object and i0s payo¤ from obtaining the object is vi; (see
Myerson (1981)), the analog of Pi is Pi(vi) =

R
V�i

p(vi; v�i)f�i(v�i)dv�i.

19For more details see Appendix.
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denote the virtual surplus of allocation z: Notice that we are summing over all buyers
because an allocation may a¤ect all of them, and not just the ones that obtain objects.
Therefore the virtual surplus of allocation z may depend on the whole vector of types.20

Using this de�nition the seller�s objective function can be rewritten as

Z
C

X
z2Z

pz(c)Jz(c)f(c)dc�
IX
i=1

Vi(ci; p; p
�i): (4)

Now we turn to examine the implications of the participation constraints.

Implications of Participation Constraints

Since the seller�s revenue is decreasing in Vi(ci; p; p�i); at a solution she will make this
constant as small as possible subject to the participation constraint Vi(ci) � U i(ci; p�i) for
all ci 2 Ci.

These observations imply that there will be at least one type ci where Vi(ci) = U i(ci; p
�i):

We call this the critical type of i and denote it by c�i (p; p
�i): Recalling that Vi(ci) =constant�

ciR
ci

Pi(s)ds),

we get that

c�i (p; p
�i) 2 argmin

ci

�
�
Z ci

ci

Pi(s)ds� U i(ci; p�i)
�
: (5)

See Figure 2. insert figure 2 here.

At c�i we have that Vi(c
�
i ) = U i(c

�
i ; p

�i) and from a generalization of the Fundamental
Theorem of Calculus (see Krishna and Maenner (2001)), and incentive compatibility it

follows that Vi(ci; p; p�i) = Vi(c�i ) +
ciR
c�i

Pi(s)ds or

Vi(ci; p; p
�i) = U i(c

�
i (p; p

�i); p�i) +

ciZ
c�i (p;p

�i)

Pi(s)ds: (6)

From (6) we see that Vi(ci; p; p�i) depends on p through two channels: Pi and c�i (p; p
�i):

Moreover, as already discussed, p�i is often not exogenous, and can be chosen by the
seller in order to minimize Vi(ci; p; p�i), namely

p�i(p) 2 arg min
��i2P�i

U i(c
�
i (p; �

�i); ��i) +

ciZ
c�i (p;�

�i)

Pi(s)ds: (7)

20 In the classical case virtual valuations are buyer-speci�c. For buyer i we have Ji(vi) = vi� 1�Fi(vi)
fi(vi)

, (vi
is i�s valuation for the object).
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For each potential assignment of the objects p, there is a potentially di¤erent optimal
�threat� p�i(p); which can be random. The choice set of p�i; namely P�i; depends on
the seller�s commitment power.21 The dependence of p�i on p adds an additional level of
complication.

Summarizing, incentive compatibility and participation constraints imply that an opti-
mal mechanism maximizes (4), with c�i (p; p

�i) given by (5); Vi(ci; p; p�i) given by (6); and
p�i(p) given by (7). In the next proposition we use these properties to restate the seller�s
problem.

The Seller�s Problem

Proposition 2 If in a mechanism (p̂; x̂) the assignment function p̂ solves:

max
p

R
C

P
z2Z

pz(c)Jz(c)f(c)dc�
IP
i=1
Vi(ci; p; p

�i(p))

s:t: Pi increasing,
P
z2Z

pz(c) = 1 and p(c) � 0
(8)

where c�i (p; p
�i) is given by (5); Vi(ci; p; p�i) is given by (6); p�i(p) is given by (7), and the

payment function x̂ for all i is given by:

x̂i(c) =
X
z2Z

p̂z(c)�zi (c) +

ciZ
ci

X
z2Z

@�zi (s; c�i)

@s
p̂z(s; c�i)ds� Vi(ci; p̂; p�i);

then, the mechanism is optimal.

This program has a structure similar to the standard formulation of the optimal auction
problem. For example, we have revenue equivalence. Any two mechanisms that allocate
the objects in the same way and give the same expected payo¤ to the worst type, generate
the same revenue. There are however, important di¤erences.

In the standard case where non-participation payo¤s are independent of types, (see
Myerson (1981) or JMS (1996)), the term Vi(ci; p; p

�i(p)) is independent of the assignment
rule p; because c�i is always equal to ci. There, the seller�s objective function is linear in
the assignment rule p: The revenue maximizing p is independent of the outside options that
buyers face, and it has a simple characterization. In our problem though, Vi(ci; p; p�i(p))
depends on p, and that changes the qualitative features of the solution. Also, an optimal p
depends on the outside options that buyers face and, for di¤erent outside options, (which
determine c�i ; the critical type), the e¢ ciency properties of revenue maximizing assignment
rules will di¤er.
21 It may be worth stressing, that the main force of our results is the fact that outside options are type

dependent, and not on whether the seller has the power to choose p�i or not. In most of the mechanism
design literature outside options are exogenous. There P�i is a singleton.
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It is possible that Vi(ci; p; p�i(p)) depends non-linearly on p, which would imply that
the seller�s objective function is a non-linear function of p: In that case, it is not possible
in general to say much about the solution. Its shape and features depend on the particular
details of the problem at hand, namely on the shape of the payo¤and distribution functions.
When Vi(ci; p; p�i(p)) is linear in p; then there is a simple analytical characterization of the
solution. Given that there is not much hope to say something general in the case that the
problem is nonlinear, and given that the solution in this case is likely to not have a simple
analytical form, we focus on the cases where Vi(ci; p; p�i(p)) is linear in p: This case has
an analytical characterization and allows us to see the new economic intuitions that arise
from type dependent outside options clearly. First we provide conditions for this to be true,
which are satis�ed by many environments. Then, we proceed with the characterization
of optimal mechanisms. Details of the solution, as well as the formal statements of these
observations are in the following section.

5. Optimal Mechanisms

We start by examining cases that have simple characterizations, which amount to the cases
where the term Vi(ci; p; p

�i(p)) is linear in p: Then we examine what happens in the case
of nonlinearities.

5.1 Optimal Mechanisms when Vi(ci; p; p�i(p)) is linear in p

When Vi(ci; p; p�i(p)) is linear in p, the seller�s objective function is linear and the solution
simpli�es. The main instance of this is when despite the fact that p�i can depend on p;
neither c�i (p; p

�i(p)) nor the level of U i(:; p
�i(p)) evaluated at the critical type c�i , depend on

p. This means that for every possible assignment rule p, when the seller chooses p�i 2 P�i
optimally, that is according to (7), the following are true22

c�i � c�i (p; p
�i(p)) and (9)

U i(c
�
i ) � U i(c

�
i ; p

�i(p)):

There are many instances that satisfy (9) with c�i = ci; or c
�
i = ci; or c�i 2 (ci; ci) and we

now describe a few. These cases are suggestive, and the list is not, nor it is meant to be,
exhaustive. A reader not interested in such details, may skip them and start reading after
Proposition 6 .

One well known environment that satis�es (9), is the case of type independent, ��at�
outside options. In that case the participation constraint always binds at the worst type
c�i = ci: The other extreme, namely when outside options are very responsive to type,
exhibits in some sense the reverse phenomenon, and the participation constraint always

22Notice that if p�i is exogenous (P�i is a singleton) the second requirement is trivially satis�ed

14



binds at the best type c�i = ci: We now provide the precise conditions for the case of �very
responsive� outside options, and argue that under those conditions (9 ) are satis�ed at
c�i = ci:

Let �zi (ci) =
R
C�i

�zi (ci; c�i)f�i(c�i)dc�i be the expected payo¤ to agent i if allocation z

is implemented.

Assumption 3 Suppose that outside options are steep, in the sense that for all i 2 I, there
exists an allocation z�i 2 Z�i such that

d�
z�i
i (ci)

dci
� d�zi (ci)

dci
for all z 2 Z

and
�
z�i
i (ci) � �

z
i (ci) for all z 2 Z:

Proposition 4 Under Assumption 3, and if the rule p�i de�ned by (p̂�i)z �
(
1 if z = z�i
0 if not

belongs to P�i, then c�i = ci; for all i.

Another interesting case is roughly a mixture of the previous two. The seller can choose
between a very �at and a very responsive to type outside option. There the participation
constraint binds at an interior type c�i 2 (ci; ci). Suppose that there are two extreme
allocations for each buyer, one that gives the �attest payo¤ zi1; and one that gives the
steepest, zi2. If the �attest option were to be used then c

�
i = �ci and if the steepest option

were to be used, then c�i = ci: It turns out that an optimal p
�i randomizes between the two

options and the participation constraint always binds at the type who is indi¤erent between
zi1 and z

i
2: We know describe the precise conditions and establish the claim.

Assumption 5 Suppose that Z�i = fzi1; zi2g and that ��
zi1
i (ci); ��

zi2
i (ci) satisfy

d��
zi1
i (ci)
dci

�
d��zi (ci)
dci

� d��
zi2
i (ci)
dci

for all z 2 Z and ci 2 Ci and ��
zi1
i (ci) � ��

zi2
i (ci): Suppose also that the

seller can only use non-participation assignment rules that do not depend on the types of
other players (that is p�i 2 P�i =) p�i(c�i) � p�i).

Proposition 6 Under Assumption 5, and if the rule p�i(p) de�ned by

(p̂�i)z �

8><>:
p if z = zi1
1� p if z = zi2
0 if not

belongs to P�i for all p 2 (0; 1), then c�i 2 (ci; ci); where c�i satis�es ��
zi1
i (c

�
i ) = ��

zi2
i (c

�
i );

p�i(p) 2 (0; 1) and is determined by the condition (p�i(p))z1 d��
z1
i (c

�
i )

dci
+(1�(p�i(p))z2)d��

z2
i (c

�
i )

dci
2

@Vi(ĉi).
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This completes our presentation of some of the environments that satisfy (9).
We now continue with the characterization of revenue maximizing mechanisms. Given

(9), Vi(ci; p; p�i(p)) can be written as

Vi(ci; p; p
�i(p)) = U i(c

�
i ; p

�i) +

Z ci

c�i

Pi(s)ds: (10)

Then substituting (10) into (8), the objective function of the seller�s problem can be rewrit-
ten as Z

C

X
z2Z

pz(c)Jz(c)f(c)dc�
IX
i=1

"
U i(c

�
i ; p

�i) +

Z ci

c�i

Pi(s)ds

#
: (11)

We de�ne the �modi�ed virtual surplus�of allocation z by

Ĵz(c) = Jz(c)�
IX
i=1

1ci�c�i
@�zi (c)

@ci

1

fi(ci)
: (12)

Then substituting (12) into (11) and recalling that Pi(ci) =
R
C�i

P
z2Z

pz(c)
@�zi (ci;c�i)

@ci
f�i(c�i)dc�i,

we can rewrite the seller�s objective function asZ
C

X
z2Z

pz(c)Ĵz(c)f(c)dc�
IX
i=1

U i(c
�
i ; p

�i):

These observations are summarized in the following proposition

Proposition 7 If (9) is satis�ed, the seller�s expected revenue can be expressed as a linear
function of the assignment rule,Z

C

X
z2Z

pz(c)Ĵz(c)f(c)dc�
IX
i=1

U i(c
�
i ; p

�i);

where Ĵz is the modi�ed virtual surplus of allocation z de�ned in (12):

Proposition 7 allows one to break the characterization of revenue maximizing mecha-
nisms into two steps: �rst �nd an optimal assignment rule, p; and then an optimal non-
participation assignment rule fp�igi2I .

In the �rst step we look for an assignment rule p that solves:

max
p2�(Z)

Z
C

X
z2Z

pz(c)Ĵz(c)f(c)dc (13)

s:t: Pi increasing:

16



This part of the problem has a similar structure as the classical problem in Myerson (1981),
but with modi�ed virtual surpluses, and can be solved using relatively conventional methods.
Despite this, the solution will often exhibit stark di¤erences from the solution to the classical
problem. We �rst state the solution, and then discuss the di¤erences.

Step 1: Find the optimal p

The solution is straightforward if the assignment rule that solves the relaxed program

max
p2�(Z)

Z
C

X
z2Z

pz(c)Ĵz(c)f(c)dc

also satis�es the requirement of Pi being increasing. This is so because the relaxed program
can be solved by pointwise maximization. Following Myerson (1981) we will refer to this as
the regular case. On the other hand, in the general case, pointwise optimization will lead
to a mechanism that may not be feasible.

In the classical problem, a su¢ cient condition for the problem to be regular is that
the virtual valuations are increasing. A mild condition on the distribution function Fi;
(MHR) guarantees that. Unfortunately, in our more general environment the problem fails
to be regular even if virtual valuations (or modi�ed virtual surpluses) are monotonic. In
this case Myerson�s (1981) technique of obtaining �ironed�virtual valuations will not work.
In Figueroa and Skreta (2006b) we illustrate a way to solve the general case, which does
not impose additional assumptions, such as di¤erentiability, on the mechanism. There we
argue that in the general case an optimal mechanism will involve randomizations between
allocations. Such lotteries are quite surprising given that buyers are risk neutral and types
are single dimensional.

We now state a condition, that is very intuitive, and guarantees that pointwise op-
timization will lead to a feasible solution. This condition generalizes the one in Myerson
(1981): with independent private values and linear utility functions our condition is satis�ed
whenever MHR is satis�ed.

Recall that IC requires the derivative of Vi; more precisely a selection from its subgra-
dient, Pi, to be increasing in ci: Pointwise optimization assigns probability one to the allo-
cation with the highest virtual surplus at each vector of types. Along a region where there
is no switch an allocation z is selected throughout and Pi(ci) =

R
C�i

@�zi (ci;c�i)
@ci

f�i(c�i)dc�i �

P zi (ci) is increasing by the convexity of �i: Incentive compatibility can be violated though,
when the seller wishes to switch, say, from allocation z1 to z2: At such a point c we have
that Ĵz2(c) � Ĵz1(c) and IC requires that Pi does not decrease, namely P

z2
i (ci) � P

z1
i (ci).

Our condition guarantees precisely this.
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Assumption 8 23 Let z1,z2 2 Z be any two allocations. For a given cost realization (ci; c�i)
if z1 2 argmax

z2Z
Ĵz(c

�
i ; c�i) and z2 2 argmax

z2Z
Ĵz(c

+
i ; c�i) , then

24

@�z2i (ci; c�i)

@ci
� @�z1i (ci; c�i)

@ci
:

Moreover, for linear environments with independent private values, there is a milder
condition, for which MHR is su¢ cient:

Lemma 9 If the payo¤ functions are of the form �zi (ci; c�i) � Azi + B
z
i ci, and

Fi(ci)
fi(ci)

is
increasing in ci for all i, then Assumption (8) is satis�ed.

For general environments there is also another condition, which is more stringent but
easier to verify than Assumption (8): Its statement and proof of su¢ ciency can be found in
the appendix.

With the help of Assumption 8, it is straightforward to �nd an optimal assignment rule
which is described in the following result.

Theorem 10 Suppose that (9) holds. If Assumption 8 is satis�ed, then an optimal alloca-
tion p is given by:25

pz
�
(c) =

(
1 if z� 2 argmax

z
Ĵz(c)

0 otherwise
:

We continue by characterizing revenue maximizing non-participation assignment rules.

Step 2: Find optimal p�i

Once we have the optimal p from Step 1, it is very easy to pin down p�i: An optimal
p�i minimizes

U i(c
�
i ; p

�i) = Ec�i

24 X
z2Z�i

(p�i)z(c�i)�
z
i (c

�
i ; c�i)

35 ; (14)

where c�i satis�es (5) for all p and p
�i: Now (5) implies that if c�i is interior, Vi and U i

must be parallel at c�i ; and the seller will choose a di¤erent p
�i(p) for di¤erent allocation

rules p, even though the participation constraint will always bind at the same c�i . If we
are at a corner, that is c�i = ci or c�i = ci; Vi and U i need not be parallel at c

�
i , and the

optimal p�i assigns probability one to the allocation that minimizes Ec�i [�
z
i (c

�
i ; c�i)] and

p�i is independent of p:

23This condition has similar �avor to condition 5.1 in the environment of Jehiel and Moldovanu (2001b).
We are grateful to Benny Moldovanu for bringing to our attention this connection.
24The notation c�i means limit from the left to ci and c+i means limit from the right to ci:
25Ties are broken arbitrarily.
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Theorem 11 Suppose that for every p; all solutions of (7), satisfy (9) for some c�i 2 [ci; ci]:
Then, if c�i = ci or c�i = ci; the solution of (7) p

�i(p) is independent of p and it is given
by26

(p�i)z�i =

(
1 for z�i that solve min

z2Z�i
Ec�i [�

z
i (c

�
i ; c�i)]

0 otherwise
:

If c�i 2 (ci; ci); then p�i depends on p and it satis�es

p�i 2 arg min
��i2P�i

U i(c
�
i ; p

�i) and
@U i(c

�
i ; p

�i)

@ci
2 @Vi(c�i ):27

If Assumption 8 is not satis�ed, pointwise optimization fails to lead to an incentive
compatible mechanism. In Figueroa and Skreta (2006b) we show that in this case the
optimal assignment rule may randomize between allocations.

The qualitative features of the solution depend on whether the conditions in (9) are
satis�ed for c�i = ci, c

�
i = ci; or c

�
i 2 (ci; ci).

When they are satis�ed for c�i = �ci, then it follows that Ĵz(c) = Jz(c) which, since
Fi(ci)
fi(ci)

@�zi (ci;c�i)
@ci

< 0; is always smaller than the actual surplus of allocation z given by

Sz(c) =
IP
i=1
�zi (ci; c�i)). Then the seller sells less often than it is e¢ cient.

When they are satis�ed for c�i = ci for all i; then

Ĵz(c) = Jz(c)�
IX
i=1

@�zi (c)

@ci

1

fi(ci)

which can be rewritten as

Ĵz(c) =
IX
i=1

�
�zi (ci; c�i) +

Fi(ci)� 1
fi(ci)

@�zi (ci; c�i)

@ci

�
:

In this case Ĵz(c) > Jz(c) because
IP
i=1

@�zi (c)
@ci

1
fi(ci)

is negative. Moreover since the amount�
Fi(ci)�1
fi(ci)

@�zi (ci;c�i)
@ci

�
is positive, the �modi�ed virtual surplus� of allocation z; is actually

larger than the actual surplus of allocation z, Sz(c). This phenomenon will imply that in
many environments a revenue maximizing mechanism sells more than it is e¢ cient. This is
in contrast with a standard intuition from monopoly theory, where the monopolist restricts
supply in order to generate higher revenue.

Corollary 12 Suppose that when the seller keeps all objects, every buyer gets a payo¤
independent of his type. Then, at a revenue maximizing assignment rule the seller keeps all
the objects less often compared to what is ex-post e¢ cient.28

26Ties are broken arbitrarily.
27Notice that U i is di¤erentiable, since it is a linear combination of di¤erentiable functions.
28This just one of the instances where overselling occurs.
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Finally, when (9) are satis�ed for a c�i 2 (ci; ci); then it is possible that Ĵz(c) < Sz(c); or
Ĵz(c) > Sz(c); or even Ĵz(c) = Sz(c); in which case a revenue maximizing auction is ex-post
e¢ cient. This is the case in Example 6.2.

5.2 Optimal Mechanisms when Vi(ci; p; p�i(p)) is nonlinear in p

When Vi(ci; p; p�i(p)) depends non-linearly in the assignment rule p; the seller�s objective
function becomes non-linear29 and the solution cannot be obtained via pointwise maxi-
mization. Fortunately, the problem has enough structure to allow the use of variational
methods. In particular, if the functions �zi (�; c�i) are smooth enough, then c�i (p; p�i(p)) is a
di¤erentiable function of p, thus guaranteeing that the objective function is di¤erentiable,
and hence continuous. It is not hard to show that the feasible set is sequentially compact.
A continuous function over a sequentially compact set has a maximum. The solution will
depend on the particular shapes of �zi and of the distributions Fi: This environment is more
complicated than the ones considered by Jullien (2000), not only because there are multiple
agents, but more importantly because the seller can choose the outside options. However
in Figueroa and Skreta (2005) we show that the problem often, (but not always), reduces
to one with essentially exogenous non-participation assignment rules. Unfortunately, the
di¢ culties arising from having a non-linear objective function are present even when the
non-participation assignment rule is exogenous.

29Suppose there is one buyer and three possible allocations z1; z2; z3. The payo¤s of the allocations are
�z1(c) = 10 � 10c, �z2(c) = 0 and �z3(c) = �5c; where c 2 [c; �c]: Suppose also that (p�1)z3 = 1, so
the non-participation assignment rule assigns probability one to allocation z3. An assignment rule p(c) =
(pz1(c); pz2(c); pz3(c)) induces a surplus

V (c) = V (c; p; p�1)�
cZ
c

P (s)ds

which, in the points where it is di¤erentiable satis�es dV (c)
dc

= P (c) = �10pz1(c)� 5pz3(c). The type where
the participation constraint binds depends on how P (c); which is slope of the payo¤ from participating in
the mechanism, compares to the slope of the payo¤ from non-participating, which is given by �5. It is clear
that the critical type c� depends non-linearly on p, and it is given by

c�(p; p�1) =

8><>:
c if � 5 � �10pz1(0)� 5pz3(0)
�c if � 5 � �10pz1(1)� 5pz3(1)
c� �

where c� satis�es that �10pz1(c��)� 5pz3(c��) � �5 � �10pz1(c�+)� 5pz3(c�+). Since

V (�c; p; p�1) = �5c�(p; p�1) +
�cZ

c�(p;p�1)

[�10pz1(c)� 5pz3(c)]dc;

we have that the objective function is non-linear in the assignment rule p.
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6. Illustration of the Solution

The purpose of this section is to illustrate the solution in simple but economically insightful
examples.

6.1 The Role of Steep Outside Options

Consider 2 �rms �ghting for a single slot to advertise their products. There are three feasible
allocations. The seller keeps the slot, z0; buyer 1 gets the slot, z1 or buyer 2 gets the slot,
z2.

The value of airing a spot depends on the actual cost parameter ci of �rm i, which is
private information and is uniformly and independently distributed in [0; 1] for both �rms.
The value of not airing a spot depends on the allocation implemented: a �rm su¤ers an
externality, (which depends on its cost parameter ci) if its competitor gets the spot, while it
gets a payo¤ of 0 in case nobody gets it. Let �zji (ci) denote the payo¤ of �rm i if allocation
zj is implemented and its type is ci: The payo¤s that accrue to each �rm from each of these
alternatives are

�z01 (c1) = 0 �z02 (c2) = 0

�z11 (c1) = 1� c1 �z12 (c2) = �2c2
�z21 (c1) = �2c1 �z22 (c2) = 1� c2

:

An assignment rule here is p(c) = (pz0(c); pz1(c); pz2(c)); where c = (c1; c2). The seller�s
problem can be written as:

max
p

Z
[0;1]

Z
[0;1]

[pz0(c)Jz0(c) + p
z1(c)Jz1(c) + p

z2(c)Jz2(c)]dc1dc2 � V1(1; p; p�1(p))� V2(1; p; p�2(p))

s.t. P1(c1) � �
Z
[pz1(c) + 2pz2(c)]dc2 is increasing

P2(c2) � �
Z
[2pz1(c) + pz2(c)]dc1 is increasing (15)

0 � pzi(c) � 1; i = 0; 1; 2 and �i2f0;1;2gpzi(c) = 1;

where

Jz0(c) = 0

Jz1(c) = 1� 2c1 � 4c2
Jz2(c) = 1� 2c2 � 4c1:

The optimal assignment rule crucially depends on the allocations that prevail if a buyer
refuses to participate in the mechanism, since these determine Vi(1; p; p�i(p)); i = 1; 2:

Scenario 1: Flat Outside Options

21



In this case if a buyer does not participate the seller must keep the slot. Then

p�1 = p�2 = (pz0(c); pz1(c); pz2(c)) = (1; 0; 0) :

Given this non-participation assignment rule, the payo¤ to buyer i from not participation
is �z0i (ci) = 0 which is independent of i0s type. The participation constraint binds at the
�worst�type �c1 = �c2 = 1; since at an incentive compatible assignment rule Vi is decreasing
in ci. See Figure 3. insert figure 3 here.This implies immediately that

V1(1; p; p
�1(p)) = V2(1; p; p

�2(p)) = 0:

Then, pointwise maximizing gives us

p(c) =

8><>:
(0; 1; 0) if c2 � c1 and 1 � 2c1 + 4c2
(0; 0; 1) if c1 � c2 and 1 � 2c2 + 4c1
(1; 0; 0) if 2c1 + 4c2 > 1 and 2c2 + 4c1 > 1

:

which is feasible, and hence optimal. See Figure 4. insert figure 4 here. Feasibility
follows from Lemma 9, since we have linear payo¤s and a distribution that satis�es MHR:

Scenario 2: Steep Outside Options
In this case, if a buyer fails to participate the seller may give the slot to its competitor,

the other buyer, that is

p�1 = (pz0(c); pz1(c); pz2(c)) = (0; 0; 1) and p�2 = (pz0(c); pz1(c); pz2(c)) = (0; 1; 0):

It is not hard to see that this is the optimal way for the seller to threaten buyers, since
giving the slot to the competitor has the lowest payo¤ for buyer i: We now justify in detail
why this is the case: Observe that allocation zj gives the lowest payo¤ to i when his cost is
the smallest possible, that is

�
zj
i (0) � �

z
i (0) for all z 2 fz0; z1; z2g: (16)

Allocation zj also gives the steepest payo¤ to buyer i; for i; j = 1; 2 since we have that

d�
zj
i (ci)

dci
� d�zi
dci

for all z 2 fz0; z1; z2g: (17)

From (16) and (17) it follows that the participation constraint will always bind at c�i =ci = 0:

See Figure 5. insert figure 5 here.

22



Then for i; j = 1; 2 we have

Vi(1; p; p
�i(p)) = �

zj
i (c

�
i ) +

1Z
c�i

Pi(ci)dci (18)

= �
zj
i (0) +

1Z
0

Pi(ci)dci

= 0 +

1Z
0

1Z
0

[�pzi(c)� 2pzj (c)]dc:

Substituting these expressions in the objective function, the seller�s problem becomes

max
p

R
[0;1]

R
[0;1]

[pz1(c)[4� 2c1 � 4c2] + pz2(c)[4� 2c2 � 4c1]]dc1dc2

s:t: P1(c1) � �
R
[pz1(c) + 2pz2(c)]dc2 is increasing

P2(c2) � �
R
[2pz1(c) + pz2(c)]dc1 is increasing

0 � pzi(c) � 1; i = 0; 1; 2 and �i2f0;1;2gpzi(c) = 1:

: (19)

So, comparing problems (15) and (19), we see that after incorporating the terms V1(1; p; p�1(p))
and V2(1; p; p�2(p)) we get �modi�ed virtual surpluses�, which are given by

Ĵz0(c) = 0

Ĵz1(c) = 4� 2c1 � 4c2
Ĵz2(c) = 4� 2c2 � 4c1:

The assignment rule corresponding to pointwise maximization is given by

p(c) =

8><>:
(0; 1; 0) if c2 � c1 and 4 � 2c1 + 4c2
(0; 0; 1) if c1 � c2 and 4 � 2c2 + 4c1
(1; 0; 0) if 2c1 + 4c2 > 4 and 2c2 + 4c1 > 4

:

This assignment rule is feasible by Lemma 9 (and therefore optimal). See Figure 6. insert
figure 6 here.

As discussed earlier, when participation constraints bind at the smallest cost �over-
selling�occurs, compared to what is e¢ cient. In this example, the �ex-post e¢ cient allo-
cation�is given by

pe(c) =

8><>:
(0; 1; 0) if c2 � c1 and c1 + 2c2 � 1
(0; 0; 1) if c1 � c2 and 2c1 + c2 � 1
(1; 0; 0) otherwise

:

See Figure 7. insert figure 7 here.
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Comparing p(c) and pe(c); depicted in Figures 6 and 7 respectively, we see that at the
revenue maximizing assignment rule buyers 1 and 2 obtain the slot for cost realizations
where e¢ ciency dictates that the seller should keep it. At �rst sight this is in contrast with
the intuition that a monopolist creates ine¢ ciencies by restricting output, since in this case
he is selling more than what it is socially desirable. In fact, there is no contradiction, what
is being sold �too little�here is the (socially desirable) service of not assigning the spot.

This example illustrates that the optimal assignment rule critically depends on the
outside options that each buyer faces. When the seller can only keep the object if a buyer
fails to participate, the optimal assignment rule assigns the slot less often than it is e¢ cient.
In contrast, in the case where if a buyer fails to participate, the seller gives the slot to the
other �rm, the revenue maximizing assignment rule allocates the spot more often then it
is e¢ cient. The reason why the solution in the two scenaria under consideration di¤ers,
is that in the second one when �rm i fails to participate its payo¤ depends on its cost,
(�zji (ci) = �2ci)): If �

zj
i (ci) = �2; then the revenue maximizing assignment rule would

be the same in Scenario 1 and in Scenario 2; (in this case only payments would di¤er).
Summarizing, outside options a¤ect the optimal assignment rule only if the payo¤s from
non-participation are type-dependent.

6.2 An Example with Coexistence of Steep & Flat Outside Options30

A seller has an invention which is of potential interest to �rm A. The �rm has a cost
parameter c distributed uniformly in [0; 1]. In case �rm A gets the exclusive rights, its
valuation is given by �zA(c) = 5�5c. In case that there is no sale, the seller can either keep
the invention or open source it. A very e¢ cient �rm is not afraid of competition and prefers
open sourcing to no sale at all, whereas a more ine¢ cient �rm prefers the opposite.31 In
particular, in the case of no sale �rm A gets �z1(c) = 0, and in the case of open sourcing
it gets �z2(c) = 1 � 10c. So if �rm A is very e¢ cient with c � 1

10 , the option of no one
obtaining the invention is worse than open source. The opposite is true when c � 1

10 . See
Figure 8. insert figure 8 here. An assignment rule here is p(c) = (pzA(c); pz1(c); pz2(c)).
In case �rm A does not participate in the sale, the seller is indi¤erent between keeping the
invention and making it open source. In fact, since there is nothing else the seller can do
in that case, any randomization between these options is optimal from her perspective and
hence credible.

The seller solves:

max
p

1R
0

[pzA(c)[5� 10c] + pz2(c)[1� 20c]]dc� V (1; p; p�i(p))

s:t: �[5pzA(c) + 10pz2(c)] is increasing
0 � pz(c) � 1 for all z 2 fzA; z1; z2g and �z2fzA;z1;z2gpz(c) = 1

(20)

30This is essentially the example described in the introduction.
31This is di¤erent from the previous example, where the allocation that hurts buyers the most is always

the same.
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This example belongs to the class of problems which satisfy (9) for c�i 2 (ci; ci) discussed
on Proposition 6: As already discussed, in this case an optimal non-participation rule p�A

depends on the assignment rule p that the seller wants to implement. We therefore start
by specifying the optimal p�A as a function of p and then solve for an optimal p:

1. Finding optimal p�A(p)
With a slight abuse of notation, let p�A denote the probability that allocation z2 is

chosen if A fails to participate, and let (1 � p�A) the probability that allocation z1 will
be chosen. Associated with this non-participation assignment rule is the payo¤ that will
accrue to A if it fails to participate

UA(c; p
�A) = (1� p�A) � 0 + p�A(1� 10c)

= p�A � 10p�Ac: (21)

We know that the optimal non-participation assignment rule must minimize

V (1; p; p�A(p)) = UA(c
�(p; ��A); p�A) +

1Z
c�(p;��A)

dV (c)

dc
dc;

which using (21) can be rewritten as

V (1; p; p�A(p)) = ��A � 10��Ac�(p; ��A) +
1Z

c�(p;��A)

dV (c)

dc
dc: (22)

Now at a solution32 p�A(p) the total derivative of V (1; p; p�i(p)) with respect to ��A is
equal to the partial, and it is given by

dV (1; p; p�A(p))

d��A

����
��A=p�A(p)

= 1� 10c�(p; p�A(p)):

Moreover at an interior minimum it must be the case that

dV (1; p; p�A(p))

d��A

����
��A=p�A(p)

= 1� 10c�(p; p�A(p)) = 0;

which implies that

c�(p; p�A(p)) =
1

10
for all p and p�A: (23)

We have therefore veri�ed that this example satis�es (9) for c�i =
1
10 ; and hence the critical

type is independent of p and p�A:

32This property has a �avor of envelope condition. We state it formally in Lemma A in the Appendix.

25



We proceed to �nd an optimal p�A as a function of an assignment rule p: The slope of
the payo¤ from non-participation is

@UA(c; p
�A)

@c
= �10p�A:

At an optimal p�A this has to be equal to the slope of the participation payo¤ V at
c�(p; p�A(p)) which in our case it is 1

10 . In other words

dV (c)

dc

����
c�= 1

10

= �10p�A; (24)

now given an assignment rule p(c) = (pzA(c); pz1(c); pz2(c)), V (c) is given by

V (c) = pzA(c)(5� 5c) + pz1(c) � 0 + pz2(c)(1� 10c);

and its slope is given by
dV (c)

dc
= �5pzA(c)� 10pz2(c): (25)

With the help of (25), (24) can be rewritten as

�10p�A = �5pzA( 1
10
)� 10pz2( 1

10
);

which reduces to
p�A(p) =

1

2
pA(

1

10
) + pz2(

1

10
): (26)

Equation (26) gives us an optimal p�A as a function of the assignment rule p.33

2. Finding optimal p
With the help of (23), V (1; p; p�i(p)) given by (22), can be rewritten as V (1; p; p�i(p)) =

�
1R
1
10

[5pzA(c)+10pz2(c)]dc; and substituting this into (20), the seller�s problem can be rewrit-

ten as
33This example highlights the interdependence of optimal non-participation assignment rules with the

assignment rules. This feature is novel and does not appear in the earlier work, (see for instance JMS
(1996)), where optimal threats are independent from the way the seller wants to allocate the goods. Here
equation (26) tells us that for di¤erent assignment rules, the optimal, from the seller�s point of view, non-
participation assignment rule, is di¤erent. For example, for

(~pzA(c); ~pz1(c); ~pz2(c)) =

(
(1; 0; 0) if c 2 [0; 1

2
]

(0; 1; 0) if c 2 [ 1
2
; 1]

the optimal non-participation assignment rule is p�A(~p) = 1
2
. If the assignment rule is instead

(p̂zA(c); p̂z1(c); p̂z2(c)) =

(
( 1
2
; 0; 1

2
) if c 2 [0; 1

2
]

(0; 1; 0) if c 2 [ 1
2
; 1]

the optimal non-participation assignment rule is p�A(p̂) = 3
4
.

26



max
p

1
10R
0

[pzA(c)[5� 10c] + pz2(c)[1� 20c]]dc+
1R
1
10

pzA(c)[10� 10c] + pz2(c)[11� 20c]]dc

s:t: �[5pzA(c) + 10pz2(c)] is increasing
0 � pz(c) � 1 for all z 2 fzA; z1; z2g and �z2fzA;z1;z2gpz(c) = 1

Pointwise maximization gives us that pzA(c) = 1 for all c; and the optimal assignment rule
is:

p(c) = (pzA(c) = 1; pz1(c) = 0; pz2(c) = 0) (27)

which is feasible. By substituting (27) into (26), we get that the optimal non-participation
assignment rule is given by

p�A(p) =
1

2
or more precisely

p�A(p) = (pzA(c); pz1(c); pz2(c)) = (0;
1

2
;
1

2
):

In this example the revenue maximizing assignment rule is ex-post e¢ cient. To see this,
notice that �zA(c) � �z1(c) and �zA(c) � �z2(c) for all c 2 [0; 1], so it�s always e¢ cient to
sell the invention to the �rm. This e¢ ciency property is rather surprising given the presence
of private information that is statistically independent. The seller�s expected revenue is 4:5:
See Figure 9. insert figure 9 here.

It is interesting to compare this solution to the one when open sourcing (allocation z2)
is not an available option. In this case the optimal assignment rule is

p(c) = (pzA(c); pz1(c)) =

(
(1; 0) if c 2 [0; 12 ]
(0; 1) if c 2 [12 ; 1]

;

and trivially the non-participation assignment rule is p�A(p) = (0; 1): Then the seller�s
expected revenue is 1:25: This assignment rule is ine¢ cient, since half of the time Firm A
does not obtain the invention, whereas it is always e¢ cient that it does. Comparing to the
previous case, we see that the option of open sourcing increases both the seller�s revenue,
(it more than triples), and e¢ ciency. This is despite the fact that open sourcing is never
implemented. For an illustration of the solution see Figure 10. insert figure 10 here.

This example highlights an important new insight. When the payo¤from non-participation
depends on a buyer�s type, even allocations that are never implemented can crucially a¤ect
the revenue maximizing assignment of the objects. Compare Figures 9 and 10. The intro-
duction of the option of open sourcing increased the revenue of the seller, and made the
revenue maximizing assignment rule ex-post e¢ cient, even though it is never implemented.
This example also shows that optimal non-participation assignment rules can be random.
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7. Concluding Remarks

In this paper we study the optimal allocation mechanism for N objects, to I potential buyers
(�rms). Payo¤ functions allow for goods to be complements, substitutes and type dependent
externalities among buyers. Private information is single-dimensional, which makes the
problem tractable despite its generality. Our analysis shows that key intuitions from earlier
work on optimal auctions fail to generalize. It is widely believed that e¢ ciency and revenue
maximization are con�icting objectives. However, here we show that a revenue maximizing
mechanism sometimes will allocate the objects in an ex-post e¢ cient way, and sometimes is
will sell �too often�. The broad message is that type-dependent non-participation payo¤s
change the nature of the distortions that arise from the presence of asymmetric information.
This highlights the designer�s role of creating the �appropriate�outside options, since they
allow her to increase her revenue and the overall e¢ ciency of the mechanism. This paper also
encompasses a large number of important allocation problems as a special case. Potential
applications range from allocation of airport take-o¤ and landing slots, to allocation of
positions in teams.

8. Appendix

Proof of Lemma 134

By the convexity of �zi (�; c�i) we have that Vi is a maximum of convex functions, so it
is convex, and therefore di¤erentiable a.e. It is also easy to check that the following are
equivalent:

(a) (p; x) is incentive compatible
(b) Pi(ci) 2 @Vi(ci)
(c) U(ci; ci; (p; x)) = Vi(ci)
We now use these equivalent statements to prove necessity and su¢ ciency in our Lemma.
(=)) Here we use the fact that Incentive compatibility implies (b). A result in Krishna

and Maenner (2001) then implies (3). By the convexity of Vi, we know that @Vi is monotone,
so:

(Pi(ci)� Pi(c0i))(ci � c0i) � 0:

This immediately implies (2).
((=) To prove that (2) implies incentive compatibility it�s enough to show that Pi(ci) 2

34This proof is relatively standard, see for instance, Jehiel, Moldovanu and Stacchetti (1999) and is included
for completeness.
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@Vi(ci). By (2) and (3),

Vi(c
0
i)� Vi(ci) =

c0iZ
ci

Pi(s)ds

� Pi(ci)(c
0
i � ci)

which shows Pi(ci) 2 @Vi(ci).

Expected Payment at an Incentive Compatible Mechanism35

Integrating the second condition in (1) over C�i we get thatZ
C

xi(c)f(c)dc =

Z
C

X
z2Z

pz(c)�zi (c)f(c)dc�
Z
Ci

Vi(ci)dci;

and changing the order of integration we get:

Z
Ci

Vi(ci)dci =

Z
Ci

[Vi(ci)�
ciZ
ci

Pi(si)dsi]fi(ci)dci

= Vi(ci)�
Z
Ci

Pi(si)

siZ
ci

fi(ci)dcidsi

= Vi(ci)�
Z
Ci

Pi(ci)Fi(ci)dci

= Vi(ci)�
Z
Ci

Z
C�i

X
z2Z

pz(ci; c�i)
@�zi (ci; c�i)

@ci
f�i(c�i)dc�iFi(ci)dci

= Vi(ci)�
Z
C

X
z2Z

pz(ci; c�i)
@�zi (ci; c�i)

@ci

Fi(ci)

fi(ci)
f(c)dc

From the last expression the result follows.
Proof of Proposition 4
First we prove that, if the participation constraint is satis�ed at ci = ci then it is satis�ed

for all ci 2 Ci. This follows from three observations.
(i) Pi(ci) 2 @Vi(ci),

35This proof is very standard and is included for completeness.
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(ii)

Pi(ci) =

Z
C�i

X
z2Z

pz(c)
@�zi (ci; c�i)

@ci
f�i(c�i)dc�i

�
Z
C�i

X
z2Z

pz(c)
@�

z�i
i (ci; c�i)

@ci
f�i(c�i)dc�i

=
@��

z�i
i (ci)

@ci

and (iii) Vi(ci) � ��
z�i
i (ci):

Observations (i) and (ii) imply that the derivative of Vi is always greater than the
derivative of ��

z�i
i : These two, together with (iii) imply that V (ci) � ��

z�i
i (ci) for all ci 2 Ci.

Proof of Proposition 6
To prove this proposition, we �rst prove the following lemma:
Lemma A.

dVi(ci; p; �
�i)

d(��i)z

����
��i=p�i(p)

=
@Vi(ci; p; �

�i)

@(��i)z

����
��i=p�i(p)

= ��zi (c
�
i (p; p

�i(p))); for all z 2 Z�i:

(28)

Proof. We suppose for simplicity that the derivative @c�i (p;�
�i)

@��i is well de�ned, (otherwise
we can do all the analysis with subgradients).

Then, di¤erentiating Vi(ci; p; ��i) with respect to (��i)z we obtain that

@Vi(ci; p; �
�i)

@(��i)z
=
@U i(c

�
i (p; �

�i); ��i)

@(��i)z
+

�
@U i(c

�
i (p; �

�i); ��i)

@ci
� Pi(c�i (p; ��i))

�
@c�i (p; �

�i)

@(��i)z

(29)
Given an assignment rule p and a non-participation assignment rule ��i, we know that at

an optimal mechanism c�i (p; �
�i) satis�es c�i (p; �

�i) 2 argmin
ci

"
�
ciR
ci

Pi(s)ds� U i(ci; ��i)
#
.

Depending on whether c�i (p; �
�i) 2 (ci; �ci); or c�i (p; ��i) = ci or c�i (p; �

�i) = �ci; there are
three cases to consider.

Case 1: c�i (p; �
�i) 2 (ci; �ci)

Since c�i (p; �
�i) 2 argmin

ci

"
�
ciR
ci

Pi(s)ds� U i(ci; ��i)
#
, an interior solution (which is pre-

cisely the case under investigation), must satisfy

dVi(ci)

dci

����
ci=c�i (p;�

�i)

=
@U i(ci(p; �

�i); ��i)

@ci

����
ci=c�i (p;�

�i)

: (30)
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Then recall that Vi(ci) = Vi(ci; p; ��i)�
ciR
ci

Pi(s)ds , which implies that

dVi(ci)

dci

����
ci=c�i (p;�

�i)

= �Pi(c�i (p; ��i)) (31)

Then, substituting (30) and (31) into (29), we obtain that

@Vi(ci; p; �
�i)

@(��i)z

����
��i=p�i(p)

=
@U i(c

�
i (p; p

�i(p)); p�i(p))

@(��i)z
= ��zi (c

�
i (p; p

�i(p))); for all z 2 Z�i;

which is what we wanted to show.
Case 2: c�i (p; �

�i) = ci
If p and ��isuch that c�i (p; �

�i) = ci and we change zth component of the non-participation
assignment rule p�i then two things can happen. One possibility is that

@c�i (p; �
�i)

@(��i)z
= 0;

in that case (29), reduces to (28): Another possibility is that we move to a c�i in the interior,
in which case we are back to Case 1.36

Case 3: c�i (p; �
�i) = �ci

This case is identical to the previous one.
Now, we prove the proposition.

We know that Vi(�ci) = ��i��
z1
i (c

�
i (p; �

�i))+(1���i)��z2i (c�i (p; ��i))+
�ciR

c�i (p;�
�i)

Pi(s)ds. Because

of the envelope condition proved before, that is (28), we can write

dVi(ci; p; �
�i)

d��i

����
��i=p�i(p)

=
@Vi(ci; p; �

�i)

@��i

����
��i=p�i(p)

= ��z1i (c
�
i (p; �

�i))� ��z2i (c
�
i (p; �

�i)): (32)

When ��i is in a neighborhood of 0 then the outside option is �at and c�i = �ci:When �
�i is

in a neighborhood of 1 then the outside option is very steep and c�i = ci: This means that
@c�i (p;�

�i)
@��i

���
��i=0

=
@c�i (p;�

�i)
@��i

���
��i=1

= 0, and also we get that

dVi(�ci; p; �
�i)

d��i

����
��i=0

= ��z1i (c
�
i (p; 0))� ��z2i (c

�
i (p; 0))

= ��z1i (�ci)� ��
z2
i (�ci) < 0

dVi(�ci; p; �
�i)

d��i

����
��i=1

= ��z1i (c
�
i (p; 1))� ��z2i (c

�
i (p; 1))

= ��z1i (ci)� ��
z2
i (ci) > 0:

36Note that since both Vi and U i are decreasing and convex in ci, so changing (p
�i)z slightly cannot result

in c�i moving from ci to �ci:
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This implies that the optimally chosen ��i, that is p�i(p), is interior, so it satis�es the

FONC dVi(�ci;p;�
�i)

d��i

���
��i=p�i(p)

= 0, because of (32) it implies ��z1i (c
�
i (p; �

�i)) = ��z2i (c
�
i (p; �

�i)).

Moreover, because of the assumptions, the functions ��z1i and ��z2i cross at most once, so c�i
is uniquely determined.

We now need to verify that given p there exists p�i(p) such that the participation

constraints are satis�ed. It is enough to show that p�i(p)d��
z1
i (ĉi)
dci

+ (1 � p�i(p))d��
z2
i (ĉi)
dci

2
@Vi(ĉi). The �rst assumption of the Proposition 6 guarantees that this is always possible.

Assumption A. If for all i and for all c�i, the implication

@Jz1(ci; c�i)

@ci
� @Jz2(ci; c�i)

@ci
=) @�z1i (ci; c�i)

@ci
� @�z2i (ci; c�i)

@ci

is satis�ed, then assumption (8) is satis�ed.
Proof of Su¢ ciency of Assumption A
If there exists a point (ci; c�i) such that z1 2 argmax

z2Z
Ĵz(c

�
i ; c�i) and z2 2 argmax

z2Z
Ĵz(c

+
i ; c�i),

then it must be the case that @Jz2 (ci;c�i)
@ci

� @Jz1 (ci;c�i)
@ci

. If Assumption A is satis�ed, then

we have that @�
z2
i (ci;c�i)
@ci

� @�
z1
i (ci;c�i)
@ci

, which by de�nition means that P z2(ci) � P z1(ci).
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Proof of Lemma 9
We just need to prove that Assumption A is satis�ed. For that, suppose that @Jz1 (ci;c�i)@ci

�
@Jz2 (ci;c�i)

@ci
. By the linearity assumption, we have thatBz1i

�
1 +

�
Fi(ci)
fi(ci)

�0�
� Bz2i

�
1 +

�
Fi(ci)
fi(ci)

�0�
.

Then, since
�
Fi(ci)
fi(ci)

�0
� 0 by assumption, we get Bz1i � Bz2i , which is equivalent to

@�
z1
i (ci;c�i)
@ci

� @�
z2
i (ci;c�i)
@ci

under the linearity assumption.
Proof of Theorem 10
The solution proposed corresponds to pointwise maximization, so the only possibility

that is not optimal is that is not feasible. To check that feasibility is satis�ed remember
that

Pi(ci) =

Z
C�i

X
z2Z

pz(ci; c�i)
@�zi (ci; c�i)

@ci
f�i(c�i)dc�i

and consider a �xed c�i. In a region of cost realizations where z 2 argmax
z2Z

Ĵz(c); p(ci; c�i)

does not change (pz = 1), Pi(ci) is increasing by the convexity of �zi (�; c�i). For a given
c�i where z1 2 argmax

z2Z
Ĵz(c

��
i ; c�i) and z2 2 argmax

z2Z
Ĵz(c

�+
i ; c�i), p

z1(c�i
�; c�i) = 1 and

pz2(c�i
+; c�i) = 1, so Pi(ci) is increasing because of Assumption 8.

Proof of Theorem 11
In environments where for all p at a solution of (7), (9) are satis�ed, and an optimal p�i

minimizes

U i(c
�
i ; p

�i) = Ec�i

24 X
z2Z�i

(p�i)z(c�i)�
z
i (c

�
i ; c�i)

35 ; (33)

where c�i satis�es (5) for all p and p
�i: This implies that if c�i is interior, Vi and U i must be

parallel at c�i ; more precisely it must be the case that
@U i(c

�
i ;p

�i)
@ci

2 @Vi(c�i ):
If we are at a corner, that is c�i = ci or c

�
i = ci; then the requirement that

@U i(c
�
i ;p

�i)
@ci

2
@Vi(c

�
i ) need not be satis�ed, and the optimal p

�i assigns probability one to the allocation
that minimizes Ec�i [�

z
i (c

�
i ; c�i)] and p

�i is independent of p: In the case where c�i 2 (ci; ci)
the requirement that @U i(c

�
i ;p

�i)
@ci

2 @Vi(c�i ) implies that seller will choose a di¤erent p�i(p)
for di¤erent allocation rules p, even though the participation constraint will always bind at
the same c�i .

Proof of Corollary 12
Let�s denote by z0 the allocation where the seller keeps all the objects and consider a �xed
realization of types c. Since �z0i (c) is constant for all i, its derivative vanishes, and we have

that Jz0(c) =
NP
i=1
�z0i (c) = Sz0(c).

On the other hand, for every allocation z, its virtual surplus in the case of large externalities
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is given by

Jz(c) =
NX
i=1

�
�zi (c) +

@�zi (c)

@ci

Fi(ci)� 1
fi(ci)

�
> Sz(c)

Then it is easy to see that the set where the seller keeps the objects,
n
cjz0 2 argmax

z
Sz(c)

o
,

is a subset of the set where it would be e¢ cient that she keeps them,
n
cjz0 2 argmax

z
Jz(c)

o
.
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