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Abstract

This chapter considers the problem of fto �nd allocations that satisfy certain social

goals when economic agents have private information about their preferences. While

economists have traditionally considered the problem of providing incentives for agents

to fully reveal their preferences, such full revelation is often impractical or undesirable,

for several reasons: (1) it may require a prohibitive amount of communication as

measured in bits or real numbers (2) it may be costly for agents to evaluate their

complete preferences, and (3) the revealed information may be exploited by the designer

or other agents. Thus, we consider the question: What is the minimal information that

must be elicited from the agents in order to achieve the goals? Note that the question

arises even if agents can be counted on to report truthfully.

Segal (2005) shows that for a large class of social problems, any minimally informa-

tive way to verify that a given alternative is desirable is equivalent to giving each agent

�This chapter was prepared for the 9th World Congress of the Econometric Society, London, August 19-24,

2005. I gratefully acknowledge �nancial support of the National Science Foundation (grants SES 0214500,

0427770). I also thank my discussant, Roger Myerson, and the participants of too many seminars and

conference presentations where some of the research surveyed in the chapter was presented. In particular,

I am grateful to Susan Athey, Jonathan Levin, Eric Maskin, Paul Milgrom, Andy Postlewaite, Thomas

Sjostrom, and James Jordan for discussions related to this topic. Last but not least, I am indebted to my

coauthors Noam Nisan and Ronald Fadel for helping clarify my understanding of the topics discussed in this

chapter.

yDepartment of Economics, Stanford University, Stanford, CA 94305. Email: ilya.segal@stanford.edu

1



a �budget set��a subset of the social alternatives (which could in general be described

by personalized nonlinear prices), and asking each agent to verify that the proposed

alternative is optimal to him within his budget set. Therefore, any communication

mechanism that yields a solution to the social problem must also yield a supporting

price equilibrium. This result formalizes Hayek�s insight about the role of prices as

minimal communication needed to solve the social coordination problems. The class

of problems for which price revelation is necessary proves quite large. For example, it

includes such social goals as exact or approximate e¢ ciency, voluntary participation,

stability to group deviations, and some notions of fairness. For such goals, price reve-

lation is necessary regardless of the preference domain, which allows for nonconvexities

or discrete decisions (e.g., as in combinatorial auctions or matching problems). On the

other, the particular form of prices to be used depends on the problem. Segal (2005)

suggests an algorithm for deriving the form of price equilibria that verify the solution

of a given problem with minimal information revelation. Applied to several well-known

social problems, the algorithm generates the price equilibrium concepts that have been

proposed for these problems. The necessity of revealing such prices bounds below the

communication costs of the problem, measured in bits (�communication complexity�

), real numbers (�dimension of message spaces�), evaluation costs, or in other ways.

These results indicate which problems can be solved in a practical way and which

problems cannot, and what role prices have in mechanisms that solve them.

This chapter outlines the results described above, a substantial body of related

work in both economics and computer science, and potential extensions. In particular,

it discusses how to provide incentives for truthfull communication, how to distribute

communication to reduce individual agents�communication costs, the role of prices in

achieving probabilistic (average-case) social goals, and in problems with interdependent

values.



1 Introduction

This chapter considers the problem of �nding allocations that satisfy certain social goals

when economic agents have private information regarding their preferences. This problem

has been discussed since at least the early 20th century debate on alternative economic mech-

anisms, but it has received renewed attention recently in the literature on �market design,�

which proposes mechanisms to solve various allocation problems of practical importance. For

example, the �two-sided matching problem�arises to allocating workers across �rms, stu-

dents across schools, or medical interns across medical schools (Roth and Sotomayor (1990)).

The �combinatorial auction problem�arises in allocating bundles of indivisible items among

bidders (Cramton et al. (2006)). Both agents�preferences and social goals in these problems

di¤er substantially from those in the classical economies studied earlier. In particular, agents�

preferences often exhibit nonconvexities and indivisibilities, and the social goals may include

exact or approximate e¢ ciency, voluntary participation, stability to group deviations, and

even some notions of fairness.

A major theme in the �market design�literature is that the choice of mechanism is not

determined by incentives alone. Indeed, if incentive compatibility were the only concern,

it could be veri�ed with a direct revelation mechanism. However, full revelation of agents�

preferences is often impractical or undesirable, for several reasons: First, sometimes full rev-

elation requires a prohibitive amount of communication� e.g., a bidder in a combinatorial

auction would have to announce his valuations for all possible bundles of objects, whose num-

ber is exponential in the number of objects. Second, agents may have to incur �evaluation

costs� to learn their own preferences. Finally, the more information is revealed, the more

deviations exploiting the revealed information become available to agents or the designer,

as noted in the literature on communication and mechanisms without perfect commitment

(e.g., Myerson (1991, Section 6) and Salanie (1997, Section 6)). For all these reasons, the

�market design� literature has examined a variety of mechanisms that aim to achieve the

desired goals without fully revealing agents�preferences. For example, in the many proposed

�iterative�combinatorial auction designs, bidders submit and modify their bids for various

bundles over time. This raises the question: What is the minimal information that must be
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elicited from the agents in order to achieve the goals? Note that the question arises even

agents are willing to communicate sincerely.

An early discussion of the communication problem can be found in Hayek�s (1945) critique

of socialist planning. Hayek called attention to the �problem of the utilization of knowledge

that is not given to anyone in its totality,�when �practically every individual ... possesses

unique information of which bene�cial use might be made.�He argued that �we cannot expect

that this problem will be solved by �rst communicating all this knowledge to a central board

which, after integrating all knowledge, issues it orders.� Instead, �the ultimate decisions

must be left to the people who are familiar with the ... particular circumstances of time

and place.�At the same time, the decisions must be guided by prices, which summarize the

information needed �to co-ordinate the separate actions of di¤erent people.�While Hayek did

not discuss allocation mechanisms other than the price mechanism and central planning (full

revelation), he noted that �nobody has yet succeeded in designing an alternative system�

that would fully utilize individual knowledge.

While Hayek�s ideas inspired economists to study the workings of price mechanisms,

their place among all other conceivable allocation mechanisms and their domain of applica-

bility have remained unclear. For example, consider the best-known results about price

mechanisms � the Fundamental Welfare Theorems. The First Welfare Theorem says that

announcing supporting prices is su¢ cient to verify the Pareto e¢ ciency of an allocation,

but not that it is necessary. The Second Welfare Theorem says only that supporting prices

can be constructed for a given Pareto e¢ cient allocation once all the information about the

economy is available. However, once all the information is available, an e¢ cient allocation

can be computed and imposed directly, without using prices.1 The theorems have nothing to

say about possible e¢ cient non-price mechanisms in an economy with distributed knowledge

of preferences.

A major advance in understanding the role of prices was made by the literature on the

�informational e¢ ciency� of Walrasian equilibria, spurred by Hurwicz (1977) and Mount

and Reiter (1974). In contrast to the Fundamental Welfare Theorems, the literature fol-

1There are many computational optimization techniques that do not compute supporting dual variables

�e.g., the ellipsoid method or the simplex method for linear programming (Karlo¤ 1991).
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lowed Hayek in modeling allocation mechanisms in an economy with decentralized knowl-

edge of preferences. (Similar techniques were independently developed in the computer sci-

ence literature on �communication complexity,�which considered discrete communication

problems� see Kushilevitz and Nisan (1997)). The literature considered the problem of veri-

fying Pareto e¢ ciency in economies with convex preferences, and showed that the Walrasian

equilibrium veri�es an e¢ cient allocation using the minimal number of real variables among

all continuous veri�cation mechanisms. However, the recent �market design�problems have

di¤erent preference domain (e.g., with nonconvexities and indivisibilities, Walrasian equilib-

ria or continuous mechanisms may not exist), di¤erent social goals (e.g., coalitional stability

or approximate e¢ ciency), and di¤erent relevant communication costs (e.g., the number of

bits, or the cost of evaluating preferences).

It turns out that the necessity of price revelation can be demonstrated in a general social

choice setting that covers most recent �market design� problems. This is shown in Segal

(2005), who characterizes the class of social choice problems (de�ned by preference domains

and social goals) for which any communication mechanism must reveal supporting �prices�

(which in general take the form of abstract subsets of alternatives o¤ered to the agents).

The class turns out to include a number of important economic problems. Segal (2005)

also suggests an algorithm for deriving the form of budget sets that need to be used to

verify the solution of a given problem with minimal information revelation. These results

have implications for the communication costs of various social choice problems, measured

in bits, real numbers, evaluation costs, or in other ways. In particular, the results are used to

see which problems can be solved in a practical way and which problems cannot, and what

role prices must have in mechanisms that solve them.

The objective of this chapter is to survey the results described above, a substantial body

of related work, and some potential extensions. We begin in Section 2 with a very simple

example in which the concepts of communication and minimally informative messages are

de�ned, and the necessity of price revelation is demonstrated. Section 3 extends these ideas

to a large class of social choice problems. In Section 4 we apply the general analysis to sev-

eral social choice problems, including classical convex economies, combinatorial auctions and

two-sided matching. In each of these applications, we derive the space of budget equilibria
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corresponding to minimally informative messages, and use this space to identify the commu-

nication cost. Section 5 discusses and relates several alternative measures of communication

cost, such as the number of real variables versus bits transmitted, communication cost of in-

dividual agents rather than in the aggregate, the number of preference evaluations performed

by agents, and some notions of privacy preservation. Section 6 discusses some further is-

sues, such as comparison between the costs of communication and veri�cation, probabilistic

(average-case) social goals, the additional communication cost of incentivizing agents, and

the role of prices when agents�utilities are interdependent. Many of the questions raised in

Section 6 are still open and require further investigation.

2 A Simple Example

We illustrate the main ideas with a very simple example: One object is to be allocated

between two agents with valuations v1; v2. Each agent�s valuation is his privately observed

type, and the the valuation pair (v1; v2) is called the state. Suppose that we know a priori that

the valuations lie in the set f0; 1; 2; 3g. The goal is to �nd an �optimal�allocation, which for

now we de�ne as e¢ ciency� giving the object to the agent with the higher valuation (when

the valuations coincide, both allocations are optimal). What communication is needed to

�nd an optimal allocation?

To begin with, we measure the communication cost as the number of bits needed to

encode the agents�messages, as in the �communication complexity�literature (Kushilevitz

and Nisan 1997).2 While in this simple example the communication cost proves to be trivial,

the ideas developed in this section will prove useful in much more complex settings.

2Thus, agents are forced to communicate using only binary messages (bits). If instead they could com-

municate using a k-letter alphabet, a letter from the alphabet could be encoded using log2 k bits, so the

communication length would only be reduced by the constant factor log2 k. Thus, the choice of the alphabet

is relatively unimportant in large problems.
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2.1 Communication Protocols

An obvious way to �nd an optimal outcome is by asking agents to reveal their private

information:

Protocol 1 (Full Revelation): The agents announce their valuations v1; v2 (encoded in bits).

Since each agent needs log2 4 = 2 bits to encode his valuation, in total 4 bits are sent.

The object is allocated to agent 1 if v1 > v2 and to agent 2 otherwise.

Can we �nd an optimal allocation with less communication? The answer is yes, by

letting agents make announcements sequentially and condition their announcements on the

past announcements. Thus, we de�ne sequential communication as follows:

De�nition 1 A communication protocol is (i) an extensive-form game form in which all

moves are binary, (ii) agents�strategies in this game (each agents�strategy contingent on his

private type as well as history), and (iii) an assignment of allocations to the terminal nodes

of the game.

We assume that agents obey the prescribed strategies� e.g., agents could well be com-

puters who follow their programs. (The problem of providing incentives not to deviate is

discussed in Subsection 6.2 below.) We want the protocol to implement in every state an

optimal allocation for this state. Consider the following example:

Protocol 2 (One-sided Revelation): Agent 1 announces his valuation v1 (encoded in 2 bits),

then agent 2 announces an allocation of the object (1 bit). Thus, 3 bits are sent in

total. Agent 2�s strategy is to allocate the object to agent 1 if v1 > v2 and to himself

otherwise.

In Protocols 1 and 2, the number of bits sent is the same in any state (v1; v2). In other

protocols, the amount of communication may di¤er across states:

Protocol 3 (English auction): The protocol starts with a price p = 0, and then agents send

messages in sequence:
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1. Agent 2 says �stop�or �raise�. If he says �stop,�allocate the object to agent 1,

otherwise set p = 1 and continue.

2. Agent 1 says �stop�or �raise.�If he says �stop,�allocate the object to agent 2,

otherwise set p = 2 and continue.

3. Agent 2 says �stop�or �raise.�If he says �stop,�allocate the object to agent 1,

otherwise allocate the object to agent 2.

Each agent�s strategy is to say �raise�when his valuation exceeds the current price p

and say �stop�otherwise. Given these strategies, the protocol always implements an

optimal allocation. Depending on the agents�valuations, the protocol may stop after

the agents send 1, 2, or 3 bits.

We now focus on the simplest measure of the communication cost, known as �worst-case�

communication complexity �the largest number of bits sent across all states.3 Can we �nd

a protocol with a lower communication cost than the protocols above?

Protocol 4 (Bisection): Agent 1 says �low� if v1 2 f0; 1g or �high� if v1 2 f2; 3g (1 bit).

Then agent 2 announces an allocation (1 bit). Agent 2�s strategy is as follows: If agent

1 said �low,�agent 2 allocates the object to agent 1 if v2 = 0 and to himself otherwise.

If agent 1 said �high,�agent 2 allocates the object to himself if v2 = 3 and to agent 1

otherwise. This protocols �nds an optimal allocation using 2 bits.

Can we �nd an optimal allocation using fewer than 2 bits in the worst case? In general,

how can we �nd the communication complexity of a given problem, de�ned as the minimal

communication complexity of a protocol solving this problem? To tackle this question, it

is convenient to represent communication geometrically in the state space. In our example,

3Alternatively, given a probability distribution over valuation pairs (v1; v2), we could consider �average-

case� communication complexity as the expected number of bits sent in the protocol (this is also known

as �distributional� complexity). In Protocol 3, this expected number could be close to 1 if the valuations

are very likely to be low. This is related to Shannon�s (1948) information measure, which allows coding

more frequent messages with shorter strings of bits. We consider average-case communication complexity in

Subsection 6.3 below.
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v2

0 1 2 3

0 1; 2 2 2 2

v1 1 1 1; 2 2 2

2 1 1 1; 2 2

3 1 1 1 1; 2

Table 1: State space

the state space is described by a matrix, where in each state (cell) we put the set of optimal

allocations (Table 1).

Each node of a communication game tree corresponds to an �event��a subset of the

state space in which the node is reached. Note that since agent 1�s message at any of his

decision nodes depends only on his own type, it slices the corresponding event into sub-events

horizontally; similarly, agent 2�s messages slice events vertically. Thus, by induction on the

depth of the node we can see that the event corresponding to any node must be a product

set. In computer science, such events are called �rectangles,� although they need not be

geometric (i.e., contiguous) rectangles.

Now consider the rectangles corresponding to the terminal nodes of a protocol. Note

that such rectangles must partition the state space (since in each state, exactly one terminal

node is reached). Also, if the protocol �nds an optimal allocation, then for each rectangle

corresponding to a terminal node there must exist a single allocation that is optimal on the

whole rectangle, and which could be assigned to the node. In computer science, rectangles

with this property are called �monochromatic�. Thus, the terminal nodes of the protocol

must partition the state space into monochromatic rectangles. The partitions generated by

Protocols 1-4 are shown in Table 2.

The worst-case communication complexity W of a protocol is the maximal depth of the

corresponding binary tree. Since the number T of terminal nodes in such a tree is at most

2W , we must have W � log2 T: Thus, the worst-case communication complexity of �nding

an optimal allocation can be bounded below by bounding below the size of any partition of
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v2

0 1 2 3

0 2 2 2 2

v1 1 1 2 2 2

2 1 1 2 2

3 1 1 1 2

Protocol 1

v2

0 1 2 3

0 2

v1 1 1 2

2 1 2

3 1 2

Protocol 2

v2

0 1 2 3

0

v1 1 1 2

2 1 2

3

Protocol 3

v2

0 1 2 3

0 1 2

v1 1

2 1 2

3

Protocol 4

Table 2: Communication Partitions
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the state space into monochromatic rectangles.4

2.2 Veri�cation Protocols

Since characterizing all communication protocols has proven to be very hard, a lot of atten-

tion has been put into providing lower bounds on communication complexity. As discussed

before, such a bound can be obtained by �nding the minimal size of a partition of the state

space into monochromatic rectangles. We can further simplify the problem by allowing the

rectangles to overlap, i.e., allow coverings rather than partitions of the state space.

A covering of the state space into monochromatic rectangles can be interpreted as a

veri�cation protocol (also called �nondeterministic communication�in computer science �see

Kushilevitz and Nisan (1997, Chapter 2)). To understand veri�cation, imagine an omniscient

oracle who knows the agents� valuations and consequently the optimal allocation(s), but

needs to prove to an ignorant outsider that an allocation x is indeed optimal. The oracle

does this by publicly announcing a message m 2 M . Each agent i either accepts or rejects

the message, doing this on the basis of his own type. (Thus, the set of states on which the

message is accepted is a rectangle.) The acceptance of message m by all agents must verify

to the outsider that allocation x is optimal. (Thus, the rectangle is monochromatic.) The

(worst-case) complexity of a veri�cation protocol with message space M is the minimum

number of bits needed to encode a message, which is log2M .
5

While veri�cation protocols are patently unrealistic, their examination proves useful for

the following reasons:

1. Any communication protocol can be veri�ed by the oracle sending all the messages

instead of the agents, and having each agent accept the message sequence if and only

4The bound in general will not be tight, for two reasons: First, some partitions of the state space cannot

arise in any communication protocol (Kushilevitz and Nisan 1997, Figure 2.1). Second, the inequality

W � log2 T is tight only in balanced trees (such as Protocols 1,2, and 4) and strict in unbalanced trees (such

as Protocol 3).

5Such communication is called �nondeterministic� in computer science because the oracle �guesses�an

acceptable message (and there may be more than one such message in a given state). In contrast, the

communication protocols de�ned in the previous subsection are called �deterministic�.
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if all the messages sent in his stead are consistent with his strategy given his type. The

oracle�s message spaceM is thus identi�ed with the set of the protocol�s terminal nodes

(message sequences). Therefore, veri�cation is a generalization of communication, and

so communication cost is bounded below by veri�cation cost.

2. A famous economic example of veri�cation is Walrasian equilibrium. The role of the

oracle is played by the �Walrasian auctioneer,�who announces the equilibrium prices

and allocation. Each agent accepts the announcement if and only if his announced

allocation constitutes his optimal choice from the budget set delineated by the an-

nounced prices. We will describe a natural extension of such price-based veri�cation

mechanisms to general social choice problems in Section 3.

3. A veri�cation protocol may be viewed as the steady state of an iterative communi-

cation protocol. At each stage of the iteration, a message m 2 M is announced,

and each agent reports a direction in which the message should be adjusted to become

�more acceptable�to him. Examples of such iterative processes include �tatonnement�

processes for �nding Walrasian equilibria, �deferred acceptance algorithms�for �nding

stable matchings, and ascending-bid auctions for �nding e¢ cient combinatorial alloca-

tions. In some settings, the iterative processes converge very quickly, though in general

this cannot be guaranteed (see Subsection 6.1 below.)

2.3 Minimally Informative Messages and Prices

In order to verify optimality using the smallest number of bits, we need to �nd a minimal

covering of the state space with monochromatic rectangles. For this purpose, we want to use

larger rectangles, corresponding to messages that reveal less information about the agents�

types. Formally, we de�ne the following partial �informativeness�order on messages:

De�nition 2 Messagem is less informative than (or veri�ed by) message ~m ifm is accepted

on a larger set of states (rectangle) than ~m. Also, m is a minimally informative message

verifying (the optimality of) allocation x if any less informative message verifying x is as

informative as m.
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v2

0 1 2 3

0 2 2 2 2

v1 1 2 2 2

2 2 2

3 2

Table 3: Minimally Informative Message

Graphically, a minimally informative message m verifying x corresponds to a maximal

rectangle contained in the set of states in which x is optimal. Typically, a given allocation

may be veri�ed by many minimally informative messages, which are not comparable in the

informativeness order. For example, with two agents, one minimally informative rectangle

could be tall and narrow (revealing little information about agent 1 and much about agent

2), while another short and wide (revealing much about agent 1 and little about agent 2).

It can be seen that for any message m verifying x there exists a less informative message

m0 that is a minimally informative message verifying x.6 Thus, starting with any veri�cation

protocol, we can replace every message with a minimally informative message verifying the

same allocation, and obtain a veri�cation protocol with the same number of messages that

uses only minimally informative messages. (Furthermore, this replacement may allow us

to discard some of the messages while still covering the state space with the remaining

rectangles.)

We proceed to characterize the minimally informative messages in our simple example.

The states in which allocating the object to agent 2 is optimal are marked with �2�in Table

3. The minimally informative messages verifying the optimality of allocating the object to

agent 2 correspond to the largest rectangles that �t into this set, i.e., that do not extend

below the diagonal. These are exactly the geometric rectangles with one corner on the

diagonal and another in the top-right state (v1; v2) = (0; 3).

6This observation is trivial when the state space is �nite. For general state spaces, this is shown in Segal

(2005, Lemma 2).
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Note that any minimally informative message verifying allocation 2 can be described

as a �price equilibrium:� The oracle names a price p 2 f0; 1; 2; 3g and the allocation of

the object to agent 2, and each agent accepts if and only if the allocation is optimal to

him given the price. That is, agent 2 accepts if and only if he is willing to buy at price p

(i.e., v2 � p), and agent 1 accepts if and only if he is willing not to buy at price p (i.e.,

v1 � p). (The rectangle depicted in Table 3 corresponds to p = 1.) Thus, the minimally

informative messages verifying allocation to agent 2 are characterized as price equilibrium

messages for prices p 2 f0; 1; 2; 3g. Symmetrically, the same is true for minimally informative

messages verifying allocation to agent 1. This implies that any communication protocol that

�nds an optimal allocation must reveal enough information to construct a supporting price

equilibrium.

This observation implies a lower bound on the communication cost: Since each price

p 2 f0; 1; 2; 3g has to be used in the diagonal state (v1; v2) = (p; p) (regardless of which of

the two optimal allocations is veri�ed in this state), we need to use at least 4 messages.

Thus, the worst-case communication cost is at least log2 4 = 2 bits. This lower bound is

achieved by Protocol 4.7

Suppose now that the agents�valuations instead lie in the [0,1] interval. The minimally

informative messages verifying an allocation again correspond to price equilibria (see Figure

1), but now any price p 2 [0; 1] is a unique equilibrium price in the diagonal state (v1; v2) = p,

and so any veri�cation protocol must use an in�nite number of messages. Formally, we will

allow in�nite protocols with in�nite message spaces, and measure their �dimensionality��

i.e., how many real numbers are announced by the agents or the oracle (see Subsection 5.1

below for technical details). Intuitively, the message space in the example must have at least

the same dimensionality as the diagonal �i.e., be at least one-dimensional. This lower bound

is tight: just like in Protocol 2, we can �nd an optimal allocation with agent 1 revealing his

7A set of states with the property that no two elements of the set can share a message is called a

�fooling set� in computer science, and �a set with the uniqueness property� in the economic literature on

communication. The size of such a set bounds below the size of the message space. The novelty here is that

the fooling set (in our example, the diagonal) is not chosen ad hoc but characterized as the set of states with

a unique supporting price. This characterization can be extended to a large class of social choice problems.
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valuation with one real number, and then agent 2 reporting an optimal allocation with 1 bit.

2.4 Other social goals

The result on the necessity price revelation can be extended to social goals other than

e¢ ciency:

Example 1 ( Approximate e¢ ciency): Take " > 0, and say that allocating the object

to agent i is �optimal� if and only if vi � v�i � ". Minimally informative messages

verifying that allocation to agent 2 is optimal are described by the geometric rectangles

with one corner on the line v2 = v1� " and another in the top-right corner of the state

space (see Figure 2). Such messages can be interpreted as price equilibria in which

the agents face di¤erent prices p1; p2 for the object such that p2 = p1 � ". This

observation can again be used to bound below the communication cost. Note that two

diagonal states with coordinates further apart than " cannot share a price equilibrium

(regardless of which allocation it supports). With continuous valuations in [0,1], we

can �nd 1=" such distinct diagonal points, hence we need to use at least 1=" distinct

messages, and the communication cost it at least log2 (1=") bits. This lower bound is

almost achieved by letting agent 1 announce his valuation rounded o¤ to a multiple of

", and agent 2 then report an optimal allocation.8

Note also that there exist social goals that cannot be veri�ed with a price equilibrium:

Example 2 (Minimize e¢ ciency): An allocation is �optimal�if it allocates the object to

the agent with the lower valuation. No price equilibrium with prices p1; p2 supporting

allocation of the object to agent 2 can verify that the allocation is optimal: if it is ever

an equilibrium, it will remain an equilibrium in state (v1; v2) = (0; 3), in which the

object must go to agent 1.

8Compare this to the earlier �nding that exact e¢ ciency with continuous valuations would require one-

dimensional continuous communication. The relationship between continuous communication and discrete

approximation is discussed in more detail in Subsection 5.1 below.
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Example 3 (Egalitarian e¢ ciency): In addition to allocating the object e¢ ciently, we

must also determine a payment between the agents to equalize their utilities � i.e., if

agent i is �wins�the object, he must pay vi=2 to the �loser.�This payment cannot be

veri�ed with a price equilibrium: Any price equilibrium would remain an equilibrium

when the winner�s value goes up, but egalitarian e¢ ciency requires that the winner�s

payment to the loser must increase.

The examples suggests that price equilibria can only be used to verify social goals that are

somehow �congruent�with private preferences (such as e¢ ciency or approximate e¢ ciency),

but not those opposing or orthogonal to private preferences (such as minimization of e¢ ciency

or equalization of utilities).

Finally, note the di¤erence between whether (a) price equilibria can be used to verify a

social goal, and (b) the minimally informative messages verifying the social goal are price

equilibria. (a) means that in any state, for any optimal allocation x in the state there exists a

price equilibrium that veri�es the optimality of x. E.g. the e¢ ciency of an allocation in state

(v1; v2) can always be veri�ed with a price equilibrium, say, setting price p = (v1 + v2) =2.

This is similar to the traditional Fundamental Welfare Theorems (although the example fails

the usual convexity assumptions of the theorem). In the previous subsection, we have also

shown that (b) holds for the goal of e¢ ciency. Yet, for social goals other than e¢ ciency, (a)

does not imply (b):

Example 4: Suppose there are three possible allocations and a single agent. (We could

add a second agent with a constant utility over the allocations.) A state is described

by the agent�s valuations (v1; v2; v3) for the three allocations. An allocation is de�ned

as �optimal� if the agent�s utility from it is at least as high as from at least one of

the other two allocations. Any optimal allocation in any state can be veri�ed with a

price equilibrium, e.g., with prices (p1; p2; p3) = (v1; v2; v3) for the three allocations.

However, consider a message in which the agent veri�es that allocation 1 is optimal.

This is a minimally informative message verifying allocation 1, but it is not equivalent

to a price equilibrium: it does not reveal any prices at which the agent prefers allocation

1 to allocation 2 or to allocation 3, since it does not bound above either v2 � v1 or
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v3 � v1 (it only reveals that one of the di¤erences is nonpositive, but does not reveal

which one).

3 General Social Choice Problems

3.1 Setup

We now extend the observations made in Section 2 to general social choice problems. Let

N be a �nite set of agents, and X be a set of social alternatives. (With a slight abuse of

notation, the same letter will denote a set and its cardinality when this causes no confusion.)

Let P denote the set of all preference relations over set X that are rational (i.e., complete

and transitive). Each agent i�s preference relation is assumed to be his privately observed

type, and the set of his possible types is denoted by Ri � P. A state is a preference pro�le

R = (R1; : : : ; RN) 2 R1� : : :�RN � R, whereR is the state space, also known as preference

domain. The goal of communication is to implement a choice rule, which is a correspondence

F : R � X. For every state R 2 R, the set F (R) � X describes the optimal alternatives

in this state.

We focus on the veri�cation problem described in Section 2: An omniscient oracle knows

the agents� valuations and consequently the optimal allocation(s), but he needs to prove

to an ignorant outsider that an allocation x is indeed optimal. He does this by publicly

announcing a message m 2 M . Each agent i either accepts or rejects the message, doing

this on the basis of his own type. The acceptance of message m by all agents must verify to

the outsider that allocation x is optimal.

We can de�ne two notions of veri�cation:

De�nition 3 A veri�cation protocol veri�es choice rule F if 8R 2 R 9x 2 F (R) 9m 2 M

that is acceptable in state R and veri�es x. The protocol fully veri�es choice rule F if 8R

8x 2 F (R) 9m 2M that is acceptable in state R and veri�es x.

Thus, simple veri�cation requires only one optimal alternative to be veri�able in each

state, while full veri�cation requires all optimal alternatives to be veri�able. We are ulti-
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mately interested in simple veri�cation (communication is not required to �nd more than

one optimal alternative), but full veri�cation will prove a useful intermediate concept.

3.2 Veri�cation with Budget Equilibria

We extend the notion of a �price equilibrium�to this general social choice setting, in which

we may not even have any divisible goods in which prices could be measured. Thus, we

consider abstract budget sets, which are general subsets of the space of alternatives (and

which may or may not be delineated by prices). A budget equilibrium message consists of a

proposed alternative x 2 X and a budget set Bi � X for each agent i. Each agent i 2 N

accepts message (B1; : : : ; BN ; x) if and only if there is no alternative in his budget set Bi

that he strictly prefers to the proposed alternative x. (B1; : : : ; BN ; x) is a budget equilibrium

in state R 2 R if it is accepted by all agents in this state.9 It is convenient to de�ne

L (x;R) = fy 2 X : xRyg � the lower contour set of preference relation Ri at alternative

x. Then the budget equilibrium condition can be written as Bi � L (x;Ri) for all agents i.

To represent a budget equilibrium message graphically, it is convenient to �order� the

agents�preferences by the ranking of alternative x, i.e., by the set inclusion order on L (x;Ri)

(see Figure 3). Since in general this is not a complete order, a one-dimensional axis can only

represent a �slice�of an agent�s type space. (The setting studied in Section 2 was a special

case in which each agent�s type in fact was one-dimensional� ordered by his willingness to pay

for the object.) Yet, however imprecise, Figure 3 allows us to develop some useful intuitions.

A budget equilibrium message (B1; B2; x) is the set of states in which Bi � L (x;Ri) for i =

1; 2, and in the �gure it is represented with a geometric rectangle with one corner at (B1; B2)

and another in the right-hand corner of the state space (where L (x;R1) = L (x;R2) = X).

Figure 3 also makes it clear that increasing budget sets makes a budget equilibrium more

informative: budget equilibrium (B0; x) is more informative than budget equilibrium (B; x)

9A number of related concepts have been suggested, including �social equilibrium�(Debreu 1952), �social

situations�(Greenberg 1990), �e¤ectivity functions�(Moulin and Peleg 1982), �e¤ectivity forms�(Miyagawa

2002), �opportunity equilibrium�(Ju 2001), and �interactive choice sets�(Serrano and Volij 2000). However,

all these papers have motivated the concept by incentives, rather than deriving it from communication among

sincere agents.
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whenever Bi � B0i for all agents i, Graphically, the rectangle corresponding to (B0; x) is then

included in the rectangle corresponding to (B0; x).

We can now de�ne a budget protocol as a veri�cation protocol in which the oracle�s mes-

sage space M is a collection of budget equilibria, such that each equilibrium (B1; : : : ; BN ; x)

from M veri�es the equilibrium alternative x. Which choice rules can be veri�ed with a

budget protocol? Traditional Fundamental Welfare Theorems say that in a convex exchange

economy, an allocation is Pareto e¢ cient if and only if it can be veri�ed with a Walrasian

equilibrium (which is a kind of budget equilibrium). The theorems have been extended to

some �non-classical� social choice problems, for which di¤erent kinds of budget equilibria

have been proposed.10 We extend these results to general social choice rules, by character-

izing choice rules F that are fully veri�ed with a budget protocol.

According to the de�nition of full veri�cation, we want to check that for any alternative

x 2 X, in each state R 2 R in which x is optimal there exists a budget equilibrium

(B; x) verifying x. To check this, it su¢ ces to check the largest budget sets supporting

x in state R, i.e., B0i = L (x;Ri) for each i (see Figure 3). That this budget equilibrium

(B0; x) veri�es x means that x must remain optimal in any state R0 �above�R, i.e., in which

L (x;Ri) = B0i � L (x;R0i) for each i. This property of choice rules is formally known as

follows:

De�nition 4 (Maskin (1999)) Choice rule F is monotonic if 8R 2 R, 8x 2 F (R), and

8R0 2 R such that L (x;Ri) � L (x;R0i) 8i 2 N , we have x 2 F (R0).

Theorem 1 A choice rule F is fully veri�ed by a budget protocol if and only if it is monotonic.11

Results equivalent to Theorem 1 are stated in Williams (1986, Theorem 2), Miyagawa�s

(2002, Theorem 1), Ju (2001), and Greenberg (1990, Theorem 10.1.2). The present formu-

lation and the idea of the proof are from Segal (2005).

10Including the Pareto rule in public-good economies (Milleron 1972) and general economies with numeraire

(Mas-Colell 1980; Bikhchandani and Mamer 1997; Bikhchandani and Ostroy 2002), and stable many-to-one

matching problems with and without transfers (Kelso and Crawford 1982; Hat�eld and Milgrom 2005).

11This implies that F is veri�ed by a budget protocol if and only if has a nonempty-valued monotonic

subcorrespondence.
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The de�ciency of Theorem 1 is that, just like the traditional Fundamental Welfare Theo-

rems, it does not rule out that choice rule F could be veri�ed with a non-budget protocol that

might reveal less information and have lower communication costs than any budget protocol

verifying F . To rule this out, we would like to require the following stronger property:

De�nition 5 Choice rule F satis�es the Budget Equilibrium Revelation Property (BERP)

if for any message verifying the optimality of an alternative x 2 X there exists a less infor-

mative budget equilibrium (B; x) that veri�es the optimality of x.

BERP is illustrated in Figure 4. When applied to a messagem that fully reveals a state R

(i.e., corresponds to a single point fRg in Figure 4), BERP says that for any x 2 F (R) we can

construct a budget equilibrium (B; x) in state R that veri�es x. Thus, BERP implies that F

is fully veri�ed with a budget protocol, and so by Theorem 1 that F is monotonic. However,

BERP is stronger, since it requires a budget equilibrium verifying x to be constructed without

knowing the exact state, upon observing any message verifying x. Note that BERP ensures

that any minimally informative message verifying an alternative in F must be equivalent to

a budget equilibrium message.

Contrary to the impression created by Figure 4, not all monotonic choice rules satisfy

BERP. Figure 4 is misleading when feasible contour sets L (x;Ri) cannot be ordered, in

which case there do exist monotonic choice rules that do not satisfy BERP (see Example

4 in Section 2). Yet, the �gure can be still used to develop intuition for which rules do

satisfy BERP. To check whether a message m = m1 �m2 veri�es some budget equilibrium

(B1; B2; x) that veri�es x, it again su¢ ces to check the largest budget sets that support x

in all states from m, which are B0i = \Ri2mi
L (x;Ri) for each i (see Figure 4). Thus, it

su¢ ces to check that this equilibrium veri�es x, i.e., that x is optimal in any state R0 in

which B0i � L (x;R0i) 8i 2 N . Formally, this property can be de�ned as follows

De�nition 6 Choice rule F is Intersection-Monotonic (IM) if 8m = m1 � : : : �mN � R,

8x 2 \R2mF (R), and 8R0 2 R such that \R2mL (x;Ri) � L (x;R0i) 8i 2 N , we have

x 2 F (R0).

Theorem 2 Choice rule F satis�es the Budget Equilibrium Revelation Property if and only

if it is Intersection-Monotonic.
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Intersection monotonicity is fairly easy to verify: just as with monotonicity, it su¢ ces

to check changes in one agent i�s preferences holding all other agents�preferences �xed (i.e.,

letting mj =
�
R0j
	
for j 6= i) �the full property would then follow by iterating over agents.

Thus, Theorem 2 o¤ers a simple way to check whether a given choice rule satis�es BERP,

i.e., whether its veri�cation requires revelation of supporting budget sets.

3.3 Examples of Intersection-Monotonic Rules

Segal (2005) shows that a number of important choice rules are intersection-monotonic on

the universal preference domain PN (and therefore on any smaller domain), including

� Weak Pareto e¢ ciency.12

� A notion of approximate Pareto e¢ ciency (e.g., with quasilinear utilities, approximat-

ing the maximal achievable total surplus within ").

� The weak core.

� Stable matching.

� The envy-free rule (requiring that no agent envies another agent�s allocation).

More generally, the class of IM rules includes any rule from the following class:

De�nition 7 Choice rule F is a Coalitionally Unblocked (CU) choice rule if for some block-

ing correspondence � : X � 2N � X,

F (R) = fx 2 X : � (x; S) � [i2SL (x;Ri) 8S � Ng 8R 2 R:

In words, for each coalition S � N and each candidate alternative x 2 X, the blocking

correspondence de�nes a �blocking set�� (x; S) � X. An alternative x 2 X is optimal in

state R if and only if no coalition S � N can �nd a strict Pareto improvement over x in

12The strong Pareto rule is not even monotonic, let alone IM. Note, however, that the weak and strong

Pareto criteria coincide for preferences that are strictly monotonic and nonsatiated in some divisible economic

good.
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its blocking set � (x; S).13 It is easy to see that all the above examples of choice rules are

CU rules, for di¤erent speci�cations of the blocking correspondence. Segal (2005) shows

that any CU choice rule is IM. There do exist IM rules that are not CU, but their economic

signi�cance is unclear. A Venn diagram for choice rules summarizing the above results is

drawn in Figure 5.

3.4 The Budget-Shrinking Algorithm

Now we look for minimally informative messages verifying a given choice rule, which under

BERP must be equivalent to budget equilibria. We propose an algorithm to construct such

budget equilibria for any given IM choice rule. Thus, for any given social choice problem, the

algorithm constructs and characterizes the budget equilibria that verify the problem with

minimal revelation of information. For simplicity, we restrict attention to IM choice rules

that are extendable to the universal preference domain R = PN . (In particular, note that

any CU choice rule is extendable to PN using the same blocking correspondence.)

The proposed algorithm obtains a minimally informative message verifying a given alter-

native x by starting with any message verifying x and stretching the corresponding rectangle

sequentially agent-by-agent.14 For an IM choice rule, we can focus on budget equilibrium

messages, and their stretching corresponds to shrinking the agents�budget sets. As illus-

trated in Figure 6, we can start with a budget equilibrium (B1; B2; x) verifying alternative

x, and �stretch� the rectangle in the direction of agent 1 as much as possible, while still

verifying x. This stretching, illustrated with the horizontal arrow, corresponds to �shrink-

13CU choice rules have been also known as �respecting group rights,�with y 2 � (x; S) interpreted as the

�one-way right�of coalition S to block alternative x with alternative y (Hammond 1997, Section 5). The

�rights�literature, initiated by Sen (1970), is concerned with the problem that individual and group rights

may be incompatible with each other on the universal preference domain, i.e., that �group rights-respecting�

choice rules may be empty-valued. In the applications considered in Section 4 below, the preference domains

and coalitional rights will be de�ned to ensure nonempty-valuedness.

14The algorithm is independently proposed by Segal (2005) and Hurwicz and Reiter (2006, who call it the

�rectangle method�). However, Segal�s (2005) application of the algorithm to the special case of intersection-

monotonic choice rules allows to focus on budget equilibrium messages, and stretch them by shrinking the

agents�budget sets.
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ing�agent 1�s budget set from B1 to B01. Next, �stretch�the rectangle described by budget

equilibrium (B01; B2; x) in the direction of agent 2. This stretching, represented with the

vertical arrow, corresponds to �shrinking�agent 2�s budget set from B2 to B02. This yields

a budget equilibrium message (B01; B
0
2; x) that can no longer be stretched, i.e., corresponds

to a minimally informative verifying message. (The same procedure works with any num-

ber of agents: sequential agent-by-agent stretching yields a minimally informative verifying

message.)

Note that the resulting equilibrium (B01; B
0
2; x) can be described by the �boundary�state

R 2 PN in which the agents�lower contour sets at x coincide with B01; B02, and x is on the

verge of becoming non-optimal. Formally, the boundary states R for alternative x and the

corresponding minimally informative budget equilibria are characterized by the condition

Bi = L (x;Ri) =
\

R0i2Ri: x2F(R0i;R�i)

L (x;R0i) 8i 2 N . (*)

In words, each agent i�s budget set is his smallest lower contour set for which x is still

optimal, holding other agents�preferences �xed.

When the preference domain R is a strict subset of PN , we face the following complica-

tions:

� There typically exist many budget equilibria that are equally informative to (*) but

have even smaller budget sets. For example, in exchange economies in which preferences

are known to be monotone in consumption, a Walrasian budget equilibrium, in which

the budget sets are half-spaces, is equivalent to the budget equilibrium in which the

half-spaces are replaced with their boundary hyperplanes (i.e., waste is not allowed).

The budget equilibria characterized by (*) have the largest budget sets among those

that are equally informative, and it proves convenient to focus on them (if only because

they are guaranteed to exist). Thus, in shrinking agent i�s budget set, we only shrink

it to the intersection of the feasible lower contour sets in Ri for which x is still optimal,

and not any further, even when such shrinking might yield an equally informative

message.

� Since not all subsets of X may serve as lower contour sets, the �boundary states�
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characterized by (*) are not guaranteed to be in R. However, it is still true that (*)

with R 2 PN characterizes (up to equivalence) the minimally informative verifying

budget equilibria .

If a boundary state R satisfying (*) does fall in the preference domain R, then we can see

that (L (x;R1) ; : : : ; L (x;RN) ; x) is a unique (up to equivalence) budget equilibrium verifying

x in state R. Such an equilibrium cannot be discarded if we want to verify alternative x in

stateR with a budget protocol. This observation will prove useful for bounding below the size

of the message space, and thus the communication cost. (A simple example of this occurred

in Section 2, in which the boundary states were those on the diagonal). A complication

arises when there are many optimal alternatives in state R: since we do not require full

veri�cation, we do not have to verify any given x 2 F (R). In such situations, we resort to

additional application-speci�c tricks to bound below the number of budget equilibria needed

for veri�cation.

4 Some Applications

4.1 Pareto E¢ ciency in Convex Economies

In a smooth convex exchange economy, the alternatives represent the consumption of L

divisible goods by the N agents, hence X = RNL+ . Each agent i�s preference domain consists

of convex preferences described by di¤erentiable utility functions of his own consumption

xi 2 RL+ with a nonnegative nonzero gradient everywhere. The feasible set consists of

allocations of a given positive aggregate endowment �x 2 RL++: �X = fx 2 X :
P

i xi = �xg.15

The goal is to verify an allocation that is Pareto e¢ cient within �X.

We use the budget-shrinking algorithm described in Subsection 3.4 to derive minimally

informative messages verifying the Pareto e¢ ciency of an allocation x 2 �X with x � 0.16

15We consider a space X of alternatives that is larger than the feasible set �X, to allow budget sets to

include infeasible allocations, as the Walrasian budget sets do.

16We restrict attention to x � 0 to avoid the problem of non-existence of supporting Walrasian prices

(see, e.g., Mas-Colell et al. (1995, Figure 16.D.2)).
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The derivation can be illustrated in the standard Edgeworth box depicted in Figure 7. Start

with a state R in which x is Pareto e¢ cient, which means that agent 1�s indi¤erence curve

passing through x is below agent 2�s indi¤erence curve passing through x. Note that given

smoothness, the two curves must be tangent at x, and let p denote the agents� common

marginal rate of substitution at x. Now we shrink agent 1�s lower contour set as much

as possible while preserving the Pareto e¢ ciency of x and keeping agent 1�s preferences

convex. This shrinking is illustrated with the left-down arrows in the �gure. The furthest

we can shrink agent 1�s lower contour set is to that of linear preferences � a hyperspace

with gradient p. This yields a Walrasian budget set for agent 1 described by the commodity

price vector p. Next, we shrink agent 2�s lower contour set as illustrated with the right-

up arrows, yielding for him a Walrasian budget set with the same commodity price vector

p. Thus the budget-shrinking algorithm yields a Walrasian equilibrium. Furthermore, any

Walrasian equilibrium is invariant to budget shrinking - i.e., satis�es (*). A formalization of

this argument yields

Proposition 1 A message is a minimally informative message verifying the Pareto e¢ -

ciency of allocation x 2 �X with x� 0 in a smooth convex exchange economy17 if and only it

is equivalent to a Walrasian equilibrium supporting x, i.e., a budget equilibrium (B; x) with

Bi = fy 2 X : p � yi � p � xig 8i 2 N (1)

for some commodity price vector p 2 RL+ such that kpk = 1. Any such equilibrium is a unique

Walrasian equilibrium supporting allocation x in any state in which it is an equilibrium.

The proposition implies that the minimal message space required for verifying any inte-

rior Pareto e¢ cient allocation in any convex economy is the space of Walrasian equilibria.

We now discuss the implications of this �nding for the veri�cation cost measured as the di-

mension of the message space. (We keep the arguments informal; see Subsection 5.1 for how

the dimension could be formally de�ned.) Informally, since a feasible allocation x 2 �X is de-

scribed with (N � 1)L real variables, and a normalized price vector p is described with L�1

17If non-smooth preferences are allowed, Walrasian equilibria remain minimally informative messages ver-

ifying Pareto e¢ ciency, but other such messages emerge �see Segal (2005) for details.
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real variables, the space of Walrasian equilibria has dimension (L� 1)+(N � 1)L = NL�1.

This compares favorably to full revelation of agents�utility functions, which would require

an in�nite-dimensional message space.

If we don�t want full veri�cation, and only need to verify one e¢ cient allocation in each

state, we can further reduce the dimension of the state space. In fact, it is possible to verify

Pareto e¢ ciency without any communication� e.g., by always giving all the endowment to

agent 1. We rule out such corner allocations, focusing on �non-dictatorial�Pareto e¢ ciency.

Note that the nondictatorial Pareto rule can be veri�ed by �xing an �endowment allocation�

! 2 �X with ! � 0 and announcing a Walrasian equilibrium (B; x) such that ! 2 Bi for all

i, which exists in any convex economy (Mas-Colell et al. 1995, Section 17.BB). Since such

equilibria satisfy the additional �budget constraints�
P

l pl!il =
P

l pixil for all i, they can

be communicated using (L� 1) + (N � 1) (L� 1) = N (L� 1) real numbers.

In fact, it is impossible to verify nondictatorial Pareto e¢ ciency using fewer thanN (L� 1)

real numbers. This can be shown using a �fooling set� consisting of the Cobb-Douglas

economies, in which each agent i�s utility function takes the form ui (xi) =
Q
l x
�il
il with a

positive parameter vector � 2 RL++, with the normalization
P

l �il = 1. Note that all non-

dictatorial Pareto e¢ cient allocations in a Cobb-Douglas economy are interior, and the �rst-

order equilibrium conditions imply that no two distinct Cobb-Douglas economies share an

interior Walrasian equilibrium. Therefore, veri�cation requires using a subspace of Walrasian

equilibria whose dimension is at least that of Cobb-Douglas economies, which is N (L� 1):

Corollary 1 The veri�cation cost of nondictatorial Pareto e¢ ciency in the convex exchange

economy is exactly N (L� 1) real numbers, and it is achieved by the Walrasian equilibrium

protocol with a �xed endowment.

Corollary 1 was �rst established in the �informational e¢ ciency� literature (Hurwicz

1977; Mount and Reiter 1974) for veri�cation protocols satisfying a continuity property.

Here it has been derived in a di¤erent way� from the purely set-theoretic characterization

of minimally informative messages as Walrasian equilibria (Proposition 1). Unlike the old

approach, the set-theoretic approach does not require any topological restrictions on com-

munication or any scalar measure of the communication cost, and easily extends to other
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social choice problems, including those considered in the �market design�literature.18

4.2 E¢ ciency in Quasilinear Economies

In economies with numeraire, the space of alternatives take the form X = K � RN , where

K is a �nite set of (non-monetary) allocations, and RN describes the transfers of numeraire

(money) to the agents. The feasible set takes the form �X = f(k; t) 2 X :
P

i ti = 0g, i.e.,

requires a balanced budget.

For simplicity, we let each agent i�s preference domain Ri consist of preferences Ri over

(k; t) 2 X that are quasilinear in his consumption of numeraire, i.e., described by a utility

function of the form ui (k) + ti.19 Pareto e¢ ciency is then equivalent to requiring that

the non-monetary allocation k 2 K maximize the total surplus
P

i ui (k), regardless of the

allocation of numeraire. (The example in Section 2 was a special case with two non-monetary

allocations, in which surplus-maximization required giving the object to the agent with the

higher valuation.)

We use the budget-shrinking algorithm of Subsection 3.4 to derive minimally informa-

tive messages verifying Pareto e¢ ciency. We illustrate this algorithm in an Edgeworth box

depicted in Figure 8, in which the vertical dimension represents allocations of numeraire

between the agents, and the horizontal dimension represents the non-monetary allocations

k 2 K (arranged in no particular order). Start with a state R in which x is Pareto e¢ cient,

which means that the indi¤erence curve of agent 1 passing through x is above the indi¤erence

curve of agent 2 passing through x. Shrink the lower contour set of agent 1 as much as

18The analysis also extends to convex economies with public goods. For such economies, the budget-

shrinking algorithm yields Lindahl equilibria, i.e., budget equilibria described by linear anonymous prices for

the private goods and linear personalized �Lindahl�prices for the public goods. This can in turn be used to

derive the dimensionality of the message space needed to verify Pareto e¢ ciency (which was �rst obtained

by Sato (1981)).

19In fact, the analysis of this subsection holds on the larger preference domain where each agent i�s

preferences are (i) independent of other agents�transfers t�i, (ii) continuous and nondecreasing in his own

transfer ti, and (iii) allow compensation (i.e., for any x 2 X and any k 2 K there exists t 2 R such that

(k; t)Rix). This follows from the observation that any lower contour set of a preference relation satisfying

(i)-(iii) is also a lower contour set of some quasilinear preference relation.
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possible while preserving the Pareto e¢ ciency of x (as illustrated with the downward arrows

in the �gure). The furthest we can shrink it is until agent 2�s indi¤erence curve (unlike in the

previous subsection, there is no convexity restriction to hold us back). Once this shrinking

is completed, agent 2�s lower contour set cannot be shrunk without violating the Pareto

e¢ ciency of x. The obtained budget sets for the two agents can be delineated by general

nonlinear and personalized prices pi (k) (i = 1; 2, k 2 K), specifying the cost of allocation

k to agent i in terms of numeraire. The fact that the two budget sets�boundaries coincide

means that the sum of the prices, p1 (k)+ p2 (k), must be the same for all allocations k 2 K.

The budget equilibria described in this way are the only budget equilibria that are invariant

to the budget-shrinking procedure, i.e., satisfy (*). The argument extends to any number of

agents, yielding the following result:

Proposition 2 A message is a minimally informative message verifying the Pareto e¢ -

ciency of allocation (k; t) 2 �X in a quasilinear economy if and only if it is equivalent to a

valuation equilibrium supporting (k; t), i.e., a budget equilibrium (B; (k; t)) in which

Bi = f(k0; t0) 2 X : pi (k
0) + t0i � pi (k) + tig 8i 2 N (2)

for some price vector p 2 RNK satisfyingX
i

pi (k
0) =

X
i

pi (k) for all k0 2 K. (3)

Any such equilibrium is a unique valuation equilibrium supporting allocation (k; t) in the

state given by the agents�utility functions ui = pi for each i.

Valuation equilibria were introduced by Mas-Colell (1980) and studied by Bikhchandani

and Mamer (1997) and Bikhchandani and Ostroy (2002). These papers have extended clas-

sical welfare theorems to such equilibria: An allocation is Pareto e¢ cient if and only if it is

supported by a valuation equilibrium. The contribution of Proposition 2 lies is in showing

that valuation equilibria constitute minimally informative veri�cation of Pareto e¢ ciency in

an economy with numeraire.

Proposition 2 implies that the minimal message space required for verifying any e¢ cient

allocation in an economy with numeraire is the space of valuation equilibria. Normalizing the
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prices (e.g., so that
P

k pi (k) = 0 for each agent i) we can describe a price vector satisfying

(3) using (N � 1) (K � 1) real numbers.

If we don�t require full veri�cation, we only need to verify one e¢ cient allocation in

each state, and so need not use all valuation equilibria. However, it turns out that all the

possible normalized valuation prices p 2 RNK satisfying (3) still must be used. Indeed,

while in the �boundary� state given by utility functions (u1; : : : ; uN) = (p1; : : : ; pN) all

allocations are e¢ cient by (3), by the second part of Proposition 2, the agents�budget sets

must be described by the same prices p no matter which allocation the equilibrium supports.

Therefore, verifying Pareto e¢ ciency with quasilinear preferences requires the announcement

of an (N � 1) (K � 1) -dimensional price vector.

This lower bound on the communication cost is in fact achieved by the communication

protocol in which the �rst N � 1 agents announce their normalized utility functions, and

then the last agent chooses a surplus-maximizing allocation. To summarize:

Corollary 2 The continuous veri�cation cost Pareto e¢ ciency in a quasilinear economy is

(N � 1) (K � 1) real numbers, and it is achieved with a communication protocol.

A large number of problems with more restricted quasilinear preferences have been con-

sidered, and we describe two of them below.

4.2.1 Combinatorial Allocation

In this problem, a set L of objects to be allocated among the agents, and so the allocation set

can be written as K = NL. The preference domain consists of those quasilinear preferences

in which each agent i�s utility depends only on his own consumption bundle k�1 (i) and is

nondecreasing in this bundle (in the set inclusion order). For the particular case of N =

2, the budget-shrinking algorithm yields valuation equilibria in which each agent i�s price

pi (k) is nondecreasing in his bundle k�1 (i), and we can normalize prices so that pi (k) = 0

when k�1 (i) = ?.20 In the state (u1; u2) = (p1; p2), all allocations are e¢ cient by (3),

but the normalized price vector in any valuation equilibrium must coincide with p. Thus,

20Application of the budget-shrinking algorithm to the case of N > 2 agents appears more complicated,

and we have not attempted it.
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the communication cost is bounded below by the dimensionality of this price space, which

is 2L � 1. This lower bound is achieved with a communication protocol in which agent 1

announces his utility function and agent 2 chooses an e¢ cient allocation. To summarize:

Corollary 3 The continuous veri�cation cost of e¢ cient combinatorial allocation of L ob-

jects between two agents is 2L � 1, and it is achieved with a communication protocol

Corollary 3 was obtained by Nisan and Segal (2004). A number of other results have

been obtained on the potential communication savings in combinatorial allocation problems

when agents utility functions are a priori restricted to lie in certain classes, such as those

complement-free utilities, submodular utilities, utilities with substitute objects, utilities with

homogeneous objects, etc. For some of these results, see Nisan and Segal (2004), Dobzinski

et al. (2005), and Babaio¤ and Blumrosen (2005).

4.2.2 Binary Utilities

Suppose that agents�utilities are known to be ui (k) 2 f0; 1g for all k 2 K. Then the budget-

shrinking algorithm yields valuation equilibria described by prices pi (k) 2 f0; 1g for all i; k,

and we can normalize prices so that pi 6= (1; : : : ; 1) for each agent i (since this price would

be equivalent to pi = (0; : : : ; 0)). In the state (u1; : : : ; uN) = (p1; : : : ; pN), all allocations are

e¢ cient by (3), but the normalized price vector in any valuation equilibrium must coincide

with p. Thus, the communication cost measured in bits is bounded below by the binary

logarithm of size of this price space. The number of possible price vectors in f0; 1g satisfyingP
i pi (k) = r for a given integer r is

�
N
r

�K
, since for each allocation we allocate r �1�s�

among N agents�utilities. For simplicity taking r = N=2 (with N even) and using Stirling�s

formula yields the lower bound

Corollary 4 The communication cost of e¢ ciency with binary utilities is asymptotically at

least NK bits as N !1.

Thus, as the number of agents grows, the cost is asymptotically the same as that for full

revelation of utilities.
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This setting can be interpreted as �approval voting,� interpreting ui (k) = 1 as agent

i�s �approval�of allocation k, with the goal being to �nd an allocation approved by most

agents. Conitzer and Sandholm (2005) derive the above result with a di¤erent proof.21

4.3 Approximate E¢ ciency in Quasilinear Economies

When �nding an exactly e¢ cient allocation may be prohibitively costly, we may want to

allow approximate e¢ ciency. Consider again quasilinear economies, �x " > 0, and say

that an allocation is "-e¢ cient if it maximizes the total surplus within " (regardless of the

transfers).22 Note that the goal of "-e¢ ciency can be described as a CU choice rule (see

subsection 3.3), by requiring the grand coalition to pay a tax " in numeraire for blocking a

candidate allocation (and not allowing any smaller coalition to block). Then an allocation

is unblocked if and only if it is "-e¢ cient. Thus, the de�ned choice rule is IM, and therefore

satis�es the Budget Equilibrium Revelation Property.

To characterize the minimally informative budget equilibria verifying "-e¢ ciency, we

again use the budget-shrinking algorithm. Note that in the Edgeworth box depicted in

Figure 8, an allocation x is "-e¢ cient if and only if agent 1�s indi¤erence curve passing

through x does not fall below agent 2�s indi¤erence curve passing through x by more than

". Shrinking agent 1�s lower contour set yields a �budget line� that is " below agent 2�s

indi¤erence curve at all o¤-equilibrium allocations. After that, agent 2�s lower contour set

cannot be shrunk. Thus, the sum of the prices delineating the agent�s budget sets must be

higher by " for any o¤-equilibrium allocation than for the equilibrium allocation. (Intuitively,

agents should be �penalized�for deviations to o¤-equilibrium allocations.) Formally, we have

Proposition 3 A message is a minimally informative message verifying "-e¢ ciency of allo-

cation x = (k; t) 2 �X in a quasilinear economy if and only if it is equivalent to an "-valuation

21Conitzer and Sandholm (2005) also characterize the communication costs of several other common voting

rules. Some of these rules, such as approval voting and the majority rule, are interesection-monotonic, and

so their results can be alternatively derived by characterizing supporting budget sets. Others are not even

monotonic, and the results are proven using di¤erent �fooling sets.�

22This is a �worst-case�notion of approximation. Average-case approximation is discussed in Subsection

6.3 below.
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equilibrium supporting x, i.e., a budget equilibrium (B; x) with budget sets described by (2)

for some price vector p 2 RNK satisfyingX
i

pi (k
0) =

X
i

pi (k) + " for all k0 2 Kn fkg . (4)

Any such equilibrium is a unique "-valuation equilibrium in the state given by the agents�

utility functions ui = pi for all i.

Observe that if agents�utility functions are bounded, then any approximation " > 0 can

be achieved with �nite communication in which agents announce their utilities rounded o¤

to multiples of "=N . Thus, arbitrarily close approximation can be achieved with discrete

communication, and so the communication cost of approximation should be measured in

bits. In Subsection 5.1 below we discuss how this cost relates to the cost of exact e¢ ciency

measured in real numbers.

Now we focus on the setting of �binary utilities�described in the previous subsection.

In this setting, the agents�utilities are in f0; 1g, and the budget-shrinking algorithm yields

prices in f0; 1g. Note that approximation within " = N � 1 can be achieved with a �dic-

tatorial� protocol in which one agent announces an allocation that maximizes his utility.

Approximation within " < N�1 requires �nding an allocation that gives utility 1 to at least

two agents. The communication complexity of this can be bounded below by counting how

many �diagonal�states, i.e., states with total surplus 1 for all allocations, can be �covered�

with a given "-valuation equilibrium, and dividing by the total number of diagonal states.

This gives a lower bound on the number of price equilibria that need to be used, yielding

(see Segal 2005):

Corollary 5 With binary utilities, the communication cost of achieving a better approxima-

tion of e¢ ciency than letting one agent choose an allocation is at least (K � 1) log2 (1 + 1= (N � 1))

bits.

Interpreting the problem as �approval voting�, this means that the cost of �nding even

an alternative that is approved by more than one voter is proportional to the number of

alternatives. The result can also be applied to the combinatorial allocation problem, by
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constructing a �large�subsetK of allocations such that the agents can have arbitrary utilities

for allocations from K, and that all allocations that are better than dictatorial allocations

lie in K. Nisan and Segal (2004) construct such a set K whose size is exponential in the

number of objects. Corollary 5 then implies that any improvement upon giving all objects

to one agent requires exponential communication.

4.4 Stable Many-to-One Matching

Now we consider the problem of stable many-to-one matching, which is studied in Roth

and Sotomayor (1990), henceforth RS. In the problem, the set N of agents is partitioned

into the set F of �rms and the set W of workers. A matching between �rms and workers

is a binary relation x � F �W . With a slight abuse of notation, we let x (i) denote the

set of agent i�s matching partners in matching x. We restrict the space of alternatives to

include only many-to-one matchings, in which a worker cannot match with more than one

�rm: X = fx � F �W : jx (w)j � 1 8w 2 Wg. We examine matching problems without

externalities, i.e., those in which each agent i�s preferences depend only on the set x (i) of

his matching partners.

A coalition S can deviate from a candidate match x 2 X by (i) breaking any matches

and (ii) creating new matches between its members; formally, it can deviate to any match

y 2 X such that yn (S � S) � xn (S � S).23 This describes a CU choice rule as de�ned in

Subsection 3.3 above, which is therefore intersection-monotonic, hence satis�es the Budget

Equilibrium Revelation Property. We proceed to characterize the minimally informative

budget equilibria verifying stability.

Intuitively, since a worker�s preferences depend only on his employer, his budget set can

be described in terms of the available employers. On the other hand, a �rm has preferences

over groups of workers, and so its budget sets can be described in terms of such available

groups. Describing such a combinatorial budget set for a �rm would require exponential

communication (2W bits).

23We might also ban a coalition from breaking matches between outsiders, but this is irrelevant when

externalities in preferences are ruled out.
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Fortunately, it turns out that minimally informative budget equilibria verifying stability

don�t use combinatorial budget sets for �rms. To see this, note that a budget equilibrium

veri�es stability if and only if each �rm f�s budget set includes any group consisting of some

workers who do not have f in their budget sets and some of those currently employed by

f . Indeed, this ensures that no deviation can make �rm f and all of its new hires strictly

better o¤. In the minimally informative budget equilibria, characterized by (*), �rms must

have minimal budget sets necessary for veri�cation, which means that each �rm f�s budget

set must include exactly the groups consisting of some of f�s current employees and some

of those workers who do not have f in their budget set. Thus, the �rms�budget sets are

implied by the workers�budget sets, and they can be described by listing individual workers

that are available to the �rm. In such an equilibrium, each potential o¤-equilibrium match is

allocated to either the �rm�s or the worker�s budget set but not both. (Such an equilibrium

is illustrated in Figure 9, in which the equilibrium matching is described with dashed vertical

lines, �rm�s budget sets are described with downward arrows and workers�budget sets are

described with upward arrows.) Formally, the argument yields

Proposition 4 A message is a minimally informative message verifying the stability of a

many-to-one matching x if and only if it is equivalent to a match-partitional equilibrium

supporting x, i.e., a budget equilibrium (B; x) satisfying

Bf = fy 2 X : y (f) � ! (f)g 8f 2 F;

Bw = fy 2 X : y (w) � � (w)g 8w 2 W;

for some �; ! � F �W such that � \ ! = x and � [ ! = F �W . Furthermore, any such

equilibrium is a unique match-partitional equilibrium supporting matching x in any state

R 2 R in which L (x;Ri) = Bi for all i 2 N .

The �nding that combinatorial budget sets for �rms need not be used brings about

an exponential reduction in the communication cost. Indeed, the workers�budget sets are

described by a relation � � F � W , which is communicated with at most FW bits, the

equilibrium matching x is communicated with W log2 (F + 1) bits, and the �rms�budget

sets ! are implied by the conditions � \ ! = x and � [ ! = F � W . Thus, the cost
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of verifying a stable matching is O (FW ) as F;W ! 1. This is exponentially smaller

than that of full revelation of a �rm�s preference rankings over subsets of workers, which

asymptotically takes log2
�
2W !

�
� W � 2W bits as W !1 (using Stirling�s formula).

If we are not required to fully verify stability, we only need to verify one stable matching

in each state, and so need not use all match-partitional equilibria. However, we can show

that �almost�all such equilibria need to be used. This is true even if the preference domain

is restricted to include only preferences that are strict and one-to-one, i.e., each �rm prefers

being unmatched to matching with more than one worker, and so we can restrict attention to

matchings x in which jx (i)j � 1 for all i 2 N . With such preferences, Segal (2005, Lemma

5) shows that the uniqueness of a stable matching in state R can be ensured by adding

one matched �rm-worker pair, and completing other agents�preferences in a way consistent

with R. Therefore, using the second part of Proposition 4, for any match-partitional budget

equilibrium (B; x) on the �rst F � 1 �rms and W � 1 workers we can construct a state R

in which the unique stable matching coincides with x and the unique supporting match-

partitional budget sets coincide with B for the �rst F � 1 �rms and W � 1 workers. Thus,

we can bound below the communication cost of stability by that of describing a budget

equilibrium with F � 1 �rms and W � 1 workers. Since any worker�s budget set may include

any of the �rms in addition to its current employer (if in fact he is employed), we have the

following lower bound

Corollary 6 The veri�cation cost of stable matching between W workers and F �rms with

strict one-to-one preferences is at least (F � 2) (W � 1) bits. The communication cost of

�nding a stable many-to-one matching between W workers and F �rms on any preference

domain that includes strict one-to-one preferences and guarantees the existence of a stable

matching is asymptotically at least FW as F;W !1.

Corollary 6 generalizes quadratic lower bounds obtained by Gus�eld and Irving (1989)

for �nding a stable one-to-one matching with F = W using particular querying languages.

Speci�cally, they only allow queries of the form �which partner has rank r in your preference

ranking� (their Theorem 1.5.1) or �what rank partner i has in your preference ranking�

(their Theorem 1.5.2 ). The corollary establishes that allowing general communication does
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not reduce the communication cost.

The communication cost of actually of �nding a stable matching may in principle be

substantially higher than that of veri�cation. However, when �rms�preferences are restricted

to be strict and substitutable (RS De�nition 6.2), a stable matching exists and can be found

using only slightly more communication. This can be done with a Gale-Shapley �deferred

acceptance algorithm�(RS Theorems 6.7, 6.8), which takes at most 3FW steps, at each of

which a match is proposed, accepted, or rejected. Since a match is described with at most

log2 (FW ) bits, we have a deterministic protocol that communicates at most 3FW log2 (FW )

bits. This only slightly exceeds the veri�cation cost, and is still exponentially less than full

revelation of �rms�preferences over combinations of workers.24

5 Di¤erent Measures of Communication Cost

5.1 Continuous vs. Discrete Communication

Here we discuss in greater detail the de�nition of continuous communication cost, and its re-

lation to the discrete communication cost measured in bits. In a continuous communication

protocol, agents should be able to send real-valued elementary messages, but we also want

to allow �nite-valued messages (say, to communicate discrete allocations), without counting

the latter toward the communication cost. Thus, the worst-case cost of continuous commu-

nication is de�ned as the maximum number of real-valued elementary messages sent in the

course of the protocol. In a veri�cation problem, we can identify the communication cost

with the dimension of the oracle�s message spaceM , i.e., the number of real numbers needed

to encode the oracle�s message. For this purpose, we must have a topology on M .

A well-known problem in continuous communication is the possibility of �smuggling�mul-

tidimensional information in a one-dimensional message space with a one-to-one encoding.

Traditionally, dimension smuggling has been ruled out by imposing a continuity restriction

24Indeed, it would take log2
�
2W
�
! � 2W �W bits to describe a strict preference rankings groups of workers

when W is large (using Stirling�s formula). Even if a �rm�s preference relation is known to be strict and

substitutable, the number of bits needed to describe such a relation is still exponential in W , as shown by

Echenique (2005, Corollary 5).
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on the communication protocol (Abelson 1980; Luo and Tsitsiklis 1991; Mount and Reiter

1974; Walker 1977). For example, Mount and Reiter (1974) and Walker (1977) require the

�message correspondence� from states into messages to have a continuous selection in any

neighborhood. This requirement rules out a priori some important communication protocols,

e.g., those in which agents announce discrete allocations.25

A di¤erent way to rule out �smuggling�is proposed by Nisan and Segal (2004). They note

that when many dimensions are �smuggled�into a one-dimensional message, a small error

in the message would yield a huge error in its �meaning,�i.e., the set of states it represents.

Thus, smuggling can be avoided by using a metric on messages that is not arbitrary but based

on their meaning. Speci�cally, the distance between messages m and m0 can be de�ned as

the Hausdor¤ distance between the corresponding rectangles in the state space R.26 The

communication cost is then de�ned as a metric dimension of the message space M .27 In

contrast to the traditional approach, this approach does not rule out any protocols, and in

particular allows protocols that mix continuous and discrete messages.

Another advantage of the Nisan-Segal de�nition is that implies a relation between con-

tinuous communication and discrete approximation:

Proposition 5 (Nisan-Segal 2004). A protocol verifying a certain social goal with a mes-

sage space whose box-counting dimension is d can be discretized into a protocol verifying

approximation of the goal within " using asymptotically d log "�1 bits as "! 0.

Intuitively, the oracle can communicate a message rounded-o¤ within " using roughly

d log "�1 bits, and the round-o¤ yields a small distortion in the meaning of the message.

25For example, consider the setting of Section 2 in which an object is allocated between two agents with

valuations in [0,1]. The protocol in which agent 1 announces his valuation with 1 real number and then agent

2 reports an optimal allocation with 1 bit is discontinuous on the diagonal, where the optimal allocation

switches. Insisting on continuity would require a two-dimensional message space (as in full revelation), which

we believe overstates the communication cost in that example.

26This distance is based on an underlying metric on the state space R of preference relation pro�les. In

turn, the latter can be derived from a given metric on X along the lines suggested by Debreu (1983).

27There are di¤erent notions of metric dimension� e.g., the Hausdor¤ dimension, the box-counting di-

mension, and the packing index (Edgar 1990), but in all economic examples considered they yield the same

answers.
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This means that the discretized protocol yields an allocation that is optimal for some state

that is not too far from the true state, and therefore approximates an optimal allocation.

Thus, metric dimension d of the message space is indicative of the communication complexity

of achieving a �fast� approximation of e¢ ciency, in which each additional bit reduces the

error by the same factor (e1=d).28

On the other hand, it turns out a somewhat slower but still practical approximation is

sometimes achieved with much less communication than that implied by the continuous cost

of exact optimality. A dramatic example of this obtains in Calsamiglia�s (1997) model of

allocating a homogeneous divisible good between two agents in a quasilinear economy. In

this model, exact surplus-maximization requires in�nite-dimensional communication (which

can be shown by adapting Corollary 2 to an in�nite set of allocations K), but Nisan and

Segal (2004) demonstrate a protocol that approximates the maximal surplus within " using

O ("�1) bits. This approximation is still considered �fast�(polynomial) in computer science.

In cases like this, the continuous measure of communication cost used in the economic

literature seriously overstates the �hardness�of the problem.

5.2 Individual Communication Cost and Distributed Communi-

cation

We can reduce the communication costs of individual agents by not having them observe

all the communication, i.e., by creating non-trivial information sets in the communication

protocol. Also, the allocation need not be broadcast to all agents: instead, we could require

that each agent i at the end of communication announce the component xi of the alternative

that he is concerned about. (Formally, we write the space of alternatives as X = X1 � :::�

XN , so that each agent i�s preferences depend only on component xi of x = (x1; :::; xN) 2

X.)29 The individual communication cost of an agent can be de�ned as the number of

elementary messages (bits or real numbers) that he must observe and send. This model of

28Related observations are made by Hurwicz and Marschak (2003a,b).

29Instead of requiring that agent i announce xi we could require that he only learn xi: If describing xi is

relatively �cheap�, as it is in most applications, then requiring that agent i announce xi would not increase

his communication burden substantially.
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�distributed communication�better captures Hayek�s idea of decentralization.30 When the

number of agents is large, distributed communication could allow a substantial savings in

agents�individual communication costs.

Similarly to the aggregate communication cost, individual communication costs can be

bounded below by considering a distributed version of the veri�cation problem: The ora-

cle has a message space Mi for each agent i, and he announces a �distributed message�

(m1; : : : ;mN) 2M �M1� : : :�MN , where M is interpreted as the set of �legal�messages.

Each agent i observes only his own message mi, and accepts or rejects it based on his own

type. Each agent i also has a function h : Mi ! Xi that gives his allocation as a function

of his message. Message (m1; : : : ;mN) 2 M veri�es the choice rule if whenever each agent

i accepts his message mi, the resulting alternative (h1 (m1) ; : : : ; h (mN)) is optimal. The

oracle should be able to verify an optimal alternative in each state. The communication

cost of agent i is identi�ed with the size of his message space Mi. Note that any distributed

communication protocol can be converted into this distributed veri�cation by letting Mi

consist of agent i�s information sets over the terminal nodes of the communication protocol.

Thus, distributed veri�cation o¤ers a lower bound on distributed communication.

We say that choice rule F satis�es the Distributed Budget Equilibrium Revelation Prop-

erty (DBERP) if for any distributed protocol verifying the choice rule there exists a function

bi :Mi ! 2Xi such that for any distributed message (m1; : : : ;mN) 2M , each agent i can con-

struct his budget set bi (mi) � Xi on the basis of his own message mi so that budget equilib-

rium (b1 (m1) ; : : : ; bN (mN) ; h1 (m1) ; : : : ; hN (mN)) veri�es allocation (h1 (m1) ; : : : ; hN (mN)).

The di¤erence from BERP is that each agent should be able to construct his budget set on

the basis of the communication he observes. Still, the same argument as that behind The-

orem 2 shows that DBERP holds for any intersection-monotonic choice rule: Letting mi

represent the set of agent i�s types for which he accepts the message, he can construct

his budget set bi (mi) = \Ri2mi
L (hi (mi) ; Ri), and by intersection monotonicity the re-

sulting budget equilibrium (b1 (m1) ; : : : ; bN (mN) ; h1 (m1) ; : : : ; hN (mN)) veri�es allocation

30An intermediate model, in which publicly broadcast messages are followed by agents privately choosing

their allocations, has been considered in economics under the name �parametric communication�(Calsamiglia

1987).
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(h1 (m1) ; : : : ; hN (mN)). Thus, for IM choice rules, any distributed communication must

reveal to each agent his own budget set, in addition to his own allocation. The necessity of

observing one�s own budget set can be used to bound below the size of the agent�s message

space, and therefore his individual communication cost. The �hard� cases for distributed

communication are the ones in which individual communication cost grows with the number

of agents, e.g., as it does in the matching problem.

The distributed communication model outlined above still requires a �center�to maintain

the consistency of communication observed by di¤erent agents. In a veri�cation protocol,

the �center�must verify that (m1; : : : ;mM) 2M . In a communication protocol, the �center�

could be interpreted as a �communication device,�which receives private inputs messages

from many agents and sends private output messages to many agents. We could rule out such

�communication devices�and consider a more restricted model of pairwise communication,

in which only private messages between two agents are allowed. A veri�cation version of such

pairwise communication is considered by Marschak and Reichelstein (1998), who �nd that

a certain number of agents must then become �coordinators:�in addition to observing their

own prices (as they must under DBERP), they also get involved in relaying prices between

other agents. Thus, the restriction to pairwise communication creates some �communication

overhead.�

Note that with pairwise communication, it may sometimes make sense to employ agents

who possess no private information themselves, but can serve as �communication devices�by

aggregating and/or disaggregating messages. While this could only increase the aggregate

communication cost, it would now be spread among more agents, possibly reducing individual

communication costs. For a survey of the literature on organizations with an endogenous

number of agents, see van Zandt (1998).

An even more restricted model is that of network communication, which allows only

pairwise communication between agents who share an edge in a �xed network. For example,

the network could be given by existing Internet links or organizational structure. Marschak

and Reichelstein (1998, Section 4) and Feigenbaum et al. (2003) consider a special case

in which the communication network is a tree.31 A simple lower bound on communication

31The restriction to communication on trees may be justi�ed by a large ��xed cost� of communication
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along a given edge in a tree can be obtained by letting each agent sharing the edge have

all the information on his �side�of the tree (i.e., the subtree obtained by cutting the edge).

Feigenbaum et al. (2003) use this approach to show that implementation of some budget-

balanced incentive-compatible allocation rules in trees requires the communication cost of

a large number of agents to grow proportionately to the total number of agents. For mod-

ern internet multicast transmissions involving millions of users, such communication would

certainly be impractical.

5.3 Evaluation Costs

Even when the communication cost measured in bits or real numbers is low, it may be

costly for agents to evaluate their preferences to send the required messages. The costs

of preference evaluation was noted in the computer science literature (Parkes 2000), and

was modeled in economics as a cost of �information acquisition.�32 While these costs have

recently gained attention in the mechanism design literature (see Bergemann and Valimaki

2005), here we focus on identifying the evaluation costs of a given choice rule under the

maintained assumption that agents are sincere.

Just as with the communication cost, we can bound below the evaluation cost of �nding

an optimal alternative by that of verifying that a given alternative is optimal, and obtain the

latter by using minimally informative verifying messages. Intuitively, the less informative a

message is, the lower is each agent�s cost of con�rming that his preferences are consistent

with the message. Thus, BERP and our characterization of minimally informative budget

equilibria again prove useful.

For an illustration, consider the many-to-one matching problem described in Subsection

4.4. Suppose that each agent has a cost of �evaluating� a potential matching partner,

without incurring which he does not know his preferences regarding matchings with this

links. This argument was used by Arrow (1974) to explain the prevalence of hierarchies in �rms.

32Note that such �evaluation costs�depend not just on how many bits are sent, but on which information

agents are asked to report with these bits. E.g., in the example in Section 2, it may be easier for an agent to

answer the question �is your valuation above or below 1.5�than �is your valuation an even or odd number,

�even though each answer would require 1 bit.
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partner. According to Proposition 4, minimally informative messages verifying a stable

matching are equivalent to match-partitional equilibria. To verify such an equilibrium, each

potential match has to be evaluated by at least one of the partners, hence veri�cation of

stability requires at least FW evaluations. (Note that this this cost must be expended in

any state, and not just in the worst case.)

We could also allow di¤erent agents to have di¤erent evaluation costs. To take a simple

example, suppose now it is costly for �rms to evaluate workers, while workers do not have

any evaluation costs. To verify stability with minimal evaluation costs for �rms, we need to

use a match-partitional equilibrium in which �rms�budget sets are minimal. In fact, when

�rms have substitutable preferences, all the �rms�budget sets can be minimized at once,

by choosing the stable match that is Pareto worst for the �rms (which exists by Roth and

Sotomayor (1990, Theorem 6.8)), and letting each �rm�s budget set include only the workers

who strictly prefer it to their current employer, along with the �rm�s current workers.

This veri�cation procedure gives a lower bound on the �rms�evaluation costs, but this

lower bound is in fact achieved by the Gale-Shapley deferred acceptance algorithm in which

workers propose (Roth and Sotomayor 1990, Theorem 6.8).33 In this algorithm, each �rm

evaluates the minimal number of workers needed to �nd a stable match. This achieves a

tangible evaluation savings over full revelation: e.g., in the one-to-one matching problem

in which �rms�and workers�preferences are uniformly and independently drawn, it can be

calculated that in the worker-proposing deferred acceptance algorithm, a �rm in expectation

evaluates 1=3 of all workers. It follows from our veri�cation-based lower bound that this

is the minimal expected number of evaluations by each �rm that is needed to �nd a stable

match.

5.4 Privacy

One reason to avoid full revelation is to prevent agents from learning about each other�s

private information � a goal known as privacy. In the economic literature, privacy is often

33If we wanted to minimize workers� evaluation costs, we would achieve this with the deferred acceptance

algorithm in which �rms propose.
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needed to prevent self-interested agents from deviating in ways that exploit the revealed

information (see, e.g., Myerson (1991, Section 6)). The computer science literature studies

privacy as a goal in itself.

Observe that privacy would be maximized if agents could reveal their information pri-

vately to a trusted �mediator�(�communication device�) who would then announce an opti-

mal outcome. Then agents would then learn nothing about other agents�private information

beyond the implemented outcome� a situation known as full privacy. In reality, however,

trusted mediators may not be available, and the question is how much privacy could still be

maintained.

Without a trusted mediator, privacy could be enhanced using private pairwise commu-

nication between agents. In fact, with su¢ ciently many agents, private pairwise communi-

cation can usually achieve full privacy. This fact has been exploited in a number of papers

that implement correlated equilibrium and communication equilibrium without a trusted

mediator, by designing a communication protocols that reveals to each agent only his own

prescribed action but nothing else, to prevent him from deviating (e.g., Forges 1990).

Suppose now that all communication is public. (Equivalently, we may assume that each

agent is concerned that the other N � 1 agents�would collude to share all their observed

private messages to infer information about the agent�s type.) Privacy that can be achieved

in in such setting is known as �unconditional privacy.�34

To bound below unconditional privacy, we can again consider veri�cation with mini-

mally informative messages. To have an example, consider the many-to-one matching model

described in Subsection 4.4, and suppose that we want to minimize revelation of informa-

tion about �rms�preferences over workers. This is done using a match-partitional budget

equilibrium in which the �rms�budget sets are minimal. Recall from Subsection 5.3 that

when �rms have substitutable preferences, all of their budget sets can be minimized at once

34We assume that agents are not computationally constrained. If they are, then privacy can be achieved

even with public communication using �public-key cryptography.�The idea is that a publicly communicated

key from agent 1 to agent 2 can be used by agent 2 to encrypt information with a one-to-one function that

is simple to compute but very hard to invert without a matching key for invertion, which only agent 1 has.

This is the method currently used to implement secure Internet transactions.
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using the Gale-Shapley deferred acceptance algorithm in which workers propose. The algo-

rithm reveals nothing about �rms�preferences except their minimal budget sets, and so it

maximizes the �rms�privacy. More generally, our results imply that public communication

usually cannot achieve �full privacy,�since it must reveal supporting budget sets in addition

to the outcome to be implemented.35

6 Further Issues

6.1 Communication versus Veri�cation

We have used the veri�cation cost as a lower bound on the communication cost. This raises

the following questions:

� How tight is the veri�cation bound?

There are cases in which the gap between the communication cost and the veri�cation

cost of an allocation problem measured in bits can be exponential� an example is given in

Segal (2005, Example 3). (The gap is never more than exponential, because starting with

a b-bit veri�cation protocol, which has at most 2b messages, we can check all the messages

sequentially until one is found that is accepted by all agents, which would take at most N �2b

bits.)

� In which cases is the veri�cation bound fairly tight?

35Brandt and Sandholm (2005) show that with public communication and unrestricted preference domains,

full privacy is not achievable for a large class of choice functions. However, with a restricted preference

domain, full privacy may be achievable. For example, a Pareto e¢ cient allocation x in a smooth convex

economy can be veri�ed by announcing a supporting Walrasian equilibrium. The supporting prices only

reveal other agents�marginal rates of substitution at x, which each agent would have learned from the

allocation x itself by calculating his own marginal rates of substitution at x. Another question is whether

�full privacy�is a relevant goal when we are implementing a choice rule that is a correspondence rather than

a function. In this setting, so the revelation of information depends on which alternative x is implemented

as a function of the state, and not just on what is revealed in addition to x.
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The bound is trivially tight when even veri�cation proves almost as hard as full revelation

(e.g., in the combinatorial allocation problem considered in Subsection 4.2). More interest-

ingly, there some well-known social choice problems in which the gap between veri�cation

and communication proves to be small and both are much easier than that full revelation.

For example, in the many-to-one matching problem considered in Subsection 4.4 in which

�rms have strict substitutable preferences, the Gale-Shapley deferred acceptance algorithm

converges quickly to a �match-partitional� equilibrium, which veri�es stability using only

slightly more bits than that needed for veri�cation, and exponentially less than that needed

for full revelation of preferences. Similarly, in a convex economy with the �gross substi-

tute�property, Walrasian tatonnement converges quickly to a Walrasian equilibrium, which

veri�es Pareto e¢ ciency (Mas-Colell et al. (1995, Section 17.H)). Similar �tatonnement�

mechanisms have been proposed for combinatorial auction problems with indivisible goods

in which the objects are �substitutes�(e.g., Gul and Stachetti 2000, Nisan and Segal 2004).

In all these mechanisms, at each step, the designer o¤ers budget sets for the agents, and

the agents report their optimal choices from their respective budget sets. If the choices are

inconsistent, the designer adjusts the budget sets to be �closer� to being an equilibrium.

A �substitutability�condition on the agents�preferences allows to construct an adjustment

process that is monotonic, and therefore converges quickly (enormously faster than full rev-

elation).

� What is the role of price queries in communication?

Many practical mechanisms, such as the ones mentioned in the above paragraph, are

�demand-query protocols�: they quote to the agents a price list for the allocations (with

prices sometimes allowed to be nonlinear and personalized) and ask them to submit de-

mands given the prices, adjusting the prices according to some prespeci�ed rules. Can we

always restrict attention to such demand-query protocols without increasing the communica-

tion cost substantially? Nisan and Segal (2005) show that the answer is �no,�by constructing

an allocation problem for which the restriction to demand-query protocols brings about an

exponential blowup in the communication cost of �nding an e¢ cient allocation. Namely,

for this class, an e¢ cient mechanism exists that uses a number of bits that is linear the
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number of items, but any demand query mechanism that achieves e¢ ciency (or even any

improvement upon the �dictatorial� allocation of all the items to one agent) must use an

exponential number of demand queries. Contrast this to the veri�cation problem, in which,

according to Proposition 2, we can restrict attention to a demand-query mechanism (valua-

tion equilibrium) without any increase in the communication cost.

To summarize, in several well-known cases the veri�cation lower bound on communication

is fairly tight, and e¢ cient communication can be achieved with a demand-query mechanism.

However, there are some problems in which these properties fail. It would be interesting to

characterize social choice problems that satisfy both properties.

6.2 Incentives

So far we have ignored agents�incentives to follow the strategies prescribed by the protocol. If

the agents behave in their self-interest, the designer faces additional �incentive-compatibility�

constraints requiring that no agent has an incentive to deviate from his prescribed strategy�

i.e., the strategies constitute an equilibrium of the communication game. The number of bits

by which these constraints increase the communication cost may be called the �communica-

tion cost of sel�shness,�and it is examined in Fadel and Segal (2005, henceforth FS).

Note that the fact that the protocol must reveal supporting prices (by the Budget Equi-

librium Revelation Property) does not ensure that it is incentive-compatible: agents may

have the ability to manipulate the prices they face to their advantage. For example, take the

setting of Section 2, in which one object is to be allocated between two agents, and consider

Protocol 2, in which agent 1 announces his valuation v1, and agent 2 then announces an

e¢ cient allocation x. The protocol reveals a supporting price p = v1. However, if agent

1 is charged this price for winning the object, the he will have an incentive to understate

his valuation. In fact, as shown in FS, the protocol does not reveal enough information to

compute a price that would motivate agent 1 to be truthful regardless of his beliefs about

agent 2�s valuation v2. (Intuitively, when both agents�valuations are in [0,1], agent 1 can

only be motivated to be truthful if he is charged price v2, as in the Vickrey auction, but this

price is not revealed by the protocol.)

An agent�s incentive to deviate in a protocol depends on his information about the other
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agents. FS consider two implementation concepts: Bayesian-Nash Incentive Compatibility

(BIC), which requires that each agent has no incentive to deviate given his beliefs about

other agents�types, and Ex Post Incentive Compatibility (EPIC), which requires that each

agent has no incentive to deviate regardless of his beliefs about others�types. Both imple-

mentation concepts satisfy the Revelation Principle: if an allocation rule is implementable

in some protocol, it is implementable in a direct revelation protocol, in which agents simul-

taneously announce their private information (but which may have a high communication

cost). Thus, FS consider the communication cost of sel�shness for those allocation rules that

are implementable in a direct revelation protocol.

In general, agents�incentives in a protocol can be manipulated using two instruments:

(1) monetary transfers (the agents�utilities are assumed to be quasilinear in such transfers,

as in Subsection 4.2), and (2) information sets that hide information from the agents. For

EPIC implementation, the protocol need not hide any information from the agents, and

the communication cost of sel�shness is entirely due to the need of computing motivating

transfers in addition to the nonmonetary allocation. In contrast, for BIC implementation,

the cost of sel�shness is due to the need to hide information from the agents to restrict their

contingent deviations (while computation of transfers does not entail any additional cost).

For both the EPIC and BIC case, FS provide an upper bound on the communication

cost of sel�shness:

Incentive-Compatible Communication Complexity � 2Communication Complexity:

Since this bound is very weak, FS proceed to ask whether it is ever achieved or approached.36

For BIC implementation, FS do show that the bound is tight, by providing an example

in which the communication cost of sel�shness is exponential. The example has two agents:

An �expert�with private knowledge and a private utility function, and a �manager�with a

privately known goal that determines how the expert�s knowledge should be used. The expert

will reveal his knowledge truthfully if he does not know how the manager�s goal, but this

revelation will take exponential communication in the number of outcomes. Communication

36If the communication cost is measured as the average-case number of bits sent, as de�ned in footnote 3,

FS show that the communication cost of sel�shness can be unbounded, both for EPIC and for BIC.
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could be reduced exponentially by having the manager �rst announce his goal and then letting

the expert say how to achieve it, but this communication is not be incentive-compatible �

knowing the manager�s goal, the expert can manipulate her report to achieve her preferred

outcome. FS show that any communication that satis�es the expert�s BIC constraints must

be almost as long as full revelation of the expert�s knowledge.

For the EPIC case, it is not known whether the exponential upper bound is ever achieved

or approached. In many studied cases, the communication cost of sel�shness for EPIC

proves to be low. For example, this is the case if we want to implement an e¢ cient (surplus-

maximizing) allocation.37 Indeed, suppose that we have a communication protocol that

�nds an e¢ cient allocation. After running the protocol, ask each agent to report his payo¤

�i = ui (k) at the resulting allocation k, and pay each agent i a transfer ti =
P

j 6=i �j.
38

Under this transfer scheme (�rst proposed by Reichelstein (1984)), each agent�s total payo¤

equals to the total surplus, and so the communication game becomes one of common interest

(in the terminology of Marschak and Radner (1972), the agents become a �team�). Since the

protocol is e¢ cient, the resulting mechanism is EPIC: no deviation by an agent can increase

the total surplus.39

37This argument extends to allocation rules that maximize nonnegative a¢ ne combinatons of agents�utili-

ties, since they can be interpreted as e¢ cient rules upon rescaling the agents�utilities and adding a �ctitious

agent. Lavi et al. (2003) show that in some important settings, any dominant-strategy implementable

allocation rule must take this form.

38Technically, this requires agents to communicate real numbers. If agents can only communicate bits

but have real-valued utilities, they can report their rounded-o¤ utilities, in which case the proposed transfer

scheme would make the protocol approximately incentive-compatible.

39Even if the protocol is not exactly e¢ cient but maximizes expected surplus given some common-

knowledge prior subject to a constraint on communication costs, the proposed strategy pro�le will satisfy

BIC, since no agent would be able to increase expected surplus by deviating. Furthermore, if agents are

also made to internalize the communication costs through ex post transfers, then they need to be given any

protocol at all � the protocol that maximizes the expected surplus net of communication costs will emerge as

a Bayesian-Nash equilibrium of the �free-form�game in which agents can send any messages and implement

an allocation. To be sure, this argument relies heavily on the agents�rationality� both individual (being

able to calculate an optimal protocol) and collective (having a common prior and being able to coordinate

on a protocol). But if agents are not fully rational, it is not clear how to model their incentives in the �rst

46



Another literature on incentive-compatible communication studies a �dual� question:

instead of asking how much communication is needed to achieve a given goal, it asks how

to maximize a given objective function subject to a �xed communication constraint . The

objective is typically to maximize the pro�ts of one of the agents subject to other agents�

participation constraints. See, e.g., Green and La¤ont (1987), Melumad et al. (1992), and a

recent survey by Mookherjee (2006).

6.3 Average-Case Goals: Prices vs. Authority and Coercion

We have examined the problem of achieving a given social goal with certainty. However,

given a probability distribution over states, we could allow probabilistic goals�e.g., require

approximating the probability of �nding an e¢ cient outcome, or expected surplus.40 Is it still

necessary or desirable to �nd supporting prices to achieve such approximation? We show

that the answer is �no,�by giving two examples in which (a) an e¢ cient outcome can be

found with a high probability with little or no communication, while (b) verifying e¢ ciency

of the outcome by describing supporting prices would require enormously more communica-

tion.41 In one example, the low-communication approximately e¢ cient mechanism can be

interpreted as coercion, and in the other, as authority.

Example 5 (Coercion): We need to decide whether to provide an indivisible public

good to N agents whose valuations ui for the good are drawn i.i.d. from f0; 1g, with

Pr fui = 1g = � 2 (0; 1). Let the cost of provision be between k � 1 and k, hence

e¢ ciency requires providing the good if and only if
X
i

ui � k. Observe that when

N is large and k=N < � � � for some �xed � > 0, by the Law of Large Numbers,

providing the good without any communication is e¢ cient with a high probability.

On the other hand, to verify that provision is e¢ cient, by Proposition 2 we need to

place.

40In contrast, to, say, approximating the maximum surplus within " across all states, which was considered

in Subsection 4.3.

41While for simplicity we show this for worst-case number of bits, the same results extend to the expected

number of bits using Shannon�s (1948) entropy lower bound.
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describe a supporting valuation (�Lindahl�) equilibrium, i.e., describe k agents willing

to pay price 1 for the good. The probability that any such valuation equilibrium

is indeed an equilibrium is �k. Therefore, to �nd supporting prices with probability

" > 0 we need to use at least "=�k di¤erent equilibria, which requires sending at least

log2
�
"=�k

�
= k log2 �

�1 + log2 ". Thus, as N; k ! 1 so that k=N < � � �, �nding a

supporting price equilibrium to verify e¢ ciency with any �xed probability " requires

unbounded communication, while providing the good without any communication is

e¢ cient with probability approaching 1.

Example 6 (Authority): Two agents have utilities in f0; 1g for allocations from set K.

The probability distribution is as follows: Each agent for each allocation draws utility

1 with probability �K and 0 with probability 1 � �K , and the draws are independent

across allocations and between the agents. Assume that as K ! 1, (i) �KK ! 1,

and (ii) �2KK ! 0. By (i), the asymptotic probability that there is no surplus-1 al-

location for an agent is (1� �K)
K � e��KK ! 0. By (ii), the asymptotic probability

that there is no surplus-2 allocation is (1� �2K)
K � e��

2
KK ! 1. Thus, the �author-

ity protocol�in which one agent names the best allocation for him achieves e¢ ciency

with probability approaching 1, communicating only log2K bits. On the other hand,

to verify that there is no allocation with a higher surplus, by Proposition 2 we need

to announce a supporting valuation equilibrium. The probability that a given valu-

ation equilibrium is an equilibrium conditional on the random state having maximal

surplus 1 (which asymptotically occurs with probability 1) can be bounded above by

(1� �K)
K � e��KK .42 Thus, any protocol announcing a supporting price equilibrium

with a �xed probability " > 0must asymptotically use at least "e�KK distinct messages,

and so communicate log2
�
"e�KK

�
� �KK log2 e bits. This communication cost could

42To see this, recall �rst that in the binary-utility setting we could use the valuation equilibria (p1; p2; k)

with prices p1; p2 2 f0; 1gK , normalized so that p1; p2 6= (1; : : : ; 1), and p1 (k0)+p2 (k0) = 1 for all k0 2 K. For

such (p1; p2; k) to be an equilibrium, the agents�equilibrium utilities ui(k)� pi(k) must be nonnegative, and

therefore, in a surplus-1 state, both agents�equilibrium utilities must be zero. This can only be an equilibrium

in states (u1; u2) in which for all k0 with p1(k0) = 0, u1(k0) = 0, and for all other k0, u2(k0) = p2(k
0) = 0.

This implies the upper bound.
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be exponentially higher than the log2K bits used by authority (e.g., when �K = K
��

with � 2 (1=2; 1), which satis�es (i),(ii)).43

Example 5 may be interpreted as justifying government provision of public goods when

the provision is likely to be e¢ cient , but the communication cost of using Lindahl markets

with a large number of agents would be prohibitive. Example 6 may interpreted as formal-

izing the view of Coase (1937) and Simon (1951) of �rms as �islands of conscious power�in

which the price mechanism is superseded by decision-making by authority. In the example,

as suggested by Coase, the cost of �discovering what the relevant prices are�proves to be

prohibitively high, while the bene�t is vanishingly small.

The recent work on understanding the allocation of authority in �rms (e.g., Aghion

and Tirole 1997, Dessein 2002) has arbitrarily restricted attention mechanisms that allocate

formal authority, accompanied by more extensive informal communication. If incentives

were the only concern, then it would be optimal to use an extensive formal mechanism.

Example 6 o¤ers a potential explanation for the use of formal authority: if the costs of

formal communication are higher than that of informal, it could be optimal to use only

extremely simple formal communication such as authority, supplemented with extensive

informal communication.

6.4 Interdependent Values

We have assumed that each agent knows his own preferences, which are not a¤ected by

other agents�private information except through the implemented allocation. A more gen-

43In the same setting, Nisan and Segal (forth., Proposition 14) show that there exists a probability distrib-

ution over the two agents�binary utilities for which a surplus-2 allocation is guaranteed to exist, but �nding

it requires exponential communication in K, and so authority is optimal among subexponential mechanisms.

Nisan and Segal (forth.) apply this result to showing the uselessness of practical combinatorial auctions,

where �authority� allocation is achievable by giving all the objects to one agent. A shortcoming of this

example is that the probability distribution over utilities needed for it to hold may be not be a �natural�

one. Segal (1995) obtained the same result for the probability distribution over utilities described as in

the example, but under the restriction that communication cannot use a common �language� (labeling of

allocations).
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eral formulation would allow interdependent values, i.e., direct dependence of one agent�s

preferences on other agents�private information. One example is when other agents have

private information about the quality of the goods allocated to the agent. Another example

is when an agent is acquiring assets for future resale, and other agents have relevant private

information for predicting the future resale price of the assets.

The performance of price mechanisms in such interdependent-value settings has been

extensively studied. The most widely used price equilibrium concept for such settings is

Rational Expectations Equilibrium (REE), in which agents infer information through the

announced prices, and make choices from their budget sets to maximize their expected

utilities given the inferred information (see, e.g., Mas-Colell et al. 1995 Section 19.H, Radner

1979, Grossman 1981). Can we o¤er a normative foundation for rational expectations price

equilibria in the interdependent-value setting akin to the Budget Equilibrium Revelation

Property for the private-value setting?

Note that in the interdependent-value setting, social goals such as Pareto e¢ ciency may

be achieved without revealing supporting REE prices. The simplest example is allocating an

object among agents who have a �pure common value�for it, which depends on the agents�

private signals. In this example, any allocation would be e¢ cient, and so could be achieved

without any communication, but the REE would typically depend on private information.

One may argue that statistically e¢ cient aggregation of private information may be

desirable for reasons other than allocational e¢ ciency (e.g., to guide investment decisions).

Thus, many papers have examined the validity of the (strong form) of the �E¢ cient Market

Hypothesis,�which says that REE prices form a su¢ cient statistic for the value of a security

given all the private information. Contrary to the hypothesis, there exist cases in which

an REE reveals no information about the value of a security, even though pooling agents�

private information would reveal the value fully:

� Example 7 (Feigenbaum et al. (2005)): There are two risk-neutral agents, each

of whom privately observes a fair coin toss. The agent can trade a security whose value

is 1 if the two agents�coins fall on the same side and 0 otherwise.44 There exists an

44This construction is known in game theory as a �jointly controlled lottery.�For an economic example, let

50



REE with price 1=2 that does not depend on the agents�private information. Since

the price is uninformative, each agent continues to believe the security has value 1 with

probability 1/2, and so is willing to trade any amount at price 1/2. On the other hand,

if pooling both agents�information would reveal the exact value of the security.

One might argue that when agents� type spaces are �nite, a continuous price would

�generically�be fully revealing. However, when agents�type spaces are continuous, �gener-

ically�prices cannot be a su¢ cient statistic for private signals if the total dimension of the

signals exceeds the dimension of the price space (which is realistic when agents observe com-

plex signals or when the number of agents is large). Formally, we are facing a communication

(veri�cation) problem, whose solution may require a large message space than the available

price space (a formal point along these lines is made by Jordan (1983)).

These arguments bring into question the recent popularity of �prediction markets� as

means of aggregating dispersed private information to forecast various events, from sales at

Hewlett Packard to election outcomes to terrorist attacks (see, e.g., Wolfers and Zitzewitz

2004). While some special communication problems may be solved e¢ ciently with a pre-

diction market, the general applicability of price mechanisms for aggregating common-value

information is unclear. In particular, the recent proposals to use prediction markets to re-

place the managerial task of information aggregation and decision making45 do not have a

theoretical foundation.

agent 1 be the marketing manager of an auto company, who knows which car body will be in high demand

next year, and let agent 2 be the company�s manufacturing manager, who knows which car body will be

cheap to produce next year. The security is contingent on the company�s pro�ts.

45E.g., �With employees in the trading pits betting on the future, who needs the manager in the corner

o¢ ce?��Times Magazine (2004).
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7 Conclusion

In the past 30 years, economists have focused on the issue of incentives.46 However, consider a

thought experiment in which everybody is honest, and ask whether the fundamental economic

institutions, such as markets and �rms, would still be recognizable in this hypothetical world.

It is our conjecture that the answer is �yes�: The primary function of these institutions is

to process information and make decisions, and their fundamental features are explained by

this function (even though incentives may be important for understanding many of their

aspects).

This chapter has focused on one kind of economic institutions� price-based mechanisms.

We have shown that, contrary to widespread belief, prices are needed not in order to incen-

tivize the agents, but in order to aggregate distributed information about their preferences

into a socially desirable decision. Thus, we have provided a justi�cation for and character-

ized the scope of the price-based �market design� approach (as opposed to more general

mechanism design), and characterized the form of �prices�that must be discovered to solve

a given social choice problem.

Some of our extensions also o¤er promising avenues for understanding non-price alloca-

tion mechanisms such as �rms and governments. For example, as noted by Coase (1937)

and Simon (1951), communication in �rms di¤ers fundamentally from that in markets: De-

cisions in �rms are usually made by the authority of managers, without �discovering what

the relevant prices are.�We indeed �nd an example where authority may emerge as an

optimal communication mechanism (Example 6 in Subsection 6.3): it �nds an e¢ cient allo-

cation with a high probability, while the communication cost of verifying this e¢ ciency by

describing prices for all possible allocations is exponentially higher. Another notable aspect

of communication in �rms is that much of it is done by professional managers who specialize

in aggregating information and making decisions. In Subsection 5.2 we noted how hiring

such managers may economize on individual communication costs. Thus, while �theories

46For example, consider the statements �Most of economics can be summarized in four words: �People

respond to incentives.�The rest is commentary�(Landsburg 1993) and �Economics is, at root, the study of

incentives�(Levitt and Dubner 2005).
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of the �rm�based on incentives or incomplete contracts take managerial tasks as given, a

theory based on communication may explain what it is that managers actually do.47

References

[1] Abelson, H. (1980): �Lower bounds on information transfer in distributed computa-

tions.�Journal of the Association for Computer Machinery, 27, 384-392.

[2] Aghion, Philippe, and Jean Tirole (1997): �Formal and Real Authority in Organiza-

tions,�Journal of Political Economy, 105, 1-29.

[3] Athey, S., and I. Segal (2005): �E¢ cient Dynamic Mechanisms,�working paper, Stan-

ford University

[4] Babaio¤, Moshe, and Liad Blumrosen (2004): �Computationally Feasible Truthful Auc-

tions for Convex Bundles.� Proceedings of the 8th. International Workshop on Approx-

imation Algorithms for Combinatorial Optimization Problems, Lecture Notes in Com-

puter Science, Springer-Verlag.

[5] Bergemann, D., and J. Valimaki (2005): �Information Acquisition in Mechanism De-

sign.�Advances in Economic Theory: 9th World Congres, forhtcoming.

[6] Bikhchandani, Sushil, and John Mamer (1997): �Competitive Equilibrium in an Ex-

change Economy with Indivisibilities,�Journal of Economic Theory 74, 385-413.

[7] Bikhchandani, Sushil, and Joel Ostroy (2002): �The Package Assignment Model,�Jour-

nal of Economic Theory 107, 377-406.

[8] Brandt, F., and T. Sandholm (2005): �Unconditional Privacy in Social Choice,�In Ron

van der Meyden, ed., Proceedings of Theoretical Aspects of Rationality and Knowledge

X, National University of Singapore, pp. 207-218.

47Such a theory may complement existing models in which managers are hired to perform computations,

such as addition of numbers � see, e.g., van Zandt (1998).

53



[9] Calsamiglia, X. (1977): �Decentralized Resource Allocation and Increasing Returns,�

Journal of Economic Theory, 14, 262-283.

[10] Calsamiglia, X. (1987): �Informational Requirements of Parametric Resource Allocation

Processes.� In: Theodore Groves, Roy Radner, and Stanley Reiter, eds., Information,

Incentives, and Economic Mechanisms, Minneapolis: University of Minnesota Press.

[11] Coase, R. (1937): �The Nature of the Firm,�Economica, 4, 386-405.

[12] Conitzer, Vincent, and Tuomas Sandholm (2005). �Communication Complexity of Com-

mon Voting Rules.� In Proceedings of the ACM Conference on Electronic Commerce

2005.

[13] Cramton, P., Y. Shoham, and R. Steinberg (eds.) (2006): Combinatorial Auctions, MIT

Press.

[14] Debreu, G. (1952): �A Social Equilibrium Existence Theorem�, Proceedings of the Na-

tional Academy of Sciences 38(10), 886-893.

[15] Debreu, G. (1983): �Neighboring Economic Agents,� in Mathematical Economics:

Twenty Papers of Gerard Debreu, New York: Cambridge University Press, 173-178

[16] Dessein, W. (2002): �Authority and Communication in Organizations.�Review of Eco-

nomic Studies, 69(4), pp. 811-38.

[17] Dobzinski, S., N. Nisan, and M. Schapira (2005). Approximation Algorithms for Combi-

natorial Auctions with Complement-free Bidders. Symposium on Theory of Computing

2005.

[18] Echenique, F. (2005): �Counting Combinatorial Choice Rules,�Games and Economic

Behavior, forthcoming.

[19] Edgar, G.E. (1990): Measure, Topology, and Fractal Geometry. New York: Springer-

Verlag.

54



[20] Fadel, Ronald, and Ilya Segal (2005a): �Communication Cost of Sel�shness: Ex Post

Implementation,� In Ron van der Meyden, ed., Proceedings of Theoretical Aspects of

Rationality and Knowledge X, National University of Singapore, pp. 165-176.

[21] Fadel, R., and I. Segal (2005b): �Communication Cost of Sel�shness,�working paper,

Stanford University

[22] Feigenbaum, J., L. Fortnow, D. Pennock, and R. Sami (2005): �Computation in a

Distributed Information Market,�Theoretical Computer Science, 343, 114-132.

[23] Feigenbaum, J., A. Krishnamurthy, R. Sami, and S. Shenker (2003): �Hardness Results

for Multicast Cost Sharing,�Theoretical Computer Science, 304, 215-236.

[24] Forges, F. (1990), �Universal Mechanisms,�Econometrica, 58, 1341-1364.

[25] Green, J. and La¤ont J. (1987): �Limited Communication and Incentive Compatibil-

ity�, Information, Incentives, and Economic Mechanisms: Essays in honor of Leonid

Hurwicz, T. Groves, Radner, R. and Reiter, S. (ed.), Minneapolis: University of Min-

nesota Press

[26] Greenberg, J. (1990): The Theory of Social Situations: An Alternative Game-Theoretic

Approach. Cambridge: Cambridge University Press.

[27] Grossman, S. (1981): �An Introduction to the Theory of Rational Expectations under

Asymmetric Information.�Review of Economic Studies 48, pp. 541-559.

[28] Gus�eld, D., and R.W. Irving (1989). The Stable Marriage Problem: Structure and

Algorithms. Cambridge: MIT Press.

[29] Hammond, P. (1997): �Game Forms versus Social Choice Rules as Models of Rights,�

in K.J. Arrow, A.K. Sen, and K. Suzumura (eds.) Social Choice Re-examined, Vol. II

(IEA Conference Volume No. 117) ch. 11, 82-95, London: Macmillan.

[30] Hat�eld, J.F., and P.R. Milgrom (2005): �Matching with Contracts,�American Eco-

nomic Review 95, 913-935.

55



[31] Hayek, F.A. (1945): �The Use of Knowledge in Society,�American Economic Review

35, 519-30.

[32] Hurwicz, L. (1977): �On the Dimensional Requirements of Informationally Decentral-

ized Pareto-Satisfactory Processes,� in K.J. Arrow and L. Hurwicz, eds., Studies in

Resource Allocation Processes, 413-424, New York: Cambridge University Press.

[33] Hurwicz, L., and T. Marschak (2003a): �Finite allocation mechanisms: Approximate

Walrasian versus approximate direct revelation,�Economic Theory 21, 545-572.

[34] Hurwicz, L., and T. Marschak (2003b): �Comparing �nite mechanisms,� Economic

Theory 21 (2003), 783-841.

[35] Hurwicz, L., and S. Reiter (2006): Designing Economic Mechanisms, Cambridge Uni-

versity Press.

[36] Ishikida, T., and T. Marschak (1996): �Mechanisms That E¢ ciently Verify the Opti-

mality of a Proposed Action,�Economic Design 2(1), 33-68.

[37] Jordan, J.S. (1982): �The Competitive Allocation Process is Informationally E¢ cient

Uniquely,�Journal of Economic Theory 28(1), 1-18.

[38] Jordan, J.S. (1983), �On the E¢ cient Market Hypothesis,�Journal of Economic Theory

51(5), 1325-1343.

[39] Ju, Biung-Ghi (2001). �Nash Implementation and Opportunity Equilibrium,�working

paper, University of Kansas.

[40] Karlo¤, H. (1991). Linear Programming. Basel: Birkhäuser Verlag.

[41] Kelso, Alexander S. Jr., and Vincent P. Crawford (1982). �Job Matching, Coalition

Formation, and Gross Substitutes.�Econometrica 50, 1483-1504.

[42] Kushilevitz, E., and N. Nisan (1997). Communication Complexity. Cambridge Univer-

sity Press.

56



[43] Landsburg, S.E. (1993). The Armchair Economist: Economics and Everyday Life. New

York: The Free Press.

[44] Levitt, S., and S. Dubner (2005). �Freakonomics: A Rogue Economist Explores the

Hidden Side of Everything,�New York: Harper Collins.

[45] Lipton, R. J., E. Markakis, E. Mossel, and A. Saberi (2004). �On Approximately Fair

Allocations of Indivisible Goods,�Proceedings of the 5th ACM Conference on Electronic

Commerce, pp,125-131.

[46] Luo, Z.-Q., and J.N. Tsitsiklis, Communication Complexity of Algebraic Computation,�

Proceedings of the 31st IEEE Symposium on Foundations of Computer Science, 758-765,

1991.

[47] Marschak, T., and S.Reichelstein (1998): �Network Mechanisms, Informational E¢ -

ciency, and Hierarchies,�Journal of Economic Theory, 79, 106-141.

[48] Mas-Colell, A. (1980): �E¢ ciency and Decentralization in the Pure Theory of Public

Goods,�Quarterly Journal of Economics 94, 625-641.

[49] Mas-Colell, A., M.D. Whinston, and J. Green (1995).Microeconomic Theory. New York:

Oxford University Press.

[50] Maskin, E. (1999): �Nash Equilibrium and Welfare Optimality,�Review of Economic

Studies 66, 23-38.

[51] Melumad, N., D. Mookherjee and S. Reichelstein (1992): �A Theory of Responsibility

Centers,�Journal of Accounting and Economics, 15, 445-484.

[52] Milleron, J.-C. (1972): �Theory of Value with Public Goods: A Survey Article,�Journal

of Economic Theory 5, 419-477.

[53] Miyagawa, E. (2002): �Reduced-Form Implementation,�Columbia University Working

Paper.

[54] Mookherjee, D. (2006): �Decentralization, Hierarchies and Incentives: A Mechanism

Design Perspective,�Journal of Economic Literature, forthcoming.

57



[55] Mount, K., and S. Reiter (1974): �The Information Size of Message Spaces,�Journal

of Economic Theory 28, 1-18.

[56] Myerson, R.B. (1991): Game Theory: Analysis of Con�ict. Cambridge: Harvard Uni-

versity Press.

[57] Nisan, N., and I. Segal (2004): �The Communication Requirements of E¢ cient Alloca-

tions and Supporting Prices,�forthcoming, Journal of Economic Theory.

[58] Nisan, N., and I. Segal (2005): �Exponential Communication Ine¢ ciency of Demand

Queries,�In Ron van der Meyden, ed., Proceedings of Theoretical Aspects of Rationality

and Knowledge X, National University of Singapore, pp. 158-164.

[59] Parkes, D.C. (2000): �Optimal Auction Design for Agents with Hard Valuation Prob-

lems,�Agent Mediated Electronic Commerce (IJCAI Workshop)

[60] Parkes, D.C. (2002): �Price-Based Information Certi�cates for Minimal-Revelation

Combinatorial Auctions,� in Agent-Mediated Electronic Commerce IV, Padget et al.

(eds), LNAI 2531, 103-122, Springer-Verlag.

[61] Radner, R. (1979): �Rational Expectations Equilibrium: Generic Existence and the

Information Revealed by Prices.�Econometrica, 47, 655-678.

[62] Reichelstein, S. (1984): �Incentive Compatibility and Informational Requirements,�

Journal of Economic Theory, 34, 32-51.

[63] Reichelstein, S., and S. Reiter (1988): �Game Forms with Minimal Message Spaces,�

Econometrica 56(3), 661-692.

[64] Roth, A.E., and M.A.O. Sotomayor (1990): Two-Sided Matching: A Study in Game-

Theoretic Modeling and Analysis. Cambridge: Cambridge University Press.

[65] Salanie, B. (1997): The Economics of Contracts: A Primer. Cambridge: MIT Press.

[66] Sato, F. (1981). �On the Informational Size of Message Spaces for Resource Allocation

Processes in Economies With Public Goods,�Journal of Economic Theory, 24, 48-69.

58



[67] Segal, I. (1995): �Communication Complexity and Communication by Authority,�work-

ing paper

[68] Segal, I. (2005): �Communication Requirements of Social Choice Rules and Supporting

Budget Sets,�working paper, Stanford University.

[69] Sen, A.K. (1970): �The Impossibility of a Paretian Liberal,�Journal of Political Econ-

omy 78, 152-157.

[70] Serrano, R. and O. Volij (2000): �Walrasian Allocations without Price-Taking Behav-

ior,�Journal of Economic Theory 95, 79-106.

[71] Simon, H. (1951): �A Formal Theory of the Employment Relationship�, Econometrica

19, 293-305.

[72] Time Magazine (2004), �The End of Management?�by Barbara Kiviat, July 6.

[73] van Zandt, T. (1998): �Organizations that Process Information with an Endogenous

Number of Agents,�in Mukul Majumdar, ed., Organizations with Incomplete Informa-

tion, Cambridge: Cambridge University Press. Chapter 7, pages 239-305.

[74] Wolfers, J., and E. Zitzewitz (2004): �Prediction Markets,�Journal of Economic Per-

spectives 18, 107-126.

[75] Walker, M. (1977): On the Informational Size of Message Spaces,�Journal of Economic

Theory 15, 366-375.

[76] Williams, S.R. (1986): �Realization and Nash Implementation: Two Aspects of Mech-

anism Design,�Econometrica 54, 139-152.

59



1
2

m

v1

p

p

v2

Figure 1.

2 m

v1

p2

p1

v2

Figure 2.

ε 



x

L(x, R1)

Figure 3.

L(x, R2)

B1

B2

R

Figure 4.

x

L(x, R1)

L(x, R2)

B1

B2

mB2'

B1'

B1'

B2'



M = verified with budget protocol

IM = BERP CU Pareto

Stable 
Match

No-Envy

Example 4

Approx. 
Pareto

 
Core

Figure 5.

x

L(x, R1)

Figure 6.

L(x, R2)

B1

B2

B1'

B2'



B2B1
R2

R1

x

Figure 7.

B1t1

t2

x

K
Figure 8.

B2R2

R1



x

F

W

Figure 9.


