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Abstract

We introduce and axiomatize dynamic variational preferences, the dynamic version of the

variational preferences we axiomatized in [14], which include the Multiplier Preferences in-

spired by robust control and used in macroeconomics, as in Hansen and Sargent ([9]), as well

as Mean Variance Preferences of Markovitz and Tobin, used in �nance. We provide a con-

dition that makes dynamic variational preferences time consistent, and their representation

recursive. This gives them the analytical tractability needed in �nance and macroeconomic

applications. A corollary of our results is that Multiplier Preferences are time consistent, but

Mean Variance Preferences are not.

1 Introduction

In the Multiple Priors (MP) model agents rank acts h using the criterion

V (h) = inf
p2C

Ep [u (h)] ; (1)

where C is a closed and convex subset of the set � of all probabilities on states. This model has

been axiomatized by Gilboa and Schmeidler [7] with the goal of modeling ambiguity averse agents,

who exhibit the Ellsberg-type behavior �rst observed in the seminal paper of Ellsberg [4].

The nonsingleton nature of C re�ects the limited information that MP agents may have, which

may not be enough to quantify their beliefs with a single probability, and it is, instead, compatible

with a nonsingleton set C of probabilities.

On the other hand, the cautious attitude featured by MP agents can also be viewed as the result

of the e¤ect that an adversarial in�uence, which we may call �Nature,�has on the realizations of the

state. Under this view, Nature chooses a probability p over states with the objective of minimizing

agents�utility, conditional on their choice of an act and under the constraint that the probability

p has to be chosen in a �xed set C. This interpretation of the MP model provides an intuitive

notion of ambiguity aversion, which can be regarded as the agents�di¢ dence for any lack of precise

�We thank Larry Epstein and Gino Favero for helpful suggestions. Part of this research was done while the
�rst two authors were visiting the Department of Economics of Boston University and CERMSEM (Université
Paris 1), which they thank for their hospitality. They also gratefully acknowledge the �nancial support of the
Ministero dell�Istruzione, dell�Università e della Ricerca. Rustichini gratefully acknowledges the �nancial support
of the National Science Foundation (grant # 0136556).
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de�nition of the uncertainty involved in a choice, something that provides room for the malevolent

in�uence of Nature.1

In a recent paper, [14], we extended the MP representation by generalizing Nature�s constraint.

Speci�cally, in our extension the constraint on Nature is given by a cost c (p) associated with the

choice of probability, and agents rank acts according to the criterion:

V (h) = inf
p2�

(Ep [u (h)] + c (p)) ; (2)

where c is a closed and convex function on �. Preferences represented by (2) are called variational

preferences (VP), and the function c is their ambiguity index. In [14] we axiomatize the represen-

tation (2) and we discuss in detail its ambiguity interpretation, as well as the malevolent Nature

interpretation we emphasize here in view of possible macroeconomic applications.

The VP representation generalizes the MP representation, which is the special case where there

is an in�nite cost for choosing outside the set C, with the cost being constant (and hence, without

loss of generality, zero) inside that set. In other words, the cost for Nature in the MP model is

given by the indicator function �C : �! [0;1] of C, de�ned as

�C (p) =

(
0 if p 2 C;
1 if p =2 C;

(3)

and it is immediate to see that

inf
p2�

(Ep [u (h)] + �C (p)) = inf
p2C

Ep [u (h)] :

The notion of ambiguity aversion has found an important application in the last years in the

literature, pioneered by Hansen and Sargent (see, e.g., [9]), that applies the idea of robust control

to the choice of agents in macroeconomic models. While the initial de�nition of robust control was

di¤erent from that of ambiguity aversion, the intuition is closely related: an agent prefers a robust

control if he is not con�dent that his (probabilistic) model of the uncertainty is correct, and so he

wants to avoid the possibility that a small error in the formulation of the stochastic environment

produces a large loss. Ambiguity aversion comes up because the agents�information is too limited

to be represented by a single probabilistic model.

In the multiplier preferences model, the most important choice model used in this macroeco-

nomic literature (see [9]), the constraint on Nature is represented by a cost c based on a reference

probability q 2 �: Nature can deviate away from q, but the larger the deviation, the larger the

cost. In particular, this cost is assumed to be proportional to the relative entropy R (pkq) between
the chosen probability p and reference probability q; that is,

c (p) = �R (pkq) ;

where � > 0. Multiplier preferences are, therefore, the special case of variational preferences given

by

inf
p2�

(Ep [u (h)] + �R (pkq)) ;

and their analytical tractability is important in deriving optimal policies.

Even though the motivation behind multiplier preferences was similar to that used for MP

preferences, formally multiplier preferences are not MP preferences. In fact, in [14] we show that

1As Hart, Modica , and Schmeidler [10, p. 352] write �In Gilboa and Schmeidler [7] it is shown that preferences ...
are represented by functionals of the form f 7�! minq2Q

P
s u (f (s)) q (s), for some closed convex set Q � �(S). So

the ambiguity averse decision maker behaves �as if�there were an opponent who could partially in�uence occurence
of states to his disadvantage (i.e., think of the opponent as choosing q 2 Q).�
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they are examples of divergence preferences, a special class of variational preferences featuring

tractable cost functions, but which are not MP preferences. Variational preferences are, therefore,

the generalization needed in order to encompass both MP and multiplier preferences, as discussed

at length in [14].

In view of applications, however, the static analysis of [14] is insu¢ cient and a dynamic exten-

sion is required. This is the purpose of the present paper, in which we introduce and axiomatize

dynamic variational preferences.

The �rst observation to make is that, while in a static environment acts are functions from

states to consequences, in a dynamic environment they are functions from times and states to

consequences. We impose on acts the usual measurability conditions ensuring that agents�choices

are consistent with the information they have. As a result, agents�evaluations are conditional to

time and state, and they are modelled by a family of (conditional) preferences %t;! indexed by
time and state pairs (t; !). In the main results of the paper we provide necessary and su¢ cient

conditions guaranteeing that agents�preferences %t;! are represented by the preference functional
Vt (h) : 
! R given by

Vt (h) = inf
p2�

0@Ep
24X
��t

���tu (h� ) jGt

35+ ct (p jGt )
1A ; (4)

and we show what restrictions on ct guarantee time consistency.2 Under time consistency the rep-

resentation (4) becomes recursive, and so it has the analytical tractability required in applications.

Besides tractability, time consistency has also an intuitive appeal. In fact, suppose that two acts

are the same in every contingency up to the present period, and the �rst is preferred to the second

according to the conditional preference in the next period in every state. Then time consistency

requires that the �rst act should be preferred to the second in the present period. Equivalently,

think of a plan as a sequence of conditional choices, so that the choice of a plan in the current

period includes a plan of choices in all future periods, conditional on all future contingencies. Then,

an agent is time consistent if he never formulates a plan of future choices that he wants to revise

later in some event that is conceivable today.

1.1 The No-Gain Condition and Bayesian Updating

Our work extends to the VP setting the recent dynamic version of the MP model provided by

Epstein and Schneider [5]. They give a condition, called rectangularity, that guarantees time

consistency of MP preferences. Since rectangularity is a restriction on the sets of probabilities

from which Nature can select at every time and state, it is therefore natural that our corresponding

condition is formulated as a restriction on cost functions.

Speci�cally, our condition is given by (11) of Theorem 1. To facilitate the exposition, we present

it in a simpli�ed form, dropping the time index (the reader may think of this as the condition for

the two-period version of the model). The agent has a partition G over the set of possible states
(see the picture at p. 7). Nature has a cost c
 in the �rst period, so that c
(q) is Nature�s cost

of choosing the probability q over the states. To each event G in this partition it is associated a

new, second period, cost cG. The announced condition requires that:

c
(q) = inf
fp:p(G)=q(G) 8G2Gg

[�
X
G2G

q(G)cG(qG) + c
(p)]; (5)

where q(G) =
P
!2G q(!), � is the discount factor, and

qG(!) =

(
q(!)=q (G) if ! 2 G,
0 otherwise.

(6)

2Here � is a discount factor and Gt represents the information available to the agents at time t.
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The condition has a simple interpretation. The choice of probability by Nature over two periods

can be thought of as consisting of two steps. The �rst period choice is a choice of probability over

the events that realize in the �rst period. The second period choice is a choice of probability over

states in every event, conditional on that event.

Nature can make this choice in a time consistent way: choose q in the �rst period, pay the

appropriate cost c
(q), wait for the realization of the second period event G, do nothing, pay

nothing, and get the probability qG on the states in the event G. The total cost of this is the term

in the l.h.s. of (5).

Alternatively, Nature can achieve the same result in a time inconsistent way, with total cost

given by the r.h.s. of (5). Nature can choose today a probability p that induces the same probability

over events in the second period as q does. This constraint is described by the condition p(G) =

q(G) for every event G. Nature pays for its choice p the appropriate cost, which is the term

c
(p) in the r.h.s. of (5). After the realization of the event G, the probability over states in that

event would be pG. Nature can now change the conditional probability to qG, and again pay the

appropriate cost, represented by the term cG(qG) in the r.h.s. of (5). Overall, in this second more

indirect way, Nature achieves the same result as in the �rst choice: a probability q(G) of every

event G in the �rst period, and a conditional probability qG if G obtains.

The condition requires that this second, time inconsistent, choice is not less costly for Nature.

A simple way of stating our main result is therefore the following: A decision maker is dynamically

consistent if and only if (he thinks that) Nature is dynamically consistent.

In view of all this, we call (5), and more generally (11) of Theorem 1, a �no-gain condition.�

We will formally prove that the no-gain condition generalizes rectangularity, and it coincides with

it when cost functions are indicators �C .

Equation (5) provides a link between cost functions in di¤erent periods. One important aspect

of this link is that in the second period the probability over states conditional on the event G is the

conditional probability qG as de�ned by (6), namely according to Bayes�Rule. This link extends

to variational preferences the connection between time consistency and Bayes�Rule.

As well known, Subjective Expected Utility preferences are time consistent if and only if their

subjective beliefs are updated according to Bayes�Rule. This result is generalized in [5] to MP

preferences by showing that they are time consistent if and only if their sets of subjective beliefs

are rectangular and updating is done belief by belief (prior by prior in the terminology of the MP

model) according to Bayes�Rule. Our Theorem 1, in turn, further generalizes all these results and

it shows that variational preferences are time consistent if and only if their cost functions satisfy

the no-gain condition and updating is done according to Bayes�Rule.

Moreover, the recursive structure of the no-gain condition makes it possible to construct by

backward induction cost functions that satisfy it. This is shown by Theorem 2, which thus provides

a way to construct via (4) examples of variational preferences that are time consistent.

Some papers have recently studied related issues, in particular dynamic aspects of the MP

model. We already mentioned Epstein and Schneider [5], which is turn closely related to Wang

[21]. Some aspects of their work have been extended by Ghirardato, Maccheroni, and Marinacci [6]

and Hayashi [11]. More recently, Hanany and Klibano¤ [8] proposed a dynamic version of the MP

model that it is dynamically consistent but it does not satisfy Consequentilism, while Siniscalchi

[19] focused on dynamic MP models that relax Dynamic Consistency. Finally, Ozdenoren and Peck

[17] have studied some dynamic games against Nature that lead to ambiguity averse behavior, thus

providing a game-theoretic underpinning of the game against Nature interpretation of ambiguity

we discussed above and in [14].

The paper is organized as follows. Section 2 introduces the setup and notation, Section 3
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presents the axioms needed for our derivation, whereas Section 4 contains the main results of the

paper. Section 5 illustrates the main results with two important classes of variational preferences,

the multiple priors preferences of Gilboa and Schmeidler [7] and the multiplier preferences of

Hansen and Sargent [9]. All proofs are collected in the Appendix.

2 Setup

2.1 Information

Time is discrete and varies over T = f0; 1; :::; Tg. In our results we model information as an event
tree fGtgt2T , given and �xed throughout, which is de�ned on a �nite space 
. The elements of
this tree are partitions Gt of 
 consisting of non-empty sets, with G0 = f
g, Gt+1 �ner than Gt for
all t < T , and GT = ff!g : ! 2 
g; in particular, Gt (!) is the element of Gt that contains !.
The main interpretation we have in mind for this standard modelling of information is as

follows. Given an underlying (and possibly unveri�able) state space S, endowed with a �-algebra

�, observations are generated by a sequence of random variables fZtgt>0 taking values on �nite
observation spaces 
t. Each random variable Zt : S ! 
t is �-measurable and for convenience we

assume that they are surjective, so that all elements of 
t can be viewed as observations generated

by Zt.

The sample space
QT
t=1 
t is denoted by 
, and its points ! = (!1; :::; !T ) are the possible

observation paths generated by the sequence fZtg. Given t 2 T , denote by f!1; :::; !tg the cylinder

f!1g � � � � � f!tg � 
t+1 � � � � � 
T .

The event tree fGtg records the building up of observations and it is given by G0 = f
g,

Gt = ff!1; :::; !tg : !� 2 
� for each � = 1; :::; tg ;

and GT = ff!g : ! 2 
g. In other words, the atoms of the partition Gt are the observation paths
up to time t and they can be viewed as the nodes of the event tree fGtg.
Denote by �(
) the set of all probability distributions p : 2
 ! [0; 1]. The elements of �(
)

represent the agent�s subjective beliefs over the observation paths. Their conditional distributions

p (!t+1; :::; !T j !1; :::; !t) =
p (!1; :::; !T )

p (!1; :::; !t)

are called predictive distributions and they represent the agent�s (subjective) probability that

(!t+1; :::; !T ) will be observed after having observed (!1; :::; !t).3 Using the standard notation

for conditional probabilities, the predictive distributions are given by the collection fp (� j Gt)gt>0.
Observe that in the literature on MP preferences, the probabilities p : 2
 ! [0; 1] are often

called priors and the conditional probabilities p (� j Gt) are called the Bayesian updates of the
prior. This terminology is, however, a bit confusing as in Statistics priors are often probabilities

on parameters (and posteriors are their Bayesian updates given observations). Here no parametric

representation is assumed for the probabilities p : 2
 ! [0; 1], and so we prefer not to use the term

prior for them.

We now illustrate these notions with few examples.

Example 1 Suppose that observations are given by heads and tails from a given coin. We can

set 
t = f0; 1g for each t = 1; :::; T , so that 
 = f0; 1gT is the sample space. A possible p 2 �(
)
3For convenience, we write p (!1; :::; !t) in place of p (f!1; :::; !tg). Moreover, (!t+1; :::; !T ) stands for


1 � � � � � 
t � f!t+1g � � � � � f!T g :
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is the one that assigns equal probability to all observation paths !; that is, p (!) = 2�T for each

! 2 
. In this case, p (!1; :::; !t) = 2�t and

p (!t+1; :::; !T j !1; :::; !t) =
p (!1; :::; !T )

p (!1; :::; !t)
= 2t�T .

For example, if T = 3, we have 
 = f0; 1g3 and 
 consists of 23 states. This case can be illustrated
with a simple binomial tree
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and the above probability p is such that p (!) = 1=8 for all ! 2 
, while its predictive
distributions are:

p (!3 j !1; !2) = 1=2 and p (!2; !3 j !1) = 1=4:

N

In the next examples we assume that 
t = Z for all t, so that 
 = ZT . For instance, in the
previous example we had Z = f0; 1g.

Example 2 Consider a p 2 �(
) that makes the sequence fZtg i.i.d., with common marginal
distribution � : 2Z ! [0; 1]. In this case, p is a product probability on 2
 uniquely determined by

� as follows:

p (!) =

TY
i=1

� (!i) 8! 2 
.

The predictive distributions are given by:

p (!t+1; :::; !T j !1; :::; !t) =
TY

i=t+1

� (!i) ;

that is, p (!t+1; :::; !T j !1; :::; !t) = p (!t+1; :::; !T ). Hence, information is irrelevant for predic-

tion. N

Example 3 Consider a p 2 �(
) that makes the sequence fZtg exchangeable, i.e.,

p (!1; :::; !T ) = p (!i1 ; :::; !iT ) (7)

for all permutations i1; :::; iT . For simplicity, suppose Z = f0; 1g and set

�tl =

�
t

l

�
p

 
tX
i=1

!i = l

!
;
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where p
�Pt

i=1 !i = l
�
is the probability of having l successes among t 2 T trials. Some algebra

shows that here the predictive distributions are given by

p (!t+1; :::; !T j !1; :::; !t) =
�Tl+k=

�
T
l+k

�
�tl=
�
t
l

� ;

where l =
Pt
i=1 !i and k =

PT
i=t+1 !i. Because of exchangeability, only the quantities l and k

matter for the predictive distributions. Here information, as recorded by l and r, is relevant for

prediction. N

Example 4 Finally, suppose that p 2 �(
) makes the sequence fZtg a homogeneous Markov
chain with transition function � : 
t�1 � 2Z ! [0; 1] for t � 2, where � (!t�1; �) : 2Z ! [0; 1] is

a probability measure on Z for each !t�1 2 
t�1. Given an initial probability distribution �0 on
2Z , p is uniquely determined by � as follows:

p (!) = �0 (!1)

TY
i=2

� (!i�1; !i) 8! 2 
:

so that,

p (!t+1; :::; !T j !1; :::; !t) =
TY

i=t+1

� (!i�1; !i) : (8)

Also in this Markov example information matters for prediction. In particular, (8) shows that here

the relevant information is given by !t. N

2.2 Consumption Streams

The acts among which agents choose are here given by consumption processes. Formally, acts

are X-valued adapted processes of the form h = (h0; h1; :::; hT ), where each ht : 
 ! X is Gt-
measurable and takes values on a convex consumption set X (e.g., X = R+ or �(R+)).

q

q

q

q

q
q
q
q
q
q
q
q
q

�
�
�
�
�
��

@
@
@
@
@
@@��

��
���

PPPPPPP

��
��

���

PPPPPPP

��
��

���

PPPPPPP

h0(!)




h1(!
0)

G0

h1(!
00)

G00

h1(!
000)

G000

!01

!02

!03

!001

!002

!003

!0001

!0002

!0003

h2(!
0
1)

h2(!
0
2)

h2(!
0
3)

h2(!
00
1 )

h2(!
00
2 )

h2(!
00
3 )

h2(!
000
1 )

h2(!
000
2 )

h2(!
000
3 )

Denote by H the set of all acts; we indi¤erently write ht (!) or h (t; !) to denote consumption

at time t if ! obtains (and sometimes h (t; G) to denote consumption at time t if G 2 Gt occurs).
Notice that in our �nite setting acts can be regarded as functions de�ned on

S
t2T Gt, that is, on

the set of all nodes.

We can identify H with the set of all maps h : 
! XT such that h� (!) = h� (!
0) if G� (!) =

G� (!
0); in this perspective h (!) is the element (h0 (!) ; h1 (!) ; :::; hT (!)) 2 XT for any given !.

For all � 2 [0; 1], and all h; h0 2 H we set

(�h+ (1� �)h0) (t; !) � �h (t; !) + (1� �)h0 (t; !) 8 (t; !) 2 T � 
:
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If the values of an act y 2 H depend only on time but not on state, that is, for every �xed t

y (t; !) = y (t; !0) = yt 8!; !0 2 
;

with a little abuse we write y = (y0; y1; :::; yT ) 2 XT . Moreover, if y0 = y1 = :::: = yT = x 2 X,
the act is called constant and, with another little abuse, we denote it by x.

Example 5 Suppose as in Example 1 that 
 = f0; 1gT . A consumption process h = (h0; h1; :::; hT )
is such that:

h0 (!) = h0 (!
0) ; 8!; !0 2 
;

h1 (!) = h1 (!
0) ; 8!; !0 2 
 with !1 = !01;

� � �
ht (!) = ht (!

0) ; 8!; !0 2 
 with (!1; :::; !t) = (!01; :::; !
0
t) ;

� � �

In other words, h0 is a constant, h1 only depends on the �rst observation, and ht only depends on

the �rst t observations. N

2.3 Notation

We close by introducing some notation, which is usually a bit heavy in dynamic settings. If

p 2 �(
), we denote by pjGt its restriction to the algebra generated by Gt, and by p (� jGt ) the
conditional probability given Gt.4 As we already observed, the conditional probabilities p (� jGt )
are called predictive distributions.

For all t 2 T , �(
;Gt) denotes the set of all probabilities on the algebra A (Gt) generated by
Gt; i.e., �(
;Gt) =

�
pjGt : p 2 �(
)

	
. In particular, �(
;GT ) = � (
).

For each E 2 A (Gt), we set

�(E;Gt) � fp 2 �(
;Gt) j p (E) = 1g

�++ (E;Gt) �
(
p 2 �(
;Gt)

����� p (G) > 0 8G 2 Gt : G � E

p (G) = 0 8G 2 Gt : G * E

)
:

Denoting by supp p the support f! 2 
 : p (!) > 0g of p 2 �(
), for each subset E of 
 we have:

�(E) = fp 2 �(
) : supp p � Eg and �++ (E) = fp 2 �(
) : supp p = Eg :

In particular, �(Gt (!)) is the set of all predictive distributions that can be obtained by condi-

tioning on Gt (!) from probabilities p 2 �(
) such that p (Gt (!)) > 0, while �++ (Gt (!)) is the
subset of �(Gt (!)) derived under the further condition that p 2 �(
) be such that p (!0) > 0 for
all !0 2 Gt (!).
Similarly, for each E 2 A (Gt) we have

�(E;Gt) =
�
pjGt : p 2 �(E)

	
and �++ (E;Gt) =

�
pjGt : p 2 �++ (E)

	
.

If the vector space of all measures on A (Gt) ' RGt is endowed with the product topology, then
�++ (E;Gt) is the relative interior of the convex set �(E;Gt) (see Rockafellar [18], to which we
refer for the Convex Analysis terminology and notation).

4Notice that for all ! 2 
 with p (Gt (!)) 6= 0, p (� jGt ) (!) = pGt(!).
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3 Axioms

Let the binary relations %t;! on H represent the agent�s preferences at any time-state node. Next

are stated several properties (axioms) of the preference relation, which will be used in the sequel.

Axiom 1 (Conditional preference� CP) For each (t; !) 2 T � 
:

(i) %t;! coincides with %t;!0 if Gt (!) = Gt (!
0) :

(ii) If h (� ; !0) = h0 (� ; !0) for all � � t and !0 2 Gt (!), then h �t;! h0.

(i) says that preferences orderings are �adapted�and allows to write %t;G if G 2 Gt. (ii) states
that at time t in event G only �continuation acts�matter for choice.

Axiom 2 (Variational preferences� VP) For each (t; !) 2 T � 
:

(i) %t;! is complete and transitive.

(ii) For all h; h0 2 H and y; y0 2 XT , and for all � 2 (0; 1), if �h+ (1� �)y %t;! �h0 + (1� �)y
then �h+ (1� �)y0 %t;! �h0 + (1� �)y0.

(iii) For all h; h0; h00 2 H, the sets f� 2 [0; 1] : �h + (1 � �)h0 %t;! h00g and f� 2 [0; 1] : h00 %t;!
�h+ (1� �)h0g are closed.

(iv) For all h; h0 2 H, if (h0 (!0) ; h1 (!0) ; :::; hT (!0)) %t;! (h00 (!0) ; h01 (!0) ; :::; h0T (!0)) for all
!0 2 
, then h %t;! h0.

(v) For all h; h0 2 H, if h �t;! h0, then �h+ (1� �)h0 %t;! h for all � 2 (0; 1).

The requirement here is that at every time-state node the agent has variational preferences, see

Maccheroni, Marinacci, and Rustichini [14] for a discussion of (i)-(v).

Axiom 3 (Risk preference� RP) Let y; y0 2 XT :

(i) For each (t; !) 2 T � 
, if y� %t;! y0� for all � 2 T , then y %t;! y0.

(ii) For all x; x0; x00; x000 2 X, if�
y�f�;�+1g; x; x

0� %t;! �y�f�;�+1g; x00; x000�
holds for some (t; !) 2 T � 
 and some � � t, then it holds for all (t; !) 2 T � 
 and all
� � t.5

(iii) For each (t; !) 2 T �
 there exist x �t;! x0 in X such that for all � 2 (0; 1) there is x00 2 X
satisfying either x0 �t;! �x00 + (1� �)x or �x00 + (1� �)x0 �t;! x.

(i) and (ii) are standard monotonicity and stationarity axioms, while (iii) requires that the

agent�s utility over consumption is unbounded (either below, or above, or both).

Axiom 4 (Dynamic consistency� DC) For each (t; !) 2 T �
 with t < T , and all h; h0 2 H,
if h� = h0� for all � � t and h %t+1;!0 h0 for all !0 2 
, then h %t;! h0.

5Notation:
�
y�f�;�+1g; x; x

0� � (y0; :::; y��1; x; x0; y�+2; :::; yT ) if � < T and (y0; :::; yT�1; x) otherwise.
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As Epstein and Schneider [5, p. 6] observe �According to the hypothesis, h and h0 are identical

for times up to t, while h is ranked (weakly) better in every state at t + 1. �Therefore�, it should

be ranked better also at (t; !). A stronger and more customary version of the axiom would require

the same conclusion given the weaker hypothesis that

ht (!) = h0t (!) and h %t+1;!0 h0 for all !0 2 Gt (!) :

In fact, given CP, the two versions are equivalent.� We refer to [5] for a discussion of dynamic

consistency.6

A state !00 2 
 is %t;!-null if

h (� 0; !0) = h0 (� 0; !0) for all � 0 2 T and all !0 6= !00 implies h �t;! h0:

Axiom 5 (Full support� FS) No state in 
 is %0;
-null.

4 The Representation

We �rst extend to the current dynamic setting the notion of ambiguity index c we used in the static

setting of [14]. A dynamic ambiguity index is a family fctgt2T of functions ct : 
��(
)! [0;1]
such that for all t 2 T :

(i) ct (�; p) : 
! [0;1] is Gt-measurable for all p 2 �(
),7

(ii) ct (!; �) : � (
)! [0;1] is grounded, closed and convex, with dom ct (!; �) � �(Gt (!)) and
dom ct (!; �) \�++ (Gt (!)) 6= ?, for all ! 2 
.

Observe that the e¤ective domains of the ct (!; �) consist of predictive distributions, that is, of
the conditional probabilities on the nodes Gt (!). In the terminology more used in the MP model,

we would call them the Bayesian updates of the original priors p 2 �(
).

In our �rst result we characterize a dynamic version of variational preferences that do not

necessarily satisfy dynamic consistency. Notice that in (9) we consider �++ (
) in order to have

well de�ned conditional probabilities pGt(!).

Proposition 1 The following statements are equivalent:

(a) f%t;!g satisfy CP, VP, RP, and for each (t; !) 2 T � 
 no state in Gt (!) is %t;!-null.

(b) There exist a scalar � > 0, an unbounded a¢ ne function u : X ! R, and a dynamic
ambiguity index fctg such that, for each (t; !) 2 T � 
, %t;! is represented by

Vt (!; h) = inf
p2�++(
)

0@Z X
��t

���tu (h� ) dpGt(!) + ct
�
!; pGt(!)

�1A 8h 2 H: (9)

Moreover,
�
�0; u0; fc0tg

�
represent %t;! in the sense of (9) if and only if �0 = �, u0 = au+ b for

some a > 0 and b 2 R, and fc0tg = factg.

As a result, for all t 2 T and all h 2 H, the preference functional Vt (�; h) is a Gt-measurable
random variable

Vt (h) = inf
p2�++(
)

0@Ep
0@X
��t

���tu (h� ) jGt

1A+ ct (p jGt )
1A :

6 Inspection of our proofs shows that the weaker version of DC in which % is replaced by � is enough to obtain
the results of the following section.

7Equivalently, ct (!; �) = ct (!0; �) for all !; !0 2 
 such that Gt (!) = Gt (!0).
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We call dynamic variational preferences the (families of) preferences satisfying CP, VP, RP, and

such that no state in Gt (!) is %t;!-null. It is natural to wonder what restriction on the dynamic
ambiguity index would characterize the dynamic variational preferences that satisfy dynamic con-

sistency. This condition, which we have called the �no-gain condition�in the Introduction, is given

in the next theorem, which is the main result of the paper.

Theorem 1 The following statements are equivalent:

(a) f%t;!g satisfy CP, VP, RP, FS, and DC.

(b) There exist a scalar � > 0, an unbounded a¢ ne function u : X ! R, and a dynamic
ambiguity index fctg such that, for each (t; !) 2 T � 
, %t;! is represented by

Vt (!; h) = inf
p2�++(
)

0@Z X
��t

���tu (h� ) dpGt(!) + ct
�
!; pGt(!)

�1A 8h 2 H; (10)

and

ct (!; q) = �
X

G2Gt+1
q(G)>0

q(G)ct+1(G; qG) + min
fp2�(Gt(!)):pjGt+1=qjGt+1g

ct(!; p); (11)

for all q 2 �(Gt (!)) and all t < T .

Moreover,
�
�0; u0; fc0tg

�
represent %t;! in the sense of (10) if and only if �0 = �, u0 = au + b

for some a > 0 and b 2 R, and fc0tg = factg.

Therefore, dynamic variational preferences satisfy dynamic consistency if and only if their

dynamic ambiguity index has the recursive structure (11), that is, if and only if they satisfy the

no-gain condition and updating is done according to Bayes�Rule.

In turn, (11) delivers the recursive representation

Vt (!; h) = u (ht (!)) + min
r2�(
;Gt+1)

�
�

Z
Vt+1 (h) dr + 
t (!; r)

�
(12)

of the agent�s preference functional Vt, where


t (!; r) = min
fp2�(Gt(!)):pjGt+1=rg

ct(!; p) 8r 2 �(
;Gt+1) ; (13)

(see Lemma 6 in the Appendix).

In view of all this, we call recursive variational preferences the dynamic variational preferences

satisfying dynamic consistency, and we call recursive ambiguity indexes their dynamic ambiguity

indexes, that is, the dynamic indexes satisfying the no-gain condition (11).

Recall from the Introduction that the recursive formula (11) has a transparent interpretation

under the game against Nature interpretation of our setting, in which fctg is a dynamic cost for
the Nature. In fact, (11) suggests that the cost for Nature of choosing q at time t in state ! can

be decomposed as the sum of: the discounted expected cost of choosing q�s conditionals at time

t + 1,8 plus the cost 
t
�
!; qjGt+1

�
of inducing qjGt+1 as one period ahead marginal. By (11) and

(12), both Nature�s costs and agent�s preferences are recursive.

After completion of an earlier version of this paper, we learned of independent work by Detlefsen

and Scandolo [1], who arrive at a condition related to (11) in studying conditions for the time

consistency of risk measures.
8 In fact, X

G2Gt+1
q(G)>0

q(G)ct+1(G; qG) =

Z
ct+1 (q jGt+1 ) dq:
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4.1 Going Backward

A main advantage of the recursive structure of the no-gain condition (11) is that it makes it

possible to construct by backward induction recursive dynamic indexes, and so recursive variational

preferences via (12) and (13).

The next result provides the key ingredient for the desired backward induction construction

Proposition 2 Let fctg be a dynamic ambiguity index. For all t < T and ! 2 
, set9


t (!; r) � min
fp2�(Gt(!)):pjGt+1=rg

ct(!; p) 8r 2 �(
;Gt+1) :

The family f
tgt<T of functions 
t : 
��(
;Gt+1)! [0;1] is such that for all t < T :

(i) 
t (�; r) : 
! [0;1] is Gt-measurable for all r 2 �(
;Gt+1).

(ii) 
t (!; �) : � (
;Gt+1)! [0;1] is grounded, closed and convex, with dom 
t (!; �) � �(Gt (!) ;Gt+1)
and dom 
t (!; �) \�++ (Gt (!) ;Gt+1) 6= ?, for all ! 2 
.

The index 
t (!; r) can be interpreted as the cost for Nature of inducing r as one period ahead

marginal, as suggested by (12) and (13). Since the properties of 
t (!; �) on �(
;Gt+1) are analo-
gous to those of a static (or dynamic) ambiguity index on the set of the agent�s subjective beliefs,

we call one-period-ahead ambiguity index a family f~
tgt<T of functions that satis�es conditions (i)
and (ii) of Proposition 2.

Next we characterize recursive ambiguity indexes by means of one-period-ahead ones, thus

giving the desired backward induction construction of recursive ambiguity indexes. Here �C is the

indicator function de�ned in (3) and, given ! 2 
, d! is the Dirac probability assigning mass 1 to
!.

Theorem 2 The following statements are equivalent.

(a) fctg is a recursive ambiguity index.

(b) There exist � > 0 and a one period ahead ambiguity index f
tg such that, for all ! 2 
,

cT (!; p) = �fd!g, and

ct (!; q) =

8<: �
P
G2Gt+1
q(G)>0

q(G)ct+1(G; qG) + 
t
�
!; qjGt+1

�
8q 2 �(Gt (!))

1 8q 2 �(
) n�(Gt (!)) :

The important implication is (b)) (a), which allows to construct any recursive ambiguity index

by backward induction: it su¢ ces to specify at any non-terminal node G = Gt (!) a grounded,

closed and convex function 
G on the set of all probabilities on the branches springing from G.

This decomposition of cost functions in one-period-ahead components is a key feature of our

derivation. The next example illustrates this feature by showing what happens in a binomial tree

if we take at each non-terminal node the Gini index � (pkq) (see (18) below) as one-period-ahead
ambiguity index.

Example 6 Consider Example 1 with T = 2, that is, 
 = f0; 1g2. We have:

G1 = ff0g ; f1gg and G2 = ff0; 0g ; f0; 1g ; f1; 0g ; f1; 1gg ;
9Here we adopt the convention that the minimum over the empty set is 1.
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where f0g = f(0; 0) ; (0; 1)g and f1g = f(1; 0) ; (1; 1)g. Hence,

�(
;G1) = f(r; 1� r) : r 2 [0; 1]g ;
�(f0g ;G2) = � (f0g) = f(r; 1� r) : r 2 [0; 1]g ;
�(f1g ;G2) = � (f1g) = f(r; 1� r) : r 2 [0; 1]g ;

and �(
;G2) = � (
). Let q 2 �(
) be the uniform distribution with q (!) = 1=4 for all ! 2 
,
and set ' (�) � 2�2 + 2 (1� �)2 � 1 for each � 2 [0; 1]. De�ne


0 (
; p) = �
�
pkqjG1

�
= ' (p (0)) 8p 2 �(
;G1) ;


1 (f0g ; p) = �
�
pkqf0g

�
=

(
' (p (0; 0)) if p 2 �(f0g) ,
1 otherwise,

and


1 (f1g ; p) = �
�
pkqf1g

�
=

(
' (p (1; 0)) if p 2 �(f1g) ,
1 otherwise,

By Theorem 2, using these one period ahead ambiguity indexes we can construct a recursive

dynamic index, given by:

c1 (f0g ; p) � 
1 (f0g ; p) ;

c1 (f1g ; p) � 
1 (f1g ; p) ;

and,

c0 (
; p) � �
�
p (f0g) c1

�
f0g ; pf0g

�
+ p (f1g) c1

�
f1g ; pf1g

��
+ 
0

�

; pjff0g;f1gg

�
= �

�
(p00 + p01)'

�
p00

p00 + p01

�
+ (p10 + p11)'

�
p10

p10 + p11

��
+ ' (p00 + p01) ;

where we set pij = p (i; j) for i; j 2 f0; 1g and we adopt the convention 0' (0=0) = 0. N

5 Special Cases

5.1 Multiple Prior Preferences

We now show that Epstein and Schneider [5]�s characterization of dynamic MP preferences is a

special case of ours, modulo some minor di¤erences in assumptions (they do not assume unbound-

edness and assume a slightly stronger version of dynamic consistency).

MP preferences are the special class of variational preferences satisfying the certainty indepen-

dence condition of Gilboa and Schmeidler [7]. In the present dynamic setting, this amounts to

consider:

MP(ii) For all h; h0 2 H, y 2 XT , and � 2 (0; 1), h %t;! h0 if and only if �h + (1 � �)y %t;!
�h0 + (1� �)y,

which is a stronger version of VP(ii) (in [14] we discuss the di¤erent behavioral implications of

these two axioms).

Under the stronger MP(ii), the ambiguity index ct (!; �) becomes an indicator function, and the
no-gain condition (11) coincides with rectangularity, which is the condition that [5] have used to

characterize recursive MP preferences.

Corollary 1 Let f%t;!g be a family of dynamic variational preferences. The following statements
are equivalent:

13



(a) f%t;!g satisfy MP(ii).

(b) For every t and !, there exists a closed and convex subset Ct (!) of �(
) such that ct (!; �) =
�Ct(!) (�).

In this case, condition (11) is equivalent to

Ct (!) =

8<: X
G2Gt+1

pGr (G) : pG 2 Ct+1 (G) 8G 2 Gt+1 and r 2 Ct (!)jGt+1

9=; ; (14)

for all ! 2 
 and t < T , where Ct+1 (G) = Ct+1 (!
0) for all !0 2 G, and Ct (!)jGt+1 is the set of

restrictions to the algebra generated by Gt+1 of the probabilities in Ct (!).

5.2 Multiplier Preferences

Given p; q 2 �(
), the relative entropy (or Kullback-Leibler distance) of p w.r.t. q is

R (pkq) =

8<:
P
!2
 p (!) log

p (!)

q (!)
if p� q,

1 otherwise,

with the convention 0 ln (0=a) = 0 for all a � 0. Analogously, if p; q 2 �(
;G), where G is a
partition of 
, the relative entropy of p w.r.t. q on G is

RG (pkq) =

8<:
P
G2G p (G) log

p (G)

q (G)
if p� q,

1 otherwise,

again with the convention 0 ln (0=a) = 0 for all a � 0.

Given a reference probabilistic model q 2 �++ (
), we call dynamic multiplier preferences the
family of preferences on H represented for every t and ! by

Vt (!; h) � inf
p2�++(
)

0@Z X
��t

���tu (h� ) dpGt(!) + ��
�tR

�
pGt(!)kqGt(!)

�1A 8h 2 H: (15)

The name is inspired by the robust control approach of Hansen and Sargent [9].10 They

interpret � as a coe¢ cient of uncertainty aversion, an interpretation we formalize and discuss in

[14]. Observe that by standard results (see [3]) we can equivalently write (15) as:

Vt (!; h) = ����t log
�Z

e�
1
�

P
��t �

�u(h� )dqGt(!)

�
;

a formula useful in calculations.

Next we show that multiplier preferences are recursive variational preferences and their ambi-

guity index is

ct (!; p) � ���tR
�
pGt(!)kqGt(!)

�
(16)

for all t 2 T , ! 2 
, and p 2 �(
).
10Clearly, these preferences are represented also by the functional

�tVt (!; h) = inf
p2�++(
)

0@Z X
��t

��u (h� ) dpGt(!) + �R
�
pGt(!)kqGt(!)

�1A :
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Theorem 3 For all q 2 �++ (
), � > 0, unbounded a¢ ne u : X ! R, and � > 0, the dynamic

multiplier preferences represented by (15) are recursive variational preferences with ambiguity index

given by (16). In particular,

Vt (!; h) = u (ht (!)) + min
r2�(
;Gt+1)

�
�

Z
Vt+1 (h) dr + ��

�tRGt+1

�
rk
�
qGt(!)

�
jGt+1

��
; (17)

for each h 2 H, ! 2 
, and t < T .

The recursive formulation (17) is especially important because it makes it possible to use stan-

dard dynamic programming tools in studying optimization problems involving dynamic multiplier

preferences. This class of dynamic variational preferences is therefore very tractable, something

important for applications.

Finally, the recursive structure of another (continuous time) version of a robust control prefer-

ence functional is studied by Skiadas [20].

5.3 Mean Variance Preferences

We conclude by observing that Theorem 3 does not hold when we replace the relative entropy

with a general convex statistical distance (see [13]). For example, consider the relative Gini index

(often called �2-distance)

� (pkq) �

8><>:
P
!2


(p (!))
2

q (!)
� 1 if p� q,

1 otherwise.
(18)

In [14] and [16] we show that �� (pkq) is the ambiguity index associated with the classic mean-
variance preferences. For example, on the domain of monotonicity of such preferences we have:Z

fdq � 1

2�
Var (f) = min

p2�(q)

�Z
fdp+ �� (pkq)

�
,

where q 2 �++ (
) is again a reference probability.
It is easily seen that the dynamic ambiguity index given by

ct (!; p) � ���t�
�
pGt(!)kqGt(!)

�
is not recursive, and so the dynamic variational preferences represented by

Vt (!; h) � inf
p2�++(
)

0@Z X
��t

���tu (h� ) dpGt(!) + ��
�t�

�
pGt(!)kqGt(!)

�1A
are not dynamically consistent.

6 Conclusions

Ambiguity adverse behavior is pervasive, and the theory of ambiguity aversion has found applica-

tions in macroeconomics, �nance, even political analysis. The extension of the standard theory to

include this phenomenon has made possible a rigorous and convincing analysis.

A widely accepted theory has been so far the theory of multiple priors of [7]. Di¤erent ap-

proaches, mostly found under the name of robust preferences, have made desirable an extension

of this theory to include a larger class of behaviors. The extension, in the static case, has been

provided by the theory of variational preferences introduced by [14]. This is, however, a theory

of static choice, while most of the applications we have mentioned are in dynamic environments:
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hence, a further extension to the intertemporal problem is desirable. This paper has provided such

a theory.

The paper has four main results. The �rst, Proposition 1, characterizes the intertemporal

preferences that have a variational representation, the so-called dynamic variational preferences

(intuitively, variational decision makers can be viewed as making their choices �as if� they think

to face a malevolent opponent, which we call Nature).

The second result, Theorem 1, characterizes the dynamic preferences that are time consistent.

In particular, a variational decision maker is dynamically consistent if and only if he thinks that

Nature as well is dynamically consistent.

The third result, Theorem 2, provides a decomposition of the cost function into one step ahead

costs, paid by Nature in every period. This decomposition makes it possible the use of recursive

analysis in studying the dynamic choice problem of a decision maker with variational preferences.

The fourth and �nal result, Theorem 3, is an application of Theorem 1 and it shows that the

widely used multiplier preferences introduced by Hansen and Sargent are dynamically consistent.

In contrast, we observe that mean variance preferences are not.

We close by observing that, though in the paper we assumed both 
 and T �nite, we expect

that the extension to the in�nite case can be carried out in standard ways.
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A Proofs and Related Material

A.1 Convex Analysis Preliminaries

An important tool for the proofs is Convex Analysis. Here we report some basic de�nitions and

properties, for details we refer the reader to the classic Rockafellar [18] or Hiriart-Urruty and

Lemaréchal [12].

Let K be a non-empty subset of a �nite dimensional euclidean space E, and f a function

f : K ! (�1;1]:

� f1 is the extension of f to E de�ned by f1 (e) � 1 if e =2 K;

� the e¤ective domain of f is the set dom f � fe 2 K : f (e) <1g (dom f = dom f1);

� if K is convex, f is convex if for all e; �e 2 E and all � 2 (0; 1), f (�e+ (1� �) �e) � �f (e) +

(1� �) f (�e) (i¤ f1 is convex);

� f is proper if it is not identically1 and there is an a¢ ne function minorizing f on K (i¤ f1
is proper);11

� the set of all proper convex functions on a convex set K is denoted by ConvK;

� f is grounded if infe2K f (e) = 0 (i¤ f1 is grounded);12

� f is closed (or l.s.c.) if for all t 2 R the (possibly empty) set fe 2 K : f (e) � tg is closed in
E for every t 2 R (i¤ f1 is closed);13

� the set of all proper, closed and convex functions on K is denoted by ConvK;

� the convex conjugate of a proper f is the function f� : E ! (�1;1]

f� (e0) = sup
e2K

(he; e0i � f (e))

for all e0 2 E (f� = (f1)
�);

� the closed and convex hull of a proper f is the function co f : E ! (�1;1] de�ned for all
e 2 E by

(co f) (e) � sup fhe; e0i � b : e0 2 E; b 2 R; he�; e0i � b � f (e�) 8e� 2 Kg ;

that is, the supremum of all a¢ ne functions that minorize f on K (co f = co (f1));

� if K is convex, the relative interior of K, denoted by riK is the interior of K in the relative

euclidean topology of the set

a�K �
(

nX
i=1

�iei : n 2 N; e1; :::; en 2 K;�1; :::; �n 2 R;
nX
i=1

�i = 1

)
.

A function j : K ! [�1;1) is concave if �j is convex. Its e¤ective domain is the set

fe 2 K : j (e) > �1g.

Lemma 1 Let f 2 ConvE, K 0 � E and g : K 0 ! [�1;1]. The following statements are

equivalent:

11 If f is bounded below or K and f are convex, the second requirement is automatically satis�ed, see [12, IV.1.2.1].
12 Indeed, infe2K f (e) = infe2E f1 (e).
13 Indeed, fe 2 K : f (e) � tg = fe 2 E : f1 (e) � tg for all t 2 R. If K is closed in E, it is enough to require that

fe 2 K : f (e) � tg is closed in K.

17



(a) f (e) = supe02K0 (he; e0i � g (e0)) for all e 2 E.

(b) g : K 0 ! (�1;1] is proper and co g = f�.

Proof. (a)) (b). If g (e�) = �1 for some e� 2 K 0, then f (e) =1 for all e 2 E, which is absurd.
Then g : K 0 ! (�1;1]. For all e 2 E, and e0 2 K 0,

f (e) � he; e0i � g (e0) and g (e0) � he; e0i � f (e) :

Choosing �e 2 dom f , the a¢ ne function h�e; �i � f (�e) minorizes g on K 0. Moreover, if g were

identically 1, f would be identically �1, which is absurd. We conclude that g : K 0 ! (�1;1]
is proper. By [12, X.1.3.5], co (g1) = (g1)

��. Notice that

(g1)
�
(e) = g� (e) = f (e) 8e 2 E;

hence f = (g1)
�, and f� = (g1)

��
= co (g1) = co (g).

(b) ) (a). f� = co g = co (g1) = (g1)
��, hence f = f�� = (g1)

���
= (g1)

�
= g�: �

In particular, if j : E ! (�1;1) is concave (and hence continuous) and

j (e) = inf
e02K0

(he; e0i+ g (e0)) 8e 2 E;

then, setting f (e) = �j (�e) for all e 2 E, f 2 ConvE and

f (e) = � inf
e02K0

(h�e; e0i+ g (e0)) = sup
e02K0

(he; e0i � g (e0))

therefore

co (g) (e0) = f� (e0) = sup
e2E

(he; e0i � f (e)) = sup
e2E

(h�e; e0i � f (�e))

= sup
e2E

(h�e; e0i+ j (e)) = � inf
e2E

(he; e0i � j (e)) = �j� (e0) ;

where j� is the concave conjugate of j.

Lemma 2 If K is a convex compact subset of E, and f 2 ConvK, then

inf
e2riK

f (e) = min
e2K

f (e)

if and only if riK \ dom f 6= ?.

Proof. Notice that by the Weierstrass Theorem f attains its �nite minimum in K. If there exists

�e 2 riK \ dom f , let e� 2 argmine2K f (e). By [18, Thm. 6.1], (1� �) �e + �e� 2 riK for all

� 2 (0; 1) and by [18, Cor. 7.5.1]

min
e2K

f (e) = f (e�) = lim
�"1

f ((1� �) �e+ �e�) � inf
e2riK

f (e) � min
e2K

f (e) :

Conversely, if infe2riK f (e) = mine2K f (e), it cannot be f (e) =1 for all e 2 riK. It follows that
riK \ dom f 6= ?. �

Notice that riK \ dom f 6= ? if and only if infe2riK f (e) <1.

Finally, let E = R
, K be a non-empty subset of E, and f a function f : K ! (�1;1):

� for every A � 
, 1A is the vector de�ned by 1A (!) � 1 if ! 2 A, 1A (!) � 0 if ! =2 A;14

14With a little abuse, we sometimes write b instead of b1
 if b 2 R.
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� f is normalized if f (b1
) = b for all b 2 R such that b1
 2 K;

� f is a niveloid if f (e)� f (�e) � sup!2
 (e (!)� �e (!)) for all e; �e 2 K.

Niveloids are comprehensively studied in Dolecki and Greco [2] and Maccheroni, Marinacci,

and Rustichini [15]. When H 2 fR;R+;R++;R�;R��g and K = H
, f is a niveloid if and only if

� f is monotonic, that is f (e) � f (�e) for all e; �e 2 H
 such that e � �e, and

� f is vertically invariant, that is f (e+ b) = f (e) + b for all e 2 H
 and b 2 H.

A.2 Some Important Lemmas

Lemma 3 The following statements are equivalent:

(a) f%t;!g satisfy CP, VP, and RP.

(b) There exists a family fct (!; �) : (t; !) 2 T � 
g of grounded, closed and convex functions
ct (!; �) : � (
) ! [0;1], such that dom ct (!; �) � �(Gt (!)) and ct (!; �) = ct (!

0; �) if
Gt (!) = Gt (!

0), � > 0, and an unbounded a¢ ne u : X ! R such that: for every t and !,
%t;! is represented by Vt (!; �), where

Vt (!; h) = min
p2�(
)

0@Z X
��t

���tu (h� ) dp+ ct (!; p)

1A 8h 2 H: (19)

Moreover,
�
��; �u; f�ct (!; �)g

�
represent %t;! in the sense of Eq. (19) i¤ �� = �, �u = au + b for

some a > 0 and b 2 R and f�ct (!; �)g = fact (!; �)g.
Finally, if jGt (!)j > 1, the following facts are equivalent:

(i) for all h 2 H

Vt (!; h) = inf
p2ri�(Gt(!))

0@Z X
��t

���tu (h� ) dp+ ct (!; p)

1A ; (20)

(ii) no state in Gt (!) is %t;!-null;

(iii) dom ct (!; �) \ ri� (Gt (!)) 6= ?.

Notice that:

� if jGt (!)j = 1, Gt (!) is a singleton f!g and both Eq. (19) and Eq. (20) collapse to

Vt (!; h) =
X
��t

���tu (h� (!)) ;

and (iii) is automatically satis�ed.

� Eq. (19) can be rewritten as

Vt (!; h) = min
p2�(Gt(!))

0@Z X
��t

���tu (h� ) dp+ ct (!; p)

1A : (21)
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Proof. We indi¤erently write ct (!; �) or ct;! and Vt (!; �) or Vt;!.
(a) ) (b). Assume that f%t;!g satisfy CP, VP, and RP.

Step 1. There exist � > 0 and an unbounded a¢ ne u : X ! R such that, for all (t; !) 2 T � 
,
%t;! on XT is represented by

Ut (y) �
X
��t

���tu (y� ) 8y 2 XT :

Details. Arbitrarily choose (t; !) 2 T � 
. Notice that, XT can be regarded as a set of acts y :

T ! X, and �by VP and RP �%t;! on XT satis�es the SEU axioms of Anscombe and Aumann.15

Therefore, there exists an a¢ ne function u(t;!) : X ! R and �(t;!) =
�
�
(t;!)
0 ; :::; �

(t;!)
T

�
2 �(T ),

such that %t;! on XT is represented by

~Ut;! (y) �
TX
�=0

�(t;!)� u(t;!) (y� ) 8y 2 XT ; (22)

u(t;!) is unbounded and it represents %t;! on X, �(t;!) is unique. If �(t;!)� 0 6= 0 for some � 0 < t, let

x �t;! x0 and arbitrarily choose y 2 XT . By CP(ii)

(y�� 0 ; x) �t;! (y�� 0 ; x0) ;

hence X
� 6=� 0

�(t;!)� u(t;!) (y� ) + �
(t;!)
� 0 u(t;!) (x) =

X
� 6=� 0

�(t;!)� u(t;!) (y� ) + �
(t;!)
� 0 u(t;!) (x0) ;

this is absurd since u(t;!) (x) > u(t;!) (x0). Eq. (22) then becomes

~Ut;! (y) =
X
��t

�(t;!)� u(t;!) (y� ) 8y 2 XT : (23)

Again RP, (see [5, p. 23]) implies that there exists � > 0 and an a¢ ne u : X ! R such that for

all (t; !)

Ut;! (y) �
X
��t

���tu (y� ) 8y 2 XT (24)

is a positive a¢ ne transformation of ~Ut;!. Since the above functional does not depend on ! we

can just write Ut. Unboundedness of u descends again by RP(iii). �

Step 2. W.l.o.g. u (X) 2 fR;R+;R++;R�;R��g.

Details. Since u is unbounded, there exists b 2 R that, setting ub � u + b, delivers ub (X) =

u (X) + b 2 fR;R+;R++;R�;R��g. Then for each t and y; y0 2 XT ,

y %t y0 ,
X
��t

���tu (y� ) �
X
��t

���tu (y� )

,
X
��t

���tu (y� ) +
X
��t

���tb �
X
��t

���tu (y� ) +
X
��t

���tb

,
X
��t

���tub (y� ) �
X
��t

���tub (y� ) :

�
15More precisely, axioms VP(i), VP(ii), VP(iii), RP(i), and RP(iii), when restricted to XT , deliver SEU with

unbounded utility.
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Step 3. For all (t; !) 2 T � 
, and all h 2 H there exists y = y (t; !; h) 2 XT (indeed constant)

such that y �t;! h.

Details. For all h 2 H, let x; x0 2 X be such that x %t;! h (� ; !0) %t;! x0 for all (� ; !0) 2 T � 
,
then, by RP(i)

(x; :::; x) %t;! (h (0; !0) ; :::; h (T; !0)) %t;! (x0; :::; x0) 8!0 2 
;

by VP(iv)

x %t;! h %t;! x0;

by VP(iii) the sets f� 2 [0; 1] : �x + (1 � �)x0 %t;! hg and f� 2 [0; 1] : h %t;! �x + (1 � �)x0g
are closed; they are nonempty since 1 belongs to the �rst and 0 to the second; their union is the

whole [0; 1]. Since [0; 1] is connected, their intersection is not empty, hence there exists �� 2 [0; 1]
such that ��x+ (1� ��)x0 �t;! h. �

Step 4. For all (t; !) 2 T � 
, and h 2 H set

Vt;! (h) � Ut (y) if h �t;! y 2 XT :

Vt;! is well de�ned and it represents %t;! on H.

Details. Choose (t; !) 2 T � 
. For all h 2 H, h �t;! y and h �t;! y� with y; y� 2 XT implies

y �t;! y� and Ut (y) = Ut (y
�), then Vt;! is well de�ned. Let h �t;! y and h0 �t;! y0, then h %t;! h0

i¤ y %t;! y0 i¤ Ut (y) � Ut (y
0) i¤ Vt;! (h) � Vt;! (h

0). Therefore Vt;! represents %t;! on H. �

Step 5. Each h 2 H can be regarded as a function h : 
 ! XT , and Ut : XT ! R is an a¢ ne
function for every t 2 T . De�ne Ut (h) : 
! R by

Ut (h) (!
0) � Ut (h (!

0)) =
X
��t

���tu (h� (!
0)) 8!0 2 
;

that is, Ut (h) = Ut�h. Notice that, Ut (�h+ (1� �)h0) = �Ut (h)+(1� �)Ut (h0) for all h; h0 2 H
and � 2 [0; 1].

Details. For all !0 2 
,

Ut ((�h+ (1� �)h0)) (!0) =
X
��t

���tu (�h� (!
0) + (1� �)h0� (!0))

=
X
��t

���t [�u (h� (!
0)) + (1� �)u (h0� (!0))]

=
X
��t

�
���t�u (h� (!

0)) + ���t (1� �)u (h0� (!0))
�

= �
X
��t

���tu (h� (!
0)) + (1� �)

X
��t

���tu (h0� (!
0))

= �Ut (h) (!
0) + (1� �)Ut (h0) (!0) :

Also notice that, if y (� ; !0) = y� for all � 2 T and all !0 2 
, then

Ut (y) (!
0) =

X
��t

���tu (y� ) = Ut (y0; :::; yT ) 8!0 2 
;

that is, the identi�cation between acts with consequences depending only on time (and not on

state) and elements of XT corresponds here to the equivalence between constant functions on 


and real numbers. �

Step 6. For all t 2 T , fUt (h) : h 2 Hg = u (X)

.

Details. � is trivial.
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� If u (X) = R+. Let x0 2 X be an element such that u
�
x0
�
= 0. If  2 u (X)
, for all !0 2 


there exists x (!
0) 2 X such that u

�
x (!

0)
�
= �t�T (!0). Set

h (� ; !0) =

(
x0 if � < T

x (!
0) if � = T .

This delivers, for all !0 2 
:

Ut (h (!
0)) =

X
��t

���tu (h� (!
0)) = �T�tu

�
x (!

0)
�
=  (!0) :

� If u (X) = R++. If t = T take any x0 2 X and apply the technique just introduced.

Otherwise, notice that, if  2 u (X)

, there exists " > 0 such that  � " 2 u (X)


, choose

x" 2 X such that u (x") =
�P

T>��t �
��t
��1

". For all !0 2 
, there exists x (!
0) 2 X such

that u
�
x (!

0)
�
= �t�T ( (!0)� "). Set

h (� ; !0) =

(
x" if � < T

x (!
0) if � = T .

This delivers, for all !0 2 
:

Ut (h (!
0)) =

X
��t

���tu (h� (!
0)) =

X
T>��t

���tu (x") + �T�tu
�
x (!

0)
�

= u (x")

0@ X
T>��t

���t

1A+  (!0)� " =  (!0) :

The cases u (X) = R;R�;R�� are very similar. �

Step 7. Let (t; !) 2 T � 
. For all  2 u (X)
, set

It;! ( ) � Vt;! (h) if  = Ut (h) for some h 2 H:

It;! : u (X)

 ! R is well de�ned, monotonic, and normalized.

Details. Assume that  = Ut (h) = Ut (h
0) for h; h0 2 H. This means that, for all !0 2 
,X

��t
���tu (h� (!

0)) =
X
��t

���tu (h0� (!
0)) ;

then, for all !0 2 
,

(h0 (!
0) ; h1 (!

0) ; :::; hT (!
0)) �t;! (h00 (!0) ; h01 (!0) ; :::; h0T (!0)) :

By VP(iv), h �t;! h0 and Vt;! (h) = Vt;! (h
0). Then It;! is well de�ned since, by Step 5, for every

 2 u (X)
 there is h 2 H such that  = Ut (h).

Assume  ; 0 2 u (X)
,  �  0,  = Ut (h),  
0 = Ut (h

0). Then, for all !0 2 
,X
��t

���tu (h� (!
0)) �

X
��t

���tu (h0� (!
0)) ;

and, for all !0 2 
,

(h0 (!
0) ; h1 (!

0) ; :::; hT (!
0)) %t;! (h00 (!0) ; h01 (!0) ; :::; h0T (!0)) ;

by VP(iv), h %t;! h0 and Vt;! (h) � Vt;! (h
0). That is, It;! is monotonic.
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For all b 2 u (X), take xb 2 X such that u
�
xb
�
=
�P

��t �
��t
��1

b, and the constant act xb

to obtain

Ut
�
xb
�
(!0) =

X
��t

���tu
�
xb
�
= b 8!0 2 
;

then b1
 = Ut
�
xb
�
(where xb is regarded as a constant act) and

It;! (b1
) = Vt;!
�
xb
�
= Ut

�
xb; xb; :::; xb

�
= b:

This implies that It;! is normalized. �

Step 8. Let (t; !) 2 T � 
. For every  2 u (X)
 and for every b 2 R such that  + b 2 u (X)
,

It;! ( + b) = It;! ( ) + b:

Details. Let  0 = Ut (h
0) ;  00 = Ut (h

00) 2 u (X)

, b0 = Ut (x

0) ; b00 = Ut (x
00) 2 u (X), VP(ii)

guarantees that for all � 2 (0; 1)

�h0 + (1� �)x0 �t;! �h00 + (1� �)x0 ) �h0 + (1� �)x00 �t;! �h00 + (1� �)x00:

That is

Vt;! (�h
0 + (1� �)x0) = Vt;! (�h

00 + (1� �)x0)
) Vt;! (�h

0 + (1� �)x00) = Vt;! (�h
00 + (1� �)x00)

hence

It;! (Ut (�h
0 + (1� �)x0)) = It;! (Ut (�h

00 + (1� �)x0))
) It;! (Ut (�h

0 + (1� �)x00)) = It;! (Ut (�h
00 + (1� �)x00)) :

Therefore

It;!
�
� 0 + (1� �)b0

�
= It;!

�
� 00 + (1� �)b0

�
) It;!

�
� 0 + (1� �)b00

�
= It;!

�
� 00 + (1� �)b00

�
;

for all  0;  00 2 u (X)

, b0; b00 2 u (X), and � 2 (0; 1). Replacing  0 with  0

� 2 u (X)

,  00 with

 00

� 2 u (X)
, b0 with b0

1�� 2 u (X), b
00 with b00

1�� 2 u (X), we obtain

It;!
�
 0 + b0

�
= It;!

�
 00 + b0

�
) It;!

�
 0 + b00

�
= It;!

�
 00 + b00

�
; (25)

for all  0;  00 2 u (X)
, b0; b00 2 u (X).
Notice that for all  2 u (X)
, min!0  (!0) ;max!0  (!0) 2 u (X), since It;! is monotonic and

normalized,

It;! ( ) � It;!

�
min
!0

 (!0)
�
= min

!0
 (!0) 2 u (X) and

It;! ( ) � It;!

�
max
!0

 (!0)
�
= max

!0
 (!0) 2 u (X) , then

It;! ( ) 2 u (X) :

Assume u (X) � R++,  2 u (X)
 and b > 0, normalization and Eq. (25) guarantee

It;! ( ) = It;! (It;! ( ))

) It;! ( + b) = It;! (It;! ( ) + b) = It;! ( ) + b:
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If b < 0, then It;! ( ) = It;! (( + b)� b) = It;! ( + b) � b, as wanted. The case in which

u (X) � R�� is analogous. �

Step 9. Let (t; !) 2 T � 
. For every  ; 0 2 u (X)

 such that It;! ( ) = It;!

�
 0
�
, and every

� 2 (0; 1), It;!
�
� + (1� �) 0

�
� It;! ( ).

Details. Let  = Ut (h) ;  
0 = Ut (h

0) 2 u (X)
. Since It;! ( ) = It;!
�
 0
�
, then Vt;! (h) = Vt;! (h

0)

and, by VP(v), �h+ (1� �)h0 %t;! h, that is

It;!
�
� + (1� �) 0

�
= It;! (�Ut (h) + (1� �)Ut (h0)) = It;! (Ut (�h+ (1� �)h0))
= Vt;! (�h+ (1� �)h0) � Vt;! (h) = It;! ( ) :

�

Steps 6�8, and the results of Maccheroni, Marinacci, and Rustichini [15], imply that: For all

(t; !) 2 T �
, It;! is a concave and normalized niveloid on u (X)
. The restriction of its concave
conjugate to �(
),

I�t;! (p) � inf
 2u(X)


(h ; pi � It;! ( )) 8p 2 �(
) ;

is the unique concave and upper semicontinuous function I#t;! on �(
) such that

It;! ( ) = min
p2�(
)

�
h ; pi � I#t;! (p)

�
8 2 u (X)
 :

Moreover, there exists a unique niveloid Jt;! : R
 ! R extending It;!. It is de�ned by

Jt;! (') � It;! ('+ b)� b

if ' 2 R
 and b 2 R is such that ' + b 2 u (X)

. Jt;! is a normalized, concave niveloid and its

concave conjugate J�t;! coincides with I
�
t;! on �(
) and takes value �1 on R
n�(
), in particular

Jt;! (') = min
p2�(
)

�
h'; pi � I�t;! (p)

�
8' 2 R
:

Again, see [15] for details.

Clearly, by CP(i), we can assume It;! = It;!0 if Gt (!) = Gt (!
0) and set

ct;! (p) � �I�t;! (p) = �J�t;! (p)

for all p 2 �(
) and all (t; !) 2 T � 
. Then

� ct;! : � (
)! [0;1] is grounded, closed, and convex for all (t; !) 2 T � 
;

� ct;!0 = ct;! if Gt (!) = Gt (!
0);

� for all (t; !) 2 T � 
, %t;! is represented by

Vt;! (h) = It;! (Ut (h)) = Jt;! (Ut (h)) = min
p2�(
)

�
hUt (h) ; pi � I�t;! (p)

�
:

that is

Vt (!; h) = min
p2�(
)

0@X
!02


p (!0)
X
��t

���tu (h� (!
0)) + ct (!; p)

1A :

Step 10. Let (t; !) 2 T � 
. If '1; '2 2 R
 are such that '1jGt(!)
= '2jGt(!)

, then Jt;!
�
'1
�
=

Jt;!
�
'2
�
.

Details. Assume  1;  2 2 u (X)

 are such that  1jGt(!) =  2jGt(!). We show that It;!

�
 1
�
=

It;!
�
 2
�
.
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� If u (X) = R+. Let x0 2 X be an element such that u
�
x0
�
= 0. For all !0 2 
 and i = 1; 2,

there exists x 
i(!0) 2 X such that u

�
x 

i(!0)
�
= �t�T i (!0); also notice that if !0 2 Gt (!),

since  1 (!0) =  2 (!0), we can choose x 
1(!0) = x 

2(!0). Therefore the acts h1; h2 de�ned

by

hi (� ; !0) =

(
x0 if � < T

x 
i(!0) if � = T

are such that h1 (� ; !0) = h2 (� ; !0) for all � � t and !0 2 Gt (!), CP(ii) implies h1 �t;! h2

and

It;!
�
 1
�
= It;!

�
Ut
�
h1
��
= Vt;!

�
h1
�
= Vt;!

�
h2
�
= It;!

�
 2
�
:

� If u (X) = R++. If t = T take any x0 2 X and apply the technique just introduced.

Otherwise notice that there exists " > 0 such that  i � " 2 u (X)

 (for i = 1; 2), choose

x" 2 X such that u (x") =
�P

T>��t �
��t
��1

". For all !0 2 
 and i = 1; 2, there exists

x 
i(!0) 2 X such that u

�
x 

i(!0)
�
= �t�T

�
 i (!0)� "

�
; again notice that if !0 2 Gt (!),

since  1 (!0) =  2 (!0), we can choose x 
1(!0) = x 

2(!0). Therefore the acts h1; h2 de�ned

by

hi (� ; !0) =

(
x" if � < T

x 
i(!0) if � = T

are such that h1 (� ; !0) = h2 (� ; !0) for all � � t and !0 2 Gt (!), again CP(ii) implies

h1 �t;! h2 and

It;!
�
 1
�
= It;!

�
Ut
�
h1
��
= Vt;!

�
h1
�
= Vt;!

�
h2
�
= It;!

�
 2
�
:

� The cases u (X) = R;R�;R�� are very similar.

If '1; '2 2 R
 are such that '1jGt(!)
= '2jGt(!)

, take b 2 R such that '1 + b; '2 + b 2 u (X)
,
then

�
'1 + b

�
jGt(!)

=
�
'2 + b

�
jGt(!)

and

Jt;!
�
'1
�
= Jt;!

�
'1 + b� b

�
= It;!

�
'1 + b

�
� b = It;!

�
'2 + b

�
� b = Jt;!

�
'2
�
:

�

By Lemma 4, dom ct;! = dom J�t;! � �(Gt (!)). This concludes the proof of (a) ) (b).

(b) ) (a) is straightforward.

Step 11.
�
��; �u; f�ct;!g

�
represent %t;! in the sense of Eq. (19) i¤ �� = �, �u = au+ b for some a > 0

and b 2 R and f�ct;!g = fact;!g.

Details. Let �u � au+ b for some a > 0 and b 2 R and �c � ac, then

�Vt (!; h) � min
p2�(
)

0@Z X
��t

���t�u (h� ) dp+ �ct;! (p)

1A
= min

p2�(
)

0@Z X
��t

���t (au (h� ) + b) dp+ act;! (p)

1A
= a min

p2�(
)

0@Z X
��t

���tu (h� ) dp+ ct;! (p)

1A+ bX
��t

���t

= aVt (!; h) + b
X
��t

���t
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represents %t;! for all (t; !) 2 T � 
. Clearly, �u and �c have the required structural properties.
Conversely, assume there is another family of grounded, closed and convex functions �ct;! :

� (
) ! [0;1], such that dom �ct;! � �(Gt (!)) and �ct;! = �ct;!0 if Gt (!) = Gt (!
0), �� > 0, and

an unbounded a¢ ne �u : X ! R such that: for all (t; !) 2 T � 
, %t;! is represented by �Vt (!; �),
where

�Vt (!; h) � min
p2�(
)

0@Z X
��t

��
��t
�u (h� ) dp+ �ct;! (p)

1A 8h 2 H:

The function �Ut : XT ! R de�ned for all y 2 XT by

�Ut (y) � �Vt (!; y) =
X
��t

��
��t
�u (y� )

represents %t;! on XT for all (t; !) 2 T � 
. In particular, �U0 (x) = �u (x)
P
��0

��
�
represents %0

on X, since the same is true for U0 (x) = u (x)
P
��0 �

� , we conclude that there are a > 0 and

b 2 R such that
�u = au+ b:

Therefore,
�U0 (y) = a

X
��0

��
�
u (y� ) + b

X
��0

��
�

and

W0 (y) �
X
��0

��
�
u (y� )

also represents %0 on XT . Since U0 and W0 are a¢ ne on XT , there are �a > 0 and �b 2 R such that

W0 (y) = �aU0 (y) + �b (26)

for all y 2 XT . We restrict our attention to the case in which u (X) 3 0; 1, the remaining cases
being analogous. Let x0; x1 2 X be elements such that u

�
x0
�
= 0, u

�
x1
�
= 1. Denote by y00 the

constant element of XT de�ned by y00� = x0 for all � 2 T , and

y10 =
�
y00�f0g; x

1
�
;

y01 =
�
y00�f1g; x

1
�
:

Eq. (26) applied to y00; y10; y01 delivers

0 = �b; 1 = �a; �� = �:

Therefore, for all t 2 T ,

�Ut (y) = a
X
��t

���tu (y� ) + b
X
��t

���t;

�Ut (y) = aUt (y) + b
X
��t

���t;

Ut (y) =
�Ut (y)

a
� b

a

X
��t

���t;

for all y 2 XT . Setting k � 1
a and l � �

b
a

P
��t �

��t, k �Ut (y) + l = Ut (y).
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Let (t; !) 2 T � 
. For all ' 2 u (X)

 and h 2 H such that Ut (h) = ', let y �t;! h, and

conclude

It;! (') = Vt;! (h) = Ut (y) = k �Ut (y) + l = k �Vt;! (y) + l

= k �Vt;! (h) + l = k min
p2�(
)

�Z
�Ut (h) dp+ �ct;! (p)

�
+ l

= min
p2�(
)

�Z �
k �Ut (h) + l

�
dp+ k�ct;! (p)

�
= min

p2�(
)

�Z
Ut (h) dp+ k�ct;! (p)

�
= min

p2�(
)

�Z
'dp+

1

a
�ct;! (p)

�
;

whence, see [15],

�ct;! = act;!:

�

Step 12. Let (t; !) 2 T �
 be such that jGt (!)j > 1. A state !00 2 Gt (!) is %t;!-null if and only
if dom ct;! � �(Gt (!) n f!00g) :

Details. We show that if !00 2 Gt (!) is %t;!-null, then Jt;!
�
'1
�
= Jt;!

�
'2
�
for every '1; '2 2 R


such that '1jGt(!)nf!00g = '2jGt(!)nf!00g. By Lemma 4, dom ct;! = dom J�t;! � �(Gt (!) n f!00g).
Clearly, it is su¢ cient to show that for every  1;  2 2 u (X)
 such that  1jGt(!)nf!00g =  2jGt(!)nf!00g,

then It;!
�
 1
�
= It;!

�
 2
�
. In fact, take b 2 R such that '1+b; '2+b 2 u (X)
, then '1jGt(!)nf!00g =

'2jGt(!)nf!00g implies
�
'1 + b

�
jGt(!)nf!00g

=
�
'2 + b

�
jGt(!)nf!00g

and

Jt;!
�
'1
�
= Jt;!

�
'1 + b� b

�
= It;!

�
'1 + b

�
� b = It;!

�
'2 + b

�
� b = Jt;!

�
'2
�
:

Let u (X) = R+ and x0 2 X be an element such that u
�
x0
�
= 0. For all !0 2 
 and i = 1; 2, there

exists x 
i(!0) 2 X such that u

�
x 

i(!0)
�
= �t�T i (!0); also notice that if !0 2 Gt (!) n f!00g,

then, since  1 (!0) =  2 (!0), we can choose x 
1(!0) = x 

2(!0). For i = 1; 2 and (� ; !0) 2 T � 

set

hi (� ; !0) =

(
x0 if � < T

x 
i(!0) if � = T

and gi (� ; !0) =

8><>:
x0 if � < T

x 
i(!0) if � = T and !0 6= !00

x0 if � = T and !0 = !00
.

Since g1 (� ; !0) = g2 (� ; !0) for all � � t and !0 2 Gt (!), CP(ii) implies g1 �t;! g2, while %t;!-
nullity of !00 implies hi �t;! gi for i = 1; 2. Therefore, h1 �t;! h2, and

It;!
�
 1
�
= It;!

�
Ut
�
h1
��
= Vt;!

�
h1
�
= Vt;!

�
h2
�
= It;!

�
 2
�
:

The cases u (X) = R++;R;R�;R�� are very similar.
Conversely, if dom ct;! � �(Gt (!) n f!00g), then !00 2 
 is %t;!-null. In fact, assume
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h0 (� 0; !0) = h (� 0; !0) for all � 0 2 T and all !0 6= !00, then

Vt (!; h) = min
p2�(
)

0@Z X
��t

���tu (h� ) dp+ ct;! (p)

1A
= min

p2�(Gt(!)nf!00g)

0@ X
!02Gt(!)nf!00g

p (!0)
X
��t

���tu (h� (!
0)) + ct;! (p)

1A
= min

p2�(Gt(!)nf!00g)

0@ X
!02Gt(!)nf!00g

p (!0)
X
��t

���tu (h0� (!
0)) + ct;! (p)

1A
= min

p2�(
)

0@Z X
��t

���tu (h0� ) dp+ ct;! (p)

1A = Vt (!; h
0) ;

and hence h �t;! h0. �

Therefore, if a state !00 in Gt (!) is %t;!-null, then dom ct;! � �(Gt (!) n f!00g), and

Vt (!; h) 6=1 = inf
p2ri�(Gt(!))

0@Z X
��t

���tu (h� ) dp+ ct;! (p)

1A
for some (indeed all) h 2 H. That is (i) ) (ii). Conversely, if

Vt (!; h) 6= inf
p2ri�(Gt(!))

0@Z X
��t

���tu (h� ) dp+ ct;! (p)

1A
for some h 2 H, then, by Lemma 2, ri� (Gt (!)) \ dom ct;! = ?. If, per contra, dom ct;! is
not contained in �(Gt (!) n f!00g) for some !00 2 Gt (!), then for all !0 2 Gt (!) there exists

p!
0 2 dom ct;! with !0 2 supp p!

0
, then jGt (!)j�1

P
!02Gt(!)

p!
0 2 ri� (Gt (!)) \ dom ct;!, which

is absurd. Then dom ct;! � �(Gt (!) n f!00g) for some !00, which must be %t;!-null. This is (ii)
) (i). The equivalence between (i) and (iii) descends immediately from Lemma 2. �

Lemma 4 Let J : R
 ! R be a concave, normalized niveloid, and G � 
. The following state-
ments are equivalent:

(a) If '1; '2 2 R
 are such that '1jG = '2jG, then J
�
'1
�
= J

�
'2
�
;

(b) J ('+  ) = J (') +  (G) if '; 2 R
 and  is constant on G;

(c) J ('1Gc) = 0 for all ' 2 R
;

(d) dom J� � �(G).

Proof. (a) ) (b) Since ('+  )jG = ('+  (G))jG,

J ('+  ) = J ('+  (G)) = J (') +  (G) :

(b) ) (c) J ('1Gc) = J (0 + '1Gc) = J (0) + '1Gc (G) = 0.

(c) ) (d) Since J is a niveloid, dom J� � �(
) (see [15]). Let p� 2 �(
) and p� (!�) > 0 for
some !� =2 G. Since b1f!�g = b1f!�g1Gc for all b 2 R, then J

�
b1f!�g

�
= 0 and

J� (p�) � inf
b2R

�

b1f!�g; p

��� J �b1f!�g�� � inf
b2R

bp� (!�) = �1:
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(d) ) (a) By the Fenchel-Moreau Theorem (see [15]),

J
�
'1
�
= min

p2�(
)

�

'1; p

�
� J� (p)

�
= min
p2�(G)

�

'1; p

�
� J� (p)

�
= min

p2�(G)

 X
!2G

p (!)'1 (!)� J� (p)
!
= min
p2�(G)

 X
!2G

p (!)'2 (!)� J� (p)
!

= J
�
'2
�

for all '1; '2 2 R
 such that '1jG = '2jG. �

Lemma 5 If f%t;!g satisfy CP, FS, and DC, then for each t and !, no state in Gt (!) is %t;!-null
provided jGt (!)j > 1.

Proof. Assume, per contra, that there exist !� 2 
 and t� 2 T such that jGt� (!�)j > 1 and

Gt� (!
�) contains a %t�;!� -null state. W.l.o.g., !� is %t�;!� -null. By FS, t� > 0 and

h (� 0; !0) = h0 (� 0; !0) for all � 0 2 T and all !0 6= !� implies h �t�;!� h0: (27)

Clearly, jGt��1 (!�)j � jGt� (!�)j > 1. Next we show that !� is %t��1;!� -null. In a �nite number
of steps this leads to an absurd.

Assume that h (� 0; !0) = h0 (� 0; !0) for all � 0 2 T and all !0 6= !�. By Eq. (27) and CP(i),

h �t�;! h0 for all ! 2 Gt� (!
�). Moreover, if ! 2 Gt��1 (!

�) nGt� (!�), then Gt� (!) does not
contain !�, and h (� 0; !0) = h0 (� 0; !0) for all � 0 2 T and all !0 2 Gt� (!). By CP(ii), h �t�;! h0 for
all ! 2 Gt��1 (!�) nGt� (!�). Therefore, h �t�;! h0 for all ! 2 Gt��1 (!�). Since jGt��1 (!�)j > 1
and ht��1 is Gt��1 measurable, choose !00 2 Gt��1 (!�)� f!�g to obtain

h (t� � 1; !�) = h (t� � 1; !00) = h0 (t� � 1; !00) = h0 (t� � 1; !�)

and conclude:

h (t� � 1; !�) = h0 (t� � 1; !�) and h �t�;! h0 for all ! 2 Gt��1 (!�) ;

DC implies that h �t��1;!� h0. That is !� is %t��1;!� -null. As wanted. �

A.3 Proof of Proposition 1

Axiom 6 (Strong full support� SFS) For each (t; !) 2 T �
, no state in Gt (!) is %t;!-null.

For technical reasons we prove the slightly more general version of Proposition 1.

Proposition 3 The following statements are equivalent:

(a) f%t;!g satisfy CP, VP, RP, and no state in Gt (!) is %t;!-null if Gt (!) is not a singleton.

(b) There exist a scalar � > 0, an unbounded a¢ ne function u : X ! R, and a dynamic
ambiguity index fctg, such that: for each (t; !) 2 T � 
, %t;! is represented by

Vt (!; h) = inf
p2ri�(Gt(!))

0@Z X
��t

���tu (h� ) dp+ ct;! (p)

1A 8h 2 H: (28)

(c) f%t;!g satisfy CP, VP, RP, and SFS.

Moreover,
�
��; �u; f�ctg

�
represent %t;! in the sense of Eq. (28) i¤ �� = �, �u = au + b for some

a > 0 and b 2 R and f�ctg = factg.
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Proof. (a) , (b) immediately descends from Lemma 3.

(c) ) (a) is trivial.

(b) ) (c). Since (b) ) (a), if Gt (!) is not a singleton, no state in Gt (!) is %t;!-null. Let
Gt (!) be a singleton f!g. Then �(Gt (!)) = fd!g, and Vt (!; h) =

P
��t �

��tu (h� (!)) for all

h 2 H. Since u is unbounded, there are x1; x2 2 X such that u
�
x1
�
> u

�
x2
�
. Consider the acts

hi (� ; !0) =

(
x1 if (� ; !0) 6= (T; !)
xi if (� ; !0) = (T; !)

h1 (� ; !0) = h2 (� ; !0) for all � 2 T and all !0 6= !. If ! where %t;!-null, we would have h1 �t;! h2,
but

Vt
�
!; h1

�
=
X
��t

���tu
�
x1
�
>

X
T>��t

���tu
�
x1
�
+ �T�tu

�
x2
�
= Vt

�
!; h2

�
:

Therefore ! is not %t;!-null. �

Since clearly, for every t and !, ri� (Gt (!)) =
�
pGt(!) : p 2 ri� (
)

	
, Eq. (28) is equivalent

to

Vt (!; h) = inf
p2ri�(
)

0@Z X
��t

���tu (h� ) dpGt(!) + ct
�
!; pGt(!)

�1A 8h 2 H: (29)

Consider the Gt measurable functions Vt (�; h) : 
! R and ct (�; p) : 
! [0;1], Eq. (29) becomes

Vt (�; h) = inf
p2ri�(
)

0@Ep
0@X
��t

���tu (h� ) jGt

1A (�) + ct (�; p jGt (�))
1A 8h 2 H; (30)

or

Vt (h) = inf
p2ri�(
)

0@Ep
0@X
��t

���tu (h� ) jGt

1A+ ct (p jGt )
1A 8h 2 H: (31)

By Lemma 5, if f%t;!g satis�es CP, VP, RP, DC and FS, then it admits this representation.

A.4 Dynamic Consistency

Lemma 6 Let f%t;!g be a family of preferences on H for which there exist a scalar � > 0, an

unbounded a¢ ne function u : X ! R, and a dynamic ambiguity index fctg, such that: for each
(t; !) 2 T � 
, %t;! is represented by:

Vt (!; h) = min
p2�(Gt(!))

0@Z X
��t

���tu (h� ) dp+ ct (!; p)

1A 8h 2 H:

The following statements are equivalent:

(a) f%t;!g satisfy DC,

(b) For all t < T , ! 2 
, and q 2 �(Gt (!)) ;

ct (!; q) = �
X

G2Gt+1
q(G)>0

q(G)ct+1(G; qG) + min
p2�(Gt(!)):pjGt+1=qjGt+1

ct(!; p): (32)

(c) For all t < T and ! 2 
,
ct (!; �) = co %t (!; �) (33)

where

%t (!; q) � �
X

G2Gt+1
G�Gt(!)

q(G)ct+1(G; qG) + inf
p2ri�(Gt(!)):pjGt+1=qjGt+1

ct(!; p);

for all q 2 ri� (Gt (!)) and all t < T .
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(d) For all t < T , ! 2 
, and h 2 H

Vt (!; h) = u (ht (!)) + min
r2�(
;Gt+1)

 Z
�Vt+1 (h) dr + min

p2�(Gt(!)):pjGt+1=r
ct(!; p)

!
:

Proof. W.l.o.g. u (X) 2 fR;R+;R++;R�;R��g. For all t 2 T , ! 2 
, ' 2 R
, y 2 X T de�ne

Jt (!; ') � min
p2�(Gt(!))

(h'; pi+ ct (!; p)) = inf
p2ri�(Gt(!))

(h'; pi+ ct (!; p)) ; (34)

Ut (y) � Vt (!; y) =
X
��t

���tu (y� ) :

Then Jt : R
 ! R
 (Gt), where R
 (Gt) the set of all Gt-measurable functions. Notice that:

� Eq. (34) coincides with the property dom ct (!; �) \ ri� (Gt (!)) 6= ? of dynamic ambiguity
indexes.

� u (X)
 = fUt � h : h 2 Hg (see Lemma 3).

� Vt (!; h) = Jt (!;Ut � h) for all (t; !; h) 2 T � 
�H.

� For all ! 2 
, t < T , and h 2 H,

(Ut � h) (!) = Ut (h (!)) = u (ht (!)) +
X
��t+1

���tu (h� (!))

= (u � ht) (!) + �
X
��t+1

���(t+1)u (h� (!))

= (u � ht) (!) + �Ut+1 (h (!)) = (u � ht) (!) + � (Ut+1 � h) (!) ;

that is

Ut � h = u � ht + � (Ut+1 � h) : (35)

� For all ! 2 
, t < T , and h 2 H,

Vt (!; h) = Jt (!;Ut � h) = Jt;! (� (Ut+1 � h) + u � ht)
= Jt;!

�
(� (Ut+1 � h) + u � ht) 1Gt(!)

�
= Jt;!

�
(� (Ut+1 � h) + u (ht (!))) 1Gt(!)

�
= Jt;! (� (Ut+1 � h) + u (ht (!))) = Jt;! (� (Ut+1 � h)) + u (ht (!))

that is

Vt (h) = Jt (� (Ut+1 � h)) + u � ht: (36)

Step 1. Let t < T , ! 2 
, and � 2 R
 (Gt+1), then

Jt (!; �) = min
r2�(
;Gt+1)

 Z
�dr + min

p2�(Gt(!)):pjGt+1=r
ct(!; p)

!

= inf
r2�++(Gt(!);Gt+1)

 Z
�dr + inf

p2ri�(Gt(!)):pjGt+1=r
ct(!; p)

!
;

with the convention that the minimum over the empty set is 1.
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Details. Denote by G = fG1; :::; Ggg the set of all elements of Gt+1 contained in Gt (!), and by �G
the set �(Gt (!) ;Gt+1) (brutally: the probabilities on Gt+1 with support in fG1; :::; Ggg). For all
� =

P
G2Gt+1 �G1G 2 R


 (Gt+1),

Jt (!; �) = min
p2�(Gt(!))

"X
!2


p(!)�(!) + ct(!; p)

#

= min
p2�(Gt(!))

"
gX
i=1

�Gi
p (Gi) + ct(!; p)

#

= min
r2�G

min
p2�(Gt(!)):pjGt+1=r

"
gX
i=1

�Gi
p (Gi) + ct(!; p)

#

= min
r2�G

 
gX
i=1

r (Gi) �Gi
+ min
p2�(Gt(!)):pjGt+1=r

ct(!; p)

!

= min
r2�(
;Gt+1)

 Z
�dr + min

p2�(Gt(!)):pjGt+1=r
ct(!; p)

!
:

The last equality descends from the observation that if r 2 �(
;Gt+1)n�G there is G 2 Gt+1 such
that G * Gt (!) with r (G) > 0, then there is no p 2 �(Gt (!)) such that pjGt+1 = r.

Analogously, write �++G instead of �++ (Gt (!) ;Gt+1), �++G is the subset of the restrictions
of the elements of ri� (Gt (!)) to the algebra generated by Gt+1 (brutally: the probabilities on
Gt+1 with support equal to fG1; :::; Ggg). For all � =

P
G2Gt+1 �G1G 2 R


 (Gt+1) we have

Jt (!; �) = inf
p2ri�(Gt(!))

"X
!02


p(!0)�(!0) + ct(!; p)

#
= inf
p2ri�(Gt(!))

"
gX
i=1

�Gi
p (Gi) + ct(!; p)

#

= inf
r2�++G

inf
p2ri�(Gt(!)):pjGt+1=r

"
gX
i=1

�Gi
p (Gi) + ct(!; p)

#

= inf
r2�++G

 
gX
i=1

r (Gi) �Gi
+ inf
p2ri�(Gt(!)):pjGt+1=r

ct(!; p)

!
:

�

Step 2. Let t < T and ! 2 
. The function 
t (!; �) : � (
;Gt+1)! [0;1] de�ned by


t (!; r) � min
p2�(Gt(!)):pjGt+1=r

ct(!; p) 8r 2 �(
;Gt+1) ;

with the convention that the minimum over the empty set is 1, is closed, convex, grounded, and
dom 
t (!; r) � �(Gt (!) ;Gt+1).

Details. If r 2 �(
;Gt+1) n�(Gt (!) ;Gt+1), there is G 2 Gt+1 such that G * Gt (!) with

r (G) > 0, then there is no p 2 �(Gt (!)) such that pjGt+1 = r and 
t (!; r) = 1. Therefore
dom 
t (!; r) � �(Gt (!) ;Gt+1) = �G. Let � =

P
G2Gt+1 �G1G 2 R


 (Gt+1), by Step 1,

Jt (!; �) = min
r2�(
;Gt+1)

 Z
�dr + min

p2�(Gt(!)):pjGt+1=r
ct(!; p)

!
= min
r2�G

 
gX
i=1

r (Gi) �Gi
+ 
t (!; r)

!
:

Hence, Jt (!; 0) = 0 implies that minr2�G 
t (!; r) = 0, and 
t (!; �) is grounded. Let r; s 2 �G
and � 2 (0; 1), then


t (!; �r + (1� �) s) = min
p2�(Gt(!)):pjGt+1=�r+(1��)s

ct(!; p)

� min
p;q2�(Gt(!)):pjGt+1=r and qjGt+1=s

ct(!; �p+ (1� �) q)

� min
p;q2�(Gt(!)):pjGt+1=r and qjGt+1=s

(�ct(!; p) + (1� �) ct(!; q))

= � min
p2�(Gt(!)):pjGt+1=r

ct(!; p) + (1� �) min
q2�(Gt(!)):qjGt+1=s

ct(!; q):
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Therefore 
t (!; �) is convex. Let b 2 R and rn 2 �G, be such that rn ! r and 
t (!; rn) � b for

all n � 1. For all n there exists �pn such that


t (!; rn) = min
pn2�(
):pnjGt+1=rn

ct(!; p
n) � ct(!; �p

n) � b

and �pnjGt+1 = rn. Take a convergent subsequence �pnj ! �p of �pn, since ct(!; �) is closed ct(!; �p) � b,

moreover, for all G 2 Gt+1

�p (G) = lim
j
�pnj (G) = lim

j
rnj (G) = r (G) ;

in turn this implies


t (!; r) � ct(!; �p) � b:

Therefore 
t (!; �) is closed. �

Step 3. Let t < T and ! 2 
. The function �t (!; �) : � (
)! [0;1] de�ned by

�t (!; q) � 
t
�
!; qjGt+1

�
= min
p2�(Gt(!)):pjGt+1=qjGt+1

ct(!; p) 8q 2 �(
)

is grounded, closed and convex with dom �t (!; �) � �(Gt (!)).

Step 4. Let t < T and ! 2 
. The function �t (!; �) : � (Gt (!))! [0;1] de�ned by

�t (!; q) �
X

G2Gt+1
q(G)>0

q(G)ct+1(G; qG) 8q 2 �(Gt (!)) ;

is closed and convex.

Details. For later use (in the proof of Theorem 2) we just assume that ct+1 satis�es (i) and (ii)

of the de�nition of dynamic ambiguity index (not that fctg is an ambiguity index itself). We
show that �t (!; �) is the closure of its (convex) restriction �t (!; �) to ri� (Gt (!)) . In fact, for all
q; p 2 ri� (Gt (!)), � 2 (0; 1) and G 2 Gt+1 such that G � Gt (!),

(�q + (1� �) p)G (A) =
(�q + (1� �) p) (A \G)
(�q + (1� �) p) (G)

=
�q (A \G) + (1� �) p (A \G)

(�q + (1� �) p) (G)

=
�q (G) qG (A) + (1� �) p (G) pG (A)

(�q + (1� �) p) (G)

=
�q (G)

(�q + (1� �) p) (G)qG (A) +
(1� �) p (G)

(�q + (1� �) p) (G)pG (A)

then

�t;! (�q + (1� �) p) =
X

G2Gt+1
(�q+(1��)p)(G)>0

(�q + (1� �) p) (G) ct+1;G ((�q + (1� �) p)G)

=
X

G2Gt+1
G�Gt(!)

(�q + (1� �) p) (G) ct+1;G
�

�q (G)

(�q + (1� �) p) (G)qG +
(1� �) p (G)

(�q + (1� �) p) (G)pG
�

�
X

G2Gt+1
G�Gt(!)

(�q + (1� �) p) (G)
�

�q (G)

(�q + (1� �) p) (G)ct+1;G (qG) +
(1� �) p (G)

(�q + (1� �) p) (G)ct+1;G (pG)
�

=
X

G2Gt+1
G�Gt(!)

�q (G) ct+1;G (qG) + (1� �) p (G) ct+1;G (pG) = ��t;! (q) + (1� �)�t;! (p) :
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Then �t;! is convex.

For all Gt+1 3 G � Gt (!), there is pG 2 ri� (G) \ dom ct+1 (G; �). Therefore, choosing

fq (G) : Gt+1 3 G � Gt (!)g such that
P

Gt+13G�Gt(!)
q (G) = 1 and q (G) > 0 for all Gt+1 3 G �

Gt (!), the probability

r �
X

Gt+13G�Gt(!)

q (G) pG 2 dom�t;!

and �t;! is proper.16

Take p 2 ri (dom�t;!) and q 2 �(Gt (!)). If G 2 Gt+1 and q (G) > 0 then G � Gt (!).

Moreover, the function

f (�) � �q (G)

�q (G) + (1� �) p (G)
has �rst derivative w.r.t. �

_f (�) =
q (G) (�q (G) + (1� �) p (G))� �q (G) (q (G)� p (G))

(�q (G) + (1� �) p (G))2

=
�q (G)

2
+ q (G) p (G)� �q (G) p (G)� �q (G)2 + �q (G) p (G)

(�q (G) + (1� �) p (G))2

=
q (G) p (G)

(�q (G) + (1� �) p (G))2
> 0 8� 2 (0; 1)

moreover, lim�"1 f (�) = 1. Since p 2 ri (dom�t;!) , then pG 2 dom ct+1(G; �), and [18, Cor. 7.5.1]
implies

lim
�"1

ct+1;G ((�q + (1� �) p)G) =

= lim
�"1

ct+1;G

�
�q (G)

(�q + (1� �) p) (G)qG +
(1� �) p (G)

(�q + (1� �) p) (G)pG
�

= lim
�"1

ct+1;G (f (�) qG + (1� f (�)) pG) = ct+1;G (qG) :

If q (G) = 0, then for all A � 
,

(�q + (1� �) p)G (A) =
(�q + (1� �) p) (A \G)
(�q + (1� �)) p (G) = pG (A) 8� 2 (0; 1) :

Then

lim
�"1

ct+1;G ((�q + (1� �) p)G) = lim
�"1

ct+1;G (pG) = ct+1;G (pG) ;

and ct+1;G (pG) is �nite since pG 2 dom ct+1(G; �).
By [18, Thm. 7.5], we conclude that for all q 2 �(Gt (!)) ;

(co�t;!) (q) = lim
�"1

�t;! ((1� �) p+ �q)

= lim
�"1

X
G2Gt+1

(�q+(1��)p)(G)>0

(�q + (1� �) p) (G) ct+1;G ((�q + (1� �) p)G)

=
X

G2Gt+1
q(G)>0

q (G) ct+1;G (qG) = �t;! (q) :

�

Step 5. Let t < T and ! 2 
. If f%t;!g satisfy DC, then

'1; '2 2 R
 and Jt+1;!0
�
'1
�
= Jt+1;!0

�
'2
�
8!0 2 Gt (!) ) Jt;!

�
�'1

�
= Jt;!

�
�'2

�
:

Details. First assume  1;  2 2 u (X)
 are such that Jt+1;!0
�
 1
�
= Jt+1;!0

�
 2
�
for all !0 2 Gt (!).

We want to show that Jt;!
�
� 1

�
= Jt;!

�
� 2

�
.

16Notice that for all Gt+1 3 G � Gt (!), r (G) = q (G) and rG = pG.
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� If u (X) = R+. Let x0 2 X be such that u
�
x0
�
= 0. For all !0 2 
, there exists x 

i(!0) 2 X
such that u

�
x 

i(!0)
�
= �

�T�t
 i (!0). Consider the acts h1; h2 de�ned by

hi (� ; !0) =

(
x0 if � < T

x 
i(!0) if � = T:

For all !0 2 
:

Ut
�
hi (!0)

�
=

X
��t

���tu
�
hi� (!

0)
�
= �T�tu

�
x 

i(!0)
�
= � i (!0) ; and

Ut+1
�
hi (!0)

�
=

X
��t+1

���(t+1)u
�
hi� (!

0)
�
= �T�(t+1)u

�
x 

i(!0)
�
=  i (!0) =  i (!0) + k

with k = 0.

� If u (X) = R++. There exists " > 0 such that  i � " 2 u (X)

, choose x" 2 X such

that u (x") =
�P

T>��t �
��t
��1

�". For all !0 2 
, there exists x 
i(!0) 2 X such that

u
�
x 

i(!0)
�
= �

�T�t

�
 i (!0)� "

�
. Consider the acts h1; h2 de�ned by

hi (� ; !0) =

(
x" if � < T

x 
i(!0) if � = T .

For all !0 2 
:

Ut
�
hi (!0)

�
=

X
��t

���tu
�
hi� (!

0)
�
=

X
T>��t

���tu (x") + �T�tu
�
x 

i(!0)
�

= u (x")

0@ X
T>��t

���t

1A+ �T�t �

�T�t
�
 i (!0)� "

�
=

�P
T>��t �

��t "
X

T>��t
���t + � i (!0)� �" = � i (!0) ; and

Ut+1
�
hi (!0)

�
=

X
��t+1

���(t+1)u
�
hi� (!

0)
�
=

X
T>��t+1

���(t+1)u (x") + �T�(t+1)u
�
x 

i(!0)
�

=
�P

T>��t �
��t "

X
T>��t+1

���(t+1) + �T�(t+1)
�

�T�t
�
 i (!0)� "

�
=

�P
T>��t �

��t "
X

T>��t+1
���(t+1) +  i (!0)� " =  i (!0) + k

with k = �"
�P

T>��t+1 �
��(t+1)

��P
T>��t �

��t
��1

� ".

� The cases u (X) = R;R�;R�� are very similar.

Then

Vt+1;!0
�
h1
�
= Jt+1;!0

�
Ut+1

�
h1
��
= Jt+1;!0

�
 1 + k

�
= Jt+1;!0

�
 1
�
+ k, and

Vt+1;!0
�
h2
�
= Jt+1;!0

�
Ut+1

�
h2
��
= Jt+1;!0

�
 2 + k

�
= Jt+1;!0

�
 2
�
+ k

for all !0 2 
. For all !0 2 Gt (!), Jt+1;!0
�
 1
�
= Jt+1;!0

�
 2
�
, then h1 �t+1;!0 h2; moreover

h1� = h2� for all � � t, then DC implies h1 �t;! h2 and

Jt;!
�
� 1

�
= Jt;!

�
Ut
�
h1
��
= Vt;!

�
h1
�
= Vt;!

�
h2
�
= Jt;!

�
� 2

�
:
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As wanted. Now, for all '1; '2 2 R
 such that Jt+1;!0
�
'1
�
= Jt+1;!0

�
'2
�
for all !0 2 Gt (!),

there exists  1;  2 2 u (X)
 and b 2 R such that 'i =  i + b, then Jt+1;!0
�
 1
�
= Jt+1;!0

�
 2
�
for

all !0 2 Gt (!). Therefore,

Jt;!
�
�'1

�
= Jt;!

�
� 1 + �b

�
= Jt;!

�
� 1

�
+ �b = Jt;!

�
� 2

�
+ �b = Jt;!

�
�'2

�
:

�

Step 6. Let t < T . If f%t;!g satisfy DC, then

Jt (�Jt+1 (')) = Jt (�') 8' 2 R
: (37)

Details. Choose ! 2 
, and remember that Jt+1 (') =
P
G2Gt+1 Jt+1 (G;') 1G 2 R


 (Gt+1). For
all !0 2 Gt (!), dom ct+1;!0 � �(Gt+1 (!0)) , then

Jt+1 (!
0; ') = Jt+1 (!

0; Jt+1;!0 (') 1
)

= Jt+1
�
!0; Jt+1 (Gt+1 (!

0) ; ') 1Gt+1(!0)

�
= Jt+1 (!

0; Jt+1 (')) ;

then, by Step 5, Jt (!; �') = Jt (!; �Jt+1 (')). Since this is true for all !, we obtained Eq. (37).�

Step 7. f%t;!g satisfy DC i¤

Jt (�Jt+1 (')) = Jt (�') 8t < T; ' 2 R
: (38)

Details. We only have to prove that Eq. (38) implies DC. Let ! 2 
 and t < T . Assume

'1; '2 2 R
 are such that Jt+1;!0
�
'1
�
� Jt+1;!0

�
'2
�
for all !0 2 Gt (!), then

Jt;!
�
�'1

�
= Jt;!

�
�Jt+1

�
'1
��
= Jt;!

�
�Jt+1

�
'1
�
1Gt(!)

�
(39)

� Jt;!
�
�Jt+1

�
'2
�
1Gt(!)

�
= Jt;!

�
�Jt+1

�
'2
��

= Jt;!
�
�'2

�
:

Let h1; h2 2 H be such that h1� = h2� for all � � t and h1 %t+1;!0 h2, for all !0 2 
, we want to
show that h1 %t;! h2. Since h1 %t+1;!0 h2, for all !0 2 
, then

Jt+1;!0
�
Ut+1 � h1

�
= Vt+1;!0

�
h1
�
� Vt+1;!0

�
h2
�
= Jt+1;!0

�
Ut+1 � h2

�
for all !0 2 
, from Eq. (39) it follows that

Jt;!
�
�
�
Ut+1 � h1

��
� Jt;!

�
�
�
Ut+1 � h2

��
:

But h1t = h2t , then, by Eq. (36),

Vt
�
!; h1

�
= Jt;!

�
�
�
Ut+1 � h1

��
+ u

�
h1t (!)

�
� Jt;!

�
�
�
Ut+1 � h2

��
+ u

�
h1t (!)

�
� Jt;!

�
�Ut+1 � h2

�
+ u

�
h2t (!)

�
= Vt

�
!; h2

�
which delivers h1 %t;! h2, as wanted. �

Step 8. f%t;!g satisfy DC i¤

Vt (!; h) = u (ht (!)) + min
r2�(
;Gt+1)

 Z
�Vt+1 (h) dr + min

p2�(Gt(!)):pjGt+1=r
ct(!; p)

!
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for all t < T; ! 2 
; h 2 H. That is, (a) , (d).

Details. By Step 7, f%t;!g satisfy DC i¤

Jt;! (�Jt+1 (')) = Jt;! (�') 8t < T; ' 2 R
; ! 2 
,
Jt;! (�Jt+1 ( + b)) = Jt;! (� ( + b)) 8t < T;  2 u (X)
 ; b 2 R; ! 2 
,
Jt;! (�Jt+1 ( ) + �b) = Jt;! (� + �b) 8t < T;  2 u (X)
 ; b 2 R; ! 2 
,
Jt;! (�Jt+1 ( )) + �b = Jt;! (� ) + �b 8t < T;  2 u (X)
 ; b 2 R; ! 2 
,
Jt;! (�Jt+1 ( )) = Jt;! (� ) 8t < T;  2 u (X)
 ; ! 2 
,
Jt;! (�Jt+1 (Ut+1 � h)) = Jt;! (� (Ut+1 � h)) 8t < T; h 2 H; ! 2 
,
Jt;! (�Vt+1 (h)) = Jt;! (� (Ut+1 � h)) 8t < T; h 2 H; ! 2 
,
Jt;! (�Vt+1 (h)) + u (ht (!)) = Jt;! (� (Ut+1 � h)) + u (ht (!)) 8t < T; h 2 H; ! 2 
,

min
r2�(
;Gt+1)

 Z
�Vt+1 (h) dr + min

p2�(Gt(!)):pjGt+1=r
ct(!; p)

!
+ u (ht (!)) = Vt (!; h) 8t < T; h 2 H; ! 2 
:

Where the last equivalence descends from Gt+1 measurability of Vt+1 (h) and Step 1 which deliver

Jt (!; �Vt+1 (h)) = min
r2�(
;Gt+1)

 Z
�Vt+1 (h) dr + min

p2�(Gt(!)):pjGt+1=r
ct(!; p)

!

and Eq. (36) which implies Jt (!; � (Ut+1 � h)) + u (ht (!)) = Vt (!; h). �

Step 9. For all t < T , ! 2 
, and ' 2 R


Jt;! (�Jt+1 (')) = inf
q2ri�(Gt(!))

0BB@h�'; qi+ � X
G2Gt+1
G�Gt(!)

q(G)ct+1(G; qG) + inf
p2ri�(Gt(!)):pjGt+1=qjGt+1

ct(!; p)

1CCA :

(40)
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Details. Denote by G = fG1; :::; Ggg the set of all elements of Gt+1 contained in Gt (!). By Step 1,

Jt;! (�Jt+1 (')) = Jt;!

0@ X
G2Gt+1

�Jt+1 (G;') 1G

1A
= inf

r2�++G

 
gX
i=1

r (Gi)�Jt+1 (Gi; ') + inf
p2ri�(Gt(!)):pjGt+1=r

ct(!; p)

!

= inf
r2�++G

 
gX
i=1

r(Gi)� inf
pi2ri�(Gi)

"X
�!2


pi(�!)'(�!) + ct+1(Gi; p
i)

#
+ inf
pjGt+1=r

ct(!; p)

!

= inf
r2�++G

 
gX
i=1

inf
pi2ri�(Gi)

r(Gi)�

"X
�!2


pi(�!)'(�!) + ct+1(Gi; p
i)

#
+ inf
pjGt+1=r

ct(!; p)

!

= inf
r2�++G

 
gX
i=1

inf
pi2ri�(Gi)

"X
�!2


r(Gi)�p
i(�!)'(�!) + r(Gi)�ct+1(Gi; p

i)

#
+ inf
pjGt+1=r

ct(!; p)

!

= inf
r2�++G

 
inf

p12ri�(G1);:::;pg2ri�(Gg)

gX
i=1

"X
�!2


�r(Gi)p
i(�!)'(�!) + �r(Gi)ct+1(Gi; p

i)

#
+ inf
pjGt+1=r

ct(!; p)

!

= inf
r2�++G

 
inf

p12ri�(G1);:::;pg2ri�(Gg)

 
gX
i=1

"X
�!2


�r(Gi)p
i(�!)'(�!) + �r(Gi)ct+1(Gi; p

i)

#
+ inf
pjGt+1=r

ct(!; p)

!!

= inf
r2�++G

 
inf

p12ri�(G1);:::;pg2ri�(Gg)

 
gX
i=1

X
�!2


�r(Gi)p
i(�!)'(�!) +

gX
i=1

�r(Gi)ct+1(Gi; p
i) + inf

pjGt+1=r
ct(!; p)

!!

= inf
r2�++G

 
inf

p12ri�(G1);:::;pg2ri�(Gg)

 X
�!2


 
gX
i=1

r(Gi)p
i(�!)

!
�'(�!) +

gX
i=1

�r(Gi)ct+1(Gi; p
i) + inf

pjGt+1=r
ct(!; p)

!!

= inf
r2�++G;p12ri�(G1);:::;pg2ri�(Gg)

 X
�!2


 
gX
i=1

r(Gi)p
i(�!)

!
�'(�!) +

gX
i=1

�r(Gi)ct+1(Gi; p
i) + inf

pjGt+1=r
ct(!; p)

!

= inf
q2ri�(Gt(!))

 X
�!2


q (�!)�'(�!) +

gX
i=1

�q(Gi)ct+1(Gi; qGi
) + inf

p2ri�(Gt(!)):pjGt+1=qjGt+1

ct(!; p)

!
:

The last equality descends from��
r; p1; :::; pg

�
: r 2 �++G; p1 2 ri� (G1) ; :::; pg 2 ri� (Gg)

	
=
��
qjGt+1 ; qG1

; :::; qGg

�
: q 2 ri� (Gt (!))

	
:

�

Steps 7 and 9 imply that f%t;!g satisfy DC i¤ for all t < T , ! 2 
, and ' 2 R


Jt;! (�') = inf
q2ri�(Gt(!))

0BB@h�'; qi+ � X
G2Gt+1
G�Gt(!)

q(G)ct+1(G; qG) + inf
p2ri�(Gt(!)):pjGt+1=qjGt+1

ct(!; p)

1CCA ;
Eq. (34) and Lemma 1 guarantee that this is equivalent to ct (!; �) = co %t (!; �). That is, (a) ,
(c).

Step 10. For all t < T , ! 2 
, and ' 2 R


Jt;! (�Jt+1 (')) = min
q2�(Gt(!))

0BB@h�'; qi+ � X
G2Gt+1
q(G)>0

q(G)ct+1(G; qG) + min
p2�(Gt(!)):pjGt+1=qjGt+1

ct(!; p)

1CCA
(41)
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Details. Denote by G = fG1; :::; Ggg the set of all elements of Gt+1 contained in Gt (!). By Steps
1 and 2

Jt;! (�Jt+1 (')) = Jt

0@!; X
G2Gt+1

�Jt+1 (G;') 1G

1A
= min

r2�(
;Gt+1)

0@ X
G2Gt+1

r (G)�Jt+1 (G;') + min
p2�(Gt(!)):pjGt+1=r

ct(!; p)

1A
= min

r2�G

 
gX
i=1

r (Gi)�Jt+1 (Gi; ') + 
t (!; r)

!

= min
r2�G

 
gX
i=1

r(Gi)� min
pi2�(Gi)

"X
�!2


pi(�!)'(�!) + ct+1(Gi; p
i)

#
+ 
t (!; r)

!

= min
r2�G

 
gX
i=1

min
pi2�(Gi)

r(Gi)�

"X
�!2


pi(�!)'(�!) + ct+1(Gi; p
i)

#
+ 
t (!; r)

!

= min
r2�G

 
gX
i=1

min
pi2�(Gi)

"X
�!2


�r(Gi)p
i(�!)'(�!) + �r(Gi)ct+1(Gi; p

i)

#
+ 
t (!; r)

!

= min
r2�G

 
min

p12�(G1);:::;pg2�(Gg)

gX
i=1

"X
�!2


�r(Gi)p
i(�!)'(�!) + �r(Gi)ct+1(Gi; p

i)

#
+ 
t (!; r)

!

= min
r2�G

 
min

p12�(G1);:::;pg2�(Gg)

 
gX
i=1

"X
�!2


�r(Gi)p
i(�!)'(�!) + �r(Gi)ct+1(Gi; p

i)

#
+ 
t (!; r)

!!

= min
r2�G

 
min

p12�(G1);:::;pg2�(Gg)

 
gX
i=1

X
�!2


�r(Gi)p
i(�!)'(�!) +

gX
i=1

�r(Gi)ct+1(Gi; p
i) + 
t (!; r)

!!

= min
r2�G

 
min

p12�(G1);:::;pg2�(Gg)

 X
�!2


 
gX
i=1

r(Gi)p
i(�!)

!
�'(�!) +

gX
i=1

�r(Gi)ct+1(Gi; p
i) + 
t (!; r)

!!

= min
r2�G;p12�(G1);:::;pg2�(Gg)

 X
�!2


 
gX
i=1

r(Gi)p
i(�!)

!
�'(�!) +

gX
i=1

�r(Gi)ct+1(Gi; p
i) + min

p2�(Gt(!)):pjGt+1=r
ct(!; p)

!

= min
q2�(Gt(!))

0BB@X
�!2


q(�!)�'(�!) +
X

i=1;:::;g
q(Gi)>0

�q(Gi)ct+1(Gi; qGi
) + min

p2�(Gt(!)):pjGt+1=qjGt+1

ct(!; p)

1CCA :

We report, for the sake of completeness the veri�cation of the last equality. It is enough to show

that

(X
�!2


 
gX
i=1

r(Gi)p
i(�!)

!
�'(�!) +

gX
i=1

�r(Gi)ct+1(Gi; p
i) + min

p2�(Gt(!)):pjGt+1=r
ct(!; p)

)
r2�G;p12�(G1);:::;pg2�(Gg)

=

8>><>>:
X
�!2


q(�!)�'(�!) +
X

i=1;:::;g
q(Gi)>0

�q(Gi)ct+1(Gi; qGi
) + min

p2�(Gt(!)):pjGt+1=qjGt+1

ct(!; p)

9>>=>>;
q2�(Gt(!))

:
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�) Let r 2 �G; p1 2 �(G1) ; :::; pg 2 �(Gg), then

X
�!2


 
gX
i=1

r(Gi)p
i(�!)

!
�'(�!) +

gX
i=1

�r(Gi)ct+1(Gi; p
i) + min

p2�(Gt(!)):pjGt+1=r
ct(!; p)

=
X
�!2


0BB@ X
i=1;:::;g
r(Gi)>0

r(Gi)p
i(�!)

1CCA�'(�!) +
X

i=1;:::;g
r(Gi)>0

�r(Gi)ct+1(Gi; p
i) + min

p2�(Gt(!)):pjGt+1=r
ct(!; p):

Set q �
P

i=1;:::;g
r(Gi)>0

r(Gi)p
i and notice that qjGt+1 = r and qGi

= pi for all i = 1; :::; g with q (Gi) =

r (Gi) > 0. Therefore, supp q �
Sg
i=1Gi = Gt (!) and

X
�!2


0BB@ X
i=1;:::;g
r(Gi)>0

r(Gi)p
i(�!)

1CCA�'(�!) +
X

i=1;:::;g
r(Gi)>0

�r(Gi)ct+1(Gi; p
i) + min

p2�(Gt(!)):pjGt+1=r
ct(!; p)

=
X
�!2


q(�!)�'(�!) +
X

i=1;:::;g
q(Gi)>0

�q(Gi)ct+1(Gi; qGi) + min
p2�(Gt(!)):pjGt+1=qjGt+1

ct(!; p):

�) Let q 2 �(Gt (!)), set r � qjGt+1 2 �G, pi � qGi
2 �(Gi) for all i = 1; :::; g with q (Gi) =

r (Gi) > 0 and choose pi arbitrarily in �(Gi) otherwise. Notice that, q =
P

i=1;:::;g
r(Gi)>0

r(Gi)p
i.

ThereforeX
�!2


q(�!)�'(�!) +
X

i=1;:::;g
q(Gi)>0

�q(Gi)ct+1(Gi; qGi) + min
p2�(Gt(!)):pjGt+1=qjGt+1

ct(!; p)

=
X
�!2


0BB@ X
i=1;:::;g
r(Gi)>0

r(Gi)p
i(�!)

1CCA�'(�!) +
X

i=1;:::;g
r(Gi)>0

�r(Gi)ct+1(Gi; p
i) + min

p2�(Gt(!)):pjGt+1=r
ct(!; p)

=
X
�!2


0@ X
i=1;:::;g

r(Gi)p
i(�!)

1A�'(�!) +
X

i=1;:::;g

�r(Gi)ct+1(Gi; p
i) + min

p2�(Gt(!)):pjGt+1=r
ct(!; p):

�

Steps 7 and 10 imply that f%t;!g satisfy DC i¤ for all t < T , ! 2 
, and ' 2 R


Jt;! (�') = min
q2�(Gt(!))

0BB@h�'; qi+ � X
G2Gt+1
q(G)>0

q(G)ct+1(G; qG) + min
p2�(Gt(!)):pjGt+1=qjGt+1

ct(!; p)

1CCA ;
Eq. (34) and Lemma 1 guarantee that this is equivalent to ct (!; �) = co (�t (!; �) + �t (!; �)) where
�t (!; �) and �t (!; �) are de�ned in Steps 4 and 3. These steps also guarantee closure and convexity
of �t (!; �) and �t (!; �). That is (a) , (b). �

Remark 1 In particular, for a dynamic ambiguity index fctg conditions (32) and (33) are equiv-
alent.

A.5 Proof of Theorem 1

(a) ) (b) By Proposition 3 and Lemma 5 there exist a scalar � > 0, an unbounded a¢ ne

function u : X ! R, and a dynamic ambiguity index fctg, such that: for each (t; !) 2 T �
, %t;!
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is represented by

Vt (!; h) = inf
p2�++(
)

0@Z X
��t

���tu (h� ) dpGt(!) + ct
�
!; pGt(!)

�1A 8h 2 H:

Lemma 6 guarantees that Eq. (11) holds.

(b) ) (a) Assume that there exist a scalar � > 0, an unbounded a¢ ne function u : X ! R,
and a dynamic ambiguity index fctg, such that: for each (t; !) 2 T � 
, %t;! is represented by

Vt (!; h) = inf
p2�++(
)

0@Z X
��t

���tu (h� ) dpGt(!) + ct
�
!; pGt(!)

�1A 8h 2 H;

by Proposition 1, f%t;!g satisfy CP, VP, RP, and FS. Eq. (11) and Lemma 6 imply that f%t;!g
satis�es DC.

Uniqueness of the representation descends again from Proposition 1. �

A.6 Proof of Proposition 2

(i) is trivial. Step 2 of the proof of Lemma 6 shows that 
t (!; �) is grounded, closed and convex,
with dom 
t (!; �) � �(Gt (!) ;Gt+1), for all t < T and all ! 2 
. It only remains to show

that and dom 
t (!; �) \ �++ (Gt (!) ;Gt+1) 6= ?. Take p� 2 ri� (Gt (!)) \ dom ct (!; �), then
r� = p�jGt+1 2 �

++ (Gt (!) ;Gt+1) and


t (!; r
�) = min

p2�(Gt(!)):pjGt+1=r
�
ct(!; p) � ct(!; p

�) <1:

�

A.7 Proof of Theorem 2

(a) ) (b) is an immediate consequence of Theorem 1 and Proposition 2.

(b)) (a) The proof that fctg is a dynamic ambiguity index is by backward induction. Clearly,
cT satis�es (i) and (ii) of the de�nition of dynamic ambiguity index. Next we assume that ct+1
(0 � t < T ) satis�es (i) and (ii) of the de�nition of dynamic ambiguity index, and show that ct
satis�es them.

By assumption, ct+1 : 
��(
)! [0;1] is such that:

(i) ct+1 (�; p) : 
! [0;1] is measurable w.r.t. Gt+1 for all p 2 �(
),

(ii) ct+1 (!; �) : � (
)! [0;1] is grounded, closed and convex, with dom ct (!; �) � �(Gt+1 (!))
and dom ct+1 (!; �) \�++ (Gt+1 (!)) 6= ?, for all t 2 T and all ! 2 
.

Clearly, for all ! 2 
, the function ct (!; �) de�ned in (b) is well de�ned (since ct+1 satis�es (i))
and ct (!; �) = ct (!

0; �) if Gt (!) = Gt (!
0) (since 
t satis�es (i)).

Step 4 of the proof of Lemma 6 shows that for all ! 2 
 the function �t (!; �) : � (Gt (!)) !
[0;1] de�ned by

�t (!; q) �
X

G2Gt+1
q(G)>0

q(G)ct+1(G; qG) 8q 2 �(Gt (!))

is closed and convex. Since q 7! qjGt+1 is a¢ ne (and continuous) from �(
) to �(
;Gt;+1)
and 
t (!; �) : � (
;Gt+1) ! [0;1] is grounded, closed and convex, with e¤ective domain in
�(Gt (!) ;Gt+1), then q 7! 
t

�
!; qjGt+1

�
is closed and convex on �(
) and its e¤ective domain is
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contained in �(Gt (!)). We conclude that, for all ! 2 
, the function ct (!; �) de�ned in (b) is
closed and convex, from �(
) to [0;1], with dom ct (!; �) � �(Gt (!)).
Next we show that ct (!; �) is grounded. Choose arbitrarily ! 2 
, there exists r 2 �(
;Gt+1)

such that r (Gt (!)) = 1 and 
t (!; r) = 0; moreover, for all G 2 Gt+1 there exists pG 2 �(G) such
that ct+1(G; pG) = 0, set q �

P
G2Gt+1 r (G) p

G to obtain

ct (!; q) =
X

G2Gt+1
q(G)>0

q(G)ct+1(G; qG) + 
t
�
!; qjGt+1

�
=

X
G2Gt+1
r(G)>0

r(G)ct+1(G; p
G) + 
t (!; r) = 0:

It remains to show that ri� (Gt (!)) \ dom ct (!; �) 6= ? for all ! 2 
. Choose arbitrarily
! 2 
, there exists r 2 �++ (Gt (!) ;Gt+1) such that 
t (!; r) < 1; moreover, for all G 2 Gt+1
there exists pG 2 ri� (G) such that ct+1(G; pG) < 1, set q �

P
G2Gt+1 r (G) p

G to obtain q 2
ri� (Gt (!)) and

ct (!; q) =
X

G2Gt+1
q(G)>0

q(G)ct+1(G; qG) + 
t
�
!; qjGt+1

�
=

X
G2Gt+1
r(G)>0

r(G)ct+1(G; p
G) + 
t (!; r) <1:

This concludes the proof that fctg is a dynamic ambiguity index.
Finally, notice that, for all ! 2 
, t < T , and q 2 �(Gt (!)),

min
p2�(Gt(!)):pjGt+1=qjGt+1

0BB@ X
G2Gt+1
q(G)>0

p(G)ct+1(G; pG)

1CCA = 0;

it is enough to take, for all G 2 Gt+1, pG 2 �(G) such that ct+1(G; pG) = 0 and set p �P
G2Gt+1 q (G) p

G. Therefore,

�
X

G2Gt+1
q(G)>0

q(G)ct+1(G; qG) + min
p2�(Gt(!)):pjGt+1=qjGt+1

ct(!; p)

= �
X

G2Gt+1
q(G)>0

q(G)ct+1(G; qG) + min
p2�(Gt(!)):pjGt+1=qjGt+1

0BB@ X
G2Gt+1
q(G)>0

p(G)ct+1(G; pG) + 
t
�
!; pjGt+1

�1CCA

= �
X

G2Gt+1
q(G)>0

q(G)ct+1(G; qG) + 
t
�
!; qjGt+1

�
+ min
p2�(Gt(!)):pjGt+1=qjGt+1

0BB@ X
G2Gt+1
q(G)>0

p(G)ct+1(G; pG)

1CCA
= �

X
G2Gt+1
q(G)>0

q(G)ct+1(G; qG) + 
t
�
!; qjGt+1

�
= ct(!; q):

Hence fctg satis�es condition (11) and it is a recursive ambiguity index. �

A.8 Proof of Corollary 1

It is easy to see that the e¤ect of MP(ii) on the representation provided by Proposition 1 is

guaranteeing that, for every t 2 T and ! 2 
, ct (!; p) = �Ct(!) (p), for a closed and convex subset

Ct (!) � �(
).
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The relation dom ct;! � �(Gt (!)) implies Ct (!) � �(Gt (!)). Denote by G = fG1; :::; Ggg
the set of all elements of Gt+1 contained in Gt (!), and write indi¤erently Ci or Ct+1 (Gi). Let
! 2 
 and t < T . Condition (11) is equivalent to

Ct (!) =

8>><>>:q 2 �(Gt (!)) : �
X

G2Gt+1
q(G)>0

q(G)�Ct+1(G)(qG) + min
p2�(Gt(!)):pjGt+1=qjGt+1

�Ct(!)(p) = 0

9>>=>>;
=

8>><>>:q 2 �(Gt (!)) : �
X

i=1;:::;g
q(Gi)>0

q(Gi)�Ci(qGi) + min
p2�(Gt(!)):pjGt+1=qjGt+1

�Ct(!)(p) = 0

9>>=>>; :

But

�(Gt (!)) =

8>><>>:
X

i=1;:::;g
r(Gi)>0

r(Gi)p
i : r 2 �G; pi 2 �(Gi) 8i = 1; :::; g

9>>=>>;
=

8<: X
i=1;:::;g

r(Gi)p
i : r 2 �G; pi 2 �(Gi) 8i = 1; :::; g

9=; :

Moreover, given q 2 �(Gt (!)), q =
P
i=1;:::;g r(Gi)p

i with r 2 �G and pi 2 �(Gi) if and only
if r = qjGt+1 and p

i = qGi for all i = 1; :::; g with q (Gi) = r (Gi) > 0 (clearly pi can be chosen

arbitrarily in �(Gi) if q (Gi) = r (Gi) > 0). Therefore, condition (11) is equivalent to

Ct (!) =

8<: X
i=1;:::;g

r(Gi)p
i :

r 2 �G; pi 2 �(Gi) 8i = 1; :::; g;
�
P

i=1;:::;g
r(Gi)>0

r(Gi)�Ci(p
i) + minp2�(Gt(!)):pjGt+1=r

�Ct(!)(p) = 0

9=;
Ct (!) =

8>><>>:
X

i=1;:::;g

r(Gi)p
i :

r 2 �G; pi 2 �(Gi) 8i = 1; :::; g;P
i=1;:::;g
r(Gi)>0

r(Gi)�Ci(p
i) = 0;

minp2�(Gt(!)):pjGt+1=r
�Ct(!)(p) = 0

9>>=>>;
Ct (!) =

8><>:
X

i=1;:::;g

r(Gi)p
i :

r 2 �G; pi 2 �(Gi) 8i = 1; :::; g;
�Ci(p

i) = 0 for all i s.t. r (Gi) > 0;

�Ct(!)(p) = 0 for some p 2 �(Gt (!)) : pjGt+1 = r

9>=>;
Ct (!) =

8><>:
X

i=1;:::;g

r(Gi)p
i :

r 2 �G; pi 2 �(Gi) 8i = 1; :::; g;
pi 2 Ci for all i s.t. r (Gi) > 0;
there exists p 2 Ct (!) s.t. pjGt+1 = r

9>=>;
Ct (!) =

8><>:
X

i=1;:::;g

r(Gi)p
i :

r 2 �G; pi 2 �(Gi) 8i = 1; :::; g;
pi 2 Ci for all i = 1; :::; g;
r 2 Ct (!)jGt+1

9>=>;
Ct (!) =

8<: X
i=1;:::;g

r(Gi)p
i :

pi 2 Ct+1 (Gi) for all i = 1; :::; g;
r 2 Ct (!)jGt+1

9=;
Ct (!) =

8<: X
G2Gt+1

pGr (G) : pG 2 Ct+1 (G) 8G 2 Gt+1 and r 2 Ct (!)jGt+1

9=; :

�

A.9 Proof of Proposition 3

W.l.o.g., set � = 1. Moreover, we denote by q� the reference probability of the statement. The

properties of the relative entropy (see, e.g., [13]) guarantee that fctg is a dynamic ambiguity index.
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By Theorem 1, we only have to show that fctg satis�es (11) or the equivalent (33), see Remark 1.
Next we show that, for all t < T , ! 2 
, and q 2 ri� (Gt (!)),

ct;! (q) = �
X

G2Gt+1
G�Gt(!)

q(G)ct+1;G(qG) + inf
p2ri�(Gt(!)):pjGt+1=qjGt+1

ct;!(p): (42)

For all p 2 ri� (Gt (!)),

ct;! (p) =
1

�t

X
!02Gt(!)

pGt(!) (!
0) log

pGt(!) (!
0)

q�Gt(!)
(!0)

=
1

�t

X
!02Gt(!)

p!0 log
p!0

q�Gt(!);!0

where p!0 � p (!0) and q�Gt(!);!0
� q�Gt(!)

(!0). For all G 2 Gt+1 such that G � Gt (!) and all

p 2 ri� (G)

ct+1;G (p) =
1

�t+1

X
!02G

pG;!0 log
pG;!0

q�G;!0
=

1

�t+1

X
!02G

p!0 log
p!0�

q�Gt(!)

�
G;!0

:

To simplify the notation, set S = Gt (!), �q = q�S , G = fG 2 Gt+1 : G � Gt (!)g (notice that G is a
partition of S), and choose arbitrarily q 2 ri� (Gt (!)):

�t+1ct+1;G (qG) =
X
s2G

qs
q (G)

log
qs

q (G)

�q (G)

�qs
=

1

q (G)

X
s2G

qs log
qs
�qs
+

1

q (G)

X
s2G

qs log
�q (G)

q (G)

=
1

q (G)

X
s2G

qs log
qs
�qs
� log q (G)

�q (G)
:

Then, for all q 2 ri� (Gt (!)),

�
X

G2Gt+1
G�Gt(!)

q(G)ct+1;G(qG) = �
X
G2G

q(G)
1

�t+1

 
1

q (G)

X
s2G

qs log
qs
�qs
� log q (G)

�q (G)

!

=
1

�t

 X
G2G

X
s2G

qs log
qs
�qs
�
X
G2G

q(G) log
q (G)

�q (G)

!

=
1

�t

X
s2S

qs log
qs
�qs
� 1

�t

X
G2G

q(G) log
q (G)

�q (G)
;

that is

�
X

G2Gt+1
G�Gt(!)

q(G)ct+1;G(qG) = ct;! (q)�
1

�t

X
G2G

q(G) log
q (G)

�q (G)
: (43)

Moreover, for all q 2 ri� (Gt (!))

inf
p2ri�(Gt(!)):pjGt+1=qjGt+1

ct;!(p) = inf
p2ri�(S):pjG=qjG

ct;!(p)

is the value of the problem 8>>>>>>><>>>>>>>:

inf
1

�t
P
s2S ps log

ps
�qs

sub

ps > 0 8s 2 SP
s2S ps = 1P
s2G ps = q (G) 8G 2 G:

(44)

We solve the easier problem 8>><>>:
inf
P
s2S ps log

ps
�qs

subP
s2G ps = q (G) 8G 2 G

(45)
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and observe that the solution p� is unique, it is a strictly positive vector (this is also required for

the existence of log
p�s
�qs
), X

s2S
p�s =

X
G2G

X
s2G

p�s =
X
G2G

q (G) = 1;

and obviously the constant �t has no e¤ect. Thus p� is the solution of problem (44). The La-

grangean of problem (45) is

L (p; �) =
X
s2S

ps log
ps
�qs
�
X
G2G

�G

 X
s2G

ps � q (G)
!
;

denoting by G (s) the element of G containing s, the �rst order conditions are8<: log
ps
�qs
+ 1� �G(s) = 0 8s 2 SP

s2G ps = q (G) 8G 2 G
(46)

simple manipulation yields (
ps = �qs exp

�
�G(s) � 1

�
8s 2 SP

s2G ps = q (G) 8G 2 G
(47)

then the observation that G (s) = G (w) for all s 2 G (w) implies(
ps = �qs exp

�
�G(s) � 1

�
8s 2 SP

s2G(w) �qs exp
�
�G(w) � 1

�
= q (G (w)) 8w 2 S

(48)

and 8>><>>:
exp

�
�G(w) � 1

�
=
q (G (w))

�q (G (w))
8w 2 S

ps = �qs
q (G (s))

�q (G (s))
8s 2 S:

(49)

The solution is 8>><>>:
��G = 1 + log

q (G)

�q (G)
8G 2 G

p�s = �qs
q (G (s))

�q (G (s))
8s 2 S

(50)

which plugged into the value function
1

�t
P
s2S ps log

ps
�qs
delivers

inf
p2ri�(Gt(!)):pjGt+1=qjGt+1

ct;!(p) =
1

�t

X
s2S

p�s log
p�s
�qs

=
1

�t

X
s2S

�qs
q (G (s))

�q (G (s))
log

q (G (s))

�q (G (s))

=
1

�t

X
G2G

X
s2G

�qs
q (G)

�q (G)
log

q (G)

�q (G)
;

�nally

inf
p2ri�(Gt(!)):pjGt+1=qjGt+1

ct;!(p) =
1

�t

X
G2G

q (G) log
q (G)

�q (G)
(51)

which together with Eq. (43) delivers Eq. (42).

Setting, for all t < T , ! 2 
, and q 2 �(
),

%t;! (q) =

8<: �
P

G2Gt+1
G�Gt(!)

q(G)ct+1;G(qG) + infp2ri�(Gt(!)):pjGt+1=qjGt+1
ct;!(p) if q 2 ri� (Gt (!))

1 otherwise
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the function %t;! coincides with the closed and convex function ct;! on ri (� (Gt (!))). Take

q 2 ri
�
dom %t;Gt(!)

�
= ri (� (Gt (!))) , by [18, Thm. 7.5], for all p 2 �(Gt (!)),

co %t;! (p) = lim
�"1

%t;! ((1� �) q + �p) = lim
�"1

ct;! ((1� �) q + �p) = ct;! (p) : (52)

Since Eq. (52) is a fortiori true if p =2 �(Gt (!)), condition (33) holds, as wanted.

To complete the proof we need to prove (17). Let ct;! (p) � ��tR
�
pGt(!)kq�Gt(!)

�
for all

(t; !; p) 2 T �
��(
). Fix ! 2 
 and t < T . Step 4 of the proof of Lemma 6 shows that there

is a suitable p 2 ri (� (Gt (!))) such that for all q 2 �(Gt (!))X
G2Gt+1
q(G)>0

q (G) ct+1;G (qG) = lim
�"1

X
Gt+13G�Gt(!)

(�q + (1� �) p) (G) ct+1;G ((�q + (1� �) p)G) :

By de�nition of ct;!, p 2 dom ct;!, we also have

1 > ct;! (q) = lim
�"1

ct;! (�q + (1� �) p) :

Since fctg is a recursive ambiguity index we have


t;!
�
qjGt+1

�
= ct;! (q)�

X
G2Gt+1
q(G)>0

q (G) ct+1;G (qG) ;

since both summands are �nite, setting q�p = �q + (1� �) p,


t;!
�
qjGt+1

�
= lim

�"1

0@ct;! (q�p)� X
Gt+13G�Gt(!)

(q�p) (G) ct+1;G ((q�p)G)

1A ;

but q�p 2 ri (� (Gt (!))) and Eq. (43) delivers


t;!
�
qjGt+1

�
= lim

�"1

1

�t

X
Gt+13G�Gt(!)

(�q + (1� �) p) (G) log (�q + (1� �) p) (G)
q�Gt(!)

(G)

=
1

�t

X
Gt+13G�Gt(!)

q(G)>0

q (G) log
q (G)

q�Gt(!)
(G)

=
1

�t

X
G2Gt+1

q (G) log
q (G)

q�Gt(!)
(G)

for all q 2 �(Gt (!)) and by Proposition 2 
t;!
�
qjGt+1

�
=1 if q 2 �(
) n�(Gt (!)). Therefore,


t;! (r) = RGt+1

�
rk
�
q�Gt(!)

�
jGt+1

�
8r 2 �(
;Gt+1) :

By (12) and (13), this implies (17). �

B More on Rectangularity

In this appendix the de�nition of fGtg-rectangular set of beliefs is discussed and compared with
the de�nition of recursive ambiguity index.

If C is a subset of �(
) and G a subset of 
 such that p (G) > 0 for all p 2 C;

CG � fpG : p 2 Cg

is the set of Bayesian updates of C. Epstein and Schneider [5] consider the following:
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De�nition 1 The set C is fGtg-rectangular if,

(R.1) C is a non-empty, compact and convex subset of �++ (
);

(R.2) for all (t; !) 2 T � 
 with t < T ,

CGt(!) =

8<: X
G2Gt+1

pGr (G) : pG 2 CG 8G 2 Gt+1; r 2 CGt(!)jGt+1

9=; :

For the sake of comparison, consider the following:

De�nition 2 The family fCt (!) : (t; !) 2 T � 
g of subsets of �(
) is fGtg-rectangular if f�Ctg
is a recursive ambiguity index such that dom �Ct(!) � �++ (Gt (!)) for all (t; !) 2 T � 
.

The stronger constraint on the e¤ective domains matches the requirement that C � �++ (
).

Fact 4 The family fCt (!) : (t; !) 2 T � 
g of subsets of �
 is fGtg-rectangular if and only if:

(R�.1) for all t 2 T and !; !0 2 
, Ct (!) is a non-empty, compact and convex subset of �++ (Gt (!)),
and Ct (!) = Ct (!

0) if Gt (!) = Gt (!
0);

(R�.2) for all (t; !) 2 T � 
 with t < T ,

Ct (!) =

8<: X
G2Gt+1

pGr (G) : pG 2 Ct+1 (G) 8G 2 Gt+1; r 2 Ct (!)jGt+1

9=; : (53)

(R�.1) translates the fact that f�Ctg is a dynamic ambiguity index, (R�.2) is the specialization
of the �no-gain�condition (11) to indicator functions (see the proof of Corollary 1).

Proposition 4 Let fCt (!)g be a family of subsets of �(
) satisfying (R�.1). For all (t; !) 2 T �

with t < T , set

Dt (!) �

8<: X
G2Gt+1

pGr (G) : pG 2 Ct+1 (G) 8G 2 Gt+1; r 2 Ct (!)jGt+1

9=; :

Dt (!) is closed, convex, and (Dt (!))G = Ct+1 (G) for all G 2 Gt+1 such that G � Gt (!).

Proof. Let fG1; :::; Ggg � fG 2 Gt+1 : G � Gt (!)g, and write C0 � Ct (!), and Ci � Ct+1 (Gi)

for i = 1; :::; g, then

Dt (!) =

(
gX
i=1

pir (Gi) : p
i 2 Ci 8i = 1; :::; g; r 2 C0jGt+1

)
:

Closure immediately follows from compactness of C0; C1; :::; Cg.

Let � 2 (0; 1) and
Pg
i=1 p

ir (Gi) ;
Pg
i=1 �p

i�r (Gi) 2 Dt (!). Set

p̂j � �r (Gj)

�r (Gj) + (1� �) �r (Gj)
pj +

(1� �) �r (Gj)
�r (Gj) + (1� �) �r (Gj)

�pj 2 Cj 8j = 1; :::; g and

r̂ � �r + (1� �) �r 2 C0jGt+1 :

It is simple to check that for all ! 2 Gt (!) (say ! 2 Gj) 
�

gX
i=1

pir (Gi) + (1� �)
gX
i=1

�pi�r (Gi)

!
(!) =

gX
i=1

�
�r (Gi) p

i (!) + (1� �) �r (Gi) �pi (!)
�

= �r (Gj) p
j (!) + (1� �) �r (Gj) �pj (!)

= r̂ (Gj) p̂
j (!) =

 
gX
i=1

p̂ir̂ (Gi)

!
(!)
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and  
�

gX
i=1

pir (Gi) + (1� �)
gX
i=1

�pi�r (Gi)

!
(!) =

 
gX
i=1

p̂ir̂ (Gi)

!
(!) = 0

if ! =2 Gt (!). In sum,

�

gX
i=1

pir (Gi) + (1� �)
gX
i=1

�pi�r (Gi) =

gX
i=1

p̂ir̂ (Gi) 2 Dt (!) ;

and Dt (!) is convex.

For all j = i; :::; g and
Pg
i=1 p

ir (Gi) 2 Dt (!), we have (
Pg
i=1 pir (Gi))Gj

= pj 2 Ct+1 (Gj).

Conversely, if pj 2 Ct+1 (Gj), arbitrarily choose pi 2 Ci for i 6= j and r 2 C0jGt+1 , to obtain

pj =

 
gX
i=1

pir (Gi)

!
Gj

2 (Dt (!))Gj
:

We conclude (Dt (!))Gj
= Ct+1 (Gj) and the proof. �

Proposition 5 If the family fCt (!)g is fGtg-rectangular, then

C�C0 (
) is fGtg -rectangular and Ct (!) = CGt(!) for all (t; !) 2 T � 
.

Conversely, if C is fGtg-rectangular, then

Ct (!) � co CGt(!) for all (t; !) 2 T � 
 de�nes a fGtg -rectangular family.

Proof. By (R�.1), C=C0 (!) is a non-empty, compact and convex subset of �++ (G0 (!)) =
�++ (
); that is (R.1) holds. For all ! 2 
 and all t < T , by Proposition 4 and rectangularity of

fCt (!)g,
Ct+1 (!) = Ct+1 (Gt+1 (!)) = (Dt (!))Gt+1(!)

= (Ct (!))Gt+1(!)
;

that is Ct+1 (!) = (Ct (!))Gt+1(!)
. By induction, this implies Ct (!) = CGt(!) for all (t; !) 2 T �
.

In fact, for all ! 2 
, C1 (!) = (C0 (!))G1(!)
= CG1(!); and C� (!) = CG� (!) for � < T implies

C�+1 (!) = (C� (!))G�+1(!)
=
�
CG� (!)

�
G�+1(!)

= CG�+1(!)

since Gt+1 (!) � Gt (!). Ct (!) = CGt(!) for all (t; !) 2 T � 
 and (R�.2) imply (R.2).
For the converse, (R.1) implies that for every non-empty subset A of 
 the set CA is a non-

empty compact subset of �++ (A). Therefore, for all (t; !) 2 T �
, CGt(!) is a non-empty compact

subset of �++ (Gt (!)), and
�
co CGt(!)

	
satisfy (R�.1). Taking an unbounded and a¢ ne u : X ! R

and � > 0, the results of Epstein and Schneider [5] guarantee that the preferences represented by

Vt (!; h) = inf
p2�++(
)

0@Z X
��t

���tu (h� ) dpGt(!) + �CGt(!)
�
pGt(!)

�1A 8h 2 H

are recursive variational preferences. But Ct (!) = co CGt(!) implies

Vt (!; h) = inf
p2�++(
)

0@Z X
��t

���tu (h� ) dpGt(!) + �Ct(!)
�
pGt(!)

�1A 8h 2 H:

Finally, Corollary 1 guarantees that (R�.2) holds. �
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