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Abstract

This paper develops an incentives-based theory of policing that can explain the

phenomenon of random “crackdowns,” which are intermittant periods of especially

high interdiction/surveillance. We show that, when police minimize the crime

rate, random crackdowns can emerge as part of an optimal policing strategy. We

consider several variations of the basic policing model that would apply in different

monitoring situations, such as speeding or drug interdiction, or screening to deter

terrorism. For a variety of police objective functions, random crackdowns can

be part of the optimal monitoring strategy. We demonstrate support for several

implications of the crackdown theory using traffic data gathered by the Police

Department in Belgium, and we use the model to estimate the deterrence effect of

additional resources spent on speeding interdiction.
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1 Introduction

Police often engage in “crackdowns” on crime, which are intermittent periods of high

intensity policing. This paper develops a theoretical framework for modeling police mon-

itoring behavior and individuals’ decisions to engage in crime. Within this framework,

we show that there are situations where it will be optimal for a crime-minimizing police

agency to engage in random crackdowns. When they occur, crackdowns also provide a

way of estimating the deterrence effect of policing. We illustrate the application of the

model in analyzing a speed deterrence program used by police in Belgium. In particular,

we estimate the deterrence effect of additional resources spent on ticketing speeders and

assess whether the current level of deterrence is socially optimal.

Two features characterize our notion of random crackdowns. First, they are arbitrary,

in the sense that they subject to higher intensity police monitoring certain groups (iden-

tified by presence in a particular time or place, or by other observable characteristic) that

are not notably different from other groups in criminal propensities. Second, they are

publicized, i.e., those who are subjected to it are informed before they engage in criminal

activity.1 Crackdowns are employed in a number of policing situations. Some examples

include drunk driving interdiction accomplished using sobriety checkpoints, crackdowns

on speeding achieved through announced greater police presence on certain highways, or

crackdowns on drug trafficking aimed at particular neighborhoods.2

Being arbitrary and publicized, crackdowns may seem an inefficient deployment of

police resources; potential criminal activity could merely be displaced to non-crackdown

periods or locations. Criminologists rationalize the use of crackdowns by appealing to

psychological theories according to which the impression created by the temporary show

of force (the crackdown) is a psychological “bluff” that leads the potential criminals to

1Our definition of crackdown is different from the conventional use of the term in the literature

on policing (see e.g. Di Tella and Schargrodsky 2002, 2004) because we require that crackdowns be

arbitrary. We will return to this point when we discuss the related literature.
2For example, operation “safe streets” in Philadelphia, which puts heavy law enforcement on partic-

ular city blocks, received extensive media coverage. Other examples of crackdowns include the NHTSA

campaign “You Drink & Drive. You Lose” which instituted highly visible enforcement against drunk

driving. Another example is “Checkpoint Tennessee,” Tennessee’s statewide sobriety checkpoint pro-

gram.
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overestimate the risk of detection during non-crackdown periods.3 This view relies on

the potential criminals’ expectations being systematically wrong, and so is inconsistent

with rationality.

In this paper we take a different approach and develop a model in which potential

criminals are not fooled and yet the crime-minimizing police finds it optimal to employ

crackdowns. In our model, crackdowns arise as a rational (indeed, optimal) response of

both police and citizens’ incentives. They also arise under a variety of ways of specifying

police objectives, for example if the police minimize total crime, undetected crime, or

if they solve the social planner problem of trading off the costs and benefits of crime.

We next illustrate the main idea behind this result through a simple example where the

police minimize crime.

Example Consider a population of 100 citizens, half of whom would never commit

a crime, and half of whom would commit a crime unless they are certain that they will

be caught. A citizen’s propensity to commit a crime is unobservable to the police. The

police resources are such that they can only check 50 citizens. Suppose that the police

check citizens at random (note that all citizens look the same to police), so that each

citizen has a probability 1/2 of being checked. Then, only the high-propensity citizens

will commit a crime, giving rise to a crime rate of 1/2.

Suppose now that half of the citizens have blue eyes, half have brown eyes. Eye color

is distributed independently of the propensity to commit a crime, so it is arbitrary for

police to treat citizens differently according to eye color. Nevertheless, suppose that police

crack down on brown-eyed citizens and check them all, and completely ignore the blue-

eyed citizens. Then no brown-eyed ever commits a crime because they are sure that they

would be caught, and only those blue-eyed citizens commit a crime who have high criminal

propensity. Thus, the crime rate with a crackdown on brown-eyed persons is 1/4, which

is lower than the crime rate of 1/2 obtained without crackdowns.

This thought experiment shows that crackdowns can reduce crime by introducing

disparate treatment within a population of observably identical individuals. We have

3Sherman (1990), Ross (1984). Sherman, p. 11, recommends that crackdowns be highly publicized

and be followed by secret “backdowns," and warns of the risk of exhausting the bluff through overuse.
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not proved that the specific way in which citizens are divided and policed (blue-eyed v.

brown-eyed) is the optimal one for reducing crime, though this is indeed the case. We

show later in the paper that given any distribution (continuous or discrete, unimodal or

multi-modal) of the propensity to commit a crime, the crime-minimizing policing scheme

involves dividing the population into no more than two groups, not necessarily of equal

size. The example also highlights an important maintained assumption of our theory:

for crackdowns to be effective, it is important that criminals cannot easily arbitrage

between crackdowns and non-crackdowns groups. In the example, citizens are assumed

to be unable to disguise their eye color.

Let us now return to the example to consider how crackdowns make it possible to

estimate the deterrence effect of policing.

Using crackdowns to identify the deterrence effect of policing Consider

now an increase in police manpower to 51 checks. How does the optimal policing scheme

change? It can be shown that the optimal policing scheme involves moving one person

from the non-crackdown group to the crackdown group. That is, police would pick a blue-

eyed citizen, force him to wear brown contact lenses, and then check with probability 1 all

those who appear to have brown eyes. The remaining citizens (with blue eyes) are never

checked. We can calculate the expected decrease in the crime rate that follows from an

increase in manpower of 1 check: it is the decrease in crime that obtains from moving a

random citizen from the group that is not cracked down upon to the group that is cracked

down upon. Because the average crime rate in both groups is observed, we can readily

compute the expected decrease in the crime rate – in this case, the expected crime rate

goes from 25 percent to 24.5 percent.

In this paper, we develop a model of policing in which a police chief is given an incen-

tive to reduce crime and a certain amount of resources. Under a variety of assumptions

about police goals and constraints, the optimal monitoring strategy can take the form

of random crackdowns. As in the above example, our analysis provides a methodol-

ogy for estimating the deterrence effect of policing. In addition, it yields some testable

implications that can be used to validate the model.
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We apply our policing model to analyze the effectiveness of resources spent on speed-

ing interdiction. Although the decision to speed is rarely studied by economists,4 it has

great economic relevance, both in the U.S. and worldwide. According to data from the

National Highway Traffic Safety Administration (NHTSA), speeding is a factor in 30

percent of all fatal crashes in the US.5 In 2001, more than 12,000 people died in speed-

related crashes on American roads, at an economic cost to society of more than $40

billion.6 Worldwide, traffic injuries rank second to HIV/AIDS as the leading cause of

ill-health and premature death among the 15-44 age group. Because the number of ve-

hicles per capita is rapidly growing in developing countries, traffic injuries are projected

to be one of the leading public health issues over the next few decades.7

To deter speeding, police in several countries have adopted programs of announced

radar controls that occasionally publicize the location and approximate time of opera-

tion of radar controls.8 The data analyzed in this paper were gathered in the Belgian

province of the Eastern Flanders during the years 2000-2003. We have observations on

all controls in that time period affecting 6.5 million cars and resulting in 206,146 tickets

issued. The announced controls in the data are observed to rotate in a random fashion

across different stretches of the roads and time periods. We interpret the announced con-

trols as crackdowns on particular groups of motorists, those travelling on the announced

stretch of the road at the announced time. We measure of the deterrence effect of the

increased probability of detection by comparing decisions to speed within the crackdown

and non-crackdown groups. Using implications of the theory, we are able to calculate the

effect of more interdiction on speeding. In conjunction with value-of-life estimates, our

results suggest that at the current level of interdiction, the marginal benefit, in terms of

statistical lives saved, is close to the marginal cost of interdiction.

The paper develops as follows. Section 2 presents a theoretical model that we

4With some notable exceptions which will be discussed later: see Peltzman (1975), Levitt and Porter

(2001), and Ashenfelter and Greenstone (2004).
5See Traffic Safety Facts 2001.
6Over 80 percent of the economic cost is attributable to lost workplace and household productivity.

See Blincoe et al (2002).
7See the WHO publication on traffic safety: http://www.who.int/world-health-day/

2004/en/traffic_facts_en.pdf.
8For example, the Netherlands, Belgium, Germany and Australia.
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use to study the conditions under which crackdowns emerge as an optimal policing

strategy when the police chief is given incentives to minimize crime. The model allows

for unobserved heterogeneity in the benefits citizens get from breaking the law, under

the assumption that the police chief knows the distribution of the unobserved variable.

Section 3 extends the model to consider alternative police incentives and constraints

including the following: the police chief minimizes undetected crime instead of overall

crime; crime is carried out in teams; the police chief is constrained in terms of the

number of successful interdictions; the police chief maximizes a social welfare function

taking into account the benefits of breaking the law. We discuss potential applications

of these variations of the model in drug or firearms policing and in screening to deter

terrorism. Section 4 of the paper applies the model developed in section two to data

that we obtained from the Belgian police department. Section 5 provides a discussion

and some further extensions. Section 6 concludes.

1.1 Related Literature

The idea that deterrence may be improved by focussing interdiction on arbitrary subsets

of the population is present in the literature on racial profiling (see Persico, 2001).

Recently, Lazear (2004) develops a related idea in the context of designing educational

tests, where the question is howmuch of the test content to reveal to the test-takers ahead

of the test.9 In the nutrition literature, there is another related idea in connection with

nutrition curves. For example, Pratap and Sharma (2002) argue that, in the presence

of limited amounts of food, maximization of family survival and resources may entail

an unequal distribution of nutritional resources, i.e., focussing resources on a subset of

the family. Relative to these strands of literature, the contribution of this paper is (a)

to pose a general policing problem and to characterize the optimal policing strategy;

(b) to point out that crackdowns (in our terminology) allow the researcher to infer the

deterrence effect of policing; and, (c) to empirically illustrate the methodology within a

policy-relevant application, speeding.

Our work is also part of the literature on bureaucratic incentives. The most relevant

9Coincidentally, Lazear (2004) also uses speeding as a potential application in developing his argu-

ment, but his and our work are independent.
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papers in the economics literature are Prendergast (2001) and Shi (2005). These papers

look at the effect of bureaucratic oversight on policing, with special reference to race

disparities. Our paper also compares the strategies adopted by the police under different

incentive schemes, although it is not the main focus.

More broadly, the issue of deterrence in a traffic context is a subset of the vast

literature on crime.10 Of direct relevance to this paper is the literature concerned with

traffic enforcement (speeding, drunk driving, and seat-belt wearing), which is reviewed

by Zaal (1994). Much of the literature on speeding attempts to quantify the effects of

a change in the speed limit on accidents.11 There is also a literature directly concerned

with police enforcement and with estimating the deterrence effect of increased policing12

and of greater penalties13 on speeding. Parallel literatures deal with the deterrence effect

of increased policing and greater penalties on drunk driving14 and on seat-belt wearing.15

There is also a literature studying the connection between risk-taking behavior (speeding,

drunk driving) and accidents; see Levitt and Porter (2001) for a good example in the

context of drunk driving. Ashenfelter and Greenstone (2004) use changes in the speed

limit across US states to estimate the value of a statistical life. That paper also provides

a rich summary of economics papers in this area.

We acknowledge that our use of the term “crackdown” is somewhat different from

the way the term is occasionally used to refer to increases in interdiction that are not

deliberate randomizations, but rather may be considered exogenous increases in resources

in the sense that they are caused by events unrelated to the crime that is the object

of study. For example, Di Tella and Schargrodsky (2002, 2004), study the effect of

crackdowns on bureaucratic corruption and on crime. Our work complements this line of

inquiry by pointing out that “random” crackdowns can be expected to arise endogenously

as part of the optimal policing strategy.

10See Becker’s seminal (1968) paper. Also, see Levitt (1997) for a recent study of deterrence in law

enforcement.
11See for instance Balkin and Ord (2001), Lave (1985, 1989) and the literature cited therein, Ledolter

and Chan (1996).
12See e.g. Redelmeier et al (2003) and the literature cited therein.
13See Homel (1988a), Ross and Gonzalez (1988).
14See e.g. Ross (1984).
15See e.g. Campbell (1988), Peltzmann (1975).
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2 Benchmark Policing Model

In this section, we consider optimal monitoring strategies in a model in which the police

minimize crime subject to a budget constraint. One may think of this problem as orig-

inating from an agency relationship in which a principal (a politician, a bureaucrat, or

a high level police administrator) is faced with the problem of giving incentives for an

agent (the police chief) to allocate resources effectively towards achieving some socially

desirable outcome, such as a lower crime rate.16 Citizens, who differ unobservably in

their propensity to commit a crime, choose whether to commit a crime. We assume

that the agent knows the distribution of the propensity to commit crimes across the

population, but the principal only observes the realized crime rate (which depends on

police behavior). Because the principal only observes the crime rate, it is natural for the

principal to gives the police chief incentives to minimize crime. We also assume that the

police chief receives some amount of resources (e.g. manpower), and that he can commit

to choosing which citizens to police and with what intensity.

In Section 3 we explore several variants of this problem, including one in which the

agent takes into account individual benefits from crime.

2.1 The model

There is population of size 1 that is heterogeneous in the benefit x from committing

a crime, assumed to be unobservable by the police. Let x be distributed across this

population according to a c.d.f. F , and let p denote the probability that the citizen is

monitored. If a citizen commits a crime and is monitored, he is caught and receives

penalty T .17 We assume that p ∈ [0, p], which implies that a citizen can be monitored
with probability no greater than some p ≤ 1.
16Besides crime reduction, the principal might have other objectives. For example, a principal might

want to allow some citizens who get the highest value to commit crimes. We will explore this point in

Section 3.4.
17Here we assume that the citizen’s utility functions are linear and that committing the crime is a

discrete decision, but in Section 5 we relax these assumptions. Also, for the moment we take T as given.

We will return to this issue in Section 5.
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A citizen with benefit x commits a crime if

x− pT > 0. (1)

If a group of citizens is policed with intensity p, the fraction of criminals is

1− F (pT ) .

The police minimize the crime rate. One possible policing strategy is to monitor every

citizen with the same probability. Alternatively, the police can divide the population into

subgroups and police them at different intensities. Of course, this division only matters

if the citizens know that they are policed with different intensities, so we will assume

that each citizen knows the intensity with which he/she is policed.18 We denote by µ (p)

the size of the group policed at intensity p. Because the total size of the population is

1, it must be
R p
0
µ (p) dp = 1.

The contribution of group µ (p) to total crime is µ (p) (1− F (pT )), and aggregating

over all groups gives the total number of criminals:Z p

0

µ (p) (1− F (pT )) dp. (2)

In this section, we assume that the police’s goal is to minimize the total number of

criminals. Alternative specifications of the objective function are studied in Section 3,

where we also look at the social planner’s problem.

Let us now turn to the resource constraint. The police chief is assigned some amount

of resources (such as officer-hours devoted to crime interdiction). Monitoring a group of

size µ with intensity p is assumed to require police resources in the amount of µ · p. If
total resources of P per capita are available for policing, the aggregate police resource

constraint is Z p

0

µ (p) pdp ≤ P. (3)

We refer to this constraint as a time constraint. An alternative way of specifying the

constraint on police resources is explored in Section 3.3. The police chooses a probability

measure µ to minimize the number of criminals (2) subject to the resource constraint

(3).

18In practice, this means that the police must inform citizens of the intensity with which they are

policed.
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Figure 1: A crackdown is optimal.

2.2 Analysis

We next provide an intuitive characterization of the properties of the solution to the

police problem previously described. These properties are summarized in Propositions 1

and 2. A formal proof of these propositions is provided in Appendix A.

Let us start by supposing that the solution to the police problem entails policing all

citizens with the same intensity. By the resource constraint, this intensity must equal P .

In terms of our model, this policing strategy corresponds to µ (p) equal 1 if p = P , and

equal zero otherwise. Substituting this choice of µ into the objective function (2) we see

that the number of criminals equals S = 1 − F (PT ) . This situation is depicted in the

left hand panel of Figure 1.

As seen in the right panel of the Figure 1, the number of criminals can be reduced

if resources are allocated differently. If some citizens were policed with intensity pL and

the rest were policed with intensity pH , then it would be possible to bring the number

of criminals down to S0 < S.

Citizens who are policed with intensity pH are said to be subject to a crackdown.

Figure 1 shows that crackdowns help “iron out” the inward bumps of the function 1 −
F (pT ), thus enabling the police to maintain policing intensity on the efficient frontier.

More precisely, by using crackdowns the police elicit a response function from citizens

that corresponds to the convex hull of the epigraph of (i.e., of the area above) the function

10



1− F (pT ).

More formally, this crackdown strategy corresponds to choosing µ (p) > 0 if p =

pL, pH , and equal to zero otherwise. The fraction µ (pH) is optimally chosen to be the

largest possible compatible with satisfying the resource constraint (3), which therefore

reads

(1− µH) pL + µHpH = P.

Of course, crackdowns are not always part of the optimal policing strategy. If, for

example, the function 1−F (pT ) is globally convex, as depicted in Figure 2, then crack-

downs would not be optimal. Even in Figure 1, if P were smaller than pL or larger than

pH , crackdowns would not be optimal. In those cases, the most efficient use of resources

is to police every citizen with the same intensity.

P 

1-F(pT)

Fraction 
speeding  

Figure 2: Crackdowns are not optimal.

When crackdowns are optimal, it is because the function 1 − F (pT ) is not convex.

Given that crackdowns play a “convexifying” role, there is no additional gain in dividing

the population in more than two groups. In fact, given any function 1 − F (pT ), any

point in its convex hull can be achieved as a convex combination of at most two points

in its epigraph. A three group crackdown, therefore, which would entail three different

policing intensities, can achieve nothing more than a two-group crackdown. The following
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proposition actually takes this logic a bit further in stating that “generically,” three group

crackdowns are strictly suboptimal.

Proposition 1 Given a homogeneous population with a generic distribution of propen-

sity to commit a crime, the optimal policing strategy involves either monitoring everyone

at the same rate, or dividing the population into at most two groups to be monitored with

different intensities.

Proof. Theorem 1 provides a formal proof of this result.

An extreme form of crackdowns arises when 1− F is globally concave. In this case,

the convex hull is given by the segment that connects the points (0, 1− F (0)) and

(p, 1− F (pT )), which means that for any P we have pL = 0, pH = p. Thus, the optimal

policy entails the use of extreme crackdowns: one group of citizens will be monitored as

intensely as possible, the rest will not be monitored at all.19 This observation gives rise

to the following remark.

Remark 1 If F is convex on its domain, then for any P ∈ (0, p) the optimal polic-
ing strategy involves monitoring one group of citizens with maximal intensity, and not

monitoring the others at all.

It is worth pointing out that crackdowns are generally optimal for some P unless f

is monotonically decreasing on its support.

Remark 2 Unless F is concave on (0, pT ) , there exists some P such that the optimal

policing strategy involves random crackdowns.

We now turn to the comparative static result that deals with increases in the police

budget in the presence of crackdowns. The intuition behind the result can be explained

using Figure 1. Suppose that P , the amount of resources available to the police, is

increased slightly. Although the fraction of citizens who are subjected to a crackdown is

now higher because more resources are available, the optimal police strategy still entails

a crackdown with intensities pH and pL. In other words, only the sizes of the two groups

change, but not the intensity with which they are monitored. This simple but important

point is noted in the following proposition.
19This is the case described in the example in the introduction.
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Proposition 2 Given total police resources of P , suppose the optimal policing strategy

involves dividing the population into a crackdown group of size µH monitored with inten-

sity pH and a non-crackdown group of size µL monitored with intensity pL. Consider an

increase in total police resources to P̃ ∈ (P, pH). In the new optimal strategy the crack-
down group is larger than before, (i.e., µ̃H > µH and thus µ̃L < µL, the non-crackdown

group is smaller), but the intensities with which the two groups are monitored remain

unchanged (they are still pH and pL).

Proof. Theorem 1 provides a formal proof of this result.

Proposition 2 provides a way of forecasting the deterrence effect of an increase in

police resources. Crucially, the approach does not require knowledge of the shape of the

function 1 − F (pT ). Refer again to Figure 1. Graphically, increasing P results in the

crime rate S0 sliding down along the shaded segment. The slope of the shaded segment,

therefore, determines the degree to which crime decreases as resources increase. This

slope can be calculated based on the formula

[1− F (pHT )]− [1− F (pLT )]

pH − pL
.

Multiplying this slope by eP − P provides a way of estimating the expected decrease in

crime due to a hypothetical increase in police resources from P to eP . Thus,
∆Crime
∆P

=
(crime rate|pH)− (crime rate|pL)

pH − pL
.

The terms in the numerator on the right-hand side (the crime rates with and without

crackdown) as well as those in the denominator (the intensity of monitoring) would be

observable in most applied settings in which crackdowns are observed.

To see why observing crackdowns is necessary to carry out this computation, consider

the no-crackdown primitives depicted in Figure 2. We are interested in forecasting 1−
F
³ ePT´, the crime rate after the increase in the budget. Absent any information on

the shape of the function 1− F (pT ), there is no way to compute 1− F
³ ePT´ based on

the available information, which is only the knowledge of 1 − F (PT ), the initial crime

rate. This is why most of the literature on deterrence focusses on identifying sources of

exogenous variation in P , which allows one to trace out (or at least locally approximate)
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the function 1−F (PT ) as P varies. However, in the presence of crackdowns there is no

need to identify sources of exogenous variation in P to identify the deterrence effect.20

If, in addition to observing crackdowns, if one also has access to exogenous variation

in total police resources P , then Proposition 2 yields a testable implication of the model

we developed. The implication is that, as P increases between pL and pH , the optimal

monitoring intensity should not change but the size of the group subjected to crack-

downs should increase. In Section 4.3, we verify this implication in the context of speed

interdiction. As noted in the introduction, a key assumption is that the citizens that are

subject to increased interdiction as a result of crackdown cannot avoid being monitored.

For our application of speed interdiction, we concentrate attention on highways, where

avoiding the monitoring would imply an extra time cost that which does not compensate

for the time gains from speeding.

3 Crackdowns under alternative policing situations

In the previous section, we assumed that the police chief is given a certain amount of

resources along with incentives (explicit or implicit) to minimize the crime rate. In this

section we explore alternative formulations of the agency problem between the police

chief and his principal. Our goal is to provide a more precise fit for applications in which

the police objective function or the resource constraint is not adequately captured by

the benchmark model. For example, if the principal cannot observe the crime rate, the

police must be given incentives based on some other measure of performance. For each

variant of the model, we will mention potential applications.

Our discussion focusses mainly on comparing alternative models in terms of the likeli-

hood that crackdowns arise as part of the policing strategy.21 Key to our analysis is that

20One can think of crackdowns as being a case where exogenous variation in P arises as part of the

optimal policing strategy.
21In comparing the models in Sections 2.1, 3.1, and 3.3, we will take the distribution of the propensity

to commit a crime as given. These comparisons, therefore, are of interest (a) if we are comparing

alternative systems of police incentives in how they reduce levels of the same crime, or (b) we are willing

to accept that the distribution of the propensity to commit a crime is somewhat similar across different

types of crime and policing situations, which could be the case if one variable (income, or education,

say) determined the propensity to commit various types of crimes.
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the models in Sections 2.1, 3.1, 3.2, 3.3, and 3.4 share a common “structural” feature:

all five models give rise to programming problems that are linear in µ. This linearity

explains why crackdowns arise in all the models.

3.1 First variant: minimizing undetected crime

Suppose the principal cares about reducing the crime of drug production, but the prin-

cipal can only observe the drugs that make it to the market without being intercepted.

In that case, police performance will have to be evaluated based on undetected crime.

Sometimes, minimization of undetected crime may even arise as a first-best option. For

example, a principal may find it optimal to give incentives to the police based on unde-

tected crime when detection removes the social cost of the crime. This is the case for

example with illegal firearms, where if a firearm is intercepted it is taken off the street.

When a group is monitored with intensity p, the fraction of crime in the group that

goes undetected is (1− p) (1− F (pT )). Given a policing strategy µ, undetected crime

is given by Z p

0

µ (p) (1− p) (1− F (pT )) dp. (4)

The police chooses a policing strategy µ to minimize expression (4) subject to the budget

constraint (3).

This programming problem is very similar to the one studied in Section 2.1; there as

well as here, the objective function is decreasing in p. This was the only property of the

objective function that was used in Section 2.1, so it is immediate that Propositions 1

and 2 continue to hold in this setting.

Whether crackdowns are optimal depends, as before, on the convexity of the objective

function. In the present case, it is the convexity of undetected crime that matters. If

undetected crime is convex in p then crackdowns are never optimal (see Remark 1.) It is

a simple to verify that undetected crime is “more convex” than crime, in the sense that

if (1− F (pT )) is convex then (1− p) (1− F (pT )) is also convex. Therefore, if F is such

that police minimizing overall crime rates never finds it optimal to engage in crackdowns,

then crackdowns are also not optimal if the objective is to minimize undetected crime.

These observations are collected in the following proposition.
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Proposition 3 Suppose the police minimizes undetected crime. Then:

a) The optimal monitoring strategy involves either monitoring everyone at the same

rate or dividing the population into at most two groups, which are monitored at different

intensities.

b) Given total police resources of P , suppose the optimal policing strategy involves

dividing the population into a crackdown group of size µH monitored with intensity pH

and a non-crackdown group of size µL monitored with intensity pL. Consider an increase

in total police resources to P̃ ∈ (P, pH). In the new optimal strategy the crackdown group
is larger than before, (i.e., µ̃H > µH and thus µ̃L < µL, the non-crackdown group is

smaller), but the intensities with which the two groups are monitored remain unchanged

(they are still pH and pL).

c) There are no crackdowns for any P if the same is true when the police minimizes

crime. The converse is not true.

Part (c) of the proposition suggests that crackdowns have drawbacks when the po-

lice minimizes undetected crime, and are therefore less likely to be part of the optimal

strategy. A simple example provides some intuition for this result. Suppose T = p = 1,

and P = 1/2. Suppose further that F is a Uniform on [0,1]. When everyone is policed

with intensity 1/2 (no crackdown), half the citizens commit a crime and half of those

criminals are undetected, so undetected crime equals 1/4. Consider now an extreme

crackdown in which half the citizen know that they are monitored for sure, and the rest

know that they are never monitored. The latter half of the citizens all commit a crime,

and undetected crime is equal to 1/2. Undetected crime, therefore, increases due to the

crackdown. This example shows the drawbacks of crackdown when the objectives is to

minimize undetected crime: the group that is monitored less intensely commits a lot of

crime, and that crime is more likely to go undetected.

The same example helps illustrates the “converse not true” statement in part (c). In

the example, the crime rate is (1− p), which is linear in p. This means that any policing

strategy including crackdowns is optimal. Undetected crime is (1− p)2 which is strictly

convex, so crackdowns are strictly suboptimal. In this example, then, crackdowns are

suboptimal if police minimizes undetected crime, but they are optimal (albeit weakly)
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when police minimizes crime.22

3.2 Second variant: detecting a criminal team

In this section we consider the problem of deterring a team of criminals instead of only

one criminal. We assume that the team is detected as soon as one of its members is

detected, and then the crime is averted. We call this a team detection setting, and we

are interested in the prevalence of crackdowns as the team size changes. We will show

that as the team size increases, crackdowns are less likely to be optimal.

As a potential application, consider the problem of airport screening for terrorists.

Suppose there is a mastermind who has to decide whether to send an armed team of

n ≥ 1 terrorists on a plane. If all n terrorists pass the pre-flight screening then the

terrorist act is carried out and the mastermind receives a utility v. If at least one is

detected, then the boarding process is interrupted and the act cannot be carried out,

whereupon the mastermind receives a utility of −T. The utility v from carrying out the

act is unknown and is distributed according to a distribution F .

In the airport screening setting, we could think of a crackdown as a preannouncement

that passengers on certain flights will be subject to high intensity monitoring.23 We

assume that such announcements could be made shortly before the boarding process, so

that the mastermind cannot redirect the team to a non-crackdown flight without arising

suspicion. The only choice that the mastermind faces is whether to send the armed team

or to abort the mission.24

Let p be the probability that each member of the team is detected during the pre-

flight screening. If a team is sent, it will be successful with probability (1− p)n. A

mastermind with value x will send the team if and only if

x (1− p)n − T (1− (1− p)n) > 0,

22Slightly tweaking the function F would ensure that crackdowns are strictly optimal when the police

minimizes crime.
23In is not the current practice to make such announcements; however, our analysis suggests that such

announcements could be an optimal monitoring strategy, perhaps in conjuction with other passenger

profiling practices.
24Aborting may mean sending the team through unarmed so as not to arouse suspicion by canceling.
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or, equivalently, if x > T
³

1
(1−p)n − 1

´
. From the police chief’s viewpoint, the probability

that the team is sent is

1− F

µ
T

µ
1

(1− p)n
− 1
¶¶

.

The probability that a team is sent and is not detected is given by

(1− p)n ·
·
1− F

µ
T

µ
1

(1− p)n
− 1
¶¶¸

.

It is useful to rewrite this probability as

g (hn (p)) ,

where we have denoted

g (h) = h

·
1− F

µ
T

µ
1

h
− 1
¶¶¸

hn (p) = (1− p)n .

The police chief chooses µ (p), the probability that a flight is screened with intensity p,

to minimize Z p̄

0

µ (p) · g (hn (p)) dp.

under the budget constraint given by (3). The budget constraint reflects the fact that

there may not be enough resources to subject all flights to a thorough screening process.

The programming problem is very similar to the ones studied in Sections 2 and 3.1.

Since g (·) is an increasing function and hn (·) a decreasing one for every n, the kernel of
the objective function is decreasing in p. So Propositions 1 and 2 continue to hold in this

setting. Crackdowns can be optimal only if there are portions of the objective function

g (hn (p)) that are concave in p. Since g (·) is increasing and hn (·) is convex for every n,
the composite function g ◦ hn can have a concave portion only if the function g (·) has
a concave portion. In particular, if g (h1 (p)) is everywhere convex, then crackdowns are

never optimal for any n. This discussion is summarized in the following proposition.

Proposition 4 Suppose the police minimizes undetected crime in a team detection set-

ting. Then:
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a) The optimal monitoring strategy involves either monitoring everyone at the same

rate or dividing the population into at most two groups, which are monitored at different

intensities.

b) Given total police resources of P , suppose the optimal policing strategy involves

dividing the population into a crackdown group of size µH monitored with intensity pH

and a non-crackdown group of size µL monitored with intensity pL. Consider an increase

in total police resources to P̃ ∈ (P, pH). In the new optimal strategy the crackdown group
is larger than before, (i.e., µ̃H > µH and thus µ̃L < µL, the non-crackdown group is

smaller), but the intensities with which the two groups are monitored remain unchanged

(they are still pH and pL).

c) If there are no crackdowns for any P and for n = 1, then the same is true for

any n > 1.

We interpret part c) of the above proposition as indicating that crackdowns are not

more likely to be effective when the setting is one of team detection.

Remark 3 The logic behind Proposition 4 does not hinge on the specific functional form

of g, that is, on whether the police minimizes undetected crime. Analogous statements

can be proved for any objective function that is decreasing in the monitoring intensity p.

3.3 Third variant: constraint on successful interdictions

In this variant of the model, as in Section 2.1, we assume that the goal of the police

is to minimize the crime rate. The resource constraint, however, is given in terms of

number of successful interdictions rather than in terms of time resources. That is, only

monitoring criminals has a cost to the police; monitoring honest citizens is costless. This

captures environments in which interdiction is cheap relative to the cost of processing

violations. This happens to be the case in our speeding application of Section 4, where

the police are administratively restricted in the number of tickets that they can write in

a year.25

25This makes sense because detecting speeders with automatic radar machines is almost costless

relative to processing a traffic ticket. More on this in Section 4.
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The term (1− F (pT )) · p represents the number of successful interdictions from a

population that is policed with intensity p. To capture the constraint on successful

interdictions we modify the constraint (3) to readZ p

0

µ (p) (1− F (pT )) p dp ≤ C. (5)

The police minimizes expression (2) subject to the constraint (5).

To rule out trivial cases where the resource constraint is not binding, we assume that

C is such that the police could not afford to monitor everyone with maximal probability.

This assumption, which will be maintained throughout, reads

Assumption C < (1− F (pT )) p.

The present problem shares a key formal similarity with the benchmark model: both

programming problems are linear in µ. As a consequence, Propositions 1 and 2 continue

to apply.

True, constraint (5) and constraint (3) are quite different. In constraint (5), for

example, the kernel of the integral is not necessarily increasing in p: higher monitoring

intensity does not necessarily entail more successful interdictions. Yet, at the optimal

solution, one can show that more resources (successful interdictions) must be expended

per capita on the crackdown group than on the other group. One can also show that

whenever crackdowns are optimal in the benchmark model for all values of P , then they

are also optimal when police are ticket constrained. These results are collected in the

following proposition.

Proposition 5 Consider a monitoring problem in which police minimize crime under

the constraint that successful interdictions not exceed C. Then:

a) The optimal monitoring strategy involves either monitoring everyone at the same

rate or dividing the population into at most two groups, which are monitored at different

intensities.

b) Given C, suppose the optimal policing strategy involves dividing the population

into a crackdown group of size µH monitored with intensity pH and a non-crackdown

group of size µL monitored with intensity pL. Consider an increase in C to eC ∈
(C, (1− F (pHT )) · pH). In the new optimal strategy the crackdown group is larger than
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before, (i.e., µ̃H > µH and thus µ̃L < µL, the non-crackdown group is smaller), but the

intensities with which the two groups are monitored remain unchanged (they are still pH
and pL).

c) At the optimal monitoring strategy, the expected number of successful interdictions

per capita (the probability that there will be monitoring multiplied by the fraction of

motorists who speed) is larger in the crackdown group than in the non-crackdown group.

d) Crackdowns are optimal for all values of C if they are optimal in the benchmark

model for all values of P . The converse is not true.

Proof. a), b): see Theorem 1.

c) Suppose not. Then if one perturbed the optimal strategy by shifting a small mass of

citizens from the non-crackdown group to the crackdown group, the resource constraint

would continue to be satisfied and the crime rate would decrease. This contradicts

optimality of the original strategy.

d) Let P denote the maximal feasible policing intensity when all motorists are po-

liced with the same probability. This is the monitoring intensity that minimizes crime

among all feasible non-crackdown strategies. For future reference, observe that feasibility

implies C = P (1− F (PT )). Consider now the ancillary problem which is to minimize

crime subject to the constraint (2). Let µL, pL, µH , pH denote the optimal crackdown

probabilities in the ancillary problem. By definition, this crackdown policy generates a

lower crime rate than if all citizens were policed with intensity P . We now show that the

same crackdown strategy is feasible in the original problem. This will prove that equal

policing is dominated by crackdowns in the original problem.

To verify feasibility in the original problem, write the following chain of inequalities:

C = P (1− F (PT ))

= [1− F ((µLpL + µHpH)T )] (µLpL + µHpH)

≥ µLpL (1− F (pLT )) + µHpH (1− F (pHT )) ,

where the inequality reflects the concavity of the function x [1− F (xT )]. This function

is concave because F is convex, which we know because crackdowns are optimal for all

values of P in the ancillary problem (refer to Remark 1).
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Part d) of the above proposition suggests that crackdowns can be optimal when the

police are ticket constrained even in cases where they are not optimal in the benchmark

model. The intuition for crackdowns when the police faces constraint (5) is as follows.

In a crackdown, the high interdiction group commits little crime, while the group that

is more prone to committing crime is rarely policed. This tends to reduce the number of

tickets that are written relative to the case in which both groups are policed at the same

rate. Thus, besides helping satisfy the objective function, engaging in crackdowns has

beneficial effects on constraint (5). The second effect was not present in the benchmark

problem.

Part (b) of Proposition 5 yields a useful formula for computing the effect of an increase

in police resources on the crime rate. Because this formula will be used in the empirical

work later, we derive it here. The crime rate given eC equals

eµ (pL) · (1− F (pLT )) + eµ (pH) · (1− F (pHT ))

(note that there is no tilde over the p’s in light of Proposition 5 part (b)). To obtain the

change in crime, subtract from this expression the analogous expression when resources

equal C. This yields

∆Crime (6)

= [eµ (pL)− µ (pL)] (1− F (pLT )) + [eµ (pH)− µ (pH)] (1− F (pHT ))

= [eµ (pH)− µ (pH)] (F (pLT )− F (pHT )) .

The optimal policing strategy eµ must meet the budget constraint, and so
eC = (1− eµH) (1− F (pLT )) pL + eµH (1− F (pHT )) pH .

Isolating eµH yields
eµH = eC − (1− F (pLT )) pL

(1− F (pHT )) pH − (1− F (pLT )) pL
.

The optimal policing strategy before the increase in resources must also meet the budget

constraint, and so

µH =
C − (1− F (pLT )) pL

(1− F (pHT )) pH − (1− F (pLT )) pL
.
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Substituting into (6) we get

∆Crime =
³ eC − C

´· F (pLT )− F (pHT )

(1− F (pHT )) pH − (1− F (pLT )) pL

¸
(7)

= ∆C ·
·

(crime rate|pH)− (crime rate|pL)
(crime rate|pH) · pH − (crime rate|pL) · pL

¸
.

All the terms in the right-hand side brackets are observable when the resource level equals

C. Thus, the decrease in crime rate due to an increase in resources can be computed even

without observing any variation in the data in the level of police resources. In Section 4

this slope is calculated in the context of highway speeding interdiction.

3.4 Fourth variant (the social planner’s problem): maximizing

social welfare

Up to now the benefits of committing a crime have not been directly reflected in the police

incentive scheme. We have thus implicitly assumed that if the principal has any regard

for the citizens’ benefits from committing a crime, the trade-off between the benefits

and costs of crime is resolved by choosing the appropriate size of police resources. This

assumption seems realistic because, in practice, the police seldom appear to explicitly

take into account the law-breakers’ utility when deciding their optimal strategy. (In

our empirical application, for example, we know that the police view their mandate as

simply to reduce speeding.) Nevertheless, taking into account the benefits of breaking

the law makes theoretical sense, especially when we consider small stakes violations or

“victimless” crimes such as drug consumption. In this section, we explore a model in

which the presence of individual benefits of crime is directly reflected in police incentives.

Let us assume that the police chief’s incentives are to minimize a weighted sum of

the crime rate and the loss to the deterred citizens of forgoing crime. We will call this

the social planner’s problem and, in this section, refer to the police chief as the social

planner. According to our model, if a group is policed with intensity p all citizens with

x < pT will forgo crime. The loss from forgone crime is therefore

L (p) ≡
Z pT

0

x dF (x) .
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Our social planner chooses µ to minimizeZ p

0

µ (p) [(1− F (pT )) + αL (p)] dp

subject to the budget constraint (3). The parameter α > 0 represents the weight given

by the social planner to the potential perpetrator’s loss from forgone crime relative to

the potential victims’ benefit of reducing crime (the latter being normalized to one).

The social planner problem is more complicated than the one treated in the previous

section, because the planner must weigh the cost of lost crime opportunities, and this

cost is higher in the crackdown group (where more crime is forgone) than in the non-

crackdown group. This consideration will affect the incentives to engage in crackdowns.

When α is close to zero, i.e., the weight assigned by the social planner to the loss from

forgone crime is small, the planner’s objective function is similar to the one analyzed

in Section 2 and so crackdowns are optimal under approximately the same conditions.

When α is large, i.e., the social planner assigns large weight to the loss from forgone

crime, the planner’s objective function is no longer similar to the one treated in Section

2; for example, it is no longer necessarily decreasing in p, reflecting the fact that deterring

crime now carries a social cost. For the purpose of assessing whether random crackdowns

are optimal, what matters is the concavity of the planner’s objective function. If the

function exhibits concave portions in areas where the convex hull is decreasing in p, then

crackdowns are optimal for some values of P . The presence of the term L (p) may make

it more or less likely that some portion of the objective function is concave. Indeed, it

is easy to find distributions F such that the term L (p) is convex when (1− F (pT )) is

concave, and vice versa. Depending on the specific shape of F , therefore, the solution to

the social planner’s problem can be less or more likely to exhibit random crackdowns.

4 Empirical Application: Speeding Interdiction

In this section we apply our theoretical model of policing to study speeding interdiction

in Belgium. Speeding interdiction is an important policy question in its own right,

given that traffic accidents are a leading cause of death and disability worldwide.26 In
26In 1990, for example, traffic accidents represented the fourth leading cause of loss of DALYs (dis-

ability adjusted life years) in developed countries. Worldwide, accidents were the third cause of loss of
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addition, given that one of our goals is measuring deterrence, speeding interdiction has

the advantage that the issue of incapacitation does not play a significant role.27 That

is, crime rates can be reduced by deterring potential criminals or by incapacitating

them, and the models we examined only dealt only with the question of deterrence.

Disentangling deterrence from incapacitation is a difficult task.

It will become clear that the variant of the model that best fits the application is the

one developed in Section 3.3.

4.1 The environment and the data

The data set comes from the administrative records of the Belgian police department.

In three Belgian provinces (Eastern Flanders, Liege and Luxembourg), the police puts

extensive effort into publicizing announced radar controls, through different media in-

cluding newspapers, radio, internet, local stores and restaurants.28

Our data covers the province of Eastern Flanders, which has two major highways

and one minor highway, each of them connecting the city of Gent (see the road map in

the Appendix B).29 The two major highways are divided into four sectors: A14-North,

A14-South, A10-East, A10-West. The province has two radar control machines that are

placed along roads or highways to record the speed of drivers passing along that road and

to take photographs of cars that are speeding, which are then issued tickets.30 On any

DALYs for ages 15-44; by comparison, war was only the seventh leading cause for those ages.
27Speeders are not usually incapacited by prison terms. However, sometimes they do get their licenses

revoked for lengthy periods, so incapacitation can play some role in reducing speeding.
28The controls are announced, for example, on the website: http://www.federalepolitie.be. The logo

that accompanies announced controls is in Appendix C.
29The East-West highway A10 connects Gent with Brussels to the East and with Bruges to the West

and the North-South highway A14 connects Gent with Antwerp and the Dutch border to the North, and

with the French border to the South. Both highways are approximately equidistant and cover around

60-65km within the province of Eastern Flanders. The third highway, R4, is a short stretch of highway

connecting Gent with its port to the North.
30Radar control machines record speeds and take photographs of speeding vehicles. The license

information obtained from the photo and information recorded on the speed is used to issue the tickets.

If the driver passes a radar machine while exceeding the speed limit by a certain threshold (see below)

the probability is close to one of receiving a ticket. It is not equal to one, because, rarely, sun glare

makes the photo unreadable. The radar control machines are mobile and are sometimes moved to several
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given day, the police either make no announcement or they announce the location of at

most one of the machines. An announcement covers exactly one section of one highway.

For example, an announcement might reveal that the machine will be placed somewhere

on a given section of a highway between the hours of 9am-12. The announcement does

not specify the direction of the road on which the machine is placed, nor the exact

location. The police generally hide the position the radar machine, so as to avoid the

possibility that drivers may slow down in the proximity of the machine and then pick up

their speed again.31

Our empirical analysis combines data from two sources. The first source is informa-

tion concerning date, time, and location of the machine, whether the radar control was

announced, the number of vehicles passing by the machine (as recorded by the machine),

the fraction of cars and trucks that were driving in excess of the speed limit (the limit

differs for cars and trucks) and the fraction of vehicles exceeding the speed limit by 15

km/h.32 Our second source of information are police records on all vehicles that were is-

sued speeding tickets, which includes information on the speed of the driver (as recorded

by the machine), on the type of car, and on the place of residence of the driver.

Police objective and constraints. The police department explicitly states that its

goal is to optimally deter speeding, given an upper bound on the number of speeding

tickets can be issued each year. In particular, maximizing the revenue from traffic tickets

is not part of the police objective function. In fact, the police do not even get to keep

the revenue from the tickets they write.

Through conversations with the police, we learned that they face a binding constraint

on the total number of tickets. The primary cost of issuing a speeding ticket is the

locations throughout the day.
31Only in rare cases (less than 1% of our data) is the radar machine not hidden. Even then, it does not

seem to be easily detectable by drivers: we verified that the probability of speeding does not decrease

in those cases.
32A major speeding violation is defined in the law as travelling at a speed of 10km/h or more over

the speed limit. In addition, the margin of error of the radar is ±3%, or 4km/h at the maximum speed

on highways, which is 120km/h. It is police discretion when to issue a ticket for major violations, and

currently, police considers a major violation travelling at a speed of 136km/hr or higher on highways.

Currently no tickets are issued systematically for minor violations (over the speed limit, but less than

136km/h) as a result of the radar data collected.
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administrative cost of processing the ticket, estimated to be about US $0.50; the police

are given a total budget at the beginning of the year, so they know how many tickets can

be issued during the year within this budget. This budget is the total number of ticketed

speeders reported in Table 1a.33 To avoid issuing too many tickets, police do not make

use of the radar control machines every day of the year. On days when no announcement

is made, police may or may not be using the machines to monitor the roads for speeders.

On days with announcements, police make use of at least one machine on the announced

road and may also use the other machine on another road unannounced. Based on this

description of the police problem, the relevant variant of the model is the one developed

in Section 3.3.

Following organizational reforms within the police, in 2002 and 2003 there was a

sharp increase in the number of tickets that the police was allowed to issue on highways.

The size of the budget constraint more than doubled, from 33,951 in 2000 to 78,136

in 2002. This change occurred, in part, because resources previously used to monitor

both highways and some smaller roads were from 2002 on earmarked for highways only.

Based on conversation with the police, this reallocation of funds was not triggered by any

perceived change in the motorists’ propensity to speed, but rather was a side effect of

broader organizational changes. We will therefore treat this change in the police budget

as exogenous, and we will use this source of variation to validate our model.

Monitoring Policy. Monitoring policy is decided several weeks before the actual radar

control. For this reason, the officer who schedules the times and locations of announced

and unannounced controls does not react to short term changes in the circumstances,

such as weather. Once a radar control is planned, it is always executed. Table 1a shows

the number of vehicles subject to announced and unannounced radar control on the three

major highways for the years 2000-2003 as well as the number of drivers issued speeding

tickets. Table 1b shows the number of monitoring events on each road. Highway A14

has the most monitoring, followed by A10 and then the shorter highway, R4. Table

A1 tabulates the number of announced and unannounced monitoring events by month

of year. There is no systematic pattern, except that monitoring is more frequent in the

33The number of ticketed speeders does not exactly match the budget constraint because the police

cannot exactly predict how many speeders will be ticketed during a monitoring event.
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month of December. As seen in table A2, which tabulates monitoring and announcement

events by day of the week, monitoring is also more frequent on weekend days in 2000

and 2001, for the reason described above

Driver’s avoidance. One potential concern in applying our model to the data is

whether drivers who hear the radar control announcements can select an alternate route

to avoid detection, which would mean that the speeding response of people who choose

to remain on the announced road could no longer be compared to the response of drivers

in the absence of the announcements. Note, however, that our data pertains only to

major highways. The potential problem of route selectivity is much less serious on major

highways, because if a motorist wants to avoid a highway with announced radar controls,

she will necessarily have to take country roads, with relatively low speed limits (between

50 and 90 km/h) and with traffic lights. On the basis of time cost, a driver should prefer

to take the highway rather than a country road, even with the announced controls.34

4.2 Connecting the data to the theory

We now describe how we organize the data in light of the theoretical framework.

Monitoring intensity. Because the police hide the location of the radar machine, a

driver’s belief about the probability of being monitored must be constant along an entire

section of highway. Thus, p represents the probability that a motorist traveling along a

section of the highway is monitored. In reality, not all motorists travel along the entire

section–some make shorter trips. We will show below that, for our purposes, there is

no loss in generality in treating shorter trips in the same way as longer trips.

Even on announced days, police monitor somewhere in the announced sector, but the

probability of a driver being caught speeding in that sector is typically less than one,

because police do not monitor the entire length of time of the announced control and

they only monitor one of the two driving directions.

34This argument might fail, however, if some motorists derive pleasure from exceeding the route-

specific speed limit for the sake of it. In that case, taking an alternate, slower route might deliver the

pleasure of breaking a speed limit, even though the limit being broken would be lower than maximum

speed that is legal on the highway.
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The monitoring intensities are obtained as follows. For sectors without announce-

ments, we estimate a logistic model for the probability of the sector being monitored,

where we take into account other factors that potentially affect the motorists’ expected

probability of being monitored, such as the day of the week, the month of the year,

whether the particular road was recently subject to any monitoring (announced or unan-

nounced), whether there has been an announcement on another road and whether it

is a holiday. Table A3 presents the coefficients from the logistic regression, where the

model is estimated separately by highway and the unit of observation is a day in which

there was no announced monitoring of that particular highway. Similarly, we estimate

a regression model for the duration of time spent monitoring on days without announce-

ments. 35 To obtain pL, we take the product of the predicted probability of monitoring

and the expected time spent monitoring, which is this then multiplied by 0.5 to account

for uncertainty about the direction of the road being monitored.

We compute pH in the same way, except that we replace the conditional probability of

monitoring by one (because there is always monitoring on sectors with announcements)

and obtain the expected time spent monitoring by dividing the duration of the actual

monitoring period by the duration specified in the announcement.36

Crime rate. Our theory requires us to compute F (pLT ) and F (pHT ), the fractions

of speeders on a regular day with and without a crackdown (see expression 7), which we

can obtain directly from the data. Below, we describe how we also take into account

other possible determinants of decisions to speed, such as weather and traffic conditions.

Heterogeneity in trip lengths. Because p is the probability that a motorist traveling

along an entire sector is monitored, equation (1) must be interpreted as a “per sector”

equation. Thus, we take x to represent the “per sector” benefit of speeding.37 A motorist

who travelled only a fractionm of a sector would speed ifmx−mpT > 0, or equivalently,

if x − pT > 0. Thus, the motorist’s decision problem is invariant to the fraction of the

35The fraction of time spent monitoring is obtained by the expected number of hours divided by 16.

There is no monitoring in the data during nighttime.
36For example, if the announced crackdown duration is one hour within a specified three hour time

period, then the expected probability of being monitored during the announced interval is 1/6.
37We can think of x as reflecting a time benefit from speeding over some interval, and we would expect

value of time to differ across individuals.
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sector travelled. This formulation allows us to aggregate trips of different lengths. This

is convenient because we do not observe the length of each individual trip.

Heterogeneity in driving population. The theoretical model presented above as-

sumes that individuals are identical in the eyes of police. In reality, the population

driving on the road also varies in observable ways. We might worry, for instance, that

the slightly higher levels of weekend monitoring before 2002 might be evidence that

the police viewed the weekend driving population as different than the weekday drivers.

When we raised this concern, however, the police gave us a different explanation. They

had anticipated the 2002 increase in resources prior to 2000 and wanted to “smooth the

transition” to more frequent monitoring by providing higher frequency monitoring on

weekends in 2000 and 2001. In our empirical analysis, we include day of the week as a

conditioning variable.

Aside from weekend monitoring, the only other significant predictors of announce-

ments are whether it is a holiday and whether the same road was recently subject to

monitoring (see appendix Table A5), which increases the likelihood that there will be an

announcement.38 Because our model is static, it is silent on the question of the temporal

dynamics of monitoring.

4.3 Validating the model

Police behavior in our speeding application seems to fit well our definition of crackdown:

the police randomly and publicly engage in high interdiction phases. Our model, and in

particular the variant studied in Section 3.3, rationalizes this behavior as optimal. The

model also has some additional predictions, summarized in Proposition 5, that can used

to validate the model.

First, the most direct implication of our theory (Proposition 5 part (a)) is that the

38For this estimation, we can only use the limited set of conditioning variables that is available for all

days of the year (not just for the monitoring days). For example, police may monitor less on days with

high traffic density; but we do not have a measured of traffic density for days in which there was no

monitoring. The police told us that they establish the monitoring schedule approximately one month

in advance, so it is unlikely the the schedule depends on factors that could not be anticipated far in

advance, such as daily weather fluctuations.
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optimal policing scheme partitions the population in at most two different groups. The

optimal monitoring strategy involves either monitoring everyone at the same rate or

dividing the population into at most two groups, which are monitored at different inten-

sities. The fact that police announce crackdowns on some roads on some days naturally

gives rise to three different groups: (i) highway sectors with crackdowns; (ii) sectors

without crackdowns on days in which crackdowns are announced (on other sectors), and

(iii) sectors on non-announcement days. We now show that the monitoring intensity

is virtually the same in groups (ii) and (iii), which is consistent with the theoretical

prediction of the model that there are only two different monitoring intensities.

To illustrate this point, figure 3 plots the histogram of the probabilities with which

police monitors drivers (the plot refers to road A10; the histograms for A14 and R4 are

similar and available upon request). This is reported below where the first column of

3 figures is for the year 2000, the second and third are for 2001 and 2002. For each

year, the top figure displays the distribution of probabilities of monitoring if the police

has announced the control. The middle figure depicts the distribution of probabilities

if there was no announcement on that road (A10), but there was an announcement

simultaneously on another road. The bottom figure has the probability distribution if

there is no announcement on that road (A10) or on any other road. For all three years,

the monitoring intensity when there are announcements (the top figure for each year) is

much different from when there is no announcement on that road (middle and bottom

figures). More importantly, for each year, the monitoring intensities do not differ much

between the bottom two figures. Thus, groups (ii) and (iii) appear to be monitored with

similar intensities, and with sharply lower intensity than group (i). Table A5 suggests

that having an announcement on another road has opposite effects on the intensity of

unannounced monitoring on the two main roads, and, more importantly, that the effect

is quantitatively negligible. Table A4, which reports the average predicted probabilities

for all three roads, confirms that probabilities for the unannounced monitoring are very

low (they range between 0.001 and 0.030) and are not appreciably different if there is an

announcement on another road that day, whereas the announced monitoring probability

pH range between 0.2 and 0.3 for different roads.

Second, the theory (Proposition 5 part (b)) predicts that with an increase in the

number of tickets, there will be an increase in the fraction of the population subject
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to announced controls (µH increases and µL decreases) but no change in the monitoring

probabilities pH , pL. In 2001 and 2002, there were large increases in police resources. The

predictions of the model seem to be borne out in the figures. A simple comparison of the

histograms in columns 1, 2, and 3 reveals no shift in the monitoring probabilities, even

as the number of tickets issued nearly doubled in 2002, and an increase in the number

of vehicles subject to monitoring. This pattern can also be seen in Table A3, where the

estimated coefficients for the year effects are not significant, as well as in Table A4, which

shows the predicted probability of monitoring over the years.

Third, the model predicts that the expected number of successful interdictions per

capita is larger in the crackdown group than in the non-crackdown group (Proposition

5 (c)). The expected number of successful interdictions per capita is equal to the prob-

ability that there is monitoring multiplied by the fraction of motorists who speed. The

expected number of tickets issued per capita is systematically larger on announcement

days than it is on unannounced days. For example, on highway A10 the expected num-

ber of tickets per capita on announcement days is 0.466% whereas on unannounced days

it is 0.035%. Likewise on A14 (1.010% and 0.097% respectively) and R4 (0.994% and

0.039%).

Overall, all the predictions of Proposition 5 are supported by the data, which we take

as evidence in support of the model as a reasonable approximation to police behavior.

4.4 The deterrence effect of announced controls

A main goal of our empirical analysis is to estimate the deterrence effect of announced

controls. Drivers who take to the roads on announcement days are subject to a higher

probability of being caught speeding and can therefore be viewed as the group subject

to a crackdown. Here, the criteria by which the crackdown group is distinguished are

time and day of travelling on the road. To estimate the deterrence effect, we compare

the speeding response on pH days (days with announcements) to the response on pL

days. Our estimation also allows for possible observed heterogeneity that may affect the

police’s decisions about when and where to monitor and drivers’ decisions about whether

to speed. The theoretical model of the last section assumed that monitoring intensity

is the only observable factor affecting speeding, but in reality there are other relevant
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factors, such as weather conditions and traffic density. Additionally, there is likely to be

some variation in the population driving on the roads at different times, for example,

weekend drivers may differ in utility derived from speeding from weekday drivers. Let

Z denote the vector of observables, such as day of the week and month of the year, that

are potential determinants of the monitoring probabilities, P (Z).

We estimate a logistic model for individual drivers’ decisions to speed, where the

speeding decision is assumed to depend on the probability of monitoring (p(Z)) and

possibly on some other factors, X.39 Table 2 presents the estimated coefficients obtained

from the logistic regression for three alternative specifications. In specification (1) the

speeding decision is assumed to be a function solely of the predicted probability of

monitoring, that was estimated using the method described above. Specification (2)

adds the following set of conditioning variables that may be relevant to the speeding

decision: indicators for different levels of traffic density, an indicator for poor visibility

on the road, an indicator for morning and evening rush hour weekday traffic, an indicator

for whether the day is a holiday, and fixed effects for days of week and months of year,

and year. Specification (3) includes the same conditioning variables, but the speeding

decision is now assumed to depend only on whether there is an announcement. This

specification estimates the impact of having an announcement, but does not take into

account the information on the length of the monitoring interval.

As seen in Table 2, speeding decreases during announcement periods and is a de-

creasing function of the probability of monitoring. This result is robust to the inclusion

of conditioning variables, although a comparison of the specifications that exclude and

include the conditioning variables shows that the estimated deterrence effect is smaller in

the specifications that include the covariates. Controlling for covariates has an especially

large effect on the estimated coefficient associated with the probability of monitoring on

highway R4. As expected, individuals are more likely to speed when there is low traffic

density. Speeding also tends to be higher during weekday rush hour times, on holidays,

and on Sundays.

Table 3 translates the estimated coefficients from Table 2 into an estimated average

impact on the probability of speeding. That is, columns (1) and (2) present estimates

39Some of the elements of X (such as day of week) coincide with elements of Z.
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of the average predicted decrease in speeding on each road due to announcements.40 As

noted above, the estimated deterrence effects are smaller when additional conditioning

variables are included in the specification. We focus on the coefficients that include the

conditioning variables (reported in columns (2) and (3)), because they likely reflect addi-

tional determinants of driver’s decisions to speed that need to be taken into account. On

highway A10, the estimated coefficients imply that the fraction of drivers speeding de-

creases on average by 8.4-19.1% due to the announcements. For highway A14, estimates

range from 8.4%-10.2%, and, for highway R4, from 1.6%-3.6%.

We use these estimates to compute the change in the deterrence effect of an increase

in resources on speeding interdiction. The key resource constraint the police face is the

number of tickets issued. Therefore, we examine how the number of speeders varies as

the number of tickets the police are allowed to issue increases, using equation (7) derived

from the theory. The effect of an increase of 10, 000 tickets is reported in Table 3 for each

of the highways. Depending on the model specification, the reduction in the number of

speeders on highway A10 ranges from 4,746 to 12,123 from 3,954 to 10,291 on highway

A14, and from 668 to 3,831 on R4.

There is a vast literature documenting the effect of speeding on accidents, injuries

and traffic deaths.41 We next use our estimates of the impact of speeding on fatalities

to evaluate whether the police optimally resolve the trade-off between costs and benefits

of speeding interdiction. We take an average of the estimated deterrence effects of

10,000 tickets, observed in Table 3, to be about 4,000 speeders. Assuming each deterred

motorists travels the length of a sector (about 40 km), 160,000 km are travelled by

deterred motorists. The expected number of deaths on 480,000 travelled kilometers is

around 1.3
100000000

· 160000 = 0.00208.42 In our data, deterred motorists reduce their speed
by about 8 km/h;43 assuming the probability of injury and death increases by 5% per

40The table reports the average (over all drivers) decrease in speeding.
41For the US, the National Highway and Transportation Safety Authority (NHTSA) provides estimates

of speed-related crashes.
42We impute the expected number of deaths at 1.3 per 100 million km travelled (See DiGuiseppi et al

(1998).) For comparison, in the US, where the speed limit is lower, the expected number of deaths was

1.51 per 100 million of highway miles travelled in 2002 (see Motor Vehicle Traffic Crash Fatality Counts

and Injury Estimates for 2003 ).
43Average speeds among speeders are 142 and 144 respectively for A10 and A14. Assuming that
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km/hour, in our case, interdiction is expected to reduce the number of deaths by 40%,

or by 0.00208 ∗ 0.4 = 8.32× 10−4.
On the cost side, writing 10,000 more tickets costs $5,000 in administrative costs and

wastes about 1 minute per deterred driver, or a total of about 67 hours. Given a wage

of $10/h (the opportunity cost of time), the total costs of interdiction is $5, 000 + 670.

If the police were resolving optimally the trade-off between marginal cost of inter-

diction and marginal benefits, in terms of statistical lives saved, then the implied value

of a statistical life is 5670
8.32×10−4 = 6.8 million dollars. This value is within the range of

commonly accepted estimates of the value of a statistical life, indicating that the use of

resources in policing may be efficient.44

5 Discussion and Some Extensions

This section compares our theory to some other existing theories of crackdowns. It also

extends the model to capture an environment in which crime is not a binary decision but

rather a continuous choice and the utility of the citizens is not necessarily linear (to allow

for risk aversion). All the previous results carry over to these more general settings.

5.1 Alternative theories of deterrence

The model analyzed in this paper is a model of perfectly rational risk assessment, in

which motorists form a Bayesian update of the probability of being monitored based on

the available information. In this environment, we have shown that crackdowns may be

part of the deterrence policy chosen by the police.

Alternatives to our theory exist that can rationalize crackdowns. These theories are

typically based on some form of non-standard (at least from an economist’s viewpoint)

rationality. For example, an alternative model of the effect of crackdowns is the following.

deterred motorists travel at the maximal non-ticketed speed (135km/h), deterred motorists reduce their

speed by 7 - 9km/hr.
44For example, Murphy and Topel (2003) report a range of $3 million to $7 million. The Environmental

Protection Agency in the U.S. uses an estimate of 4.5 million. (Murphy and Topel, 2003). If we do

the same calculation using an estimated effect of 12,000 vehicles deterred per 10,000 tickets, we get an

implied value of a statistical life of 2.86 million dollars.
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Suppose that absent a crackdown, the probability of monitoring is so small as to be

ignored by the driver. Crackdowns raise the speeder’s probability of detection to the point

where it is not negligible, and in the process the motorist becomes alert to the detection

risk which was previously unforeseen. If this increased alertness persists even when a

crackdown is not in force, crackdowns help reduce speeding. In our speeding application,

this theory of deterrence would suggest that motorists on announcement days would be

reminded of the possibility of being monitored and therefore slow down. According to

this theory, speeding should also go down even on roads that are not monitored due to

the increased alertness from announcements on other roads. This implication, however,

is refuted by our data, because we find that the fraction of speeders on non-monitored

roads does not decrease during monitoring days (see Table A4).

Criminologists have justified crackdowns using an alternative theory of deterrence,

based on subjective risk assessment. This theory, developed in Ross (1984) and Sher-

man (1990), highlights the distinction between risk (which is accurately perceived by

motorists) and uncertainty (which is not accurately perceived). The idea is that crack-

downs, because they are fleeting, generate doubt in the mind of the motorist about the

interdiction intensity at any particular time, thus boosting the uncertainty component

involved in the decision to speed. According to this theory, using crackdowns may mag-

nify the deterrence effect obtained from a given amount of resources.45 According to

this theory, an effective policing strategy would leave motorists in as much in doubt as

possible as to the location and timing of the crackdowns, in order to maximize their

uncertainty. This implication appears to contrast with the actual policy of liberal in-

formation dissemination observed in our application. Note that, consistent with the

observed pattern of information dissemination, the optimal policy in our model is to

inform motorists about the crackdowns.46

45Sherman (1990) goes further and argues that the beneficial effect of crackdowns on the motorists’

uncertainty about interdiction actually persists even after a crackdown period is over. He call this effect

“residual deterrence,” and argues that residual deterrence is an important component in the effectiveness

of the crackdowns.
46Our model predicts the effectiveness of the crackdown is directly proportional to the fraction of

motorists who are aware of it. If no motorist were aware of the crackdown, all motorists would expect

the average amount of interdiction and there would be no effect of crackdowns on speeding.
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5.2 Crackdowns persist if citizens’ utility function is nonlinear

The model developed in this paper assumes that the utility function was linear in the

benefit, x, from committing a crime. We next show that the linearity assumption can

be relaxed. Suppose citizens have a utility function u that is increasing in x. Then they

will commit a crime iff

(1− p)u (x) + pu (x− T ) > u (0) .

Consider the set of values of x such that the inequality is satisfied, and denote by H (p)

the measure of this set. The function H (p) represents the crime rate. Note that since u

is increasing, the left hand side is increasing in x and, also, u (x) > u (x− T ) whereby

the left hand side is decreasing in p. Therefore, the set of values of x such that the

inequality is satisfied decreases as p increases. This means that H (p) is decreasing in p.

The analysis of Sections 2 and 3 can then be carried out replacing F with H.

5.3 Crackdowns persist if crime decision is continuous

Suppose that instead of a binary problem (committing a crime or not), each citizen solves

a more complicated problem involving not only whether to commit a crime, but also the

degree to which to commit it. For example, a motorist may choose whether to speed

and how much to speed. Suppose that the penalty for driving at s miles per hour above

the speed limit is an nondecreasing function T (s) (which could be equal to zero below

the speed limit) and that the agent’s utility from exceeding the speed limit by s is an

increasing function x (s). We allow different individuals to have different functions x (s).

Given a certain level of interdiction p, an agent with a given function x (·) solves

max
s

x (s)− pT (s) .

Denote with s∗ (p) the maximizer of this problem. Denote by eF (s|p) the fraction of
individuals who choose to travel at or below speed s for given p. The quantity eF (s|p)
will depend on the distribution of the functions x (·) that is present in the population.
It is easy to see, however, that the optimal speed s∗ (p) is decreasing (or at least not

increasing) in p : s0(p) = T 0/ (x00 − pT 00) is negative by the concavity of x − pT at the

maximum. This means that any motorist, regardless of his or her x (·) , will decrease
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his or her optimal speed as the probability of being monitored increases. The functioneF (s|p) is therefore increasing in p.

If police cared not only about the fraction of people who exceed the speed limit, but

also about their speeding levels, the police’s objective function would be represented by

the function

D (p) ≡
Z

K (s) d eF (s|p) ,
where K (s) is some nondecreasing function. The function K (s) represents the disutility

that the police receives from having one motorist travel at speed s. Because eF (s|p) is
increasing in p, the function D (p) is decreasing in p. Now, rewrite problem (2) replacing

1 − F (p) with D (p). This yields a mathematical formulation of the problem in which

motorists can choose the amount of speeding and police care not only about the fraction

of speeders but also about their speed. From a formal viewpoint this new formulation

is similar to the original problem. Therefore, all the qualitative features of the solution

to the original problem carry over, including the optimality of crackdowns when the

function D (p) exhibits non-convexities.

5.4 Size of the penalty

In considering the agency relationship between the principal and the police we have taken

the size of the penalty (T in the formal model) to be exogenous. In actuality, the size

of the penalty is an object of choice, sometimes on the part of the principal.47 It should

be pointed out that our theory remains meaningful irrespective of how or by whom the

penalty is chosen, as long as deterrence is not perfect. Thus, the theory does not require

us to explain how the penalty is determined.

One might ask, however, why would deterrence not be perfect. Or, a more meaningful

question in our applied setting, why would penalties not always be set at their maximal

value so that everyone is deterred with a minimum detterence cost? In our application,

for example, we might ask why speeders are not sent to jail? This point was raised by

Becker (1968) who noted that, when interdiction is costly, increasing the size of the fine

allows the same level of deterrence to be implemented while saving on interdiction costs.

47In our speeding application the fines are chosen by the Belgian parliament.

38



Regardless of the objective to be implemented, then, penalties should always be set at

their maximal value.

Why are observed penalties not always maximal? The literature has identified several

arguments; here we mention those that are more directly applicable to our analysis, and

refer to Polinsky and Shavell (2000) for an excellent overview of the others. First is

the need to generate marginal deterrence: if all violations were punished with the same

(maximal) intensity, there would be no incentive to choose a lesser over a larger (and more

harmful) violation (see Stigler 1970, and more recently Shavell, 1992). If enforcement

cannot be tailored perfectly to the magnitude of the violation, lower penalties will need

to be applied to less serious crimes. A second reason is that, when a harsh penalty is

imposed, those who enforce the law must be monitored lest they abuse their position,

and opportunities for judicial appeal must be provided to redress enforcement mistakes.48

Taking into account these ancillary (but very important) costs may explain why penalties

are seldom set at their maximal possible value. A third consideration is risk aversion

(see Polinsky and Shavell 1979): whenever it is socially optimal for some individuals to

violate the law (for example, speeding may be socially optimal in some circumstances),

increasing the penalty and decreasing the risk of apprehension increases the risk faced

by these “optimal violators,” and thus reduces social welfare. This consideration places

limits on the size of the penalty chosen by the social planner. While we do not explicitly

model these considerations, they could easily be added to the model without affecting

the fundamental force that generates crackdowns.

6 Conclusions

This paper presented a rational theory of crackdowns in police interdiction. Our analysis

showed that even if all citizens look identical to the police, it may be rational for the

police to divide the population into two (but no more) groups and monitor the groups at

different intensities. For this division to be effective in curtailing crime, it is important

that the group subjected to the crackdown be made aware when they are being monitored

at the higher rate. This explains why police would announce when and where crackdowns

48So, for example, the degree of judicial protection is much larger (and the system therefore much

more expensive) in death penalty cases than for traffic violations.
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will occur. Our analysis provided a rational choice explanation for pre-announced police

crackdowns, which are regarded in the criminology literature as exploiting a non-rational

perception of risk on the part of the citizens.

We compared several variants of the policing model according to the likelihood that

crackdowns arise as an optimal policy, and showed that crackdowns are prevalent under

a variety of incentive configurations.

We applied our theoretical model to study speeding interdiction in Belgium. The

data provide support for several implications of the model. Among these are, first, that

the announcement strategy of the police indeed amounts to dividing the population into

exactly two groups, and, second, that when police resources are increased, the frequency

of crackdowns increases but the probability of being policed during a crackdown does

not change. We used the model to estimate the deterrence effect of additional resources

devoted to speeding interdiction in the form of 10,000 additional speeding tickets. Our

calculations suggests that the marginal benefit, in terms of statistical lives saved, is close

to the marginal cost of deterrence (it is exactly equal if we take the value of a statistical

life to be 6.85 million dollars). Thus, the current level of speeding interdiction is arguably

in line with socially optimal use of resources.

We believe our theory lends itself to investigating other situations where disparate

treatment of identical groups may be an efficient way of allocating resources. Disparate

treatment of an arbitrarily chosen subgroup of the population can be applied to other

contexts, such as the auditing of firms for tax purposes or the security screening of

passengers at airports. For example, the crackdown theory would imply that instead of

auditing firms which are observably similar in the same way, it can be optimal to divide

firms arbitrarily into groups, one of which is audited more intensely (e.g. subjected

to more frequent inspections) and the other less intensely.49 In the case of airport

security, this may lead to publicly announcing that specific flights will be screened more

intensely than others, rather than screening passengers on all flights with the same

average intensity.

49This assumes that the goal of auditors is to minimize tax evasion subject to a constraint on the

amount of auditing resources, see Chander and Wilde (1998).
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Table 1a 
Number of Vehicles Subject to Announced and Unannounced  

Monitoring by Year 
 2000 2001 2002 2003 (first 

half of year) 
     

Announced 266,240 394,540 1,746,340 1,777,977 
unannounced 406,941 319,650 526,422 1,139,428 
Total 673,181 714,190 2,272,762 2,917,405 
number of ticketed 
speeders 

 
33,951 

 
45,264 

 
78,136 

 
48,795 

 
 

Table 1b 
Number of Announced/Total Monitoring Observations 

by Highway and Year 
 2000 2001 2002 2003 (first 

half of year) 
     

A10 18/46 23/52 181/214 125/158 
A14 38/138 51/105 156/244 150/218 
R4 10/34 1/24 0/5 0/2 

 
Total 

 
66/218 

 
75/181 

 
337/463 

 
275/376 

 
 



 
Table 2 

Estimated coefficients from logistic regression of probability of speeding 
(Standard errors in parentheses) 

Variable (1) (2) (3) 
    

Intercept -3.38 
(0.52) 

-3.43 
(0.01) 

-3.26 
(0.02) 

indicator for A14 0.52 
(0.08) 

0.23 
(0.008) 

0.04 
(0.007) 

indicator for R4 0.30 
(0.02) 

-0.21 
(0.02) 

-0.42 
(0.02) 

announcement on highway A10 … … -0.36 
(0.008) 

announcement on highway A14 … … -0.12 
(0.006) 

announcement  on highway R4 … … -0.04 
(0.05) 

probability of monitoring – A10 -1.17 
(0.04) 

-0.47 
(0.04) 

… 

probability of monitoring – A14 -0.97 
(0.02) 

-0.40 
(0.02) 

… 

probability of monitoring – R4 -0.38 
(0.15) 

-0.07 
(0.15) 

… 

traffic density 3 … -0.27 
(0.06) 

-0.09 
(0.05) 

traffic density 4 … 0.30 
(0.03) 

0.48 
(0.03) 

traffic density 5 … 0.24 
(0.01) 

0.29 
(0.01) 

morning rush hour*weekday … -0.47 
(0.02) 

-0.47 
(0.02) 

evening rush hour*weekday … 0.02 
(0.006) 

-0.007 
(0.006) 

holiday … 0.51 
(0.007) 

0.49 
(0.007) 

includes fixed effects for days of 
week 

No yes yes 

includes fixed effects for months of 
year 

No yes yes 

includes fixed effects for year No 
 

yes 
 

yes 

p-value from joint test that all 
coefficients equal 0 

<0.0001 <0.0001 <0.0001 

 



Table 3 
Decrease in speeding due to crackdown and the deterrence effect  

of increasing the number of tickets 
  Model Specification 

Highway  (1) (2) (3) 
A10 Predicted % speeding above threshold 

on unannounced days 
 

3.3 3.0 3.2 

pH=0.2007 
pL=0.0084 

Decrease in speeding on announcement 
days implied by estimated coefficients 
 

0.20 0.25 0.60 

 Decrease as a % of speeding on 
unannounced days 
 

6.1% 8.4% 19.1% 

 Slope of 1-F -1.04% -1.30% -3.12% 
     
 Effect of additional 10,000 tickets -3,364 -4,746 -12,123 
A14 Average % speeding on unannounced 

days 
 

5.4 5.0 5.0 

pH=0.2441 
pL=0.0167 

Decrease in speeding on announcement 
days implied by estimated coefficients 
 

1.01 0.41 0.50 

 Decrease as a % of speeding on 
unannounced days 
 

18.9% 8.4% 10.2% 

 slope of 1-F 
 

-4.44% -1.80% -2.20% 

 Effect of additional 10,000 tickets  -10,291 -3,954 -4,926 
R4 Average % speeding on unannounced 

days 
 

4.4 4.3 4.3 

pH=0.2576 
pL=0.0091 

Decrease in speeding on announcement 
days implied by estimated coefficients 
 

0.38 0.07 0.16 

 Decrease as a % of speeding on 
unannounced days 
 

8.6% 1.6% 3.6% 

 slope of 1-F 
 

-1.53% -0.28% -0.64% 

 Effect of additional 10,000 tickets -3,831 -668 -1,563 
* Total number of vehicles on each highway for the entire year (Driver Pop) was estimated from 
the data collecting on monitoring events. The estimation was performed by regressing the number 
of vehicles per hour on conditioning variables (quarter of the year, day of the week, time of day 
(morning, afternoon, evening) holiday indicator, and an indicator for holiday*weekend). The 
fitted regression was used to impute numbers of vehicles for days/times when there was no 
monitoring.  
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Figure 3: Probability of being monitored, highway A10.



Appendix A: Proofs

Theorem 1 Let the function f : [0, S] → [0, 1] be continuous and strictly increasing.

Let the function g : [0, S] → R be continuous. Let P∗g denote the set of probability
distributions defined on the interval [0, S] that solve the following linear problem

max
µ

Z S

0

f (p)µ (p) dp

s.t.
Z S

0

g (p)µ (p) dp ≤ C. (8)

For given f, let Fg denote the set of all functions f with the property that all µ∗ ∈ P∗g
place all the probability on one or two points in [0, S]. Then, the set Fg is dense in the

set of all continuous functions g equipped with the supnorm.

If, moreover, the solution requires that probability mass be placed on two points in

[0, S], then the same two points receive all the probability when C is slightly increased.

Proof: Consider first the easy case in which the constraint is not binding at the

optimal solution. In that case, a generic f will have exactly one strict maximum, and so

the optimal µ∗ will put mass one on exactly one point (the strict maximum).

Let us now consider the more difficult case in which the constraint is binding at the

optimal solution. In that case, there exists a number λ > 0 such that µ∗ maximizes the

Lagrangean

L(µ, λ) =
Z S

0

[f (p)− λg (p)]µ (p) dp+ λC.

We will show that, if µ∗ ∈ P∗g puts positive mass on more than two points, then f is

non-generic. To this end, let A denote the set of p’s that is defined by

A = argmax
p
[f (p)− λg (p)] .

By definition of A, there is a number M such that

f (p)− λg (p) =M for p ∈ A
f (p)− λg (p) < M for p /∈ A

If µ∗ puts positive mass on more than two points, then the cardinality of A would have to
exceed 2. Consider the transformation ϕ (p) = f−1 (p/S). The function ϕ is a one-to-one



mapping of [0, S] onto itself. We can therefore write

f (ϕ (p))− λg (ϕ (p)) =M for ϕ (p) ∈ A
f (ϕ (p))− λg (ϕ (p)) < M for ϕ (p) /∈ A,

or, with the obvious meaning of symbols,

p
S
− λg (ϕ (p)) =M for p ∈ ϕ−1 (A)

p
S
− λg (ϕ (p)) < M for p /∈ ϕ−1 (A) .

Note that the set ϕ−1 (A) has the same cardinality of A. Thus, if A has cardinality

greater than 2, it means that the two numbers λ and M are such that the negatively-

sloped straight line identified by 1
λ

¡
p
S
−M

¢
is tangent to the function g (f−1 (p/S))

at more than two points and never exceeds it. This means that there is a tangent

hyperplanes to the set

Y =
©
(p, y) : y ≤ g

¡
f−1 (p/S)

¢ª
which makes contact with the set Y at more than two points and has negative slope.

We now show that, the set of f ’s such that this property does not hold is dense. To

this end, and without loss of generality, let us assume that S = 1. Our task, then, is

to show that if a negatively-sloped tangent hyperplanes to Y make contact with Y in

more than two points, there is a function f̃ close to f with the property that no tangent

hyperplane has more than two contact points. Let H denote the set of hyperplanes that

have more than two contact points with Y . Elements of H are identified by their slope

h. For every hyperplane h ∈ H, take the sup and the inf of the first dimension of all its
contact points and call those ah and bh. Consider now a continuous function dg (p) which

is equal to 0 for every p unless p ∈ (ah, bh) for some h ∈ H, in which case dg (p) assumes
values strictly between zero and 1. Let f̃ε (p) ≡ [1 + ε · dg (p)] · f (p). For any ε > 0,

the set Ỹε =
n
(p, y) : y ≤ f̃ε (p)

o
has exactly the same set of tangent hyperplanes as Y .

This follows from the fact that since the functions f and g are continuous, hyperplane h

makes contact with Y at ah and bh. Moreover, by construction no hyperplane is tangent

to Ỹε at more than two points. Since the function f̃ε (p) can be made arbitrarily close to

f (p) in the supnorm by choosing ε to be small, the set Fg is dense.

Let us now turn to the second part of the statement. For given C, suppose that the

solution requires placing probability mass on two points pL < pH . Then, the constraint



must be binding. To see this, define

pm ≡ arg min
p∈{pH ,pL}

f (p)

pM ≡ arg max
p∈{pH ,pL}

f (p) .

Since f is strictly monotone, f (pM) > f (pm), and the only reason why it is optimal to

place any probability mass on pm is to help satisfy the constraint. It must therefore be

g (pM) > C > g (pm) . At the optimal solution, moreover, it cannot be optimal to place

anything but the smallest probability mass on pm so that the constraint is just satisfied

(with equality). Denote by λ∗ the Lagrange multiplier associated to this programming

problem. Since f is strictly monotone, λ∗ > 0.

Suppose now that the constraint is relaxed slightly, by increasing C to eC = C + ε

with ε a small positive number. The solution to the programming problem is a saddle

point
³eµ, eλ´ for the Lagrangean. We now proceed to construct this saddle point. We

start by keeping the Lagrange multiplier unchanged, eλ = λ∗. Because of this choice, theeµ that maximizes the Lagrangean still places probability mass on pM and pm only, which

is what we wanted to prove. To conclude the proof we need to finish the construction

of the saddle point. To this end, observe that in order for eλ = λ > 0 to minimize the

Lagrangean, the Lagrangean must be constant with respect to λ, which is equivalent to

g (pm) eµ (pm) + g (pM) eµ (pM) = eC (9)

Since g (pM) > C > g (pm), for ε sufficiently small also g (pM) > eC > g (pm). Therefore,

it is possible to choose eµ (pm) and eµ (pM) = 1− eµ (pm) so that equation (9) is satisfied.
Choosing eµ accordingly concludes the proof.
Corollary 2 If f is increasing and the solution requires that probability mass be placed

on two points in [0, S], the probability mass placed on the largest point increases when C

is slightly increased.

Proof. >From the proof of Theorem 1 we know that the constraint (8) is binding both

at C and at C + ε. This means that for c = C,C + ε , the probability mass µc placed on

pH must solve

g (pH)µc + g (pL) (1− µc) = c.

Since f is increasing, pM = pH and thus g (pH) > g (pL) . The result follows.



Appendix B: Additional Tables 
 
 

Table A1 
Number of Monitoring and Announcement  

Observations by Month of Year on all Highways 
 2000 2001 2002 2003 (first half of 

year) 
 Ann Unann Ann Unann Ann Unann Ann Unann 

 
January 3 7 10 12 15 17 41 3 
February 10 12 7 9 17 9 45 9 
March 5 6 5 3 19 26 32 24 
April 3 18 6 4 24 21 36 24 
May 3 10 6 8 29 11 64 21 
June 4 14 4 11 27 8 57 20 
July 7 13 6 10 31 6 * * 
August 8 7 7 8 32 1 * * 
September 4 9 6 7 29 6 * * 
October 3 18 5 5 41 12 * * 
November 3 17 6 13 36 6 * * 
December 13 21 7 16 37 3 * * 
 
Total 

 
66 

 
152 

 
75 

 
106 

 
337 

 
126 

 
275 

 
101 

 
 

 
Table A2 

Number of Monitoring and Announcement  
Observations by Day of Week on all Highways 

 2000 2001 2002 2003 (first half of 
year) 

 Ann Unann Ann Unann Ann Unann Ann Unann 
 

Saturday 8 38 23 27 40 19 42 8 
Sunday 17 29 10 34 64 31 31 24 
Monday 8 17 6 11 24 12 50 11 
Tuesday 7 15 12 8 68 17 40 17 
Wednesday 10 16 13 9 58 14 41 20 
Thursday 6 19 7 9 39 22 47 11 
Friday 10 18 4 8 44 11 42 18 
 
Total 

 
66 

 
152 

 
75 

 
106 

 
337 

 
126 

 
293 

 
109 

 
 
 
 
 

 



 
Table A3 

Estimated Logistic Model for the Probability of Monitoring  
when no announcement was made by Year and by Road 

 Highway 
 A10 A14 R4 

Intercept -2.50 
(0.36) 

-2.48 
(0.36) 

-4.36 
(0.58) 

quarter 1 0.37 
(0.25) 

-0.11 
(0.44) 

0.46 
(0.45) 

quarter 2 -0.19 
(0.28) 

0.44 
(0.20) 

0.55 
(0.43) 

quarter 3 -1.91 
(0.49) 

-0.48 
(0.22) 

0.10 
(0.44) 

announced last week  0.15 
(0.35) 

-0.12 
(0.20) 

0.04 
(0.49) 

announced yesterday -0.22 
(0.41) 

-0.27 
(0.23) 

… 

monitored last week 0.79 
(0.40) 

2.04 
(0.37) 

2.10 
(0.34) 

monitored yesterday 0.37 
(0.36) 

0.46 
(0.19) 

-1.21 
(0.64) 

some announcement same 
day on any road 

0.64 
(0.23) 

-0.96 
(0.21) 

-1.36 
(0.49) 

year 2001 -0.16 
(0.29) 

-0.67 
(0.20) 

0.27 
(0.34) 

year 2002 -0.08 
(0.32) 

0.30 
(0.20) 

-0.27 
(0.54) 

year 2003 -0.01 
(0.31) 

0.51 
(0.25) 

… 

* All specifications also include fixed effects for day of week. The 
variable “holiday” was not included in the above specifications because 
of too few observations.  
 

 
Table A4 

Average Predicted Probability of Monitoring 
 

Year 
 

highway 
 

no-announcement 
no-announcement this 

sector, announced other 
sector 

 
announcement 

 
2000 

 
A10 

 
0.004 

 
0.009 

 
0.27 

 A14 0.011 0.003 0.26 
 R4 0.009 0.002 0.29 

2001 A10 0.004 0.007 0.30 
 A14 0.011 0.003 0.30 
 R4 0.014 * 0.35 

2002 A10 0.008 0.010 0.20 
 A14 0.027 0.007 0.25 
 R4 0.001 0.001 * 

2003 A10 0.011 0.018 0.19 
 A14 0.030 0.020 0.23 
 R4 * * * 

* Too few observations in the cell. 
 



 
Table A5 

Estimated Logistic Model for the Probability of Announcement by Highway 
 Highway 
 A10 A14 R4 

intercept -3.76 
(0.36) 

-4.94 
(0.40) 

-3.83 
(0.82) 

quarter 1 0.08 
(0.21) 

-0.004 
(0.20) 

-0.89 
(1.18) 

quarter 2 0.22 
(0.21) 

0.02 
(0.20) 

-0.03 
(0.83) 

quarter 3 -0.23 
(0.22) 

-0.01 
(0.20) 

0.10 
(0.79) 

holiday 2.23 
(0.47) 

0.98 
(0.27) 

… 

announced last week 0.34 
(0.36) 

-0.18 
(0.21) 

0.13 
(0.95) 

announced yesterday -0.52 
(0.29) 

0.19 
(0.21) 

… 

monitored last week 1.38 
(0.41) 

2.65 
(0.38) 

0.88 
(0.75) 

monitored yesterday 0.25 
(0.27) 

-0.31 
(0.19) 

… 

year 2001 0.06 
(0.03) 

0.42 
(0.23) 

-1.68 
(1.08) 

year 2002 2.13 
(0.30) 

1.55 
(0.22) 

-12.13 
(214) 

year 2003 2.12 
(0.30) 

2.16 
(0.24) 

… 

p-value from test of joint 
significance of all 
covariates, except year 
indicators 

 
<0.0001 

 
<0.0001 

 
0.7923 

*All specifications include fixed effects for days of week. Some days of week indicators are 
significant for A10 and A14 in 2000 and for A14 in 2001. 
**There is only one announcement day during 2001 on R4. 
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