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1 Introduction

This paper proposes a simple and tractable model of bounded rationality based on time-

costs of deliberating current and future decisions. We introduce a deliberation technology

based on the classical two-armed bandit problem (Gittins and Jones, 1974 and Rothschild,

1974) and model an individual decision maker�s thinking process as a thought-experiment

that takes time.

The basic situation we model is that of a boundedly rational decision-maker who thinks

through a simple decision, such as which of two actions to take, by weighing in her mind

the costs and bene�ts associated with each possible action through thought-experiments

which take time. Eventually, following enough �thought-experimentation� the decision-

maker (DM) becomes su¢ ciently con�dent about which action is best and takes a decision.

Although our model is built on the powerful multi-armed bandit framework, we depart

from the classical bandit problem in a fundamental way by introducing the notion of �thinking

ahead�about future decision problems in yet unrealized states of nature. By formulating an

intertemporal, state-contingent, planning problem, which may involve costly deliberation in

every state of nature, and by letting the decision-maker deliberate ahead of the realization of

a state, we attempt to capture the basic idea that individuals generally do not think through

a complete action-plan. Instead, individuals prioritize their thinking and �rst think through

the decisions that seem most important to them. They also generally leave deliberations on

less important decisions to the time or event when they arise.

Such behavior is understandable if one has in mind deliberation costs but, as Rubinstein

(1998) has noted, it is irreconcilable with the textbook model of the rational DM with no

thinking costs:

� In situations in which the decision maker anticipates obtaining information before taking

an action, one can distinguish between two timings of decision making: 1. Ex ante decision

making. A decision is made before the information is revealed, and it is contingent on the

content of the information to be received. 2. Ex post decision making. The decision maker

waits until the information is received and then makes a decision. In standard decision

problems, with fully rational decision makers, this distinction does not make any di¤erence.�

[Rubinstein 1998, page 52]
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There are at least three motivations for a model with costly deliberation such as ours.

First, there is the obvious reason that the behavior captured by such a model is more

descriptive of how individuals make decisions in reality1. Second, as we shall explain, such

a model can provide new foundations for two popular behavioral hypotheses: �satis�cing�

behavior (Simon, 1955 and Radner, 1975) and decision-making under time pressure that

takes the form of �putting out �res�(Radner and Rothschild, 1975). The main motivation

of the current paper is to show how a model of decision-making with costly deliberation can

explain both �satis�cing�behavior and a prioritization of decision problems akin to �putting

out �res�. Third, a model with costly deliberation can also provide a tractable framework to

analyze long-term incomplete contracting between boundedly rational agents. We analyze

this contracting problem in our companion paper on �satis�cing contracts� (Bolton and

Faure-Grimaud, 2005).

Indeed, our initial objective was mainly to formulate a tractable framework of contracting

between boundedly rational agents in response to Oliver Hart�s observation that: �In reality,

a great deal of contractual incompleteness is undoubtedly linked to the inability of parties not

only to contract very carefully about the future, but also to think very carefully about the utility

consequences of their actions. It would therefore be highly desirable to relax the assumption

that parties are unboundedly rational.�[Hart, 1995, p. 81] However, having formulated our

deliberation technology for boundedly rational agents we found that the decision problem is

of su¢ cient independent interest to be discussed in a separate paper.

In our model the decision-maker starts with some prior estimate of the payo¤ associated

with each possible action choice in every state of nature. She can either take her prior as

her best guess of her �nal payo¤ and determine her optimal action-plan associated with that

prior, or she can �think�further and run an experiment on one action. This experiment will

allow her to update her estimate of the payo¤ associated with that action and possibly to

improve her action choice.

At each point in time, DM, thus, faces the basic problem whether to explore further the

payo¤ associated with a particular action, search further other parts of her optimization

problem, or make a decision based on what she has learnt so far. Since �thinking ahead�

1Recent research in behavioral economics suggests the distinction between costly conscious deliberation
and a¤ective impulses, and that actual decisions are the outcome of complex interactions between a¤ective
and deliberative processes (see e.g. Metcalfe and Mischel, 1999, Bernheim and Rangel, 2002, Benabou and
Pycia, 2002, and Loewenstein and O�Donoghue, 2004). A limitation of our model is that it entirely leaves
out a¤ective impulses. However, we think that this is not a critical limitation when our model is applied to
business decisions and sophisiticated long-term contracting situations.
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takes time, DM will generally decide to leave some future decisions that she is only likely to

face in rare or distant states of nature to be thought through later.

As is well understood, thinking ahead and resolving future decisions allows a DM to

make better current decisions only when current actions are partially or completely irre-

versible. Our decision problem, thus, involves irreversible actions, and thereby introduces a

bias towards deliberation on future actions ahead of the realization of future states of nature.

To understand the underlying logic of our decision problem it is helpful to draw a parallel

with the problem of irreversible investment under uncertainty involving a �real option�(see

Henry, 1974 and Dixit and Pyndick, 1996). In this problem the rational DM may choose to

delay investment, even if it is known to generate an expected positive net present value, in

an e¤ort to maximize the value of the �real option�of avoiding making investments that ex

post turn out to have a negative net present value. If one interprets information acquisition

through delayed investment as a form of time-consuming deliberation on future actions, one

is able to infer from the �real options�literature that a boundedly rational DM with time-

costs of deliberation facing an irreversible action choice problem will behave like an investor

facing a real option problem.

That is, the boundedly rational DM will postpone taking a current irreversible action

until she is su¢ ciently con�dent that this action yields the highest payo¤. The interesting

observation, however, from our perspective is not so much that the boundedly rational DM

will delay taking an action, but that she will eventually decide to act even if she has not

fully resolved her entire future action-plan.

As helpful as the parallel with real options is in understanding the basic logic of our

problem, it is not a perfect analogy. Also, to emphasize the di¤erences with the real options

problem we specialize our general framework to a decision problem with no real option value

at all. That is, in our problem there is no doubt that a particular current action (investment)

is clearly preferable. Nevertheless, in this problem a boundedly rational DM will generally

choose to delay investment and think ahead about future decisions in some if not all future

states of nature.

What is the reason for this delay, if no option value is present? The answer is that, by

thinking ahead about future decisions the boundedly rational DM can reduce the time-lag

between the realization of a state of nature and the date when DM takes a decision in that

state. By reducing this time-lag the boundedly rational DM is able to reduce the overall

expected lag between the time she makes a costly investment decision and the time when
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she recoups the returns from her investment. Because DM discounts future payo¤s, reducing

this time-lag raises her payo¤. In other words, our framework models the general idea that

the bene�t of �thinking ahead�is to be able to react more promptly to new events, but the cost

is delayed current decisions. This is the main novel mechanism we study in this paper.

How does this framework provide a new foundation for satis�cing behavior? In general

it is optimal for the boundedly rational DM to engage in what we refer to as �step-by-step�

thinking. This involves singling out a subset of future decision problems and thinking these

through �rst. If the thought-experiments on these problems reveal that the payo¤ from

investing is appreciably higher than DM initially thought then DM will decide that she is

satis�ed with what she found and will choose to invest without engaging into further thinking

or optimization on other future decisions she has not yet thought about. If, on the other

hand, the thought-experiments reveal that the payo¤ from investing is no higher and possibly

lower than initially thought then DM will continue thinking about other decision problems

in yet unexplored future states of nature.

In other words, the boundedly rational DM will generally refrain from fully determining

the optimal future action-plan and will settle on an incomplete plan which provides a satis-

factory expected payo¤. Note that, in our framework the satis�cing threshold is determined

endogenously, as the solution of an optimal stopping problem. Thus, our framework can

address a basic criticism that has been voiced against the original satis�cing hypothesis,

namely that the satis�cing threshold is imposed exogenously.

In what way does the boundedly rational DM behave as if she were �putting out �res�?

We show that quite generally the boundedly rational DM prioritizes her thinking by �rst

choosing to think about the most important and urgent problems. It is in this sense that she

behaves as if she were putting out �res. The original formulation of this behavioral hypothesis

by Radner and Rothschild considered only very extreme situations, where DM had no choice

but to put out �res. Our framework highlights that the general idea underlying the notion of

putting out �res, that a boundedly rational DM prioritizes her thinking by focusing �rst on

the most important problems or those most likely to arise, extends far beyond the extreme

high stress situation considered by Radner and Rothschild.

Several other major insights emerge from our analysis. First, when the number of future

decisions to think about is large so that the complexity of the overall planning problem is

overwhelming then it is best to act immediately simply by guessing which action is best,

and to postpone all thinking to the time when decision problems arise. This result is quite
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intuitive and provides one answer to the well known �how-to-decide-how-to-decide�paradox

one faces when one introduces deliberation costs into a rational decision-making problem (see

Lipman, 1995)2. In the presence of deliberation costs DM faces a larger decision problem, as

she has to decide how to economize on deliberation costs. Presumably this larger decision

problem itself requires costly deliberation, which ought to be economized, etc. We suggest

here that one way of resolving this paradox is to have DM simply act on a best guess without

any deliberation when the problem becomes overwhelming.

In contrast, when the number of future decision problems (or states of nature) is more

manageable then step-by-step thinking is generally optimal. For an even lower number of

future problems complete planning is optimal (in particular, when there is only one state

of nature, and therefore only one future problem to think about, then thinking ahead and

complete planning is always optimal).

There is obviously a large and rapidly growing literature on bounded rationality and

some of the ideas we have touched on have been explored by others. The literature on

bounded rationality that is most closely related to ours is the one on decision procedures

and costly deliberation (see Payne, Bettman, and Johnson, 1993, and Conlisk, 1996) and

within this sub-literature our work is closest in spirit to Conlisk (1988). The main di¤erence

with Conlisk (1988) is that we formulate a di¤erent deliberation technology, with thinking

modeled as thought experimentation and thinking costs taking the form of time thinking

costs.

Another closely related paper is Gabaix and Laibson (2002). In this paper, a boundedly

rational DM has to choose between a number of paths that provide di¤erent utility �ows at a

�nite sequence of steps. Paths di¤er in transition probabilities from one step to another. DM

can at some cost explore each step and evaluate the resulting utility �ow before choosing one

of these paths. Gabaix and Laibson assume that in doing so DM follows a simple heuristic

that ignores the option value of exploring one step or another. In their model DM chooses

which step to explore presuming that it would be the last time she will explore a step.

DM stops exploring when the information value of all the unexplored steps is less than the

exploration cost. Therefore there are two main di¤erences between their approach and ours:

1) we introduce an exploration cost as the only source of bounded rationality while they also

assume that DM follows a sub-optimal heuristic (in their model the actual choice may not

converge to the fully rational solution when the deliberation cost goes to zero); 2) unlike

2A similar answer to this paradox is proposed by MacLeod (2004).
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in our setup, Gabaix and Laibson do not consider the choice over thinking ahead or on the

spot, as their DM has to make only one decision. Thus, in their model DM cannot explore

a few steps �rst down a given path and possibly re-explore some other steps depending on

what she has learned.

The literature on satis�cing behavior and aspiration levels is also closely related. Indeed

some research on satis�cing behavior that builds on Simon (1955) has also attempted to

tackle the question of the endogenous aspiration level but in a framework where costly

deliberation by DM is not explicitly modeled (see Gilbert and Mosteller, 1966, Bruss, 2000,

and Beckenkamp, 2004).

The remainder of our paper is organized as follows. Section 2 presents a simpli�ed

version of our model and characterizes DM�s optimal thinking and action plan in this setting.

Section 3 derives a number of key comparative statics results for this simple model. Section

4 analyzes the general model with an arbitrary �nite number of states. Section 5 concludes

by summarizing our main �ndings and pointing to new directions of research. Finally two

appendices contain the proofs of our main results.

2 A Simple Model of �Bandit�Rationality

The general dynamic decision problem we have in mind is a possibly in�nite horizon (discrete

time) problem involving an initial decision on which of n actions to take, as well as future

decision problems that may be contingent on the initial action choice ai and on a realized

state of nature �j. The initial action may be taken at any time t � 0 and when an action is
chosen at time t a state of nature is realized at some later time. When some action ai has

been chosen DM receives an immediate payo¤ !(ai). In addition, following the realization

of the state of nature �j DM chooses another action aijk and obtains another payo¤ �(ai,

aijk; �j). Future payo¤s are discounted and the discount factor is given by � < 1. Thus, the

present discounted payo¤ when DM chooses action ai in period t and action aijk in period

� � t is given by:
�t!(ai) + �

t+��(ai; aijk; �j).

Although DM knows the true payo¤!(ai) she does not know the true payo¤�(ai; aijk; �j).

She starts out with a prior belief over those payo¤s. Before taking any action, DM can learn

more about the true payo¤ associated with that or any other action by engaging in thought

6



experimentation. We model this thought experimentation in an exactly analogous way as in

the multi-armed bandit literature. That is, in any given period t DM can �think�about an

action aijk in state �j and obtain a signal which is correlated with the true payo¤. Upon

obtaining this signal, DM revises her belief on the future payo¤ associated with the action

aijk.

Thus, at t = 0 DM�s decision problem is to decide whether to pick an action ai right

away or whether to think ahead about one of the future decision problems. DM faces this

same problem in subsequent periods, with possibly updated beliefs from earlier thought

experimentation, as long as she has not picked an action ai.

When she has chosen an action ai some time elapses until a state of nature is realized.

Upon realization of a state �j, DM�s decision problem is again to decide whether to pick

an action aijk right away or whether to think about one of the actions she may take at that

point. Should DM decide to think about the payo¤ associated with an action then she faces

again this same decision problem in subsequent periods, with updated beliefs.

This general framework is clearly restrictive in some respects: we only allow for two

rounds of action choice, the action sets are �nite, the state-space is �nite and learning through

thought-experimentation can only be done for one action at a time. Yet, the framework is

su¢ ciently general and versatile to be able to capture many dynamic decision problems

boundedly rational DMs are likely to face in reality.

In this paper we specialize the framework described above to a problem of irreversible

investment under uncertainty. In addition, we shall only allow DM to choose between two

initial actions, which we label as invest and don�t invest. Also, in the remainder of this

section we will further specialize the model to the case where there are at most two states of

nature and only two actions in each state. We describe this simpler model in greater detail

below, while section 6 will consider the generalization to N � 2 states.

2.1 The model with two states of nature

In its simplest form our model has the following basic structure. It involves an initial

investment decision with a set-up cost I > 0. If DM chooses to invest at date t, then at date

t + 1 the project ends up in one of two states: � 2 f�1; �2g. We denote by � the ex ante
probability that state �1 occurs. When state �i is realized, investment returns are obtained

only after DM has chosen one of two possible actions: a risky or a safe action. The return of

the risky action, R; is unknown and may take two possible values, R 2 fR; �Rg. The return
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of the safe action is known and equal to S 2 (R; �R), so that there is some prior uncertainty
about which is the e¢ cient action to take in state �i. We denote by �i the prior probability

that the risky action is e¢ cient in state �i. To begin with we shall assume that �i = � so

that both states have the same payo¤ structure, but that payo¤s are independently drawn

across the two states.

As we have described above, DM may think about which decision to take in each state,

which in our simple model is equivalent to experimenting (in DM�s head) with the risky

action. We formulate the simplest possible thought-experimentation problem and assume

that when DM experiments with the risky action in any given period, there is a probability

� that she �nds out the true payo¤ associated with the risky action, and a probability

(1� �) that she learns nothing. In that case she must continue to think, or experiment, in
subsequent periods until she gets lucky if she wants to �nd out the true payo¤ of the risky

action3.

A critical departure from the standard multi-armed bandit setup is that DM can choose

to think through what should be done in some state �i before or after the realization of the

state. She can think about what to do in one of these states or in both before acting. Of

course, if she acts �rst, invests and only starts thinking after the realization of a state of

nature, then there is no need to think through what to do in the state that is not realized.

Without much loss of generality we assume that at any date t DM can either think or

act, but not do both at the same time. More precisely, we assume that each date t contains

two subperiods: an early subperiod when DM has the choice between acting or thinking.

If she thinks and her thinking is successful, she can in a later subperiod either pursue her

thinking further or make a decision on what action to take. Otherwise, time moves on to

date t+ 1.

We shall make the following assumptions on the payo¤ structure:

Assumption: A1 : � �R + (1� �)R > S
A2 : �S � I > 0

Assumption A1 implies that the risky action is the best action for DM if she decides

not to do any thinking. This is not a critical assumption for our main qualitative results.

Assumption A2, on the other hand, is more important. It ensures that the investment

3Our model is related to Conlisk�s approach to optimization costs. In Conlisk (1988) a decision maker
learns about an optimal decision x� by drawing a sequence of random variables ~x. This process is costly as
it takes time to collect more draws, but the longer the person thinks, the better is the estimate of x�. Our
model can be viewed as a special case of Conlisk�s, where the decision space is binary and where the draws
are either fully informative or not informative at all.
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project has a positive net present value (NPV) when the safe action is always chosen. Under

this assumption, any deliberation on future decisions, or knowledge of the payo¤ of the

risky action, does not a¤ect the initial decision whether to invest: there is always a way of

generating a positive NPV, so that there is no ex-ante real option value to be maximized.

As we explained earlier this assumption is imposed to highlight the di¤erence of our simple

model with the classical real options model.

2.2 Solving the Decision Problem

DM can decide to invest right away or to think �rst about what decision to take in future

states of nature. If she were to invest right away then she would not be prepared to act

immediately upon the realization of a state of nature �i, unless she decides to act only

on the basis of her incomplete prior knowledge. But, if she prefers to �rst think through

what to do in state �i she would delay the time when she would reap the returns from her

investment. Thus, an important bene�t of identifying the e¢ cient decision in state �i ahead

of time (before investing) is that DM will be able to act immediately following the realization

of a state of nature and thus reduce the time gap between when she makes an investment

outlay and when she reaps the returns from her investment. On the other hand, thinking

before investing may not be that valuable and may unnecessarily delay investment. This is

the basic deliberation tradeo¤ DM faces and that we now explore.

A lower bound for DM�s payo¤ is the expected return obtained if DM acts immediately

and does not think at all (we refer to this as the no thinking strategy). Under assumption

A1 DM then always selects the risky action and obtains an expected payo¤:

V; = �I + �
�
� �R + (1� �)R

�
:

Consider now the payo¤DM could obtain by engaging in some thought experimentation.

A �rst thinking strategy for DM is to invest right away at date 0, �nd out which state of

nature prevails at date 1, and see whether some thinking is worthwhile once the state is

realized.

Note that under our learning technology (where following each thought experiment, DM

either learns the true payo¤ for sure or learns nothing) if it is optimal to undertake one

experiment, then it is optimal to continue experimenting until the true payo¤ is found.

Indeed, suppose that when state �i is realized DM prefers to experiment. Then, since the

decision problem at that point is stationary, she will also prefer to continue experimenting
9



should she gain no additional knowledge from previous rounds of experimentation. Our

experimentation problem has been deliberately set up to obtain this particularly simple

optimal stopping solution.

If, following successful experimentation DM learns that the true payo¤of the risky action

is R then she will optimally choose the safe action given that R < S. If, on the other hand,

she learns that the true payo¤ is �R then she chooses the risky action. Thus, the expected

present discounted payo¤ from thinking in state �i is given by

�
�
� �R + (1� �)S

�| {z }
present discounted payo¤
from learning the true
payo¤ in the �rst round
of experimentation

+ (1� �)��
�
� �R + (1� �)S

�| {z }
present discounted payo¤
from learning the true

payo¤ in the second round

+(1� �)2�2�
�
� �R + (1� �)S

�
+

1X
t=3

(1� �)t�t�
�
� �R + (1� �)S

�
:

Or, letting �̂ = �
1�(1��)� ;the expected present discounted payo¤ from thinking in state �i

can be written as:

�̂
�
� �R + (1� �)S

�
.

Therefore once DM learns that the true state is �i she will prefer to think before acting

if and only if:

� �R + (1� �)R � �̂
�
� �R + (1� �)S

�
,

�̂ � �̂L �
� �R + (1� �)R
� �R + (1� �)S

.

This condition essentially imposes a lower bound on DM�s thinking ability for her to be

willing to engage in some thought experimentation. If DM were a very slow thinker (� is

very small) then it obviously makes no sense to waste a huge amount of time thinking. Thus,

for su¢ ciently high values of �, DM will choose to think on the spot if she has not done any

thinking prior to the realization of the state of nature. In that case, when DM chooses to

�rst invests and then think on the spot she gets an ex ante payo¤ VL equal to:

VL = �I + ��̂
�
� �R + (1� �)S

�
10



Notice that under this strategy DM has to solve only one decision problem: the one she faces

once the state of nature is realized.

To compare the payo¤s of the two deliberation strategies considered so far it is convenient

to introduce the following notation: Let

�� � � �R + (1� �)S

and

� � � �R + (1� �)R:

It is then immediate to see that the strategy of no thinking dominates the strategy of

thinking on the spot if and only if:

VL � V; , �̂ � �̂L =
�

��
:

Consider next a third strategy available to DM, which is to think ahead about one or both

states of nature. Suppose to begin with that � = 1
2
and that DM, being indi¤erent between

which state to think about �rst, starts with state �1. Again, if it is optimal to begin thinking

about state �1 and DM does not gain any new knowledge from the �rst thought-experiment

then it is optimal to continue thinking until the true payo¤ of the risky action in state �1 is

found.

Suppose that DM has learned the true payo¤s in state �1, under what conditions should

she continue thinking about the other state before investing instead of investing right away

and gambling on the realization of state �1? If she decides to think about state �2 she will

again continue to think until she has found the true payo¤s in that state. If she learns that

the return on the risky action in state �2 is �R, her continuation payo¤ is

Vr = �I + �
�
�1
2
+
�R

2

�
;

where �1 2 fS; �Rg is DM�s payo¤ in state �1. Similarly, if she �nds that the best action in
state �2 is the safe action, her continuation payo¤ is:

Vs = �I + �
�
�1
2
+
S

2

�
:

Therefore, DM�s expected continuation payo¤ from thinking ahead about state �2, given

that she has already thought through her decision in state �1 is:

V 1E = �̂

�
�I + �

�
�1
2
+
��

2

��
:
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If instead of thinking ahead about state �2 DM immediately invests once she learns the

true payo¤ in state �1 her continuation payo¤ is:

V 1L = �I + �
 
�1
2
+
maxf�; �̂��g

2

!
:

Thus, continuing to think about state �2 before investing, rather than investing right away

is optimal if:

�1 � V 1E � V 1L = �(1� �̂)(�
�1
2
� I) + �

2

h
�̂�� �maxf�; �̂��g

i
� 0.

From this equation it is easy to characterize the solution of DM�s continuation decision

problem once she knows her true payo¤ in state �1. We state it in the following lemma:

Lemma 1: Suppose that DM is thinking ahead and has already solved her decision prob-

lem in state �1, then it is better to invest right away and possibly think on the spot in state

�2 rather than continue thinking ahead about state �2 if � �12 � I � 0:
If, on the other hand, � �1

2
� I < 0; then there exists a cut-o¤ �̂

1

E such that thinking ahead

about state �2 is preferred if and only if �̂ � �̂
1

E:

Proof. see the appendix.

As one might expect, the decision to continue thinking ahead about state �2 depends on

what DM has learned before. The higher is �1 the less keen DM is to continue thinking.

When DM �nds a good outcome in state �1 she wants to reap the rewards from her discovery

by accelerating investment. By thinking further about state �2 she delays investment and if

she ends up in state �1 anyway her thinking will be wasted. The opportunity cost of these

delays is captured by
�
� �1
2
� I
�
; the expected payo¤ in state �1. Note, in particular, that

a thinking strategy such that DM stops thinking on a bad outcome where she learns that

�1 = S, but continues thinking on a good outcome, where �1 = R, is necessarily sub-optimal.

This simple observation, we believe, highlights a basic mechanism behind satis�cing behavior.

Why do boundedly rational DMs settle with good but not necessarily optimal outcomes?

Because they want to bring forward the time when they get the good reward, or as the saying

goes, because the best is the enemy of the good.

Having characterized this key intermediate step we are now in a position to determine

when DM should start to think ahead at all and when DM should defer until later all of her

thinking. Depending on the value of �1 several cases have to be considered.

12



First, suppose that I � � S
2
: In that case, DM will not think about state �2 ahead of time,

irrespective of the outcome of her optimization in state �1. DM will then think about at

most one state. If she thinks ahead about one state her payo¤ is:

VE = �̂

�
�

�
�I + �

2
R +

�

2
maxf�; �̂��g

�
+ (1� �)

�
�I + �

2
S +

�

2
maxf�; �̂��g

��
=

�̂

�
�I + �

2
�� +

�

2
maxf�; �̂��g

�
If she decides to invest without thinking her payo¤ is:

VL = �I + �maxf�; �̂��g

Comparing the two payo¤s VE and VL we immediately observe that:

Lemma 2: When I � � S
2
; thinking ahead is always dominated and DM chooses:

- no thinking if and only if �̂ � �̂L; or
- thinking on the spot if and only if �̂ � �̂L.

Proof. see the appendix.

Lemma 2 establishes another important observation. If DM knows that she will stop

thinking ahead irrespective of the outcome of her current thinking, then it is not worth

thinking ahead about her current problem. In other words, it is only worth thinking ahead

about some state �i if DM may want to continue thinking ahead about other states with

positive probability; in particular, when the outcome of her current thinking is bad. In our

simple model it is quite intuitive that DM would not want to do any thinking ahead if she

can guarantee a high net return, which is the case when � S
2
� I.

Second, suppose that I � �R
2
and that �̂ � �̂L. In that case, DM wants to think about

state �2 ahead of time, irrespective of the outcome of her optimization in state �1. In other

words, if DM does any thinking ahead, she will want to work out a complete plan of action

before investing. Thus, if she thinks ahead her payo¤ is:

VE = �̂
2
[��� � I]

while if she does not, she can expect to get:

VL = �I + ��̂��
13



It is easy to check that in this case, VL < VE.

Third, suppose that I � �R
2
but �̂ � �̂L. In this case DM either thinks ahead and works

out a complete plan of action before investing, or DM prefers not to do any thinking ever

(thinking on the spot is always dominated by no thinking, since �̂ � �̂L). If she does not

think at all she gets V; and if she thinks ahead her payo¤ is VE = �̂
2
[��� � I]. Comparing

V; and VE, we �nd:

Lemma 3: When �̂ � �̂L thinking on the spot is always dominated and when I � �R
2

DM chooses:

- no thinking if �̂ � �̂E =
q

���I
����I ; or

- thinking ahead (complete planning) if �̂ � �̂E:

Proof. see the appendix.

In this situation DM is a slow thinker but the opportunity cost of thinking ahead is also

low as investment costs are high. Thinking on the spot is dominated because once investment

costs are sunk DM wants to reap the returns from investment as quickly as possible. On the

other hand, as long as investment costs have not been incurred, DM is less concerned about

getting a low net expected return quickly.

Fourth, suppose that � �R
2
> I > � S

2
. In this intermediate case, DM wants to continue

thinking ahead about state �2 only if the outcome of her thinking on state �1 is bad. Thus,

if DM thinks ahead, then with probability � she learns that the risky action has a payo¤ �R

in state �1 and stops thinking further about state �2. Later, of course, if state �2 is realized,

DM may decide to think on the spot about what to do. With probability 1� � instead, she
learns that the return of the risky decision in state �1 is S and decides to continue thinking

about state �2 before investing. Therefore, in this situation, her payo¤ if she thinks ahead

is:

VE = �̂

�
�

�
�I + �

2
R +

�

2
maxf�; �̂��g

�
+ (1� �)�̂

�
�I + �

2
S +

�

2
��
��

Having determined all the relevant payo¤s we are in a position to derive the conditions

under which DM prefers to think ahead. To limit the number of cases, and consistent with

our focus on the choice between thinking ahead or deferring thinking, we narrow down our

analysis to values of �̂ greater than �̂L, so that no thinking is always dominated. We provide

an analysis of the alternative situation in the Appendix.

Assumption: A3 : �̂ � �
��

14



Proposition 1: Under assumptions A1; A2;and A3 the solution to DM�s decision problem

is as follows: DM prefers to think on the spot if and only if:

I �
�̂�
h
�� � � R

2

i
1 + �̂� ��̂

:

Otherwise DM prefers to think ahead, either adopting:

- a step-by-step strategy where she �rst thinks about state �1 and continues her thinking

about state �2 if she �nds that the payo¤ in state �1 is S and if

�̂�
h
�� � � R

2

i
1 + �̂� ��̂

� I � �R

2
:

If she uncovers that the payo¤ on state �1 is R, she stops thinking ahead beyond state �1

and if state �2 is realized resumes her thinking then.

- a complete planning strategy where she thinks ahead about both states before investing if
�R
2
� I.
Proof. see the appendix.

The following �gure is helpful to summarize Proposition 1.

-

6

�̂L 1
Figure 1
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�
�
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�
�
�
�
�
�
�
�
�
�
�
�
�
�� � � � � � � � � � � � � � � � � � � � � � � � �

Complete Planning

Step by Step Planning

Thinking on the Spot

The �gure maps out the three di¤erent regions: i) complete planning, where DM thinks

everything through ahead of time; ii) thinking on the spot, where DM defers all the thinking
15



to when the state of nature is realized, iii) step-by-step planning, where DM thinks �rst about

state �1 before investing and maybe about state �2 as well. Recall that in this region, we

could see DM thinking both before investing and after: for example, she thinks about what

to do in state �1, learns some good news about that state and invests, but unfortunately

state �2 is realized. She is then led to think again about what to do in that state before

making a decision.

3 Comparative Statics in the simple model

Having characterized decision-making in the presence of positive deliberation costs in a

simple symmetric example, we now explore how DM�s behavior changes with the underlying

parameters of our problem, while continuing to retain our simple two-state structure.

3.1 Quick thinkers tend to �think on their feet�

In our model quick thinkers have a higher �. We show in this subsection that a DM with a

higher � is more likely to choose to think on the spot. To see this, consider a set of decision

problems di¤ering only in the size of I, with I distributed on the interval (0; �I] according

to some cumulative distribution function F (:), with �R
2
< �I < �S. Then the following

proposition holds:

Proposition 2: The probability mass

F (
�̂�
h
�� � � R

2

i
1 + �̂� ��̂

)

is strictly increasing in �. In other words, the set of problems for which DM is thinking on

the spot is increasing in �.

Proof. Immediate corollary of Proposition 1.

With high investment costs DM wants to plan ahead, whether she is a slow or fast thinker

(as long as � � �̂L). As we have already explained, the reason is that this allows her to

better align investment costs and monetary returns in time. When I is high the NPV of

the investment is smaller and the opportunity cost of thinking ahead is low. In addition,

the bene�t of aligning cost and bene�ts goes up. Therefore both slow and fast thinkers then

prefer to plan ahead.

In contrast, for intermediate values of investment costs, fast thinkers do more thinking

on the spot than slow thinkers, who engage in step-by-step thinking. The reason is that, for
16



fast thinkers the time gap between investment and the realization of returns is smaller and

therefore matters less than for slow thinkers. As a result, they are more likely to prefer to

bring forward the positive NPV by investing right away. Slow thinkers, on the other hand,

are prepared to accept some delay in getting the positive NPV, in return for a higher NPV

achieved by reducing the time lag between investment and recoupment.

Interestingly, as Figure 1 reveals, DM does not necessarily engage in complete planning

as � approaches 1. As long as � < 1, what determines whether DM engages in complete

planning is whether I is greater or smaller than �R
2
. Thus even for � arbitrarily close to 1,

DM will not engage in complete planning if I < �R
2
. It is only when there are no deliberation

costs at all, so that � = 1, that complete planning is always a rational behavior.

3.2 Think �rst about the most likely state

In the symmetric example we have studied DM faces maximum uncertainty about which

state will occur, as each state is equally likely. We now explore how DM�s decisions change

when �; the probability that state �1 is realized is larger than 1
2
, while keeping the other

characteristics of the model unchanged.

It is immediate to check that the payo¤ of the thinking on the spot strategy is unchanged

when � > 1
2
. Similarly, the payo¤ associated with the complete planning strategy remains

the same. On the other hand, the payo¤ associated with step-by-step thinking is a¤ected in

an important way when state �1 is more likely to arise.

When � > 1
2
it is straightforward to see that the best step-by-step thinking strategy for

DM is to think �rst about state �1, the most likely state. The costs of thinking ahead about

one state only are the same whichever state DM thinks about, but the expected bene�t in

terms of DM�s ability to act quickly following the realization of a state is higher for state �1,

as this is the most likely state. Note also that DM is more likely to think ahead about one

state only when � > 1
2
, as the marginal expected payo¤ of thinking ahead about the other

state is reduced.

The continuation payo¤ obtained by thinking ahead about state �2, once DM knows that

the payo¤ in state �1 is �1 is given by:

V 1E(�) = �̂ (�I + � (��1 + (1� �)��))

Compare this to the continuation payo¤ obtained by stopping to think ahead at that point
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and investing:

V 1L = �I + �
�
��1 + (1� �)�̂��

�
;

and observe that the di¤erence in continuation payo¤s is given by:

�1 = V 1L � V 1E(�) = (1� �̂)(���1 � I):

Thus, an increase in �, the likelihood of state �1, results in an increase in �1. As a result,

there are now more values of I for which DM stops to think ahead once she knows the payo¤

in state �1. This has two implications:

First, DM is less likely to work out a complete action-plan before investing, so that the

complete planning region in Figure 1 is now smaller.

Second, as the payo¤ of step-by-step thinking increases with �, this strategy becomes

more attractive relative to not thinking ahead at all.

Consequently we have:

Proposition 3: A reduction in the uncertainty about states of nature reduces the attrac-

tiveness of complete planning and thinking on the spot and favors a step-by-step approach.

Proof. Obvious.

As � approaches 1, it is clear that thinking ahead about only state �1 is the best strategy:

it allows DM to reduce the time between when she incurs investment costs and when she

recoups her investment. In addition, thinking ahead is very unlikely to create unnecessary

delays.

Vice-versa, as � approaches 1
2
and uncertainty about the state of nature increases, DM

can respond by either working out a complete plan to deal with the greater uncertainty, or

she can adopt a wait-and-see approach and defer all her thinking until after the uncertainty

is resolved.

One may wonder whether this �nding extends to changes in other forms of uncertainty.

For instance, would DM change her behavior following a change in her prior belief �i in state

�i that the risky action is e¢ cient? It turns out that such a change in beliefs not only a¤ects

the perceived riskiness of the risky decision, but also changes the average payo¤ that DM

can expect in state �i. We will show below that this change has several implications.

3.3 Solve easier problems �rst

So far we have interpreted the parameter � as a measure of DM�s thinking ability. But �

can also be seen as a measure of the di¢ culty of the problem to be solved, with a higher
18



� denoting an easier problem. If we take that interpretation, we can let � vary with the

problem at hand and ask whether DM thinks �rst about harder or easier problems. Thus,

suppose that the decision problem in state �1 is easier than the one in state �2. That is,

suppose that �1 > �2. Holding everything else constant, we now explore how variations in

the complexity of decision problems a¤ects DM�s payo¤ and behavior. It is immediate that

the payo¤ associated with the complete planning strategy is:

VE = �̂1�̂2 [��
� � I]

and the payo¤ of thinking on the spot is:

VL = �I + (�̂2 + �̂1)
���

2
.

Comparing these two payo¤s we can illustrate a �rst e¤ect of variation in problem com-

plexity. Take �̂1 = �̂ + " and �̂2 = �̂ � ", where " > 04. Note, �rst, that the payo¤ under
the thinking on the spot strategy is the same whether " = 0, as we have assumed before, or

" > 0. On the other hand, the payo¤under complete planning, (�̂
2�"2) [��� � I], is lower the

higher is ". Thus, increasing the variance in problem-complexity across states, while keep-

ing average complexity constant, does not a¤ect the payo¤ under the thinking-on-the-spot

strategy as DM then only incurs average thinking costs. In contrast, when DM attempts

to work out a complete action-plan, thinking costs compound. This is why DM is worse o¤

under a complete planning strategy when the variance in problem-complexity increases.

How do di¤erences in problem-complexity across states a¤ect DM�s step-by-step thinking

strategy? Intuitively, it seems to make sense to have a crack at the easier problem �rst. This

intuition is, indeed, borne out in the formal analysis, but the reason why it makes sense

to start �rst with the easier problem is somewhat subtle. Under the step-by-step thinking

strategy, whenever DM ends up thinking about both states of nature, she compounds think-

ing costs in the same way as under complete planning. Under this scenario, whether she

starts with state �1 or �2 is irrelevant.

Hence, the choice of which state to think about �rst only matters in the event when:

i) the outcome of thinking is good news (that is, if DM learns that the true payo¤ is �R),

so that DM engages in only partial planning before investment, and; ii) when the state of

nature which DM has thought about is realized. Under this latter scenario DM is better

4We assume that " is small enough , so that even in state �2 DM will continue to think before acting if
she does not know which decision is e¢ cient. More precisely, we take " to be small enough that assumption
A3 remains valid.
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o¤ thinking �rst about the easier problem since she then gets to realize the net return from

investment sooner. Formally, the payo¤s under the two alternative step-by-step strategies

are given by:

VE1 = �̂1

�
�

�
�I + �

2
R +

�

2
�̂2�

�
�
+ (1� �)�̂2

�
�I + �

2
S +

�

2
��
��

VE2 = �̂2

�
�

�
�I + �

2
R +

�

2
�̂1�

�
�
+ (1� �)�̂1

�
�I + �

2
S +

�

2
��
��

Therefore, as
�
�I + �

2
R
�
> 0, it is best to think �rst about the simple problem with the

higher �̂i. We summarize our discussion in the proposition below:

Proposition 4: Let �̂1 = �̂+ " and �̂2 = �̂� ", with " > 0 but small.
Then, when DM chooses to think ahead, it is (weakly) optimal to think �rst about the

easier problem, and the payo¤ associated with:

- the complete planning strategy is decreasing in the di¤erence in problem-complexity across

states;

- the thinking on the spot strategy is unchanged,

- the step-by-step strategy, where DM thinks �rst about the simple problem (in state �1),

rises for " small enough.

Proof. See the appendix.

Thus, an important insight emerging from our analysis is that partial planning is more

likely to take place in environments where problem-complexity varies across states. Moreover,

the simpler problems are solved �rst, while the harder ones are deferred to later in the hope

that they won�t have to be solved. These conclusions are quite intuitive and reassuring.

3.4 Think �rst about the highest payo¤ state

If thinking �rst about more likely and easier problems makes sense, is it also desirable to

think �rst about problems with a higher expected payo¤? In our simple model expected

returns may di¤er across states if either the probability of high returns on the risky action

is di¤erent, or if returns themselves di¤er. We explore each variation in turn and �nd:

Proposition 5: Suppose that either �1 = � + "; and �2 = � � " or that S1 = S + ",

S2 = S � "; while R1 = R + " and R2 = R� ", for " > 0 but small.

� Whenever some thinking ahead takes place, it is best to start thinking about the high
payo¤ state ( �1).
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� The payo¤ associated with the complete planning or the thinking on the spot strategies
is una¤ected by changes in ", however

� The payo¤ associated with the step-by-step strategy, where DM thinks �rst about the

high return state, is increasing in ".

Proof. See the appendix.

This is again a reassuring and quite intuitive result. As DM seeks to get to the point

where she will make a decision as quickly as possible it makes sense for her to �rst bring

forward in time the highest expected payo¤s, which are most likely to tip her decision whether

to invest or continue thinking ahead.

3.5 Think about the most urgent problems �rst

We have argued that Radner and Rothschild�s (1975) notion of putting out �res can be

understood more generally as the idea that a boundedly rational DM prioritizes her thinking

by focusing �rst on the most important problems or those most likely to arise. In this

subsection we want to highlight a third aspect of this general idea: thinking �rst about the

most urgent problems.

We model a problem as more or less urgent by varying the time lag between when DM

decides to invest and when DM can make the decision on which action to take in a given

state of nature. That is, we still assume that the state of nature is realized one period after

DM invests, but now we only allow DM to act in either state �i at the earliest after a time-lag

of �i � 0 after the realization of the state. Speci�cally, we consider an example here where
�1 = 0 and �2 > 0, so that the problem in state �1 is in some sense more �urgent�than the

problem in state �2.

Given this timing structure, we can show that it is optimal for DM to think ahead about

the decision problem in state �2 only if it is also optimal to think ahead about the problem

in state �1:

Proposition 6: Suppose that DM can act following the realization of state �i at the

earliest after a time-lag of �i � 0. Then if �1 < �2 it is never optimal to think ahead about

state �2 before state �1.

Proof. See the appendix.

Intuitively, there are two e¤ects which favor thinking about the most urgent problem

�rst: 1) should DM end up not facing this problem after all, she will then have time on
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her hands to think about the less urgent problem; 2) as more urgent problems tend to arise

sooner they have a higher present discounted payo¤. As we saw above, it is always optimal

for DM to �rst think about the highest payo¤ states.

Consider, �nally, the e¤ect of discounting on DM�s planning strategy. As can be seen

immediately from Figure 1, as DM discounts the future more (that is, when � is lower) she

will, somewhat counter-intuitively, be led to do more planning other things equal. Indeed,

she may either switch from a step-by-step policy to complete planning, or from thinking on

the spot to a step-by-step planning policy. The only caveat is that at some point, when � is

su¢ ciently low, it does not pay to do any thinking on the spot or even any thinking ahead.

3.6 Exploiting Statistical Regularities

Suppose that DM has prior knowledge that payo¤s of the risky action may be correlated

across states of nature. Speci�cally, suppose that with prior probability 1=2 the payo¤ on

the risky action is R in any given state �i . In addition, suppose that the probability that

Ri = R conditional on Rj = R is given by " > 1=2, so that payo¤s on the risky action

are positively correlated. How does this prior statistical regularity a¤ect DM�s thinking

strategy?

Note �rst that the expected ex-ante payo¤s of thinking on the spot or complete planning

are independent of the value of ". Similarly the continuation payo¤s remain the same as

long as: i) following the discovery that Ri = R we have

"R + (1� ")R < �̂["R + (1� ")S];

and,

ii) following the discovery that Ri =R we have

S < �̂["S + (1� ")R]:

Indeed, when these conditions hold DM�s interim problem is still whether to do more

thinking ahead or to postpone thinking until after the realization of the state, and the costs

and bene�ts involved in this decision are una¤ected by ".

On the other hand, for high degrees of correlation the opposite inequalities hold:

"R + (1� ")R � �̂["R + (1� ")S];

or

" � "1 �
�̂S �R

R�R� �̂(R� S)
;
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and

S � �̂["S + (1� ")R];

or

" � "2 �
�̂R� S
�̂(R� S)

:

In this case DM would not want to think on the spot about Rj following the discovery of

Ri. Therefore, DM would also not want to do any thinking ahead about state �j . Thus, for

high degrees of correlation in payo¤s DM would never want to pursue a complete planning

strategy. As for the choice between thinking on the spot and thinking ahead about one state,

it is determined as follows:

Proposition 7: For " � maxf"1; "2; "3g thinking ahead about one state only is optimal,
and for "3 > " � maxf"1; "2g thinking on the spot is optimal, where

"3 = 1�
4I(1� �̂)
�̂�(R�R)

:

Proof. Follows immediately by comparing the expected payo¤s of the two strategies.

Thus, quite generally, whenever DM is aware of existing statistical regularities she will

engage in more step-by-step thinking.

Interestingly, therefore, with correlated payo¤s DM is more easily satis�ed with partial

optimization. In other words, there is more satis�cing when payo¤s are correlated. Note

that the mechanism here is through future satis�cing behavior feeding back into current

satis�cing. However, the �ip side of this behavior is that DM will end up making more

mistakes. Thus, we have the paradoxical situation where although DM engages in more

planning she ends up making more mistakes.

Notice also that DM is more likely here to be satis�ed with step-by-step thinking the

lower is �. In other words, slower thinkers are more likely to cut corners and therefore to

make mistakes.

In sum, greater correlation in payo¤s brings about a quicker response time by DM, but

this comes at the expense of more decision errors. DM�s behavior in this environment, thus,

gives the appearance of overcon�dence.

4 The Model with N states

One may wonder to what extent our insights into optimal dynamic decision and deliberation

strategies derived in our tractable two state example extend to more general settings. We
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attempt a limited exploration into this question in this section by partially analyzing the

more general decision problem with a �nite, arbitrary number, of states of nature N � 2.
We begin by looking at the case of N equiprobable states, each with the same structure:

a safe action with known payo¤ S, and a risky action with unknown payo¤ R 2 fR;Rg.
As before, we assume that payo¤s of the risky action are identically and independently

distributed across states and take DM�s prior belief to be Pr(R = �R) = �. We also continue

to assume that assumption A3 holds.

As there is a �nite number of states to explore, the optimal deliberation policy cannot

be stationary. As and when DM discovers the solution to future decision problems in some

states of nature by thinking ahead, she is more likely to stop thinking further, given that

the remaining number of unexplored states diminishes. We also know from our previous

analysis that she may be more or less willing to continue her thought experimentation before

investing, depending on whether she learns �good�or �bad�news about her payo¤ in states she

is thinking about. Therefore there is no hope in identifying a simple optimal stopping policy

where, for instance, DM explores m� out of N states and then stops. It is also unlikely that

DM�s optimal policy would take the simple form where DM would stop thinking further once

she discovers that she can obtain a minimum average return in the states she has successfully

explored. To identify DM�s optimal policy we therefore proceed in steps and characterize

basic properties the optimal policy must satisfy.

One property we have identi�ed in our two state example is that if DM is sure to stop

thinking and to invest after learning her payo¤ about the current state she thinks about,

then she prefers not to think ahead about the current state. The next lemma establishes

that this property holds in the more general model:

Lemma 4: If DM prefers to stop thinking ahead and to invest, irrespective of what she

learns about state �i, then she also prefers not to think ahead about state �i.

Proof. Suppose that DM has already deliberated about m out of N states, and found

that zm of these states have a payo¤ for the risky action of R. If she deliberates about the

(m+ 1)th state and knows that she will then invest no matter what, she can expect to get:

b� ��I + �

N

�
zmR + (m� zm)S + �� + (N � (m+ 1)) b�����

Thus, suppose by contradiction that DM decides to deliberate on this (m+ 1)th state.

This is in her best interest if the payo¤ above is larger than what she could get by investing
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right away :

�I + �

N

�
zmR + (m� zm)S + (N �m) b����

Therefore, it must be the case that

C1 : �I +
�

N

�
zmR + (m� zm)S + (N � (m+ 1)) b���� < 0

Now, if DM were sure to stop deliberating after the (m+ 1)th state, she must be better o¤

stopping further deliberations even when she learns bad news about the m + 1th state. For

that to be true, it must be the case that stopping even following bad news is better than

continuing exploring just one more state (m+ 2), before investing, or that:

�I + �

N

�
zmR + (m� zm)S + S + (N � (m+ 1)) b���� �

b� ��I + �

N

�
zmR + (m� zm)S + S + �� + (N � (m+ 2)) b�����

or:

�I + �

N

�
zmR + (m� zm)S + S + (N � (m+ 2)) b���� � 0

or

�I + �

N

�
zmR + (m� zm)S + (N � (m+ 1)) b����� �

N

�b��� � S� � 0
which implies that condition C1 is violated, , as b��� � S > 0.
One implication of this simple lemma is that if DM wants to do some thinking ahead,

then with positive probability she may also want to work out a complete plan of action (e.g.

in the event that she only learns bad news from her deliberations).

Recall that the reason why it may be in DM�s interest to do some thinking ahead is not

to improve her current decision. In this respect, thinking ahead adds no value, as investment

is guaranteed to yield a positive net present value. Rather, the reason why DM gains by

thinking ahead is that she may be able to respond faster to the realization of a new state of

nature. So the intuition behind lemma 4 is that if the gain from a quick response in state

(m+ 1) does not justify the cost of delaying investment, and this even after learning that

the expected net present value of the investment will be lower, then it cannot possibly be

the case that this gain exceeds deliberation costs prior to learning the bad news.

This intuition immediately suggests that the following property of the optimal delibera-

tion policy must be satis�ed.
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Lemma 5: It is never optimal to stop thinking ahead on learning bad news and to

continue thinking ahead on learning good news.

Proof. see Appendix B.

From these two simple observations we are able to infer that:

Theorem: For N small enough, DM adopts a step-by-step strategy whereby she thinks

ahead about some states, continues to do so upon learning bad news and invests only once

she has accumulated enough good news.

Proof. The two previous lemmata imply that DM never stops exploring upon receiving

bad news. Indeed, if she did then she would not continue either when receiving good news.

This in turn would imply that it would be best not to think ahead about that particular

state. Therefore, when following a step-by-step strategy DM only stops on good news about

the last state she explores.

Turning to the second part of the theorem, to see why it is best to do some thinking ahead

when N is su¢ ciently small, it su¢ ces to note that thinking ahead is obviously bene�cial if

N = 1. Also, the strategy of investing right away delivers a lower payo¤ than �rst thinking

ahead about exactly one state (which, itself is a dominated strategy), if:

�I + �b���| {z }
invest immediately

� b� ��I + �

N
�� +

�

N
(N � 1)b����| {z }

think ahead about one state

or,

, N � �b���
�b��� � I

As stated, the theorem establishes that DM would want to do some thinking ahead if

the number of possible states N is small enough. We also know from the analysis of the

example with two states that even for N = 2, DM may prefer thinking ahead step-by-step

rather than determine a complete action plan. However, what we cannot conclude from the

theorem or our previous analysis is that DM would de�nitely not want to do any thinking

ahead when N is su¢ ciently large. We establish this result in the next proposition.

Proposition 8: Consider N equiprobable states. If N � �S
�S�I the optimal thinking

strategy is to invest right away and to think on the spot.
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Proof. Notice �rst that if N � �S
�S�I ; DM will never think about the last state. That

is, when N � �S
�S�I then m

� < N . To see this, denote by QN�1 the average payo¤ that DM

expects from the N � 1 other states. We then have:

b� ��I + �

N
�� +

�

N
(N � 1)QN�1

�
� �I + �

N
b��� + �

N
(N � 1)QN�1

, N(�QN�1 � I) � �QN�1

as QN�1 2 (S;R) this is equivalent to N � �QN�1
�QN�1�I ; which is true if N � �S

�S�I : Now from

lemma 4 we know that if DM stops thinking ahead at the penultimate state irrespective

of what she learns then she also prefers not to think ahead about the penultimate state,

irrespective of what she learned before. By backward induction, it then follows that DM

prefers no to do any thinking ahead.

Proposition 8 is quite intuitive. There is little to be gained by working out a highly

incomplete action-plan and if any reasonable plan is complex and will take a long time to

work out then the only reasonable course of action is to just hope for the best and not do

any planning at all.

Another extreme situation where the best course of action is just to think on the spot

is when the state of nature is highly transitory. Thus, for example, in the extreme case

where there is a new iid draw of payo¤s on the risky action every period there is no point

in thinking ahead, as the knowledge obtained by DM on a particular state will already be

obsolete by the time the state is realized.

In reality, people sometimes prefer to be faced with complex life situations where rational

forethought makes little di¤erence and the only course of action is to essentially put their

fate in God�s hands so to speak. In such situations they are absolved of all responsibility for

their fate and that makes them better o¤. In contrast, here our DM is always (weakly) worse

o¤ facing more uncertainty than less (as measured by the number of states N). Indeed, if

one were to reduce the number of states below �S
�S�I , DM would want to do some thinking

ahead and be better o¤ as a result.

Just as some key properties of the optimal thinking strategy with time-deliberation costs

derived in the two-state special case extend to an arbitrary number N of equiprobable states,

some important comparative statics results also extend to this general setting. We report

below two general results we have been able to prove on the optimal order in which DM

should think ahead about future states.
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The �rst result establishes that quite generally it is optimal for DM to think ahead �rst

about the most likely states:

Proposition 9: Consider N identical states with probabilities of realization �1 > �2 >

::: > �N . The optimal thinking strategy is to think ahead about the most likely states �rst.

Proof. see Appendix B.

The second result establishes that it is also optimal for DM to think ahead �rst about

the highest payo¤ states:

Proposition 10: Consider N equiprobable states ranked in order of decreasing expected

payo¤, Ri = R + "i; Si = S + "i, with "1 > "2 > ::: > "N . Assume, in addition, that the "i

are small enough that assumption A3 holds in all N states: for all i; �̂ � x+"i
y+"i

. The optimal

thinking strategy is then to think ahead about the highest payo¤ states �rst.

Proof. see Appendix B.

The other comparative statics results we have derived in the two-state special case may

also generalize, but we have not yet formally proved these generalizations.

5 Conclusion

The notion of bounded rationality has been with us for a long time now and few economists

would dispute that the model of rational decision-making in most microeconomics textbooks

is a poor description of how agents actually make decisions in reality. It is especially poor at

describing decision making in dynamic decision problems, as normal human beings are not

able to solve complex dynamic programming problems.

However, despite the descriptive limitations of the rational model, it continues to be the

reference model in economics to describe individual behavior. Sometimes, justi�cations are

o¤ered for sticking with the rational model, such as evolutionary selection, unbiased errors

which average out in the aggregate, or convergence to the rational choice through simple

learning algorithms in stable environments. As pertinent as these justi�cations may be,

they do not always apply in reality and often they are simply invoked as convenient excuses

for staying within a well-understood paradigm that is easy to manipulate. Indeed, a basic

di¢ culty in moving beyond the rational choice framework is that there are several alternative

approaches one could take. Moreover, while bounded rationality models may fare better as

descriptive models of decision-making in reality, they are also signi�cantly more complex and
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unwieldy. That is a basic reason why these models have not been incorporated more readily

into the mainstream.

This is why our primary concern in formulating our approach has been tractability.

Although we have probably oversimpli�ed the dynamic decision problems agents are likely

to face in reality we nevertheless capture a basic aspect of most people�s behavior when

they face complex intertemporal decision problems: they think ahead only about the most

important or salient aspects of the problem in their mind and leave the determination of less

important aspects to a later time. By modeling the basic dynamic decision problem as one

of optimization in the presence of time-deliberation costs, we have been able to characterize

simple optimal incomplete planning strategies that resemble satis�cing behavior. Thus, for

example, we have been able to show that it is optimal for a decision-maker to think ahead

�rst about the most likely future decisions she will face.

We have also been able to highlight a basic tradeo¤ that is likely to be present in most

dynamic decision problems: the bene�t of thinking ahead is that a decision-maker will be

able to react more quickly to new events or challenges, but the cost is that she delays her

current decision while she thinks through the most important future implications.

We have simpli�ed our framework so much that our analysis may be seen to be only

applicable to situations where information a¤ects the timing of investment but not the

decision whether to invest. In particular, a natural question is whether our analysis extends

to situations where the investment under consideration could have a negative NPV? We

think that all our analysis extends straightforwardly to situations where DM is uncertain to

begin with whether the investment opportunity she faces has a positive NPV or not. Indeed,

if under DM�s prior beliefs the project has a negative NPV then there is no opportunity

cost in thinking ahead. DM then �nds it optimal to think before investing, and she will

continue thinking until she has learned all the relevant information or up to the point when

her revised beliefs are such that the project has a positive NPV. Should her beliefs evolve in

that direction then we are back to the situation we have analyzed so far.

Perhaps a more important limitation of our framework may be that we exclude situations

where DM has other irreversible options available besides investing in the project under

consideration. For instance she may face a decision of selecting among several alternative

irreversible investment projects. Adding this possibility to our framework can indeed lead to

changes in the optimal thinking strategies we have characterized. In particular, for this more

complex problem it may be optimal for DM to stop thinking ahead on learning bad news
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under a step-by-step thinking strategy, an outcome we could not obtain in our simple setup.

We leave the characterization of optimal thinking strategies in this more general problem for

future research.
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APPENDIX A: The 2-state model

Proof of Lemma 1:
It is immediate from the previous equation that thinking on the spot dominates if

�
�1
2
� I � 0:

Suppose now that � �1
2
� I < 0:

- If �̂ � �̂L; then maxf�; �̂��g = �̂�� and � = (1 � �̂)(� �1
2
� I) < 0 so that thinking

ahead dominates.
- If �̂ � �̂L; then maxf�; �̂��g = � and

� = (1� �̂)(��1
2
� I) + �

2

h
�� �̂��

i
therefore,

� � 0,

�I + ��1
2
+
�

2
� � �̂

�
�I + ��1

2
+
�

2
��
�

,

�̂ � �̂E �
�I + �

2
(�1 + �)

�I + �
2
(�1 + ��)

�

Proof of Lemma 2:
The di¤erence � = VE � VL is always negative as:

� = �̂

�
�I + �

2
�� +

�

2
maxf�; �̂��g

�
�
h
�I + �maxf�; �̂��g

i
= �

h
�I + �maxf�; �̂��g

i
(1� �̂) + �̂ �

2

h
�� �maxf�; �̂��g

i
Case 1: �̂ � �̂L

� = � [�I + ��] (1� �̂) + �̂ �
2
[�� � �]

= I � ��+ �̂
�
�I + ��+ �

2
(�� � �)

�
as the term in bracket is positive, � is at most equal to:

I � ��+ �

��

�
�I + ��+ �

2
(�� � �)

�
=

1

��
(I�� � ���� � I�+ ��2 + �

2
(�� � �)�) =

�� � �
��

(I � �
2
�) < 0
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and therefore thinking on the spot dominates thinking ahead. As �̂ � �̂L; no thinking
dominates thinking on the spot.
Case 2: �̂ � �̂L

� = �
h
�I + ��̂��

i
(1� �̂) + �̂ �

2

h
�� � �̂��

i
= (1� �̂)

�
I � �

2
�̂��
�
< 0

and therefore thinking on the spot dominates thinking ahead. As �̂ � �̂L; thinking on the
spot also dominates no thinking.�

Proof of Lemma 3:
As in the proof of Lemma 2, there are two cases to consider:
Case 1: �̂ � �̂L
In that case, no thinking dominates thinking on the spot. Whether thinking ahead is

best depends on the sign of
� = �̂

2
[��� � I] + I � ��

and this is positive for

I � �(�� �̂2��)
1� �̂2

The right hand side of this inequality is decreasing in �̂. The inequality cannot hold for
�̂ = 0, but it holds for �̂ = �

�� as then this inequality becomes:

I �
�(�� �2

��2�
�)

1� �2

��2

=
����

�� + �

but as I � �R
2
, then I > ���

2
and we note that

���

2
>

����

�� + �
,

�� + � > 2�

which is true since �� > �. Therefore there exists a new threshold �̂E < �̂L such that thinking
ahead dominates no thinking if and only if �̂ exceeds that threshold.
Case 2: �̂ � �̂L
In that case, no thinking is dominated by thinking on the spot. Whether thinking ahead

is best depends on the sign of

� = �̂
2
[��� � I] + I � ��̂��

and this is positive for

I � ��̂��

1 + �̂
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The right hand side of this inequality is increasing in �̂. It thus su¢ ces to note that the
inequality holds for �̂ = 1. Indeed, we then have:

I >
���

2

which is true under our assumptions.�

Proof of Proposition 1:
First, lemmata 2 and 3 tell us that thinking ahead is dominated if I � �S

2
and that

thinking on the spot is dominated if I � �R
2
.

Case 1: suppose �rst as we did in the text that �̂ � �̂L. Then surely for I � �R
2
, the

best strategy is to think ahead as it dominates thinking on the spot, which itself dominates
no thinking in that case. When I is so high DM thinks about both states (from lemma 1)
before investing. Conversely for I � �S

2
, deferring all thinking is best as it dominates both

thinking ahead and no thinking.
We are left with the intermediate case where �S

2
� I � �R

2
. In this case the best alternative

to planning ahead is to follow the strategy of thinking on the spot. Indeed, we have:

� � VE � VL

= �̂

�
�

�
�I + �

2
R +

�

2
�̂��
�
+ (1� �)�̂

�
�I + �

2
S +

�

2
��
��

�
h
�I + ��̂��

i

= �̂

�
�

�
�I + �

2
R

�
+
�

2
�̂�� + (1� �)�̂

�
�I + �

2
S

��
�
h
�I + ��̂��

i

= �̂

�
�̂�

�
�I + �

2
R

�
+ (1� �̂)�

�
�I + �

2
R

�
+
�

2
�̂�� + (1� �)�̂

�
�I + �

2
S

��
�
h
�I + ��̂��

i

= �̂

�
(1� �̂)�

�
�I + �

2
R

�
+ �̂ (��� � I)

�
�
h
�I + ��̂��

i
= ���

�
�̂
2 � �̂

�
� I

�
�̂
2 � 1

�
+ �̂(1� �̂)�

�
�I + �

2
R

�
=
�
�̂� 1

��
�̂��� � I

�
1 + �̂

�
� �̂�

�
�I + �

2
R

��
;
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and so we have � � 0 if and only if:

�̂��� � I
�
1 + �̂

�
� �̂�

�
�I + �

2
R

�
� 0;

or

I �
�̂�
h
�� � � R

2

i
1 + �̂� ��̂

:

Note that the right hand side is increasing and concave in �̂. Moreover, we have:

�S

2
<

�
�� �
h
�� � � R

2

i
1 + �

�� (1� �)

and,

�R

2
>
�
h
�� � � R

2

i
2� �

Case 2: suppose now that �̂ � �̂L. Then the best alternative to planning ahead is to
follow the strategy of no thinking. From the previous lemmata, we can verify that for I < �S

2
;

the best strategy is to invest without any thinking taking place. For intermediate values,
where �S

2
< I < �R

2
, we have:

VE = �̂

�
�

�
�I + �

2
R +

�

2
�

�
+ (1� �)�̂

�
�I + �

2
S +

�

2
��
��

and so

� = �̂

�
�

�
�I + �

2
R +

�

2
�

�
+ (1� �)�̂

�
�I + �

2
S +

�

2
��
��

� [�I + ��]

Rearranging terms as before, we obtain that � � 0 if and only if:

I �
�̂�
h
�� � � R

2

i
1 + �̂� ��̂

+
�(�� �̂��)

(1� �̂)(1 + �̂(1� �))
(1)

which may or may not be feasible given that we need both I � �
2
R and �̂ � �̂L to hold.

Inequality (1) in particular cannot be satis�ed if R � 2���
��+� , which is therefore a su¢ cient

condition for no thinking to dominate thinking ahead. Otherwise thinking ahead may be
best.
Similarly, when �R

2
< I, step-by-step thinking is dominated by complete planning.

Whether DM starts investigating any state before investing depends on the sign of

� = �̂
2
[��� � I]� (��� I)

and � > 0 if:
���
h
�̂
2 � �̂L

i
+ (1� �̂2)I > 0
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, I >
���

(1� �̂2)
(�̂L � �̂

2
)

which may or may not be true. Notice that it is more likely to be satis�ed for �̂ close enough
to �̂L, as the right hand side of this last inequality is decreasing in �̂. A su¢ cient condition
for thinking ahead to dominate in this parameter region is

�R

2
> ��

or R > 2�.�

Proof of Proposition 4:
We �rst establish under what conditions the payo¤ of the step-by-step strategy is in-

creasing in ". Given that DM begins by exploring the easy state, she expects:

M0 = (�̂+ ")

�
�

�
�I + �

2
R +

�

2
(�̂� ")��

�
+ (1� �)(�̂� ")

�
�I + �

2
S +

�

2
��
��

and so
@M0

@"
= �

�
�I + �

2
R

�
� 2"

�
�

2
�� + (1� �)

�
�I + �

2
S

��
The value of this derivative is positive when " goes to zero as I � �

2
R in the region where

step-by-step planning is optimal.�

Proof of Proposition 5:
Consider �rst the case where �1 = � + "; �2 = � � ", with " > 0. In that case, the payo¤

of the thinking on the spot, or complete planning strategies are unchanged. In contrast,
the payo¤ of the step-by-step strategy is a¤ected by this average-belief-preserving spread as
follows.
Whichever state �i DM thinks about �rst, DM will want to stop thinking further about

the other state if she discovers that �i = �R
2
, whenever I 2 [ �S

2
; �R
2
]. It is then best for her

to start thinking about state �1, the state with the higher prior belief �1. The reason is
that she is then more likely to �nd that �1 = �R

2
and if state �1 arises, DM will be able to

realize high returns relatively quickly. Note, therefore, that as more prior probability mass
is shifted to the high return on the risky action in state �1, the step-by-step strategy also
becomes relatively more attractive.
Second, suppose that returns themselves di¤er across the two states, and that returns in

state �1 are higher than in state �2: S1 = S + " while S2 = S � "; and R1 = R + " while
R2 = R� ". Again, we take " to be small enough that assumption A3 remains valid.
This redistribution of returns across states leaves DM�s expected payo¤ una¤ected as

long as I < �(S�")
2

or I > �(R+")
2
. Indeed, in that case she chooses to either defer all of her

thinking until the uncertainty about the state is resolved, or to work out a complete plan
before investing. In both cases, her expected payo¤ only depends on average returns ��1+�

�
2

2

and is therefore una¤ected by changes in ".
But if �(S+")

2
< I < �(R�")

2
, DM will engage in step-by-step thinking and will stop thinking

ahead if she learns that the risky decision is e¢ cient in the state she thinks through �rst.
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Once again, it is then best for her to think about the high payo¤ state �rst. The basic logic
is the same as before: by thinking �rst about the high payo¤ state DM is able to bring
forward in time the moment when she realizes the highest return.
Does this mean that when DM chooses to think ahead, she is always (weakly) better

o¤ thinking �rst about the high payo¤ state? The answer to this question is yes. There is
one particular situation where conceivably this prescription might not hold. That is when
�(S�")
2

< I < �(S+")
2
. In this case DM either thinks about the low return state �rst, or she

defers all of her thinking to when the state of nature is realized. However, in the later case,
her payo¤ is una¤ected by changes in ", while in the former it is decreasing in ". What is
more, for " = 0 thinking on the spot dominates step-by-step thinking. Therefore, the latter
strategy is then dominated by thinking on the spot for all " > 0. Hence, it remains true that
whenever thinking ahead pays, it is best to think �rst about the problem with the highest
return.
Finally, for �(R�")

2
< I < �(R+")

2
, DM either thinks �rst about the high return state or

works out a complete plan. In the latter case, her payo¤ is una¤ected by ". If she decides
to think �rst about the high return state, her payo¤ goes up with " so that eventually this
strategy dominates complete planning. This completes the proof.

Proof of Proposition 6:
Without loss of generality set �1 = 0. Suppose by contradiction that DM thinks ahead

about state �2 �rst under a step-by-step thinking approach. Note that for this form of
step-by-step thinking to be optimal we must have

�(1+�2)

2
S < I <

�(1+�2)

2
R.

Her payo¤ under this strategy is

V2 = �̂

"
�

 
�I + �

(1+�2)

2
R +

�

2
�̂��

!
+ (1� �)�̂

 
�I + �

(1+�2)

2
S +

�

2
��

!#
On the other hand if DM thinks ahead �rst about state �1 her payo¤ is

V1 = �̂

"
�

 
�I + �

2
R +

�(1+�2)

2

h
(1� (1� �)�2)�� + (1� �)�2�̂��

i!

+(1� �)max
(
�I + �

2
S + �(1+�2)

2

h
(1� (1� �)�2)�� + (1� �)�2�̂��

i
;

�̂(�I + �
2
S + �(1+�2)

2
��)

)#
:

Thus,

V1 � �̂
"
�

 
�I + �

2
R +

�(1+�2)

2
�̂��

!
+ (1� �)�̂

 
�I + �

2
S +

�(1+�2)

2
��

!#
and

�̂

"
�

 
�I + �

2
R +

�(1+�2)

2
�̂��

!
+ (1� �)�̂

 
�I + �

2
S +

�(1+�2)

2
��

!#
� V2:
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APPENDIX B: The N-states model.

The derivation of the results of section 4 is made easier by formalizing DM�s problem as
follows. Denote by:

� �i 2 fR;Sg, the maximum payo¤ that DM can achieve in state �i,

� hk, a history of payo¤ observations of length k; that is, hk 2 fR;Sgk is a sequence of
payo¤s uncovered in states �1:::�k. For instance, h2 = (S; S) means that the optimal
decision in the �rst two states, �1 and �2, has been found to be the safe action with
payo¤ of S in both states.

� �(hk), the probability that DM decides to explore state k + 1 when she has already
explored k states and has learned history hk. That is, with probability (1 � �(hk))
she explores no more than k states and invests right away. Given these de�nitions we
have: �(hk) = 0 ) �(hk+1) = 0.

� �k, the set of all possible continuation-histories following k : �k = fR;SgN�k.

Using these notations, we can represent the expected payo¤of DM who decides to explore
a �rst state before investing as:

M0 = E�0

h
�̂
(1+�(h1)+�(h1)�(h2)+:::) � (�I + �[�1�1 + �(h1)�2�2 + �(h1)�(h2)�3�3 + :::]

+��̂[��2�2 (1� �(h1)) + ��3�3 (1� �(h2)) + :::]
�i

Or,

M0 = E�0

"
�̂
(1+'1)

 
�I + �

"
�1�1 +

N�1X
�=1

�1� + �̂
N�1X
�=1

��+1�
�
�+1(1� �(h� ))

#!#
;

where:

1. '1 =

 
N�1X
�=1

�Y
t=1

�(ht)

!
is the expected number of subsequent states that DM explores

ahead given that DM decides to explore a �rst state, and

2. �1� =

 
��+1��+1

�Y
t=1

�(ht)

!
is the payo¤ in state � + 1 times the likelihood of state

� + 1, multiplied by the probability of exploring state � ahead under the exploration-
plan f�(ht)g, given that DM decides to explore a �rst state.
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For illustration purposes, this expression in the case where N = 2 becomes:

M0 = E�0

h
�̂
1+�(h1)

�
�I + � (�1�1 + �(h1)�2�2) + ��̂��2�2 (1� �(h1))

�i
and in the equiprobable symmetric state case, with parameter values satisfying �S

2
< I < �R

2
;

we have �(S) = 1 and �(R) = 0. Thus, we obtain:

M0 = ��̂

 
�I + �R

2
+
��̂��

2

!
+ (1� �)�̂2

�
�I + �S

2
+
���

2

�
.

Similarly, we can write the expected continuation value of exploring one more state when
already m� 1 states have been explored as:

E�m�1

"
�̂
(1+'m)

 
�I + �

"
m�1X
�=1

�� (z�R + (1� z� )S)
#
+

�

"
�m�m +

N�1X
�=m

�m� + �̂
N�1X
�=m

��+1�
�
�+1(1� �(h� ))

#!#
where again:

1. 'm =

 
N�1X
�=m

�Y
t=m

�(ht)

!
is the expected number of subsequent states that DM explores

ahead, given that DM decides to explore at least m� 1 states,

2. �m� =

 
��+1��+1

�Y
t=m

�(ht)

!
is the payo¤ in state � + 1 times the likelihood of state

� + 1, multiplied by the probability of exploring state � ahead under the exploration-
plan f�(ht)g, given that DM decides to explore at least m� 1 states.
And,

3. z� is an indicator variable that takes the value 1 if and only if DM �nds out that the
return on the risky action in state �� is R.

We can now proceed to prove the following results.

Lemma 5: It is never optimal to stop thinking ahead on learning bad news and to
continue thinking ahead on learning good news.

Proof of Lemma 5:
(We prove this lemma without assuming that states are equiprobable, nor that their

average payo¤ is identical). Suppose, by contradiction, that there exists an exploration
strategy and history of length m� 1 such that: �(hm�2; Rm�1) = 1 and �(hm�2; Sm�1) = 0.
For this exploration strategy to be optimal it must be the case that:
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a) there exists a continuation strategy pro�le following good news in state m� 1,
(~�(hm�2; Rm�1; �m); ~�(hm�2; Rm�1; �m; �m+1); :::~�(hm�2; Rm�1; �m; :::�N)), such that:

E�m�1

"
�̂
1+~'m

 
�I + �

 
m�2X
�=1

�� (z�R� + (1� z� )S� )
!
+

��m�1Rm�1 + �

 
�m�m +

N�1X
�=m

~�m� + �̂

N�1X
�=m

��+1�
�
�+1(1� e�(h� ))

!!#

� �I + �
 
m�2X
�=1

�� (z�R� + (1� z� )S� )
!
+ ��m�1Rm�1 + ��̂

N�1X
�=m

��+1�
�
�+1

b) and, for any continuation strategy pro�le following bad news in state m� 1,
(�(hm�2; Sm�1; �m); �(hm�2; Sm�1; �m; �m+1); :::�(hm�2; Sm�1; �m; :::�N)); we have:

E�m�1

"
�̂
1+'m

 
�I + �

 
m�2X
�=1

�� (z�R� + (1� z� )S� )
!
+

��m�1Sm�1 + �

 
�m�m +

N�1X
�=m

�m� + �̂
N�1X
�=m

��+1�
�
�+1(1� �(h� ))

!!#

< �I + �
 
m�2X
�=1

�� (z�R� + (1� z� )S� )
!
+ ��m�1Sm�1 + ��̂

N�1X
�=m

��+1�
�
�+1

We claim this yields a contradiction: consider instead the reverse strategy where upon
learning that state �m�1 yields Sm�1, DM decides to follow the continuation strategy pro-
�le that she would have followed if she had learned instead that state �m�1 yields Rm�1,
(~�(hm�2; Rm�1; �m); ~�(hm�2; Rm�1; �m; �m+1); :::~�(hm�2; Rm�1; �m; :::�N)).

This gives her:

M � E�m�1

"
�̂
1+~'m

 
�I + �

 
m�2X
�=1

�� (z�R� + (1� z� )S� )
!
+

��m�1Sm�1 + �

 
�m�m +

N�1X
�=m

~�m� + �̂
N�1X
�=m

��+1�
�
�+1(1� e�(h� ))

!!#

Adding �̂
1+~'m

��m�1Sm�1 and subtracting �̂
1+~'m

��m�1Rm�1 on both sides of condition
a) we observe that this is larger than:

�I + �
 
m�2X
�=1

�� (z�R� + (1� z� )S� )
!
+ ��m�1Rm�1+

��̂

N�1X
�=m

��+1�
�
�+1 + ��m�1E�m�1

h
�̂
(1+~'m) �

Sm�1 �Rm�1
�i
=
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�I + �
 
m�2X
�=1

�� (z�R� + (1� z� )S� )
!
+ ��m�1Sm�1 + ��̂

N�1X
�=m

��+1�
�
�+1

+��m�1E�m�1

h
1� �̂(1+~'m)

i �
Rm�1 � Sm�1

�
we observe that the last term is positive, and so we conclude that M is larger than the
right hand side of b): there exists a continuation strategy that is preferred to the strategy
of investing upon learning bad news in state �m�1 .�

Proofs of Propositions 8 and 9:
We establish these propositions by showing that the optimal policy is to think ahead

about the state with the highest expected payo¤ �rst. To simplify notations we suppose
that states are ranked by decreasing expected payo¤, such that �1�

�
1 � �2��2 � :::: � �N��N .

Suppose by contradiction that the optimal exploration plan f��(ht)g is such that the
order in which states are explored is not by decreasing expected payo¤. Then there exists
at least one pair of states (�j; �k), adjacent in the order in which they are explored, such
that the �rst of these two states to be explored, say state �j, has a lower expected payo¤:
�j�

�
j < �k�

�
k.

We now show that DM will then be better o¤ interchanging the order in which these two
states are explored. That is, DM is better o¤ with exploration plan f��k_j(ht)g than with
plan f��(ht)g.
There are four di¤erent types of histories ht under the optimal exploration plan f��(ht)g

to consider:

1. under ht neither of the states (�j; �k) is explored ahead,

2. both states (�j; �k) are explored ahead,

3. exactly one of the states (�j) is explored ahead,

4. DM invests after exploring �j upon �nding Rj and continues exploring �k upon �nding
Rj.

Observe that in the �rst two cases the expected payo¤s under respectively f��k_j(ht)g and
f��(ht)g are the same. In the third case, if DM inverts the order of �j and �k and otherwise
leaves her exploration plan unchanged, she will be strictly better o¤. Indeed, under f��(ht)g
her expected payo¤ just before exploring state �j and having explored all states �i, i 2 E,
is:

�̂

"
�I + �

X
i2E

�i�i + ��j�
�
j + ��̂�k�

�
k + �̂

X
i2U

��i�
�
i

#
;

where U denotes the subset of states that remain unexplored. Under f��k_j(ht)g her expected
payo¤ just before exploring state �k and having explored all states �i, i 2 E, is:

�̂

"
�I + �

X
i2E

�i�i + ��k�
�
k + ��̂�j�

�
j + �̂

X
i2U

��i�
�
i

#
.
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Thus, the incremental payo¤ obtained from inverting the order of these two states is

��̂(1� �̂)(�k��k � �j��j) > 0.

In the fourth case the strategy of proof is very similar. DM invests after exploring �j
upon �nding R and continues exploring �k upon �nding R. We show that if DM instead
explored state �k �rst and stuck to exactly the same policy after that exploration, she will
be made better o¤.
In a �rst step, suppose that when starting with state �j DM invests when �nding R while

she explores state �k only upon �nding R, and then stops exploring: exploration will either
stop at state �j or will cover states �j and �k but no more. Starting with state �j provides
DM with the payo¤:

Mj = �̂�j

"
�I + �

X
i2E

�i�i + ��jRj + ��̂�k�
�
k + �̂

X
i2U

��i�
�
i

#
+

�̂
2
(1� �j)

"
�I + �

X
i2E

�i�i + ��jSj + ��k�
�
k + �̂

X
i2U

��i�
�
i

#

where U denotes the subset of states other than �j and �k that remain unexplored. Under
f��k_j(ht)g where DM starts with state �k and at most explores another state �j she can
expect to get:

Mk = �̂�k

"
�I + �

X
i2E

�i�i + ��kRk + ��̂�j�
�
j + �̂

X
i2U

��i�
�
i

#
+

�̂
2
(1� �k)

"
�I + �

X
i2E

�i�i + ��kSk + ��j�
�
j + �̂

X
i2U

��i�
�
i

#

Thus, when �k = �j the incremental payo¤ obtained from inverting the order of these two
states is

��̂(1� �̂�)(�k��k � �j��j) > 0.

If now, �k > �j but �i =
1
N
; Ri = R and Si = S for all i, then the previous expressions

become:

Mj = �̂�j

"
�I + �

N

X
i2E

�i +
�

N
R +

�

N
�̂��k + �̂

�

N

X
i2U

��i

#
+

�̂
2
(1� �j)

"
�I + �

N

X
i2E

�i +
�

N
S +

�

N
��k + �̂

�

N

X
i2U

��i

#

and:
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Mk = �̂�k

"
�I + �

N

X
i2E

�i +
�

N
R +

�

N
�̂��j + �̂

�

N

X
i2U

��i

#
+

�̂
2
(1� �k)

"
�I + �

N

X
i2E

�i +
�

N
S +

�

N
��j + �̂

�

N

X
i2U

��i

#

we then have Mk �Mj =

�̂(1� �̂)(�k � �j)
"
�I + �

N

X
i2E

�i + �̂
�

N

X
i2U

��i

#

+�̂
2 �

N
(��j � ��k) + (vk � vj)�̂

�

N

h
R� �̂S

i
=

�̂(1� �̂)(�k � �j)
"
�I + �

N

X
i2E

�i + �̂
�

N

X
i2U

��i

#

+(�k � �j)�̂
�

N
(1� �̂)R > 0

We have thus shown that if DM starts exploring state �j and explores at most one other
state �k (upon �nding that R =R), she is better o¤ inverting the order of �j and �k.
In a second step, consider now the possibility that DM explores �j, stops exploring further

if she �nds that the return in that state is Rj; continues exploring if Sj; and then either stops
exploring upon �nding that state �k returns Rk, or explores exactly one more state if she
�nds that state �k returns Sk. This strategy yields an expected payo¤ of:

Mj = �̂�j

"
�I + �

X
i2E

�i�i + ��jRj + ��̂�k�
�
k + �̂

X
i2U

��i�
�
i

#
+

�̂
2
(1� �j)�k

"
�I + �

X
i2E

�i�i + ��jSj + ��kRk + �̂
X
i2U

��i�
�
i

#
+

�̂
3
(1� �j)(1� �k)

"
�I + �

X
i2E

�i�i + ��jSj + ��kSk + �̂
X
i2U

��i�
�
i

#

If now DM started instead with state �k and otherwise stuck with the same strategy (i.e.
invests as soon as she gets one piece of good news and continues exploring for a maximum
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of 3 states otherwise), she would get:

Mk = �̂�k

"
�I + �

X
i2E

�i�i + ��kRk + ��̂�j�
�
j + �̂

X
i2U

��i�
�
i

#
+

�̂
2
(1� �k)�j

"
�I + �

X
i2E

�i�i + ��kSk + ��jRj + �̂
X
i2U

��i�
�
i

#
+

�̂
3
(1� �j)(1� �k)

"
�I + �

X
i2E

�i�i + ��jSj + ��kSk + �̂
X
i2U

��i�
�
i

#
Observe that the di¤erence in payo¤s does not depend on what happens if DM goes on

exploring more than states �k and �j. This therefore establishes that if Mk � Mj for the
strategies under consideration then this inequality also holds for any continuation strategy
that involves exploring more than states �k and �j.
We have:
- when �j = �k; Mj �Mk equals:

�̂��
h
�jRj + �̂�k�

�
k � ��kRk � �̂�j��j

i
+

�̂
2
(1� �)��

�
�jSj + �kRk � �kSk � �jRj

�
or rearranging,

�̂��
h
�jRj + �̂�k�

�
k � �kRk � �̂�j��j +

(1� �)�̂
�
�jSj + �kRk � �kSk � �jRj

�i
= �̂��

h
�jRj + �̂�k�Rk � �kRk � �̂�j�Rj + (1� �)�̂

�
�kRk � �jRj

�i
= �̂��(�jRj � �kRk)(1� �̂) � 0

if either �j < �k or Rj < Rk.
- If now, �k > �j but �i =

1
N
; Ri = R and Si = S for all i, then the previous expressions

become:

Mj �Mk = �̂(�j � �k)
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Simplifying,

Mj �Mk = �̂(vj � vk)
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Or,

Mj �Mk = �̂(�j � �k)
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And,

Mj �Mk = �̂(�j � �k)(1� �̂)
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�

N
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N
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�
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Therefore, DM is better o¤ starting thinking ahead about state �k. This establishes that
when DM�s strategy involves investing when she �nds one piece of good news and continuing
exploring ahead otherwise, she is better o¤ thinking ahead �rst about state �k. As we have
also established that the same is true when DM�s strategy involves investing no matter what
she �nds in exploring states �j or �k. The same is true if DM explores both states no matter
what she �nds. We can therefore conclude that DM is always better o¤ exploring �rst state
�k.�
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