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1 Introduction

The theory of infinitely repeated games has demonstrated that a group of agents with
long-term relationships can sustain a large set of outcomes that cannot be sustained
in static situations. A major result in this literature is the folk theorem, which states
that any feasible and individually rational payoff vector can be sustained if players
are sufficiently patient. Since the folk theorem has been proved for virtually all stage
games, it provides a general insight. On the other hand, whether the theorem holds
depends critically on what players know about each other’s past actions. A seminal
version of the folk theorem by Fudenberg and Maskin (1986) assumes perfect monitor-
ing : players obtain accurate information about other players’ past actions. The result
has been extended to the case of imperfect public monitoring, where all players receive
the same noisy information (Abreu, Pearce, and Stacchetti, 1990; Fudenberg, Levine,
and Maskin, 1994; Fudenberg and Levine, 1994).1 More recent studies, which will be
reviewed below, deal with the case of imperfect private monitoring, where players may
receive different noisy information, but extending the folk theorem to this case has
been difficult.

While the literature has examined various information structures, these studies
share a common assumption: players have no choice of the quality of information they
obtain. Players’ monitoring activities are determined exogenously and players do not
deal with any trade-off between the quality of information and costs of information
acquisition. The goal of this paper is to study whether the folk theorem holds if
players are confronted with the trade-off and make optimal decisions with respect to
monitoring, just as they do for their stage-game actions.

More specifically, we consider the case where each player can obtain precise in-
formation about the other players’ current-period actions if he pays a certain level of
utility costs, referred to as observation costs. If a player does not pay the observation
costs, he only receives a noisy private signal of the other players’ actions. An economic
example is repeated Bertrand competition where each firm chooses a price and learns
the realized level of its own sales, and it is possible but costly to observe other firms’
prices.

We also assume that monitoring activities can be done stealthily: an agent’s mon-
itoring activities are unobservable and do not even generate noisy signals to other
players. This assumption makes it difficult to create incentives to carry out costly
monitoring, as we will discuss below. This assumption also implies that what players
observe from monitoring activities are their private information. Since all informa-
tion is acquired privately, our class of repeated games belongs to that with private
monitoring.

1This is the case considered in the influential paper by Green and Porter (1984), where all firms
observe the market price, which is only a noisy indicator of quantities chosen by firms.
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The presence of observation costs implies that a player monitors other players only
if the benefit of monitoring is expected to exceed its costs. Since we assume that
monitoring activities are unobservable and do not affect other players’ future actions
directly, the benefit of monitoring is purely the value of additional information that
the player obtains from monitoring. For example, if a player is expected to play a
certain action with certainty, other players expect to gain nothing from observing the
player’s action.

Because of this feature, it is not straightforward to extend existing constructions
of equilibrium strategies to our class of repeated games. As an illustration, consider
a grim-trigger strategy, under which players switch to the repetition of a static Nash
equilibrium if they observe a deviation. Under the strategy, since players are believed
to cooperate in the first period, the previous argument implies that players have no
incentive to do costly monitoring in the first period. Therefore, deviations in the first
period are not observed, and the only way to deter deviations in this period is to start
punishments on the basis of their free private signals. However, since the signals are
private information, punishments cannot be coordinated and it is difficult to construct
an equilibrium along this line without any observation activity in general environments,
as we know from the literature of imperfect private monitoring. Furthermore, we
can take advantage of players’ monitoring abilities by using strategies that induce
monitoring activities.

To construct equilibria that induce monitoring activities, we use strategies in which
players randomize. However, randomization alone does not solve the problem. As an
illustration, consider a repeated prisoners’ dilemma and suppose that an equilibrium
strategy is such that each player puts a positive probability on defection at any his-
tory (as in Ely and Välimäki (2002)). In such an equilibrium, even though players
may be randomizing, no monitoring takes place at all. Indeed, there is no gain from
monitoring since defection is guaranteed to be an optimal action at any history (since
a positive probability is assigned) and monitoring decisions have no direct influence
on the other players’ future actions. This argument shows that, to induce monitoring,
the equilibrium strategy has to be such that one’s optimal action depends on others’
past actions. For prisoners’ dilemma, this means that there needs to be a history at
which a player strictly prefers to cooperate given the continuation strategy of other
players. But, if a player cooperates with certainty and it is known, other players will
not monitor the player and the problem discussed above persists.

Nevertheless, we show that the folk theorem does hold in our class of repeated
games. A few features of the folk theorem are as follows. First, the (minmax) folk
theorem holds for all n-player finite stage games that satisfy the standard full dimen-
sionality condition. Second, the theorem holds under a rather weak assumption on the
probability structure of free noisy private signals. Specifically, the assumption requires
that there be no one whose action has no influence at all over the other players’ pri-
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vate signals. That is, the action of each player should have a non-zero influence on the
probability distribution of at least another player’s private signal under at least one
action profile. The nature of the influence is immaterial. Third, the folk theorem holds
for any level of observation costs. That is, payoff vectors arbitrarily close to the Pareto
frontier can be supported even if observation costs are arbitrarily large. This is the
case since there exist equilibria in which players monitor each other only periodically
and the expected per-period monitoring cost is small. The level of observation cost
does matter, of course, since it affects the critical level of discount factor in the folk
theorem.

There are a few papers that study repeated games with observation costs. The
first study on this class of repeated games is Ben-Porath and Kahneman (2003), who
prove the folk theorem under the assumption that players can communicate explicitly
along the repeated game.2 Communication is indeed possible in many situations, but
there are important situations in which communication is prohibited (e.g., by antitrust
laws). Thus it is worth examining what can be attained without communication, and
our result shows that communication is in fact not necessary for the folk theorem.3

Our earlier paper (Miyagawa, Miyahara, and Sekiguchi, 2003) studies the same class of
repeated games without communication but deals only with the case when observation
costs are sufficiently small.4

The literature has found difficulty with analyzing repeated games with imperfect
private monitoring, since it is difficult to design punishments that can be initiated in a
coordinated fashion. Early positive results in this context are limited to the prisoners’
dilemma with almost perfect monitoring (e.g., Sekiguchi, 1997; Bhaskar and Obara,
2002; Piccione, 2002; Ely and Välimäki, 2002). Recent studies obtain more general
results, but they are still limited to either (a) the prisoners’ dilemma and its vari-
ants (Matsushima, 2004; Yamamoto, 2003), (b) the case of almost perfect monitoring
(Mailath and Morris, 2002; Hörner and Olszewski, 2004), or (c) a subclass of equi-
libria that is not large enough to generate a general folk theorem (Ely, Hörner, and
Olszewski, 2003).

Given the difficulty, some papers, since Matsushima (1991), consider the case when
the players can communicate explicitly to exchange their private information (see Ben-
Porath and Kahneman, 1996, 2003; Kandori and Matsushima, 1998; Compte, 1998;

2That is, after each period, each player can announce a message publicly.
3There are also a few technical differences. First, while we assume that players make monitoring

decisions after choosing actions and observing public randomization, Ben-Porath and Kahneman con-
sider the case where players choose actions and monitoring decisions at the same time. Second, while
our result requires free noisy signals, Ben-Porath and Kahneman’s holds without any free noisy signal.

4Another related paper is Ahn and Suominen (2001). In a model of random matching, they assume
that players can invest in their monitoring ability, which determines the probability that they see their
neighbors’ actions. The major difference is that in their paper the investment decisions are made only
at the beginning of the repeated game, while we assume that players make an observation decision
every period.

3



Aoyagi, 2002). Communication has been found to greatly facilitate the analysis of
repeated games with private monitoring since it allows players to coordinate their con-
tinuation actions. Indeed, Compte (1998) and Kandori and Matsushima (1998) prove
folk theorems with communication for general stage games under certain conditions
on private signals.

The present paper contributes to this literature by showing that if it is feasible
to observe other players’ actions without error, i.e., if the cost of perfect (private)
monitoring is finite, then the folk theorem holds without communication in general
repeated games with private monitoring. That is, by modeling players’ monitoring
decisions explicitly, we find that a sufficient condition for the folk theorem is that
perfect monitoring is an option for each player, and it does not matter how costly the
option is. The availability of this option allows players to coordinate their continuation
actions when they need, and the cost of the option is not important since the option
needs to be executed only infrequently.

In this sense, costly perfect monitoring can effectively replace explicit communi-
cation as a coordination device. Indeed, the feasibility of perfect monitoring enables
players to communicate implicitly using their stage-game actions. However, implicit
communication via stage-game actions has a few distinguishing features. First, it is
not “cheap talk” since it is costly for both senders and receivers. Second, since receiv-
ing information is not only costly but optional, implicit communication works only if
players have incentives to receive information. Third, once a player deviates by not
receiving information (i.e., not observing other players), then he loses track of other
players’ continuation actions and this fact is not noticed by other players. Therefore
the continuation play is no longer an equilibrium, which makes it difficult to utilize
dynamic programming in our class of repeated games. Fourth, in the case of commu-
nication via stage-game actions, the message space is constrained by the action set,
which may contain only two actions. Finally, implicit communication via stage-game
actions may be safer than explicit communication in the presence of antitrust laws.

The present paper also contributes to the literature of imperfect public monitoring
since the signal structure in our model subsumes imperfect public monitoring as a
special case. For this class of repeated games, Fudenberg, Levine, and Maskin (1994)
prove the folk theorem without communication under certain distinguishability as-
sumptions on the signal structure. As Radner, Myerson, and Maskin (1986) show,
there exist reasonable signal structures for which the folk theorem without communi-
cation fails. Kandori (2003) shows that, if communication is allowed, the folk theorem
holds for a larger class of signal structures. The present paper shows that the folk the-
orem holds for an even larger class of signal structures (virtually any signal structure),
even without communication, if the cost of perfect monitoring is finite. In particular,
while the assumptions in Fudenberg, Levine, and Maskin (1994) and Kandori (2003)
place restrictions on the numbers of signals and actions, our assumptions place no
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restrictions.
The remainder of the paper is organized as follows. The next section describes the

model. Section 3 states the result and gives a detailed sketch of the proof. The formal
proof is relegated to the Appendix. Section 4 concludes.

2 Model

We consider a repeated game, where a set of players play the same game repeatedly
over periods t = 1, 2, . . . . Let N = {1, 2, . . . , n} denote a finite set of players, where
n ≥ 2, and let Ai be a finite set of actions that player i can choose in each period,
where |Ai| ≥ 2. Let A ≡ A1 × · · · ×An denote the set of action profiles.

Given a set K, let ∆(K) denote the set of probability distributions over K. Thus
Ai ≡ ∆(Ai) denotes the set of mixed actions of player i, A ≡ A1 × · · · × An denotes
the set of mixed action profiles, and ∆(A) denotes the set of correlated action profiles.

At each period, after all players choose actions, each player i observes a signal ωi

costlessly and privately. The set of signals that player i might receive is given by a finite
set Ωi. A signal profile ω = (ω1, . . . , ωn) ∈ Ω1 × · · · × Ωn is realized with probability
P (ω | a) given an action profile a. Let Pi(ωi | a) denote the marginal distribution of ωi

given a. We assume the following on Pi( · | · ).
Assumption 1. For all i ∈ N , all ωi ∈ Ωi, and all a ∈ A,

Pi(ωi | a) > 0.

Assumption 2. There exists no player i ∈ N such that for all pairs {a1
i , a

2
i } ⊆ Ai,

all a−i ∈ A−i, and all r ∈ N \ {i},

Pr( · | a1
i , a−i) = Pr( · | a2

i , a−i).

Assumption 1 states that any ωi ∈ Ωi is realized with a positive probability given
any action profile. Since the full-support condition is required only for individual
signal spaces, there may exist some (ω, a) such that P (ω | a) = 0. Assumption 2 states
that there exists no player who has no influence at all on any other player’s signal.
This means that for each player, there exists a pair of actions that induce different
probability distributions of at least one player’s signal under at least one action profile.
It should be noted that Assumptions 1 and 2 allow the case of public signals, the case
in which ω1 = · · · = ωn always holds.

The stage-game payoff for player i is given by πi(ai, ωi), which depends on his
own action ai and the realized private signal ωi. Since the payoff depends on what
the player already knows, it gives no additional information (about the other players’
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actions or signals).5 One special case is when the realized stage-game payoff is the sole
information contained in the free signal, in which case the function πi(ai, · ) : Ωi → R
is one-to-one for each ai.

Given an action profile a ∈ A, the expected stage-game payoff for player i is

ui(a) ≡
∑

ωi∈Ωi

πi(ai, ωi)Pi(ωi | a).

We write u(a) = (ui(a))i∈N . For a mixed action profile α ∈ A, we abuse notation
and write u(α) = (ui(α))i∈N to denote the expected payoff profile under α. Similarly,
for a correlated action profile ρ ∈ ∆(A), we write ui(ρ) =

∑
a∈A ρ(a)ui(a) and u(ρ) =

(ui(ρ))i∈N .
Monitoring activities take place at the end of each period. After all players choose

actions and receive signals, each player chooses the set of players to observe. Let
λi : 2N\{i} → R+ be the observation cost function for player i. If player i chooses J ⊆
N \{i}, he incurs observation costs λi(J) and obtains completely accurate information
about the realized action profile (aj)j∈J in the present period. We assume that λi(∅) =
0, λi(J) ≥ 0 for all J , and λi(J) ≤ λi(J ′) if J ⊆ J ′.6

We assume that what players observe from their observation activities are their
private information. To make our problem more difficult, we also assume that obser-
vation activities are completely stealthy. This means first that observation activities
are not observable at all to other players. That is, whether player i observes another
player j in a given period (let alone what i observes) is unobservable to any player k 6= i

even if k observes i in the period (even if k = j). Second, players do not even receive
any noisy information about other players’ observation activities. These assumptions
imply that one’s observation decision itself does not affect other players’ future actions
at all and therefore deviations with respect to monitoring cannot be punished directly.
This feature makes it difficult to create monitoring incentives.

We now turn to the definition of repeated-game strategy. We assume that there
exists a public randomization device (e.g., public lotteries, last digits of the Dow Jones,
etc), which generates a sequence of independent random variables (X1, Y1, X2, Y2, X3, . . . )
that are all uniformly distributed over [0, 1]. Random variable Xt (t = 1, 2, . . . ) is real-
ized at the beginning of period t before players choose actions, while Yt (t = 1, 2, . . . )
is realized in the middle of period t just before players make monitoring decisions.
The realizations of the random variables (“sunspots”) are irrelevant to payoffs and
observable publicly and costlessly.

5If the realized payoff does give additional information, we can redefine signals to include payoff
information. That is, we can redefine a signal as a pair (ωi, πi) of the original signal and the realized
payoff. If this pair satisfies the full-support condition, Assumption 1 is preserved and the payoff gives
no additional information.

6This monotonicity condition is assumed only for simplicity and can be dispensed with. See the
remarks at the end of Section 3.
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The sequence of events within a given period t is given as follows. First, players
observe the realization of public random variable Xt. Second, players simultaneously
choose an action ai ∈ Ai. Third, each player i observes a signal ωi privately, which
determines πi(ai, ωi). Fourth, players observe the realization of the middle-of-period
public random variable Yt. Fifth, each player i chooses whom to monitor, Ji ⊆ N \{i}.
Finally, i observes the realized action profile (aj)j∈Ji and incurs a disutility of λi(Ji).

Player i’s (private) history at the beginning of period t ≥ 2 is a sequence of real-
izations of public random variables, his own actions, realizations of his private signals,
and his observations about the other players’ actions, all up to (including) period t−1.
Formally, it is a sequence

ht
i = [xk, ai,k, ωi,k, yk, (aj,k)j 6=i]t−1

k=1

∈
[
[0, 1]×Ai × Ωi × [0, 1]×

∏

j∈N\{i}
(Aj ∪ {φ})

]t−1
.

In this sequence, xk ∈ [0, 1] is the realized value of random variable Xk, ai,k ∈ Ai is
player i’s action in period k, ωi,k ∈ Ωi is the realized private signal of i in period k,
yk ∈ [0, 1] is the realized value of random variable Yk, and aj,k ∈ Aj ∪ {φ} is i’s
observation about player j’s action in period k, where aj,k = φ means that i did not
observe j in period k and therefore has no observation.

For all t = 1, 2, . . . , let Ht
i denote the set of all (private) histories for player i at

period t (H1
i is an arbitrary singleton). A strategy of player i is a pair of functions

σi = (σa
i , σm

i ) such that

σa
i :

∞⋃

t=1

(Ht
i × [0, 1]) → ∆(Ai),

σm
i :

∞⋃

t=1

(Ht
i × [0, 1]×Ai × Ωi × [0, 1]) → ∆(2N\{i}).

A strategy profile σ = (σ1, . . . , σn) generates a probability distribution over se-
quences (at, (Ji,t)i∈N )∞t=1, where at ∈ A is the action profile in period t and Ji,t ⊆ N\{i}
is the set of players that i observes in period t. Given the sequence, player i’s overall
payoff is

(1− δ)
∞∑

t=1

δt−1
[
ui(at)− λi(Ji,t)

]
,

where δ ∈ (0, 1) is a discount factor common to all players. Players maximize the
expected overall payoff. We are interested in sequential equilibria of the repeated
game when the discount factor is close to one.
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3 Result

Player i’s minmax payoff is defined by

¯
ui ≡ min

α−i∈A−i

max
ai∈Ai

ui(ai, α−i),

where A−i ≡
∏

j 6=iAj . Let

V ≡ convex hull of {u(a) : a ∈ A},
V ∗ ≡ {v ∈ V : vi ≥ ¯

ui for all i ∈ N}.

Note that
¯
ui, V , and V ∗ are all defined independently of the observation cost functions

λ1, . . . , λn.
Our result is the following.

Theorem. For any v∗ ∈ intV ∗, there exists
¯
δ ∈ (0, 1) such that, for any δ ∈ [

¯
δ, 1),

there exists a sequential equilibrium whose payoff profile is v∗.7

Proof. See Appendix.

The proof is constructive: for a given payoff profile v∗ ∈ intV ∗, we construct a
specific strategy profile σ that is a sequential equilibrium and yields v∗ if the discount
factor is close to one. In the remainder of this section, we give an informal but detailed
description of the strategy profile for a given target payoff profile v∗ ∈ intV ∗ and
discuss why it is an equilibrium.

To simplify the exposition, we assume, in this section, that there exists a static Nash
equilibrium αNE ∈ A that attains the minmax values: u(αNE) =

¯
u. This allows us to

use the perpetual repetition of the Nash equilibrium as punishments. In the general
case, we construct punishment phases by adapting the construction of Fudenberg and
Maskin (1986); see the remarks at the end of this section.

We also assume, to simplify the following exposition, that there exists a subset
A′ ⊆ A such that (i) for all a ∈ A′, no player plays a best response, and (ii) the convex
hull of {u(a) : a ∈ A′} contains an open ball around v∗. Condition (i) implies that for
all a ∈ A′, each player i has a short-run better response da

i ∈ Ai, which defines the
minor deviation for i when a is the cooperation action profile. For a given a ∈ A′,
consider a mixed action profile αa given by

αa
i ≡ (1− ηa) · ai + ηa · da

i for all i ∈ N,

where ηa ∈ (0, 1). We choose a small number for ηa so that da
i remains a short-run

7As usual, the statement is meaningful only if the standard full dimensionality condition by
Fudenberg and Maskin (1986) is satisfied; namely, int V ∗ 6= ∅.
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better response than ai against αa
−i. For the construction without the simplifying

assumption, see the remarks at the end of this section.
The equilibrium play is characterized by three types of periods: cooperation periods,

examination periods, and report periods. We begin with describing those periods and
the rule that governs the transition among these periods.

Cooperation Periods. Cooperation periods are parameterized by ρ ∈ ∆(A′) and
denoted by Coop(ρ). In Coop(ρ), the public random variable realized at the beginning
of the period chooses a pure action profile a ∈ A′ with probability ρ(a) and then players
play the mixed action profile αa. So, each player i randomizes between ai (cooperation)
and da

i (minor deviation), placing a small probability on the minor deviation.
Players then use the middle-of-period public randomization to coordinate their

monitoring decisions. Specifically, with probability 1 − µ, where 0 < µ < 1, no one
observes any player, and the next period continues to be Coop(ρ) with the same ρ. On
the other hand, with probability µ, all players observe each other. In this case, the play
in the next period, say period t+1, is determined as follows. The public randomization
at the beginning of period t + 1 selects a player i randomly. If this player played the
minor deviation (da

i ) in period t, then the punishment stage (i.e., the repetition of the
static Nash equilibrium αNE) starts in period t + 1 with probability ξa

i ∈ (0, 1). The
probability ξa

i is determined so that player i is indifferent between cooperation and
minor deviation, i.e., the short-run gain from the minor deviation equals the long-run
loss from the possibility of proceeding to the static Nash equilibrium (the equation
will be given below). On the other hand, if player i played a major deviation (i.e.,
any a′i /∈ {ai, d

a
i }) in period t, then a punishment starts with probability one.8 If no

punishment starts, then period t + 1 is an examination period.
Examination Periods. In an examination period, the public randomization at the

beginning of the period selects a pair of players (j, k) such that j 6= k. Player k is
then given a test to show that he indeed observed other players. Specifically, player k

is asked to “state” whether player j cooperated or not in the previous period. To
state it without using explicit communication, player k chooses a stage-game action
according to a predetermined rule that associates actions with answers. Specifically,
the prescribed action for player k (i.e., the right answer) is denoted by brightk ∈ Ak and
defined as follows. By Assumption 2, it can be shown that there exist a completely
mixed action profile β−k, a player r 6= k (referee for k), and a partition {Ω1

r, Ω
2
r} of

Ωr, such that

Argmax
bk∈Ak

Pr(Ω1
r | bk, β−k)

⋂
Argmax

bk∈Ak

Pr(Ω2
r | bk, β−k) = ∅. (1)

Indeed, a violation of (1) means that there exists an action bk that maximizes and
8Actually, for a rather technical reason, the strategy used in the proof forgives even major deviations

with a positive probability; See Appendix for details.
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minimizes Pr(Ω1
r | bk, β−k), which means that the probability is constant in bk. If this

is the case for all r 6= k, all Ω1
r, and all β−k, then Assumption 2 is violated.

Let those sets of maximizers in (1) be denoted B1
k and B2

k, respectively. Let b1
k and

b2
k be pure actions such that

b1
k ∈ Argmax

bk∈B1
k

uk(bk, β−k), b2
k ∈ Argmax

bk∈B2
k

uk(bk, β−k). (2)

Then we define

brightk =

{
b1
k if j cooperated in the previous period,

b2
k otherwise.

This is the action prescribed to player k.
Meanwhile, the other players i 6= k play mixed actions β−k. Regardless of the

middle-of-period public randomization, all players observe all i 6= k. Since brightk is a
pure action, other players have no incentive to observe k.

The state transition is determined by public randomization at the beginning of the
next period. With probability 1/2, the next period is again an examination period,
with a newly chosen pair (j′, k′) such that j′ 6= k and k′ 6= j′. The constraint j′ 6= k is
imposed since player k did not randomize and thus his realized action cannot serve as
a question in the next examination.9 With the remaining probability, the next period
is a report period.

Before we proceed to describe the report period, let us explain what the exami-
nation period does and why we proceed to a report period. An important feature of
the examination period is that, since k and j are chosen randomly, anyone who did
not observe all randomizing players in the previous period may face uncertainty about
which action to play. This poses a problem for the player if playing a wrong action in
this period causes a severe long-run loss.

However, it is not straightforward to ensure that playing a wrong action in the
examination period causes a long-run loss. The problem is that, as mentioned above,
no one monitors player k in this period, since k plays a pure action brightk and, in
equilibrium, all players (including k) know what brightk is. An easy fix is to make brightk

a mixed action, but this is not possible if there are only two actions. Indeed, if player k

has only two actions and brightk assigns a mixed action in at least one case, then one of
the actions is always optimal and he does not suffer from uncertainty.

Therefore, to deter player k from deviating in the examination period, other players
initiate punishments on the basis of their free noisy signals. Since k’s action affects
the free signal of his referee (player r) defined above, his signal can be used to judge
whether or not player k played correctly and then start punishments if the signal is not

9In the two-person case, we necessarily have k′ = k.
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favorable. However, there remains a problem, which is that the referee’s signal is his
private information and does not allow players to start punishments in a coordinated
fashion. This is why we proceed to a report period, in which the referee “reports” his
private signal to others by means of his stage-game action, as we now describe.

Report Periods. For each player i, choose a pair of actions {c′i, c′′i } ⊆ Ai arbitrarily
in advance. Let k be the player who was under examination in the last period, and let
r 6= k be the referee for k (specified in (1)). Then, in this period, the referee r either
“approves” or “disapproves” of player k’s answer by choosing c′r or c′′r , respectively.
Specifically, the referee plays the following mixed action:

0.9 · c′r + 0.1 · c′′r if brightk = b1
k and ωr ∈ Ω1

r,

0.9 · c′r + 0.1 · c′′r if brightk = b2
k and ωr ∈ Ω2

r,

0.1 · c′r + 0.9 · c′′r if brightk = b1
k and ωr /∈ Ω1

r,

0.1 · c′r + 0.9 · c′′r if brightk = b2
k and ωr /∈ Ω2

r,

where brightk is the prescribed pure action for player k in the last period and ωr is the
signal that the referee received in the last period. Meanwhile, all the other players
i 6= r (including k) randomize between c′i and c′′i with equal probability. All players
monitor all other players.

To make sense of the referee’s action, recall that since b`
k ∈ B`

k (` = 1, 2), the
probability that the referee receives a signal ωr ∈ Ω`

r is maximized if player k plays b`
k.

If the prescribed action for player k in the examination period was b`
k and the referee

received a signal ωr ∈ Ω`
r, then the referee basically approves of k’s answer by playing

c′r. The referee actually randomizes, giving his approval only with probability 0.9.
Symmetrically, if the referee receives a signal ωr /∈ Ω`

r, he disapproves of k’s answer
with probability 0.9.

This construction of the referee’s action implies that, when brightk = b`
k (` = 1, 2),

player k maximizes the probability of getting the referee’s approval if and only if
he plays an action in B`

k. Since B1
k and B2

k are disjoint, it follows that if player k is
uncertain of brightk , he cannot avoid playing a wrong action, and the expected probability
of getting the referee’s approval is strictly smaller than in the case where he knows
brightk for certain.

We put randomization in the referee’s action to ensure that the other players have
incentives to monitor the referee.10 Once players observe the referee’s action, they can

10Even if the referee does not randomize, his action appears random to other players since his action
depends on his private signal. However, if the correlation of signals across players is such that the
realization of certain signals ωi for a player i 6= r rules out certain signals ωr for the referee (which
indeed occurs if the signals are public, i.e., ω1 = · · · = ωn), then a player may be able to infer the
referee’s action without costly monitoring. This introduces an unnecessary complication to the proof,
which is why we introduced the randomization. The exact way in which the referee’s action trembles
is immaterial.

11



decide whether to punish player k in a coordinated fashion, as we will describe.
The state transition depends on public randomization at the beginning of the next

period. With probability 1/2, the next period is again an examination period with
a newly selected pair (j, k). With the remaining probability, the next period is a
cooperation period with a newly selected ρ ∈ ∆(A′). The selection of ρ is now described
in detail.

Selection of ρ. The selection has two goals. The first is to offset the difference
between the target payoffs v∗ and the realized payoffs during the previous two periods,
which are an examination period and a report period. By doing this, we can make
each player’s continuation value from any examination period equal to v∗ regardless of
the realized actions in the examination period and the subsequent report period. This
in turn makes the players, except the one under examination, indifferent about their
actions during those periods and willing to randomize as prescribed. The second goal
of the selection rule for ρ is to punish the player under examination who did not get
his referee’s approval.

To give a detailed description of the selection of ρ, we begin with its first goal.
That is, we look for a selection rule for ρ ∈ ∆(A′) that makes the continuation value
from any examination period equal to v∗.

By construction, if period t is a cooperation period and period t − 1 is a report
period, then period t− 2 is an examination period. Let k be the player under exami-
nation, brightk be his prescribed action in the examination period, bobs−k be the observed
action profile of the other players in the examination period, and cobs be the observed
action profile in the report period. Let Coopi(ρ) be the continuation value from a
cooperation period with ρ. Then let ρ′ ∈ ∆(A′) be a distribution that satisfies the
following equation for all i ∈ N :

v∗i = (1− δ)
[
ui(b

right
k , bobs−k )− λi(N \ {k, i})

]

+
1
2
δv∗i +

1
2
δ(1− δ)

[
ui(cobs)− λi(N \ {i})

]

+
1
4
δ2v∗i +

1
4
δ2Coopi(ρ

′).

(3)

If a distribution ρ′ that satisfies this equation is chosen for any given (k, brightk , bobs−k , cobs),
then the equation implies that the continuation value from any examination period is
indeed v∗i for all players. Rearranging (3) yields

0 =
[
v∗i − ui(b

right
k , bobs−k ) + λi(N \ {k, i})

]

+
[
v∗i − ui(cobs) + λi(N \ {i})

]δ

2

+
[
v∗i − Coopi(ρ

′)
] δ2

4(1− δ)
.

(4)

12



To identify ρ′ that satisfies (4), we need to compute the value Coopi(ρ′). Since
Coopi(ρ′) is the continuation value from a cooperation period, it satisfies the following
equation:

Coopi(ρ
′) = (1− δ)

∑

a∈A′
ρ′(a)ui(ai, α

a
−i) + (1− µ)δCoopi(ρ

′)

− µ(1− δ)λi(N \ {i})
+ µδ

[∑

a∈A′
ρ′(a)

1
n

∑

j 6=i

ηaξa
j

]
¯
ui

+ µδ
[
1−

∑

a∈A′
ρ′(a)

1
n

∑

j 6=i

ηaξa
j

]
v∗i .

(5)

This equation is written based on the case where player i plays ai for any given a ∈
supp(ρ′). At equilibrium, player i is indifferent between ai and da

i in the cooperation
period, which is ensured if the probability ξa

i is chosen to satisfy

(1− δ)
[
ui(da

i , α
a
−i)− ui(ai, α

a
−i)

]
= µδ(1/n)ξa

i (v∗i − ¯
ui). (6)

The left-hand side denotes the short-run gains from the minor deviation, while the
right-hand side denotes the long-run losses from possible transition to the punishment
stage.

Substituting (6) into (5) to eliminate ξa
j , we obtain the following simple expression

for Coopi(ρ′):

Coopi(ρ
′) =

(1− δ)ûi(ρ′) + µδv∗i
1− δ + µδ

(7)

where the payoff functions ûi are defined by

ûi(a) ≡ ui(ai, α
a
−i)− µλi(N \ {i})

− ηa
∑

j 6=i

[
uj(da

j , α
a
−j)− uj(aj , α

a
−j)

] v∗i − ¯
ui

v∗j − ¯
uj

.
(8)

The function ûi, which we referred to as the virtual payoff function of player i, repre-
sents his stage-game payoff in a cooperation period when a is selected as the cooperative
action profile, after we take into account expected monitoring costs, small probabilities
with which minor deviations are played, and expected losses from possible transition
to punishments. By choosing small numbers for µ and ηa, we can make the virtual
payoff function ûi arbitrarily close to the true payoff function ui.

13



Substituting (7) into (4), we obtain that for all i ∈ N ,

0 =
[
v∗i − ui(b

right
k , bobs−k ) + λi(N \ {k, i})

]

+
[
v∗i − ui(cobs) + λi(N \ {i})

]δ

2

+
[
v∗i − ûi(ρ′)

] δ2

4(1− δ + µδ)
.

(9)

There exists ρ′ ∈ ∆(A′) that satisfies this equation for all i, if µ and ηa are close to
0 and δ is close to 1. Indeed, if δ is close to 1 and µ is close to 0, the last line in (9)
can be arbitrarily large even if ûi(ρ′) is close to v∗i . Since v∗ is an interior point of
the convex hull of {u(a) : a ∈ A′} and ûi is close to ui, a distribution ρ′ ∈ ∆(A′) that
yields the equality for all i exists regardless of the values of (k, brightk , bobs−k , cobs).

The preceding argument shows that if ρ′ is always chosen to satisfy (9), then the
continuation value from any examination period equals v∗i for all players. Further, (3)
shows that this continuation value is the same regardless of the randomizing players’
realized actions in the examination and report periods (i.e., (bobs−k , cobs)). This implies
that all these randomizing players are completely indifferent about their actions.

The choice of ρ′ that satisfies (9), however, does not give a right incentive to player k

(i.e., the player under examination) in the examination period, since (9) depends only
on what player k is prescribed to do (i.e., brightk ) and not what he does. This is where
our second goal comes in. To deal with player k’s incentive, we modify ρ′ slightly to
punish or reward player k depending on the “report” of the referee. Specifically, let
APk be defined by

APk =





0.9Pr(Ω1
r | b1

k, β−k) + 0.1Pr(Ω2
r | b1

k, β−k) if brightk = b1
k,

0.9Pr(Ω2
r | b2

k, β−k) + 0.1Pr(Ω1
r | b2

k, β−k) if brightk = b2
k.

This is the expected probability that player k earns his referee’s approval given that k

plays as prescribed. Let ε > 0 be a small number. Then, finally, let ρ ∈ ∆(A′) be such
that

ûi(ρ) = ûi(ρ′) for all i 6= k, (10)

ûk(ρ) =

{
ûk(ρ′) + ε(1−APk) if cobsr = c′r,

ûk(ρ′)− εAPk otherwise.
(11)

This is the ρ that is used in the new cooperation period. If ε > 0 is sufficiently
small, there exists ρ ∈ ∆(A′) that satisfies these equations. The equations mean that
player k receives a “bonus” of ε(1− APk) if he earns his referee’s approval, and pays
a “penalty” of εAPk otherwise. Since the referee’s approval is given with probability
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APk in equilibrium, the expected net bonus is zero, and hence the continuation value
from an examination period remains unchanged and equal to v∗k.

Initial Play. The initial period is set as a cooperation period Coop(ρ∗) where
ρ∗ ∈ ∆(A′) is chosen to satisfy

û(ρ∗) = v∗. (12)

Such a ρ∗ exists if µ and ηa are close to 0 and δ is close to 1. Then (7) implies that v∗

is indeed the payoff profile for the entire repeated game under the strategy profile.
Incentives. We now discuss why players have incentives to follow the strategy de-

scribed above. First, as discussed above, players have incentives to randomize between
cooperation and minor deviation in cooperation periods since the probabilities ξa

i of
punishing minor deviants (see (6)) are determined precisely to make minor deviation
indifferent to cooperation. Second, in report periods, all players (including the referee)
are completely indifferent about their actions, because of the way ρ is chosen in the
subsequent cooperation period. Similarly, in examination periods, all players except
the one under examination are indifferent about their actions. It remains to verify the
incentive of the player under examination in examination periods and the incentive for
each player to observe other players when required.

We first discuss the incentive of the player under examination (player k) to play
the prescribed action brightk in an examination period. Let ` ∈ {1, 2} be such that
b`
k = brightk . Since b`

k is a short-run optimal choice within B`
k (see (2)), it suffices to

check whether he has an incentive to play an action bk /∈ B`
k. The short-run gain from

playing an action bk /∈ B`
k is at most

(1− δ) max
a,a′∈A

|uk(a)− uk(a′)|.

On the other hand, playing bk /∈ B`
k necessarily lowers the probability that the referee

receives a signal in Ω`
r by some L > 0 (see (1)). If the referee does not receive a

signal in Ω`
r and if the next period is a report period (which occurs with probability

1/2), then the probability that the referee chooses c′r (i.e., approves of k’s answer) goes
down from 0.9 to 0.1. This has three effects on player k’s payoffs. First, there is a
direct effect on k’s stage-game payoff in the report period. Second, there is an effect
on ρ′ since ρ′ depends on cobsr (see (3)). However, (3) implies that these two effects
are canceled out by each other. Finally, there is an effect on ρ through the last term
of (11). If the referee gives his disapproval (playing c′′r), then ûk(ρ) goes down by ε,
which means, by (7), that Coopk(ρ) goes down by (1 − δ)ε/(1 − δ + µδ). This effect
matters if the report period is followed immediately by a cooperation period, which
occurs with probability 1/2. Altogether, the long-run loss from playing bk /∈ B`

k is at
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least

L
1
2
(0.9− 0.1)

1
2
δ2 (1− δ)ε

1− δ + µδ
.

A sufficient condition for this to exceed the short-run gain is

max
a,a′∈A

|uk(a)− uk(a′)| < 0.2Lδ2ε

1− δ + µδ
.

This is satisfied if δ is close to 1 and µ is close to 0. Recall that µ is the probability
that observation is prescribed in cooperation periods, which also determines how long
a cooperative phase with the same ρ is expected to continue. If µ is small, a coop-
erative phase with the same ρ is expected to continue for a large number of periods
and therefore a slight mofidication of ρ has a significant long-run effect. This gives
player k strong incentives to answer correctly in the examination period since doing
so maximizes the probability that ρ is modified favorably.

We now turn to the incentive to observe other players. Suppose that player i

did not observe player j 6= i when he was prescribed to. Since ηa and (ξa
h)h∈N are

small, it follows that with a probability p ≥ 1/2, the next period is an examination
period. In the examination period, player i is chosen to be examined with probability
1/n. Furthermore, at least with probability 1/(n − 1), the action brighti depends on
player j’s previous action. In this (worst) case, player i is uncertain of brighti . Therefore,
there is a positive probability that his action turns out to be wrong: bi /∈ B`

i when
brighti = b`

i (` ∈ {1, 2}). This probability is bounded below by some F > 0. As before,
if this happens, the probability that his referee receives a signal in Ω`

r goes down by
at least L > 0. Repeating the previous argument, we conclude that the long-run loss
to player i is at least

1
2n(n− 1)

FL
1
2
(0.9− 0.1)

1
2
δ3 (1− δ)ε

1− δ + µδ
.

A sufficient condition for this to exceed the short-run gain from not monitoring j is
that

λi(S ∪ {j})− λi(S) <
0.1FLδ3ε

n(n− 1)(1− δ + µδ)

holds for all S ⊆ N \ {i, j}. This is the case if δ is close to 1 and µ is close to 0.

Remarks. The above exposition assumes that there is a rich set A′ of action profiles
where no one is playing a best response. In the general construction given in Appendix,
we first show that for any pure action profile a ∈ A, there exists a mixed action profile
αa where (i) each player i for whom ai is not a best response to αa randomizes between
ai and one of the better responses da

i ∈ Ai, playing the better response with a small
probability, and (ii) each player i for whom ai is a best response to αa plays it with
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probability one. Given this, any a ∈ A can be used as a cooperation action profile.
When a pure action profile a is chosen by ρ, players play the mixed action profile αa,
and if observation is prescribed, players observe only those who randomize in αa.

Another simplifying assumption made in the above exposition is that the reversion
to a static Nash equilibrium can be used as punishments. In the general construction
in Appendix, we adapt the punishment scheme of Fudenberg and Maskin (1986) to our
setting. Specifically, we introduce minmax periods, in which players play a perturbed
minmax action profile where all players randomize except for the minmaxed player.
The perturbation is introduced to create monitoring incentives. As in cooperation
periods, observation is prescribed with a positive probability, in which case the play
returns to an examination period. However, in the continuation strategy, the target
payoff profile v∗ (and the selection rule for ρ) is modified for the following two ob-
jectives. One is to punish the minmaxed player and reward the other players. The
other is to make the minmaxing players indifferent about their actions in the minmax
period, which is possible since these players are observed when the play exits from the
minmax period.

We also assumed that the observation cost functions are monotonic: λi(J) ≤ λi(J ′)
if J ⊆ J ′. However, non-monotonic cost functions (which are relevant if it is easier to
monitor multiple players at the same time) can be accommodated easily. It suffices to
modify the strategy so that, if J is the set of randomizing players in the current period
and monitoring is instructed, player i monitors J ′ that solves minJ ′⊇J λi(J ′) and then
ignores any observed deviation by players in J ′ \ J .

Finally, we note that the set V ∗ is only a subset of feasible and individually rational
payoff vectors for our class of repeated games. To see this, note that the set of feasible
payoff vectors in our context is

V̄ ≡ {(vi − piλi(N \ {i}))i∈N : v ∈ V and p ∈ [0, 1]N},

which is a superset of V since V deals only with the case where pi = 0 for all i. While
any v ∈ V is feasible, players can also decrease their payoffs by paying observation
costs, and the reduced payoff vector may not be in V . Our proof relies on a strategy
profile that works only if the frequency of monitoring is close to zero, and it is not
straightforward to modify the strategy to accommodate payoff profiles in V̄ \ V .11

11Another reason for the difference between V ∗ and the set of feasible and individually rational
payoff vectors is that the minmax value

¯
ui is defined under the assumption that the other players

randomize independently. Since actions and signals are private information, the other players can
actually make their actions appear correlated to the player being punished, and the minmax value in
correlated actions may be lower than that in mixed actions. For the idea of using private signals to
induce correlations in repeated games, see Lehrer (1991).
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4 Conclusion

This paper extends the folk theorem to repeated games in which monitoring activities
are modeled explicitly and players make monitoring decisions optimally as they do for
their stage-game actions. Players face the trade-off between the quality of information
and the cost of information acquisition. Equilibrium strategies constructed in the
standard theory do not work in this context since they are not designed to motivate
players to monitor each other.

The present paper finds that, for the standard folk theorem to extend to the gen-
eralized class of repeated games, it suffices that the cost of observing other players’
actions without error is finite. According to this result, the folk theorem under per-
fect monitoring extends, with virtually no change, as long as perfect monitoring is an
option for each player, even if it is a very costly option. In particular, patient players
can attain any payoff vector that is arbitrarily close to the Pareto frontier, and there-
fore the presence of monitoring costs causes no efficiency loss in the case of extreme
patience.

Since the model allows all monitoring activities to be done privately, the present
paper contributes to the literature of repeated games with private monitoring by giving
a folk theorem without explicit communication for general stage games and general
structures of private signals.
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A Appendix: Proof

A.1 Preliminaries

We use the sup metric for Euclidean spaces: for all v, w ∈ R`, ‖v−w‖ ≡ maxi∈{1,...,`}|vi−
wi|. For all ε > 0 and all v ∈ RN , let N̄ε(v) denote the closed ε-neighborhood of v.

Let v∗ ∈ intV ∗ be an arbitrarily chosen target payoff profile. Then there exists
ε > 0 such that

N̄4ε(v∗) ⊆ V ∗, (13)

3ε < min
i∈N

[
v∗i − ¯

ui

]
. (14)

Let D ∈ R be defined by

D ≡ max
i∈N

[
λi(N \ {i}) + max

a,a′∈A
|ui(a)− ui(a′)|

]
> 0.

Then there exist q > 0 and η̄ ∈ (0, 1/2) such that

qD < ε(1− q), (15)

2η̄D(n− 1)(1 +
D

qε
) < ε. (16)

The following lemma defines a mixed action profile αa for each a ∈ A. In the
equilibrium we will construct, players play this mixed action profile in the cooperative
stage when a is chosen as the cooperative action profile.

Lemma. For all a ∈ A, there exists a mixed action profile αa such that for all
i ∈ N :

(i) Either αa
i = ai or

αa
i = (1− ηa

i ) · ai + ηa
i · da

i (17)

where da
i 6= ai and 0 < ηa

i ≤ η̄.

(ii) If αa
i = ai, then ai is a best response to αa

−i.

(iii) If αa
i 6= ai, i.e., αa

i is given by (17), then ui(da
i , α

a
−i) > ui(ai, α

a
−i).

Proof. Fix a pure action profile a ∈ A. For a given mixed action profile α ∈ A,
define a set Dev(α) by

Dev(α) ≡ {i ∈ N : max
a′i∈Ai

ui(a′i, α−i) > ui(ai, α−i)}.

This is the set of players for whom ai is not a best response to α−i. Let D0 ≡ Dev(a).
If D0 = ∅, then we are done by setting αa = a. So suppose D0 6= ∅. Then for all i ∈ D0,
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there exists an action da
i ∈ Ai such that ui(da

i , a−i) > ui(a). Thus for any mixed action
profile α̂ such that ‖α̂ − a‖ is sufficiently small, we have ui(da

i , α̂−i) > ui(ai, α̂−i) for
all i ∈ D0. Hence, there exists ηa

i ∈ (0, η̄] for all i ∈ D0, such that the mixed action
profile α1 defined by

α1
i ≡

{
(1− ηa

i ) · ai + ηa
i · da

i if i ∈ D0

ai if i /∈ D0

satisfies ui(da
i , α

1
−i) > ui(ai, α

1
−i) for all i ∈ D0. Thus D0 ⊆ Dev(α1) ≡ D1. If

D1 = D0, we are done by setting αa = α1. So suppose otherwise. Then for all
i ∈ D1 \ D0, there exists an action da

i ∈ Ai such that ui(da
i , α

1
−i) > ui(ai, α

1
−i).

Therefore, for any mixed action profile α̂ such that ‖α̂ − α1‖ is sufficiently small,
ui(da

i , α̂−i) > ui(ai, α̂−i) for all i ∈ D1. Hence, there exist ηa
i ∈ (0, η̄] for all i ∈ D1\D0,

such that the mixed action profile α2 defined by

α2
i ≡

{
(1− ηa

i ) · ai + ηa
i · da

i if i ∈ D1

ai if i /∈ D1

satisfies ui(da
i , α

2
−i) > ui(ai, α

2
−i) for all i ∈ D1. Thus D1 ⊆ Dev(α2) ≡ D2. Since the

number of players is finite, repeating this procedure yields k such that Dk+1 = Dk.
We then set αa = αk+1. Q.E.D.

For all a ∈ A, let Da be the set of randomizing players in αa. Define

¯
ηa ≡ min

i∈Da
ηa

i (
¯
ηa = +∞ if Da = ∅),

¯
η1 ≡ min

a∈A ¯
ηa > 0. (18)

We now modify the minmax profiles slightly in such a way that all players except
for the minmaxed player randomize over all actions. Specifically, for all i ∈ N , there
exists a mixed action profile mi ∈ A such that

supp(mi
j) = Aj for all j 6= i, (19)

ui(mi) = max
ai∈Ai

ui(ai,m
i
−i) <

¯
ui + ε, (20)

mi
i ∈ Ai, (21)

where “supp” denotes the support of the probability distribution. By (19),

¯
η2 ≡ min

i∈N
min
j 6=i

min
aj∈Aj

mi
j(aj) > 0. (22)

Assumption 2 implies that for all k ∈ N , there exist a completely mixed action

20



profile βk
−k, a player r(k) ∈ N \ {k}, and a partition of Ωr(k), {Ω1,k

r(k), Ω
2,k
r(k)}, such that

Argmax
bk∈Ak

Pr(k)(Ω
1,k
r(k) | bk, β

k
−k)

⋂
Argmax

bk∈Ak

Pr(k)(Ω
2,k
r(k) | bk, β

k
−k) = ∅. (23)

The player r(k) will be called the referee for k. Let B1
k and B2

k be defined by

B1
k ≡ Argmax

bk∈Ak

Pr(k)(Ω
1,k
r(k) | bk, β

k
−k), B2

k ≡ Argmax
bk∈Ak

Pr(k)(Ω
2,k
r(k) | bk, β

k
−k).

By (23), B1
k ∩B2

k = ∅. Let b1
k and b2

k be such that

b1
k ∈ Argmax

bk∈B1
k

uk(bk, β
k
−k), b2

k ∈ Argmax
bk∈B2

k

uk(bk, β
k
−k).

The definitions of B1
k and B2

k imply

L1
k ≡ Pr(k)(Ω

1,k
r(k) | b1

k, β
k
−k)− max

bk /∈B1
k

Pr(k)(Ω
1,k
r(k) | bk, β

k
−k) > 0,

L2
k ≡ Pr(k)(Ω

2,k
r(k) | b2

k, β
k
−k)− max

bk /∈B2
k

Pr(k)(Ω
2,k
r(k) | bk, β

k
−k) > 0.

(24)

Let L ∈ R be defined by

L ≡ min
k∈N

min{L1
k, L

2
k} > 0. (25)

Since βk
−k is completely mixed, we have

¯
η3 ≡ min

k∈N
min
j 6=k

min
aj∈Aj

βk
j (aj) > 0. (26)

Let
¯
η ∈ R be defined by

¯
η ≡ min{

¯
η1,

¯
η2,

¯
η3, 0.1} > 0. (27)

Let
¯
p ∈ R be defined by

¯
p ≡ min

i∈N
min
ωi∈Ωi

min
a∈A

Pi(ωi | a) > 0,

where the inequality holds by Assumption 1. Let (µ,
¯
δ) ∈ (0, 1)2 be sufficiently close
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to (0, 1) so that for all δ ∈ [
¯
δ, 1),

µ̂ ≡ 1− δ

δ

1− q

q
< 1, (28)

2n(1− δ)D < µδqε, (29)

2µD < ε, (30)

6n(n− 1)D(1− δ + µδ) < 0.1δ3

¯
η
¯
pLε. (31)

In what follows, we fix δ ≥
¯
δ.

For all j ∈ N , let W j ∈ RN be defined by

W j
i ≡





(1− q)(v∗i − ε) + q
[
ui(mi)− µ̂λi(N \ {i})] if i = j,

(1− q)(v∗i + ε) + q
[

min
â∈supp(mj)

ui(â)− µ̂λi(N \ {i, j})
]

if i 6= j.

For all v ∈ N̄ε(v∗), all a ∈ A, and all i ∈ Da, let ξv
i (a) ∈ R be defined by

(1− δ)
[
ui(da

i , α
a
−i)− ui(ai, α

a
−i)

]
=

1
|Da|ξ

v
i (a)µδ(vi −W i

i ). (32)

To see that ξv
i (a) is a probability (i.e., falls in between 0 and 1), note that

vi −W i
i ≥ v∗i − ε−W i

i > q(v∗i − ui(mi)− ε) > q(v∗i − ¯
ui − 2ε) > qε (33)

by (14) and (20). This implies 0 < ξv
i (a) ≤ n(1− δ)D/(µδqε) < 1/2 by (29).

For all v ∈ N̄ε(v∗), we define a virtual payoff function uv : A → RN as

uv
i (a) ≡ ui(ai, α

a
−i)− µλi(Da \ {i})

−
∑

j∈Da\{i}
ηa

j

[
uj(da

j , α
a
−j)− uj(aj , α

a
−j)

] vi −W j
i

vj −W j
j

(34)

for all i. For all v ∈ N̄ε(v∗) and all a ∈ A,

|uv
i (a)− ui(a)| ≤ |ui(ai, α

a
−i)− ui(a)|+ µD + (n− 1)η̄D

D

qε

≤ D
[
(n− 1)η̄ + µ +

(n− 1)η̄D

qε

]

< ε

by (16) and (30). This implies that there exists ρ∗ ∈ ∆(A) such that

uv∗(ρ∗) = v∗. (35)

22



For all h ∈ N and all a ∈ supp(mh), let V h(a) ∈ RN be defined by

V h
i (a) ≡





v∗i − ε if i = h,

v∗i + ε− q
1−q

[
ui(a)− min

â∈supp(mh)
ui(â)

]
if i 6= h.

(36)

Then for all i 6= h, v∗i + ε ≥ V h
i (a) > v∗i by (15). This implies

V h(a) ∈ N̄ε(v∗).

Thus if we define V ∗∗ ⊆ RN by

V ∗∗ ≡ {v∗} ∪ {V h(a) : h ∈ N and a ∈ supp(mh)},

then V ∗∗ ⊆ N̄ε(v∗).

A.2 Strategy

We now construct a strategy profile that yields the target payoff profile v∗ and is a
sequential equilibrium under δ ≥

¯
δ. The strategy has four types of states: cooperation,

examination, report, and minmax.

Cooperation States. A cooperation state, denoted Coop(v, ρ), is indexed by a payoff
profile v ∈ V ∗∗ and a distribution ρ ∈ ∆(A). In particular, the initial period is in state
Coop(v∗, ρ∗), where ρ∗ is given by (35). In each period of state Coop(v, ρ), the public
randomization at the beginning of the period selects each a ∈ A with probability ρ(a)
as the cooperative action profile of the period. Suppose ρ selects a. Then players
play the mixed action profile αa. The observation activity is determined by the public
randomization in the middle of the period. With probability 1 − µ, players do not
observe any player. In this case, the state remains Coop(v, ρ) in the next period.

With probability µ, on the other hand, each player i is prescribed to observe all
players in Da \ {i}. If Da = ∅, then the public randomization at the beginning of
the next period selects a pair of players (j, k) such that j 6= k with equal probability,
and the next period is in Exam(v, (j, k), aj , aj). If Da 6= ∅, let (aobs

i )i∈Da denote the
realized action profile of players in Da. The public randomization at the beginning of
the next period selects a pair of players (j, k) such that j ∈ Da and k 6= j with equal
probability. If aobs

j = da
j , then the state changes to Minmax (j) with probability ξv

j (a).
If aobs

j /∈ {aj , d
a
j}, then the state changes to Minmax (j) with probability 1/2. In all

these cases (where Da 6= ∅), if the state does not change to Minmax (j), it changes to
Exam(v, (j, k), aj , a

obs
j ).

Examination States. An examination state, denoted Exam(v, (j, k), aj , a
obs
j ), is

indexed by a payoff profile v ∈ V ∗∗, a pair of players (j, k) such that j 6= k , aj ∈ Aj , and

23



aobs
j ∈ Aj . In this state, player k is prescribed to play a pure action brightk determined

by

brightk =

{
b1
k if aobs

j = aj ,

b2
k otherwise.

The other players play a mixed action profile βk
−k. Regardless of the public random-

ization in the middle of the period, each player i observes N \ {i, k}. Let bobs−k ∈ A−k

denote the realized action profile of players N \ {k}. The state transition depends on
the public randomization at the beginning of the next period. With probability 1/2,
a pair (j′, k′) such that j′ 6= k and k′ 6= j′ is selected with equal probability and the
state changes to Exam(v, (j′, k′), b1

j′ , b
obs
j′ ).12 With the remaining probability, the state

changes to Report(v, k, brightk , bobs−k ).

Report States. A report state, denoted Report(v, k, brightk , bobs−k ), is indexed by a
payoff profile v ∈ V ∗∗, a player k ∈ N , and an action profile (brightk , bobs−k ) ∈ {b1

k, b
2
k} ×

A−k. Player k is the one who was under examination in the last period (by construction,
the previous period is an examination period). For each player i, choose a pair of
distinct actions {c′i, c′′i } ⊆ Ai arbitrarily in advance. In this period, player r(k), i.e.,
the referee for k defined in (23), plays the following mixed action:

0.9 · c′r(k) + 0.1 · c′′r(k) if brightk = b1
k and ωr(k) ∈ Ω1,k

r(k),

0.9 · c′r(k) + 0.1 · c′′r(k) if brightk = b2
k and ωr(k) ∈ Ω2,k

r(k),

0.1 · c′r(k) + 0.9 · c′′r(k) if brightk = b1
k and ωr(k) /∈ Ω1,k

r(k),

0.1 · c′r(k) + 0.9 · c′′r(k) if brightk = b2
k and ωr(k) /∈ Ω2,k

r(k),

where ωr(k) ∈ Ωr(k) denotes the referee’s private signal in the previous period. Any
other player i 6= r(k) plays a mixed action 0.5 · c′i + 0.5 · c′′i .

Regardless of the public randomization in the middle of the period, all players
observe all the other players. Let cobs ∈ A denote the realized action profile (pos-
sibly cobsi /∈ {c′i, c′′i } for some players). The state transition depends on the public
randomization at the beginning of the next period. With probability 1/2, a new
pair of players (j, k) such that j 6= k is chosen with equal probability and the state
changes to Exam(v, (j, k), c′j , c

obs
j ). With the remaining probability, the state changes

to Coop(v, ρ) where ρ ∈ ∆(A) depends on (v, k, brightk , bobs−k , cobs) and is determined as
follows.

12Here the choice of a particular action b1
j′ is arbitrary; any other action works since βk

j′ assigns
positive probability to all actions.
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First, let v′ ∈ RN be defined by

v′i = vi +
1− δ + µδ

(1/4)δ2

[
vi − ui(b

right
k , bobs−k ) + λi(N \ {i, k})

]

+
1− δ + µδ

(1/4)δ2

[
vi − ui(cobs) + λi(N \ {i})

]1
2
δ.

(37)

By (31),

|v′i − vi| ≤ (1− δ + µδ)D(3/2)
(1/4)δ2

< ε.

Thus v′ ∈ N̄ε(v) ⊆ N̄2ε(v∗). Now, we choose a distribution ρ ∈ ∆(A) such that

uv
i (ρ) = v′i if i 6= k, (38)

uv
k(ρ) =

{
v′k + ε(1−APk) if cobsr(k) = c′r(k),

v′k − εAPk otherwise,
(39)

where

APk ≡




0.9Pr(k)(Ω
1,k
r(k) | b1

k, β
k
−k) + 0.1Pr(k)(Ω

2,k
r(k) | b1

k, β
k
−k) if brightk = b1

k,

0.9Pr(k)(Ω
2,k
r(k) | b2

k, β
k
−k) + 0.1Pr(k)(Ω

1,k
r(k) | b2

k, β
k
−k) if brightk = b2

k

(40)

denotes the ex ante probability that k’s referee r(k) plays c′r(k) given that players follow
the strategy in the examination state. To see that ρ exists, note that by construction,
uv(ρ) is within ε of v′ and so within 3ε of v∗. Since uv is within ε of u, it follows that
u(ρ) is within 4ε of v∗. Hence, ρ exists by (13).

Minmax States. A minmax state, denoted Minmax (h), is indexed by a player h ∈ N

who is to be punished. In this state, players play the modified minmax action profile mh

(see (19)–(21)). The observation activity is determined by the public randomization
in the middle of the period. With probability 1− µ̂, where µ̂ is defined in (28), players
do not observe any player. In this case, the state remains the same in the next period.

With probability µ̂, on the other hand, each player i observes N \{i, h}. Let aobs
−h ∈

A−h denote the realized action profile of players i 6= h. The public randomization at
the beginning of the next period chooses a pair (j, k) such that j 6= h and k 6= j, and
the state changes to

Exam(V h(mh
h, aobs

−h ), (j, k), b1
j , a

obs
j ),

where V h is defined by (36).13

13Again, b1
j was chosen arbitrarily as the action that determines bright

k in the examination stage. Any
action will do since each player j 6= h plays a completely mixed action under Minmax (h).
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We have specified the strategy profile on the equilibrium path. To complete the
specification of the strategy profile, we first add the following rules. (i) The prescribed
monitoring decision for a player does not depend on the stage-game action he chose
in the period. That is, a player’s own deviation in terms of stage-game action does
not change the prescribed monitoring decision for the player in the period. (ii) The
prescribed behavior (action and monitoring) for a player does not depend on any
information he obtained by observing players whom he was not prescribed to observe.
That is, if a player i observed a deviation of a player j in a period when player i was
not prescribed to observe j, then i is prescribed to ignore the deviation and behave as
if he did not observe it.

Let σ̂ be a strategy profile that follows the state-dependent play described above
and satisfies rules (i) and (ii). Consider a sequence of completely mixed strategy profiles
(σ̂1, σ̂2, . . . ) that converge to σ̂ and put far smaller weights on the trembles with respect
to monitoring than those with respect to actions. This sequence generates a sequence
of belief systems (ψ1, ψ2, . . . ) whose limit ψ is such that, at any history, each player
believes that the other players have not deviated with respect to monitoring.

For each player i, let Ĥi be the set of i’s (private) histories throughout which i

observed all the players he was prescribed to observe under the state-dependent play
(with rules (i) and (ii)). Thus Ĥi includes histories in which i deviated in terms of
action, as well as histories in which i observed j when it was not prescribed. It should
be noted that at all histories hi ∈ Ĥi, player i knows the current state and can follow
the state-dependent play.

For each player i, let σ∗i be a strategy that agrees with σ̂i on Ĥi and such that, at
all histories outside Ĥi, the player plays a best response given the belief ψ and given
that the other players follow σ̂−i. Let σ∗ = (σ∗1, . . . , σ

∗
n). We show that (σ∗, ψ) is a

desired sequential equilibrium. To see that ψ is consistent with σ∗, consider a sequence
of completely mixed strategy profiles (σ1, σ2, . . . ) that converges to σ∗ and such that
each σk

i agrees with σ̂k
i on Ĥi and puts far smaller weights on the trembles with respect

to monitoring than those with respect to actions. Then, the associated sequence of
belief systems also converges to ψ. In what follows, we show that σ∗ attains the target
payoff profile v∗ and is sequentially rational given ψ.

A.3 Values

In this section, we show that the strategy profile σ∗ attains the target payoff profile
v∗. To compute the continuation value for each state, we need to solve a system
of equations. Since the set of states is finite in equilibrium (because the number of
distributions ρ used in the cooperation states is finite in equilibrium), the solution is
unique. To identify the solution, we first assume that the continuation value from any
state of the form Exam(v, · ) is exactly equal to v. We then show that this indeed
constitutes a solution.
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Given the assumption, we first compute the continuation value from minmax states.
Given h ∈ N , let M(h) ∈ RN denote the continuation payoff profile at the beginning
of the state Minmax (h). The continuation payoff for player h is given by

Mh(h) = (1− δ)
[
uh(mh)− µ̂λh(N \ {h})] + (1− µ̂)δMh(h) + µ̂δ(v∗h − ε).

Since µ̂δ = (1− δ)(1− q)/q by definition, reorganizing the equation gives

Mh(h) = W h
h .

To compute the continuation payoff for players i 6= h, let Ma
i (h) denote the continua-

tion payoff of player i evaluated at the beginning of the state given that a ∈ supp(mh)
is the realized action profile in this period. Then

Ma
i (h) = (1− δ)

[
ui(a)− µ̂λi(N \ {i, h})] + (1− µ̂)δMi(h) + µ̂δV h

i (a).

Using µ̂δ = (1− δ)(1− q)/q and substituting the definition of V h
i (a) in (36) give

Ma
i (h) = (1− δ)

[
min

â∈supp(mh)
ui(â)− µ̂λi(N \ {i, h})]

+ (1− µ̂)δMi(h) + µ̂δ(v∗i + ε).
(41)

This implies that Ma
i (h) does not depend on a and hence Ma

i (h) = Mi(h) for all a.
Substituting this fact into (41) yields

Mi(h) = W h
i for all i 6= h.

Thus M(h) = W h for any h ∈ N .
Abusing notation, let Coop(v, ρ) ∈ RN denote the continuation payoff profile at

the beginning of the state Coop(v, ρ). Then

Coopi(v, ρ) = (1− δ)
∑

a∈A

ρ(a)
[
ui(αa

i , α
a
−i)− µλi(Da \ {i})

]
+ (1− µ)δCoopi(v, ρ)

+ µδvi − µδ
∑

a∈A

ρ(a)
∑

j∈Da

1
|Da|η

a
j ξv

j (a)(vi −W j
i ).

When ρ selects a ∈ A such that i ∈ Da, player i is instructed to play a mixed action
αa

i = (1− ηa
i ) · ai + ηa

i · da
i . The player is indeed indifferent between ai and da

i because
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of the definition of ξv
i (a) (see (32)). Therefore we can rewrite Coopi(v, ρ) as

Coopi(v, ρ) = (1− δ)
∑

a∈A

ρ(a)
[
ui(ai, α

a
−i)− µλi(Da \ {i})

]
+ (1− µ)δCoopi(v, ρ)

+ µδvi − µδ
∑

a∈A

ρ(a)
∑

j∈Da\{i}

1
|Da|η

a
j ξv

j (a)(vi −W j
i ).

Substituting the definition of ξv
j (a) for the other players j 6= i yields

(1− δ + µδ)Coopi(v, ρ) = (1− δ)
∑

a∈A

ρ(a)
{

ui(ai, α
a
−i)− µλi(Da \ {i})

−
∑

j∈Da\{i}
ηa

j

[
uj(da

j , α
a
−j)− uj(aj , α

a
−j)

] vi −W j
i

vj −W j
j

}
+ µδvi.

Using virtual payoff functions uv defined in (34) and writing uv(ρ) =
∑

a∈A ρ(a)uv(a),
we obtain

Coop(v, ρ) =
(1− δ)uv(ρ) + µδv

1− δ + µδ
. (42)

Then by the definition of ρ∗ given by (35),

Coop(v∗, ρ∗) = v∗.

Since ρ∗ is used in the initial period, this implies that the target payoffs v∗ are indeed
achieved as the repeated-game payoffs under σ∗.

We now verify that the continuation value from an examination state of the form
Exam(v, · ) is indeed v. Consider an examination state Exam(v, (j, k), aj , a

obs
j ). We

need to show that for all i ∈ N ,

vi = E

{
(1− δ)

[
ui(b

right
k , bobs−k )− λi(N \ {i, k})]

+
1
2
δvi +

1
2
δ(1− δ)

[
ui(cobs)− λi(N \ {i})]

+
1
4
δ2vi +

1
4
δ2Coopi(v, ρ)

}
,

(43)

where the expectation is taken over (bobs−k , cobs), and ρ is determined from (bobs−k , cobs)
by (37)–(39). For player i 6= k, substituting (38) into (37) and using (42) to replace
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uv with Coopi(v, ρ) yield

vi = (1− δ)
[
ui(b

right
k , bobs−k )− λi(N \ {i, k})]

+
1
2
δvi +

1
2
δ(1− δ)

[
ui(cobs)− λi(N \ {i})]

+
1
4
δ2vi +

1
4
δ2Coopi(v, ρ)

(44)

for all bobs−k ∈ A−k and all cobs ∈ A. Taking the expectation of (44) implies (43). For
player k, computation is the same except that uv

k(ρ) 6= v′k. Thus we obtain

vk = (1− δ)
[
uk(b

right
k , bobs−k )− λk(N \ {k})]

+
1
2
δvk +

1
2
δ(1− δ)

[
uk(cobs)− λk(N \ {k})]

+
1
4
δ2vk +

1
4
δ2Coopk(v, ρ)− 1

4
δ2 1− δ

1− δ + µδ

[
uv

k(ρ)− v′k
]
,

(45)

where the only non-trivial difference from (44) is the last term. However, this term is
zero in expectation since the expected value of uv

k(ρ) − v′k is APkε(1 − APk) − (1 −
APk)εAPk = 0. Thus (43) also holds for player k.

The fact that (44) holds for all i 6= k and all bobs−k ∈ A−k implies that all players i 6= k

are completely indifferent over all actions in the examination period.

A.4 Incentives

We now show that σ∗ is sequentially rational given ψ. We begin by showing that no
player i has an incentive to deviate at any history hi ∈ Ĥi. Recall that, at histories
hi ∈ Ĥi, player i knows the state and believes that the other players also know the state
and follow the state-dependent play. We start with incentives in terms of stage-game
actions.

Cooperation States. When the public randomization selects an action profile a as
the cooperation action profile, players i ∈ Da are prescribed to randomize between
ai and da

i . As mentioned earlier, these players are indeed indifferent between these
actions by the definition of ξv

i (a). These players also do not have incentives to play
any other action a′i /∈ {ai, d

a
i }; indeed, the long-run loss is at least

µ
1
2n

δ[vi −W i
i ] > µ

1
2n

δqε

by (33), and this exceeds (1− δ)D by (29). On the other hand, players i /∈ Da have no
incentive to deviate from ai since by Lemma, ai is a short-run best response to αa

−i,
and deviations are not observed and have no effects on the future play.

Report States. We show that in report states, all players are indifferent among
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all actions. Fix a report state Report(v, k, brightk , bobs−k ). Let Ri(ci) denote player i’s
continuation payoff from this period if i chooses ci ∈ Ai, where the expectation is taken
with respect to c−i based on all the information that player i has at the beginning of
this period. For players i 6= k, (38) and (42) imply

Ri(ci) = (1− δ)
[
E

[
ui(ci, c−i)

]− λi(N \ {i})
]

+
1
2
δvi +

1
2
δ
(1− δ)E

[
v′i | ci

]
+ µδvi

1− δ + µδ
,

(46)

where v′i depends on c−i through (37). The right-hand side depends on ci because of
the two terms with expectation. But by taking the expectation of (37), we can see
that

E
[
ui(ci, c−i)

]
+

1
2
δ

E
[
v′i | ci

]

1− δ + µδ

as a whole does not depend on ci. Thus Ri(ci) is actually constant in ci. This implies
that each player i 6= k is completely indifferent about ci in this period and therefore
willing to randomize as instructed by the strategy.

For player k, the argument is the same except that v′i in (46) for i = k has to be
replaced by uv

k(ρ) since uv
k(ρ) 6= v′k for player k by (39). Thus

Rk(ck) = (1− δ)
[
E

[
uk(ck, c−k)

]− λk(N \ {k})
]

+
1
2
δvk +

1
2
δ
(1− δ)

[
E[v′k | ck] + (AP ′

k −APk)ε
]

+ µδvk

1− δ + µδ
,

(47)

where AP ′
k denote k’s current belief about the probability that his referee r(k) plays

c′r(k) in this period.14 The only difference between (47) and (46) is the term (AP ′
k −

APk)ε, which does not depend on ck. Thus, the previous argument works for player k

as well. Hence Rk(ck) does not depend on ck and player k is also indifferent about his
action.

Examination States. At the end of Section A.3, we showed that, in examination
periods, players who are not under examination are indifferent over all actions. Thus
we now prove that the player under examination (player k) is willing to play the
pure action prescribed by the strategy (i.e., brightk ). Consider an examination state
Exam(v, (j, k), aj , a

obs
j ). Let ` ∈ {1, 2} be such that brightk = b`

k. Since brightk is a short-
run best response within B`

k, it suffices to verify that player k does not gain by playing
any bk /∈ B`

k. The short-run gains from playing any bk /∈ B`
k are at most (1 − δ)D.

14We may have AP ′k 6= APk since APk is k’s belief at the beginning of the previous period and
he has since then updated his belief based on his signal and observations. Moreover, player k may
have deviated in stage-game action in the previous period, which is possible since we are considering
a history hk ∈ Ĥk.
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On the other hand, by the definition of B`
k, playing an action bk /∈ B`

k necessarily
lowers the probability that player r(k) receives a signal ωr(k) ∈ Ω`,k

r(k) at least by L > 0

(see (24) and (25)). If ωr(k) /∈ Ω`,k
r(k) and if the next period is a report period, then the

probability that the referee plays c′r(k) (i.e., approves of k’s answer) in the report period
goes down from 0.9 to 0.1. If the referee indeed gives a disapproval and if the following
period is a cooperation period, then the distribution ρ used in the cooperation period
changes in such a way that uv

i (ρ) goes down by ε (see (39)), which in tern implies that
the continuation value Coopi(v, ρ) goes down by (1− δ)ε/(1− δ + µδ).

Altogether, the long-run losses from playing bk /∈ B`
k are at least

L
1
2
(0.9− 0.1)

1
2
δ2 (1− δ)ε

1− δ + µδ
.

This exceeds (1− δ)D by (31).
Minmax States. Consider a state Minmax (h). In this state, player h has no in-

centive to deviate since the prescribed action mh
h is a short-run best response against

mh
−h. The other players i 6= h are willing to play mh

i since Ma
i (h) does not depend on

a and hence they are completely indifferent.
Monitoring. We now verify that players have incentives to follow the strategy with

respect to monitoring. First, no player has an incentive to observe a player who is not
prescribed to be monitored, because such a player is expected to play a pure action.
Suppose now that a player k ∈ N chooses not to observe a player j 6= k at the end
of a period t when the strategy prescribes him to observe j. Since k is prescribed to
observe j, player j was prescribed to play some mixed action αj ∈ Aj in this period.
By the definition of

¯
η, any action in the support of αj is assigned a probability at least

as large as
¯
η > 0 (see (18), (22), (26), and (27)).

By construction, period t + 1 is an examination period with a positive probability.
The probability is at least as large as

min{1/2, 1−max
a∈A

max
i∈N

max
v∈V ∗∗

ξv
i (a)} = 1/2 (48)

since ξv
i (a) < 1/2. It should be noted that the lower bound (48) is valid even if period t

was a cooperation period and player k played a major deviation in the period, since
major deviations are ignored with probability 1/2. This point is relevant since we are
considering a history hk ∈ Ĥk and hk may contain k’s own (major) deviations in terms
of actions.

If period t+1 is an examination period, then with at least probability 1/[n(n−1)],
player k is chosen to be examined and is prescribed to “state” j’s realized action in
period t. In this case, the state in period t + 1 is of the form Exam(v, (j, k), aj , a

obs
j )

where {aj , a
obs
j } ⊆ supp(αj). But player k does not know aobs

j and hence is uncertain
of brightk .
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In this contingency, there is a positive probability bounded away from 0 with which
player k plays a “wrong” action, playing bk /∈ B`

k when brightk = b`
k (` ∈ {1, 2}). To

see this, let ωt
k ∈ Ωk denote the private signal that k received in the last period.

Suppose, without loss of generality, that player k plays an action bk ∈ B2
k (the case

where bk ∈ B1
k works similarly). This action is “wrong” if brightk = b1

k, i.e., aobs
j = aj .

The conditional probability that aobs
j = aj holds given that k received ωt

k is bounded
below by

¯
η
¯
p, since

¯
η is the minimum probability assigned to each action in supp(αj)

and
¯
p is the minimum probability assigned to each signal ωk ∈ Ωk.

If player k plays bk /∈ B`
k when brightk = b`

k (` ∈ {1, 2}), then the probability that his
referee r(k) receives a signal ωr(k) ∈ Ω`,k

r(k) goes down by at least L > 0. If the referee’s

signal falls outside of Ω`,k
r(k) and if period t + 2 is a report period, then the probability

that the referee plays c′r(k) (i.e., approves of k’s answer) goes down from 0.9 to 0.1. We
can now apply the argument used for the incentives in examination periods. Then, the
long-run losses from not observing player j in period t are at least

1
2n(n− 1)¯

η
¯
pL

1
2
(0.9− 0.1)

1
2
δ3 (1− δ)ε

1− δ + µδ
. (49)

This exceeds the maximum short-run deviation gain, (1− δ)D, by (31).
Histories hi /∈ Ĥi. It remains to consider each player i’s incentives at histories

hi /∈ Ĥi. By definition, the continuation play of σ∗i given hi prescribes an optimal
decision for i at the history given his belief ψ(hi) and given that the other players
follow σ̂. By the construction of ψ, player i believes that the other players j 6= i are at
some histories hj ∈ Ĥj and hence, by the definition of σ∗, their continuation strategies
coincide with σ̂. Therefore, following σ∗i is sequentially rational for player i at hi given
ψ. Q.E.D.
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