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Abstract: In traditional reputation theory, reputation is good for the long-
run player. In "Bad Reputation," Ely and Valimaki give an example in
which reputation is unambiguously bad.  This paper characterizes a more
general class of games in which that insight holds, and presents some
examples to illustrate when the bad reputation effect does and does not
play a role. The key properties are that participation is optional for the
short-run players, and that every action of the long-run player that makes
the short-run players want to participate has a chance of being interpreted
as a signal that the long-run player is “bad.” We also broaden the set of
commitment types, allowing many types, including the “Stackelberg type”
used to prove positive results on reputation.  Although reputation need not
be bad if the probability of the Stackelberg type is too high, the relative
probability of the Stackelberg type can be high when all commitment
types are unlikely.
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1. Introduction

A long-run player playing against a sequence of short-lived

opponents can build a reputation for playing in a specific way and so

obtain the benefits of commitment power.  To model these “reputation

effects,” the literature following Kreps and Wilson [1982] and Milgrom

and Roberts [1982] has supposed that there is positive prior probability

that the long-run player is a “commitment type” who always plays a

specific strategy.3 In “Bad Reputation,” Ely and Valimaki [2001]

(henceforth EV) construct an example in which introducing a particular

commitment type hurts the long-run player.  When the game is played

only once and there are no commitment types, the unique sequential

equilibrium is good for the long-run player. This remains an equilibrium

when the game is repeated without commitment types, regardless of the

player’s discount factor. However, when a particular “bad” commitment

type is introduced, the only Nash equilibria are “bad” for a patient long-

run player.4

What is not clear from EV is when reputation is bad. This paper

extends the ideas in EV to a more general class of games in an effort to

find the demarcation between “bad” and “good” reputation. In addition,

we try to relate the EV conclusions to past work on reputation effects.

Reputation effects are most powerful when the long-run player is

very patient, and Fudenberg and Levine [1992] (FL) provided upper and

lower bounds on the limiting values of the equilibrium payoff of the long-

run player as that player’s discount factor tends to 1. The upper bound

                                                
3 See Sorin [1999] for a recent survey of the reputation effects literature, and its
relationship to the literature on merging of opinions.
4 It is obvious that incomplete information about the long-run player’s type can be
harmful when the long-run player is impatient, since incomplete information can be
harmful in one-shot games. Fudenberg-Kreps [1987] argue that a better measure of the
“power of reputation effects” is to hold fixed the prior distribution over the reputation-
builder’s types, and compare the reputation-building scenario to one in which the
reputation builder’s opponents do not observe how the reputation builder has played
against other opponents. They discuss why reputation effects might be detrimental in the
somewhat different setting of a large long-run player facing many simultaneous small but
long run opponents.
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corresponds to the usual notion of the “Stackelberg payoff.” The lower

bound, called the “generalized Stackelberg payoff,” weakens this notion to

allow the short-run players to have incorrect beliefs about the long-run

player’s strategy, so long as the beliefs are not disconfirmed by the

information that the short-run players get to observe.  When the stage

game is a one-shot simultaneous-move game, actions are observed,

payoffs are generic, and commitment types have full support, these two

bounds coincide, so that the limit of the Nash equilibrium payoffs as the

long-run player’s discount factor tends to one is the single point

corresponding to the Stackelberg payoff.  For extensive-move stage

games, with public outcomes corresponding to terminal nodes, the bounds

can differ. However, although FL provided examples in which the lower

bound is attained, in those examples the upper bound was attained as well,

and we are not aware of past work that determines the range of possible

limiting values for a fairly general class of games.

Here we examine the upper bound more closely for a

specific class of games designed to capture the insight of EV. Specifically,

we define a class of “bad reputation” games, in which the long-run player

can do no better than if the short-run players choose not to participate.

This extends the EV example in a number of ways. We allow a broad class

of stage games in which participation by the short-run players is optional;

allowing for many actions, many signals, many short-run players, and a

wide variety of payoffs. Especially important, we allow for a broad range

of types, including types that are committed to “good” actions, as well as

types that are committed to “bad” actions. Earlier research suggests that to

attain the upper bound on the long-run player’s payoff, it can be important

to include the “Stackelberg type” that is committed to the stage-game

action the long-run player would choose in a Stackelberg equilibrium.5 We

                                                
5  EV consider two specifications for the bad type, either “committed” (to playing the bad
action) or “strategic” (willing to play a different action occasionally to increase entry and
the future payoff from playing “bad.”) In a related model, Mailath and Samuelson [1998]
argue that “bad” types – and  specifically strategic bad types – are more plausible than
Stackelberg types. We are sympathetic to the argument that strategic bad types may be
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find that the EV result fails if the probability of this Stackelberg type is too

high, but extends to the case where the probability of the Stackelberg type

is sufficiently low, but nonzero.  This shows that it is not essential to rule

out the types that support “good” reputation effects in order to derive the

bad reputation result. Moreover, the relative probability of the Stackelberg

type can be high when all commitment types are unlikely; in this sense our

conditions hold for “almost all” sufficiently small commitment-type

perturbations of the complete information limit.

By extending the EV example to a broad class of stage games we

are able to more clearly identify the types of assumptions key to a bad

reputation. There are several such properties, notably that the short-run

players can either individually or collectively choose not to participate.

However, most of the assumptions on the structure of the game seem to

involve little loss of economic applicability. The key substantive

assumption seems to be that every action of the long-run player that makes

the short-run players want to participate in the game has a chance of being

misconstrued as a signal of a “bad reputation.”

EV motivate their example by considering an automobile mechanic

who has specialized knowledge of the work that needs to be done to repair

the car. We think that we have identified a broader class of bad reputation

games that can be interpreted as “expert advice.” This includes consulting

a doctor or stockbroker, or in the macroeconomics context, can be the

decision whether or not to turn to the IMF for assistance. In EV, the short-

run players observe only the advice, but not the consequences of the

advice. Here we explicitly consider what happens when the short-run

players observe the consequences as well.  We also show that there are

other distinct classes of games with rather different observation structures

that are bad reputation games, such as our “teaching evaluation” game,

where “advice” is not an issue because the long-run player does not

                                                                                                                        
more likely than commitment types, but this does not imply that the probability of
commitment types should be zero. Instead, we would argue that it is preferable for
models to allow for a wide range of types, especially those with fairly simple behavior
rules.
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privately observe anything that is payoff-relevant for the short-run player.

Finally, we illustrate the boundaries of bad reputation by giving a number

of examples and classes of participation games that are not bad reputation

games.

2. The Model

2.1. The Dynamic Game

There are �. �  players, a long run-player 1, and .  short-run

players � �. �K . The game begins at time �T �  and is infinitely

repeated.  Each period, each player I  chooses from a finite action space
I! . We denote individual actions IA , and action profiles by A . We also

use IA�  to denote the play of all players except player I  and I JA� �  to

denote the play of all players except players I  and J .

The long-run player discounts the future with discount factor E .

Each short-run player plays only in one period, and is replaced by an

identical short-run player in the next period. There is a set 2  of types of

long-run player. There are two sorts of types: type � � 2  is called the

“rational type,” and is the focus of our interest, with utility described

below.  For each pure action �A , type �� 	AR  is a “committed type,” that is

constrained to play �A .  These are the only possible types in 2 .  Note that

we do not require that every pure action commitment type has positive

probability. The stage game utility functions are � 	IU A , where �� 	U A

corresponds to the long-run player of type �R � . The common prior

distribution over long-run player types is denoted (0)µ .

There is a finite public signal space 9  with signal probabilities

� \ 	Y AS . All players observe the history of the public signals. Short-run

players observe only the history of the public signals, and in particular

observe neither the past actions of the long-run player, nor of previous

short-run players. We do not assume that the payoffs depend on the

actions only through the signals, so the short-run players at date t need not
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know the realized payoffs of the previous generations of short-run

players.6

We let � �� � � 	T TH Y Y Y� K  denote the public history through the

end of period T . We denote the null history by � . We let �
TH  denote the

private history known only to the long-run player. This includes his own

actions, and may or may not include the actions of the short-run players he

has faced in the past. A strategy for the long-run player is a sequence of

maps � � �� � � 	 CONHULLT TH H !T R � w 1A ; a strategy profile for the short-run

players is a sequence of maps � 	 CONHULLJ J J
TH !T � w A . (Note that

��A  denotes the product of the JA ’s, not the convex hull of the

product.) A short-run profile �B�  is a Nash response to �B  if
� � � �� � � 	 � � � 	I I I I I IU U AB B B B B� � � �p  for all I IA !� .  We denote the set

of short-run Nash responses to �B  by �� 	" B .

Given strategy profiles T , the prior distribution over types ��	N

and a public history TH  that has positive probability under T , we can

calculate from �T  the conditional probability of long-run player actions
�� 	THB  given the public history. A Nash Equilibrium is a  strategy profile

T  such that for each positive probability history

1) � �� 	 � � 		T TH " HT B� �  [short-run players optimize]

2) � � � �� � � � 		T TH H A AT R �  [committed types play accordingly]

3) ��� � �	T ¸ ¸  is a best-response to �T�  [rational type optimizes].

2.2 The Ely-Valimaki Example

We will use the EV example to illustrate our assumptions and

definitions.  In EV, the long-run player is a mechanic, her action is a map

from the privately observed state of the customer's car { , }E Tω ∈  to

                                                
6  Fudenberg and Levine [1992] assumed that a player’s payoff was determined by his
own action and the realized signal, but that assumption was not used in the analysis. The
assumption is used in models with more than one long-run player to justify the restriction
to public equilibria, but it is not needed here.
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announcements [ � ]E T , where E means the car needs a new engine, T

means it needs at tune-up, and the announcements, which are what the

mechanic says the car needs, determine what is actually done to the car.

Thus the long-run player’s action space is a map from privately observed

states to announcements, � [ � � � ]! EE ET TE TT� , where the first component

indicates the announcement in response to the signal E and the second to

T. There is one short-run player each period who chooses an element of
� [ � ]! )N /UT� .   The public signal takes on the values [ � � ]9 E T /UT� .

If the short-run player chooses /UT  the signal is Out , that is
�� \ � 	 �/UT A /UTS � ; otherwise the signal is the announcement of the

long-run player.  The two states of the car are assumed to be i.i.d. and

equally likely, so � \ � � 		 � \ � � 		 ���E ET )N E TE )NS S� � ,

� \ � � 		 �E EE )NS � , and � \ � � 		 �E TT )NS � . If the short-run player

chooses /UT , each player gets utility 0. If he plays )N  and the long-run

player’s announcement is truthful (that is, matches the state), the short-run

player receives U ; if it is untruthful, it is W�  where �W U� � . The

“rational type” of long-run player has exactly the same stage-game payoff

function as the short run players.  Thus when the long-run player is certain

to be the rational type, the strategic form of the stage game is

)N /UT

EE � 	���� 	��U W U W� � �� �

ET �U U �� �

TE �W W� � �� �

TT � 	���� 	��U W U W� � �� �

Figure 1

When the rational type is the only type in the model, there is an

equilibrium where he chooses the action that matches the state, all short-

run players enter, and the rational type's payoff is U .  However, EV show

that when there is also a probability that the long-run player is a “bad
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type” who always plays EE , the long-run player's payoff is bounded by an

amount that converges to 0 as the discount factor goes to 1.  The intuition

for this result has four  steps. First of all, the rational type must

"frequently" play the honest strategy et  if its equilibrium payoff exceeds

0, because  the short-run players will not enter if the long-run player is too

likely to play EE . Second, from Bayes’ rule it follows that there is some

number +  such that +  successive observations of %  in periods where

the rational type is playing honestly will make the posterior probability of

the bad type so high that all subsequent short-run players play out.  Third,

when there have been �+ �  successive observations of % , the rational

type of long run player is tempted to play tt instead of et, even though this

lowers his short-run payoff, to avoid driving out the short-run players with

another observation of E.  Thus, the long-run player is tempted to take an

action that is worse for both himself and the short-run players in order to

avoid being incorrectly tagged as a “bad type; ”  an induction argument

shows that honest play by the rational type unravels.

2.3. Participation Games and Bad Reputation Games

We consider “participation games” in which the short-run players

may choose not to participate. The crucial aspect of non-participation by

the short-run players is that it conceals the action taken by the long-run

player from subsequent short-run players; this is what allows the lower

bound on the long-run player's Nash equilibrium payoff in the EV

example to be lower than Stackelberg payoff. We will then define “bad

reputation” games as a subclass of participation games that have the

additional features needed for the bad reputation result; the following is a

brief summary of the key features of these games. First of all, there will

be a set of “friendly” actions that must receive sufficiently high

probability to induce the short-run players to participate, such as et in the

EV example. Next, there are “bad signals” that are most strongly linked to

some “unfriendly” actions that deter participation, but which also have
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positive probability under friendly play; in EV the bad signal is E.

Finally, there are some actions that are not friendly, but reduce the

probability of the bad signals, such as tt in EV; we call these actions

“temptations.” If there is a positive prior probability that the long-run

player is a “bad type” that is committed to one of the unfriendly actions,

some histories of play will induce the short-run players to exit, so to avoid

these histories the rational type of long-run player may choose to play one

of the temptations; foreseeing this, the short-run players will chose not to

enter.   Our main result shows that this leads to a “bad reputation” result as

long as the prior does not assign too much probability to types that are

committed to play friendly actions.

To model the option to not participate, we assume that certain

public signals e ey Y∈ are exit signals. Associated with these exit signals

are exit profiles, which are pure action profiles 1 1 1e E A− − −∈ ⊆  for the

short run players.  

For each such E , 1 1 1( | , ) ( | )e ey a e y eρ ρ− −= for all �A , and
�� \ 	 �E9 ES � � . In other words, if an exit profile is chosen, an exit signal

must occur, and the distribution of exit signals is independent of the long-

run player's action.  Moreover, if � �A %� ��  then � �� \ � 	 �EY A AS � �  for

all � �� E EA ! Y 9� � . We refer to � �! %� ��  as the entry profiles. Note

that an entry profile cannot give rise to an exit signal. A participation

game is a game in which �%� v � . The remainder of the paper

specializes to participation games.

We begin by distinguishing actions by the long-run player that

cause the short-run players to exit (unfriendly actions), and those that are

needed to get them to enter (friendly actions).

Definition 1: A non-empty finite set of pure actions for the long-run

player �.  is unfriendly if there is a number �Z �  such that
� �� 	.B Zp  implies  1 1( ) conhull B Eα −⊆ .

Remark:  This definition says that unfriendly actions induce exit, in the

strong sense that exit is the only best response if the probability of the
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unfriendly actions is sufficiently high. There will often be many sets of

unfriendly actions. In the EV example the set [ � � ]EE TT TE  is unfriendly, and

so is any subset.

Definition 2: A non-empty finite set of mixed actions 1F  for the long run

player is friendly if there is a number �H �  such that
1 1 1( ) conhull( )B Eα − − ∩ − ≠ ∅ A  implies � �FB Hp  for some � �F &� .

The number H  is called the size of the friendly set.

Remark:  This definition says that the probabilities given to every pure

action must be bounded below by a scale factor times some friendly

mixture if the short-run players are not to exit. Note that weight on a

friendly action is necessary for entry, but need not be sufficient for entry,

and that a friendly set must be non-empty. There may also be many

different friendly sets. Suppose that �&  is friendly of size eH , and let
� �MIN[ � 	 � \ ]& F A F &w � � .  Then if � �F &�  it may be replaced by

any mixture over the support of �F , and the resulting set will be friendly

of size
�

e&H . Similarly, if we have a friendly set and we eliminate mixtures
� �F &�%  whose support contained in the support of some

different � �F &� , we get a new friendly set with a smaller value of B . In

the EV example, the action ET  is friendly, with

��
W U

W U
B

�
�

�
.

Finally, consider a pure action �A  such that
1 1 1( ) conhull( )B a E− − ∩ − ≠ ∅ A . Since �A  is pure, � �A FHp is possible

only if � �F A� . In other words, any pure action that permits short-run

entry (such as ET  in the EV example) must be in every friendly set.

Definition 3: The support � �� 	! & of a friendly set �&  is the actions that
are played with positive probability:

� � � � � � � �� 	 [ \ � 	 �� ]! & A ! F A F &w � � �
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We say that a friendly set �&  is orthogonal to an unfriendly set �.  if
� � �� 	. ! &� � � .

Next we consider what signals may reveal about actions.

Definition 4: We say that a set of signals 9
)

is unambiguous for a set of

actions �.  if for all � � � � � �� � �A % Y 9 N . A .� �� � � �
))

 we have
� � � �� \ � 	 � \ � 	Y N A Y A AS S� ��) )

.

This is a strong condition: every action in �.  must assign a higher

probability to each signal in 9
)

 than any action not in �. .  A given set of

actions may not have signals that are unambiguous; in the case of the EV

example, %  is an unambiguous signal for the unfriendly set [ ]EE . 

Definition 5: An action �A  is vulnerable to temptation relative to a set of

signals 9
)

if there exist numbers � �S S �%  and an action IB such that

1) If � �A %� �� , Y 9�
))

, then 1 1 1 1( | , ) ( | , )y b a y a aρ ρ ρ− −≤ −) )
.

2) If � �A %� ��  and EY 9 9� �
)

then 1 1 1 1( | , ) (1 ) ( | , )y b a y a aρ ρ ρ− −≥ + % .

3) For all � �E %� �� , � � � � � �� � 	 � � 	U B E U A E� �p .

The action �B is called a temptation, and the parameters �S S%  are the

temptation bounds.

In other words, an action is vulnerable if it is possible to lower the

probability of all of the signals in 9
)

 by at least S  while increasing the

probability of each other signal by at least the multiple (1 )ρ+ % . Notice that

for an action to be vulnerable to a temptation, it must place at least weight

S  on each signal in 9
)

.  Notice also that the definition does not control the

payoff to the vulnerable action when the short-run players participate – the

temptation here is not to increase short-run payoff, but rather to decrease

the probability of the signals in 9
)

. In the EV example, the action ET  is

vulnerable relative to [ ]% . The temptation IB  is tt, which sends the
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probability of the signal %  to zero. (Since there is one other signal,

condition 2 of the definition is immediate.)

Notice that if an action �A  is vulnerable, it cannot be the case that

if � �CONHULL%B� ��  then � � �� \ � 	 � \ 	AS B S B� �¸ � ¸  ;  the distribution

of signals  must be in some way dependent on the long-run player’s action

if the short-run players do not exit. This is related to the notion of an

action being identified, as in Fudenberg, Levine and Maskin [1994]. Here

we allow the possibility that there are strategies such as ET  and TE  from

the EV example that are not identified, but do not allow complete lack of

identification unless the short-run players play in �%�  with probability

one.

Definition 6: A mixed action �B  for the long run player is enforceable if

there does not exist another action �B%  such that for all � �A %� �� ,
� � � � � �� � 	 � � 	U A U AB B� �p%  and for all � � �A ! %� � �� � ,
� � � � � �� � 	 � � 	U A U AB B� ��%  and � � � �� \ � 	 � \ � 	A AS B S B� �¸ � ¸% . When �B   is

not enforceable, we say that the action �B%   defeats  �B .

If an action is not enforceable then there is necessarily lack of

identification, since �B  and �B%  induce exactly the same distribution over

signals. The key point is that if the short-run players enter with positive

probability, the rational type cannot play an action that is not enforceable:

by switching to �B%  he would strictly increase his current payoff, while

maintaining the same distribution over signals, and so the same future

utility. Note also that a mixed action that assigns positive probability to

unenforceable actions is not enforceable: if �B  assigns probability p to

unenforceable action 1a , then �B  is defeated by the mixed action �eB

formed by replacing the probability on 1a  with the action �B%  that defeats
1a .

Definition 7: A participation game has an exit minmax if
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� � �

� �

� � �
� 	

� � �
� 	

MAX MAX � � 	

MIN MAX � � 	

% RANGE "

RANGE "

U

U

B B

B B

B B

B B

� �

�

�

� �

�

�

�

In other words, any exit strategy forces the long-run player to the

minmax payoff, where the relevant notion of minmax incorporates the

restriction that the action profile chosen by the short-run players must lie

in the range of B.7 It is convenient in this case to normalize the minmax

payoff to 0. We are now in a position to define a class of games we call

bad reputation games.  

Definition 8: A participation game is a bad reputation game if it has an

exit minmax,  there is an unfriendly set �. , a friendly set �&  that is

orthogonal to �. , and a set of signals 9
)

 that are unambiguous for �. ,

and such that every enforceable � �F &�  is vulnerable to temptation

relative to 9
)

.   The  signals 9
)

 are called the bad signals.

In particular, the EV game is a bad reputation game. We take the

friendly set to be [ ]ET , the unfriendly set to be [ ]EE  and the unfriendly

signals to be [ ]% . We have already observed that [ ]ET  is a friendly set

and [ ]EE  unfriendly. The two are obviously orthogonal, and [ ]%  is

unambiguous for [ ]EE .

In a bad reputation game, the relevant temptations are those

relative to 9
)

. For the remainder of the paper when we examine a bad

                                                
7  When there is a single short-run player this restriction collapses to the constraint of not
playing strictly dominated strategies, but when there are multiple short-run players it
involves additional restrictions.  It is clear that no equilibrium could give the long-run
player a lower payoff than the minmax level defined in definition 7.  Conversely, in
complete-information games, any long-run player payoff above this level can be
supported by a perfect Bayesian equilibrium if actions are identified and the public
observations have a “product structure” (Fudenberg and Levine [1994]). This is true in
particular when actions are publicly observed as shown in Fudenberg, Kreps and Maskin
[1990].
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reputation game and refer to a temptation, we will always mean relative to

the set 9
)

.

For any bad reputation game, it is useful to define several constants

describing the game. Recall that Z  is  the probability in the definition of

an unfriendly set and thatH  is  the scale factor in the definition of a

friendly set.  Since the friendly set is finite, we may define �K �  to be

the minimum, taken over elements of the friendly set, of the values ρ  in

the definition of temptation. Define

� � � � � �

� �

� � CONHULL� 	� � �

� \ � 	
MIN

� \ � 	N . A . % Y 9

Y N
R

Y AB

S B
S B

� �

�

� � � � �
� )

)

)
) .

Since  the friendly set is non-empty and orthogonal to the unfriendly set,

the denominator of this expression is well defined, and since 9
)

 is

unambiguous for the unfriendly set, �R � .

Also define

LOG� 	� LOGRI HK� �

which is positive, and

	 
�

LOG� 	
�

LOG �� 	
K

R

Z

Z Z
� �

� �
.

3. The Theorem

We now prove our main result: In a bad reputation game with a

sufficiently patient long-run player and likely enough unfriendly types, in

any Nash equilibrium, the long-run player gets approximately the exit

payoff. The proof uses several Lemmas proven in the Appendix.

We begin by describing what it means for unfriendly types to be

likely “enough.” Let �� 	&2  be the commitment types corresponding to

actions in the support of �& ; we will call these the friendly commitment

types. Let e2  be the unfriendly commitment types corresponding to the

unfriendly set �. .
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Definition 9: A bad reputation game has commitment size �F G  if

,

�

�

��	; =
��	; � 	=

��	; � 	=
&

&

G
N

N F
N

� ¬2 ­�2 b ­� ­� ­� 2� ®

)

where �G � .

This notion of commitment size places a bound on the prior

probability of friendly commitment types that depends on the prior

probability of the unfriendly types. Since G  is positive, the larger the prior

probability of 2
)

, the larger the probability of the friendly commitment

types is allowed to be. The hypothesis that the priors have commitment

size �F G  for sufficiently small F  is a key assumption driving our main

results.

Note that the assumption of a given commitment size does not

place any restrictions on the relative probabilities of commitment types. In

particular, let N%  be a fixed prior distribution over the commitment types,

and consider priors of the form MN% , where the remaining probability is

assigned to the rational type. Then the right-hand side of the inequality

defining commitment size depends only on N% , and not on M , while the

left-hand side has the form MN% . Hence for sufficiently small M  the

assumption of commitment size �F I  is satisfied. Note that the  EV

example  has commitment size �� I   since the only types are the rational

type and the commitment type who plays ee .

Define � � �MAX � 	 MIN[�� ]
A

5 U A U� � , and let

� �MIN MINF &S S
�

�% %  . Recall that � �MIN[ � 	 � \ ]& F A F &w � �  and that

H  is the scale factor in the definition of a friendly set.

Theorem 1: In a bad reputation game of commitment size

	 
� �� 	� ��	 �& IH I�  let �V be the supremum of the payoff of the rational

type in any Nash equilibrium. Then
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� 
 �

MIN MIN

� �
�� 	 �

K

V K 5E
S S

� ¬� ¬ ­­ ��b � � ­­ �� ­� ­­�� ® � ®% %
,

where 	 
 	 
�

�

 LOG ��	; = � OG �� 	K K L

R
N Z Z� � 2 � �

)
. In particular,

LIM �VEl b .

To prove this we use a series of Lemmas proven in the Appendix.  For the

rest of this section, we fix an arbitrary Nash equilibrium. Given this

equilibrium, let �� 	TV H  denote the expected continuation value to the

rational long-run player, and let �� 	� � 	T TH HN B�  be the posterior beliefs and

strategy of the short-run players at history 
T
H . Notice that the expected

present value to the rational long-run player conditional on a positive

probability public/private history pair must not depend on the private

history 1
th , or the rational long-run type would be failing to optimize. If �A

has positive probability under �� 	THB , and �A�  positive probability under
�� 	THB� , then we define

� � �� � 	 �� 	 � 	 � \ 	 � � 	T TY
V H A U A Y A V H YE E Sw � � � .

When mixed actions �B  and �B�  put weight only on such positive-

probability � ��A A� , it is convenient also to define �� � 	TV H B  in the natural

way.

Lemma 1: In a participation game, if 
T
H  is a positive probability history

in which Y 9�
))

 occurs in period T  and � �

�
� 	; � 	= ��

T
H & &N H
�

2 b  then
� �
�� 	 � ��	TH FB Hp  for some friendly �F .

In other words, when the prior on friendly types is sufficiently low, entry

can occur only if the rational type is playing a friendly strategy with

appreciable probability.  This is a consequence of the definition of friendly

strategies: entry requires that the overall strategy assigns some minimum
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probability to a friendly strategy, and if the friendly types are  unlikely,

then a non-negligible part of this probability must come from the play of

the rational type.

Recall that LOG� 	� LOGRI HK� � .

Lemma 2: In a bad reputation game, if 
T
H  is a positive probability

history,  and the signals in 
T
H  all lie in E9 9�

)
, then

a) At most

	 


	 
�

LOG ��	; =
�

LOG �� 	
K K

R

N

Z Z

2
� �

� �

)

of the signals are in 9
)

.

b) If the commitment size is � ��� ��	 	 �& IH I�  then
� �� 	; � 	= � ��	TH & &N H2 b .

Remark: The intuition for part a is simple, and closely related to the

argument about the deterministic evolution of beliefs in FL: The short-run

players exit if they think it is likely that entry will lead to the observation

of a bad signal.  Hence each observation of a bad signal is a “surprise” that

increases the posterior probability of the bad type by (at least) a fixed ratio

greater than 1, so along a history that consists of only bad signals and exit

signals, the posterior probability of the bad type eventually gets high

enough that all subsequent short-run players exit.   This argument holds no

matter what other types have positive probability, and it is the only part of

this lemma that would be needed when there are only two types, one

rational and one bad, as in EV.

However, as we will show by example below, we cannot expect

the “bad reputation” result to hold when there is sufficiently high
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probability of the Stackelberg type. Part b of the lemma says that if the

initial probability of the friendly types is sufficiently low compared to the

prior probability of the bad types, then along any history on the path of

play which consists only of exit outcomes and bad outcomes, the

probability of the Stackelberg type remains low. The intuition for this

result is that because of the assumption that the unfriendly  and friendly

sets are orthogonal,   1r > , so each observation of a bad signal not only

increases the probability of the bad type, it increases the relative

probability of this type compared to any friendly commitment type, and

this bounds the rate of growth of the probability of friendly types.8

Define

�

�

�
�

� � 	
� OTHERWISE

5 Y 9
U Y SS

£� ¬¦ ­�¦ � �­�¦ ­�¦� ®� ¤¦¦¦¦¥

)

%%

�
�

� � 	
OTHERWISE

Y 9
Y

E
SE S
E

£¦ � �¦¦¦� ¤¦¦¦¦¥

)

%%

and � �� 	 [ \ � \ � 	� � 		 �]E

T T T
9 H Y 9 9 Y H HS B B�� � � �

)
.

Lemma 3: In a participation game if � �� 	 CONHULL� 	TH %B� �� , or
� �� 	 CONHULL

T
H %B� ��  and � �

�
� 	

T
H CFB p  for some �C �  and vulnerable

friendly action �F with  temptation bounds  S , ρ%  then

� � �
� 	� 	 MAX �� 	 � � 	 � � 	 � � 	

TT Y 9 H TV H U Y Y V H YE S E S�b � �% % .

Remark: This lemma says that if the rational type is playing a friendly

strategy, his payoff is bounded by a one-period gain and the continuation

payoff conditional on a bad signal.  This follows from the assumption that

for every entry-inducing strategy it is possible to lower the probability of

                                                
8 If there were a type with a history-dependent strategy, this part of the lemma would
need to be modified.
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all of the signals in 9
)

 by at least K  while increasing the probability of

each other signal by at least the multiple MINS% . The fact that the rational

type chooses not to reduce the probability of the bad signal means that the

continuation payoff after the bad signal cannot be much worse than the

overall continuation payoff.

Proof of Theorem 1:  Given an equilibrium, we begin by constructing a

positive probability sequence of histories beginning with an initial history
at date 0. Given 

T
H  already constructed, we define 

� �
� � 	

TT T
H H Y
� �

�  where

� �
� � 	ARGMAX �� 	 � � 	 � � 	 � � 	

TT Y 9 H TY U Y Y V H YE S E S� �� � �% % .

We know that ( )tY h  is not empty because either 1( ) conhull th Eα −1 −∈ , or
1( ) conhull th Eα −1 −∉ . This latter case implies that � �� 	

T
H FB Hp  for some

friendly 1f , and since only enforceable actions can be played in

equilibrium, this 1f  must be vulnerable to temptation,

so 1 1 1 1| ( ), ( )) | , ( )) 0t t tY h h Y f hρ α α γρ α− −( ≥ ( >
) )

.

Now apply Lemma 2 to conclude that for each TH  at most 
K  of

the signals are in 9
)

and � �� 	; � 	= � �TH & &N H2 b .  Consider an th  such

that � �� 	 CONHULL
T
H %B� �� . From the definition of a friendly action, we

know that � �� 	
T
H FB Hp  for some friendly 1f , so

� �� 	; � 	= ��
T
H & &N H2 b  and Lemma 1 implies that � �

�
� 	 ��

T
H FB Hp . Now

apply Lemma 3 to conclude that for each TH

.

� � �
� MIN � MIN �� 	 �� 	 � � 	 � � 	 � 	T T T TV H U Y Y V HE S E S� � �b � �% %

Since � �� 	
T

V H 5b , it follows that

� �
� MIN MIN

�
��	 �� 	 � � 	 � � 	T

T
T

V Y U Y
U U

E E S Sd

�
�

b � 1� % % .

Since �
MIN� � 	 �EU Y S �% , and  TY 9�

)
 at most 
K  times, this gives the

desired bound. Notice that the fact that �
MIN� � 	 �EU Y S �%  follows from the

assumption of exit minmax: it is here that we make use of the fact that exit

gives the long-run player no more than the minmax.

ã
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4. Examples

We now consider a number of examples to illustrate the scope of

Theorem 1, and also the extent to which the assumptions are necessary as

well as sufficient.  To begin, Example 4.1 illustrates what happens when

the prior puts too much weight on some committed types for the

hypothesis of commitment size � ��&H  to be satisfied. Example 4.2

shows that the EV conclusion is not robust to the addition of an observed

action that makes the short-run players want to enter.   Example 4.3

examines participation games that are not bad reputation games, and

example 4.4 illustrates the role of the exit-minmax assumption.  In all of

the examples but 4.1, we assume that the hypothesis of commitment size
� ��&H  is satisfied, and investigate whether the game is a bad reputation

game. The following section considers a class of bad-reputation principal-

agent games.

 4.1: EV With Stackelberg Type

We have relaxed the original assumptions of EV in a number of

ways. One important extension is that we allow for positive probabilities

of all commitment types. In particular, we allow a positive probability of a

“Stackelberg type” committed to the honest strategy ET , which is the

optimal commitment. However, a hypothesis of the theorem is that the

prior satisfy the commitment size assumption.

Here we illustrate that assumption in the context of the EV

example. Suppose in particular that there are 3 types, rational, bad, and

Stackelberg.  The set of possible priors can be represented by the simplex

in figure 2.
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Figure 2

When the prior falls into the region A, the probability of the bad type is

too high, and the short run players refuse to enter regardless of the

behavior of the rational type.  Bad reputation arises because the long-run

player tries to prevent the posterior from moving into this region.  In EV

the prior assigned probability zero to the Stackelberg type.  Thus the prior

and all posteriors on the equilibrium path belong to the lower boundary of

the simplex.  When there is a sufficiently high probability of the

Stackelberg type, the short-run players will enter regardless of the

behavior of the rational type; this is region B.  Note that the boundaries of

these regions intersect on the right edge of the simplex: this point

represents the mixture between ee and et which makes the short-run

player indifferent between entry and exit.
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When the prior is in region A, there will be no entry and the long-

run player obtains the minmax payoff of zero.  On the other hand, when

the prior is in region B, there is a Nash (and indeed sequential) equilibrium

in which the long run player receives the best commitment payoff, which

is “ u ” in the notation of EV. The equilibrium is constructed as follows.

Consider the game in which the posterior probability of the bad

type is zero. In this game there exists a sequential equilibrium in which the

long-run player gets U . Suppose that we assume that this is the

continuation payoff in the original game in any subform in which the long-

run player played t at least once in the past. A sequential equilibrium of

this modified game is clearly a sequential equilibrium of the original

game, and by standard arguments, this modified game has a sequential

equilibrium. How much does the rational long-run player get in this

sequential equilibrium? One option is to play tt in the first period. Since

the short-run player is entering regardless, this means that beginning in

period 2 the rational type gets U . In the first period he gets � 	��U W� .

Hence in equilibrium he gets at least �� 	� 	��U W UE E� � � , which

converges to U  as �E l .

Our theorem is about the set of equilibrium payoffs for priors

outside of these two regions.  The theorem states that there is a curve,

whose shape is represented in the figure, such that when the prior falls

below this curve (region C), the set of equilibrium payoffs for the long-run

player is bounded above by a value that approaches the minmax value as

the discount factor converges to 1.  The diagram shows that the left

boundary of the simplex is an asymptote for this curve as it approaches the

complete information prior (i.e. 0(0)( ) 1µ θ = ) in the lower left corner.

This illustrates the important aspect of the commitment size restriction: it

is satisfied for  “almost all” sufficiently small perturbations of the

complete information limit.
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  4.2: Adding an Observed Action to EV

We now modify the EV game by adding a new observable action

"g" for the long-run player called “give away money.” This action induces

the short-run players to participate ( 1( ) conhull( )B g E−∩ = ∅ ) so it must

be in every friendly set. Since the action is observable, it is not vulnerable

to temptation with respect to any signals that are unambiguous for the

unfriendly actions, so this is not a bad reputation game.   Moreover, even

without a Stackelberg type the EV conclusion fails in this game: there is

an equilibrium where the rational type plays g  in the first period. This

reveals that he is the rational type, and there is entry in all subsequent

periods, while playing anything else reveals him to be the bad type so that

all subsequent short run players exit.  Thus the assumption that every

friendly action is vulnerable to temptation is seen to be both important and

economically restrictive.

4.3. Orthogonality Issues

Suppose friendly actions send the bad signal by putting positive

weight on unfriendly actions. An important class of games in which this is

the case are those in which, conditional on entry, the long-run players’

actions are observed. In this case the bad signals correspond to unfriendly

actions, and bad signals can only have positive probability when the

unfriendly action is played with positive probability. Moreover, in some

games, the only friendly strategies involve randomizing in this way.

Proposition 1: If for every friendly set and unfriendly set there is a

friendly action whose restriction to the complement of the unfriendly set

has probability 0 of generating a signal that is unambiguous for the

unfriendly set, the game is not a bad reputation game.

 Proof: The assumption that the friendly and unfriendly sets are orthogonal

is violated.

ã



23

To see that this makes a difference, consider the following two-

person game with observed actions:

L M R

U 0,4 1,3 0,0

D 0,0 1,3 0,4

Figure 3

where L and R  correspond to exit and M to entry.9 In this case entry can

be induced only by mixing with probability of U between ¼ and ¾.

 We will first explain why the bad reputation theorem does not hold

here, and then show that its conclusion fails as well.

Both U and D are unfriendly,  and we need to choose either one or

both of them to be in the unfriendly set. If we include both actions in the

unfriendly set, then it is impossible to find an orthogonal friendly set. If

we include only one of the actions in the unfriendly set, and chose a

friendly set that includes mixed actions, then orthogonality is again

violated, while if  we  specify that the friendly set is the singleton

corresponding to the other action, then the friendly action is not vulnerable

to temptation.

The conclusion of the theorem fails here as well:  suppose that the

only commitment  type with positive probability is D, and that the

probability of the bad type is less than ¼.  Consider the following

strategies:  For any current probability � 	; =
T
H $N  less than ¼ the rational

type mixes so that the overall probability of D is exactly ¾. (In particular,

this is true when the long-run player has been revealed to be rational, so

that � 	; = �
T
H $N � .) The short-run player always enters. If 5 is observed,

                                                
9 In this example, the short-run player has several exit actions, and his payoff depends on
the long-run player’s action. This is a necessary feature of two-player games where the
only friendly strategies are mixed, but it is not necessary in three-player games – think of
a game where player 3 has veto power, 3 only plays In if 2 plays M, and 2’s payoffs to M
are as in the payoff matrix of this example.
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the type is revealed to be rational. If $  is observed, the probability of the

bad type increases by a factor of ��� , so when it first exceeds ¼ it is at

most equal to 1/3. At this point, the rational type may reveal himself by

playing U with probability 1, while preserving the incentive of the short-

run player to enter.   It is easy to see that this is a Nash equilibrium for any

discount factor of the long-run player, yet in this equilibrium, the long-run

player's payoff is 1.

We say that an action 
F  is sufficient for entry if, for some

�B � , � 
FB Bp  implies that there is � �� 	"B B�  with positive

probability of entry. In the example above the friendly action is sufficient

for entry, and sends the bad signal only because of mixing onto the

unfriendly action. That is, the sufficient action mixes between a pure

action that does not send the bad signal, and an unfriendly action. If there

is a friendly action that does not send the bad signal at all, then  the game

is not a bad reputation game since such an action cannot admit a

temptation. More strongly, if an action sufficient for entry does not send

the bad signal at all, then a patient rational player can do almost as well as

in the absence of bad reputation effects.

Proposition 2: If there is an action 
F  that is sufficient for entry and

does not send any bad signal, the only commitment  types are unfriendly

types, and the probability of commitment types is sufficiently low, then as

�E l  there are sequential equilibrium payoffs for the rational type that

approach the highest sequential equilibrium payoff without committed

types.

Proof:  Suppose that the prior probability of committed types is

sufficiently low that the short-run players will enter when the rational type

plays 
F . Then it is a sequential equilibrium for the rational type to play


F  in the initial period with entry by the short-run players. Subsequently,

if a bad signal was observed, the short-run players stay out. If a bad signal
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was not observed, the probability of committed types is zero, and the

continuation equilibrium is the best possible without committed types. On

the equilibrium path, the rational type payoff clearly approaches that of the

highest payoff without committed types, since he gets that amount

beginning in period 2, and payoffs in period 1 are bounded below.

ã

4.4:  Exit Minmax

In participation games, reputation plays a role because the short

run players will guard against unfriendly types by exiting.  This is “bad”

for the long-run player only if exit is worse than the payoff he otherwise

would receive, and the exit minmax assumption ensures that this is the

case.

In participation games without exit minmax, there are outcomes

that are even worse for the long-run player than obtaining a bad

reputation.  In this case it is possible that there exist equilibria in which the

long-run player is deterred from his temptation to avoid exit by the even

stronger threat of a minmaxing punishment.  For example consider the

game in Figure 4, where the first matrix represents the payoffs, and the

second represents the distribution of signals conditional on entry.

)N �/UT �/UT g b r

F 1,1 0,0 -2,0 F ½ ½ 0

U 1,0 0,1 -2,0 U 0 1 0

T 1,0 0,0 -2,1 T ½ 0 ½

Figure 4

This game is a participation game with exit actions 1Out  and 2Out ,

unfriendly action U  and friendly action F  vulnerable to temptation T .

There are only two types, the rational type and a bad type that plays U.

Exit minmax fails because the maximum exit payoff exceeds the minmax

payoff, and we claim that there are good equilibria in this game because
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the threat of exiting with 2Out  is worse than the fear of obtaining a

reputation for playing U  which would only lead to exit with 1Out .

To see this, consider the following strategy profile.  The rational

type plays F at every history unless the signal r  has appeared at least

once; in that case the rational type plays T . The short run player plays

2Out  if a signal of r  has ever appeared. Otherwise, the short run player

plays 1Out  if the posterior probability of the bad type exceeds ½ and In if

this probability is less than ½.    Observations of r are interpreted as

signals that the long-run player is rational.

Since 2( , )T Out  is a Nash equilibrium of the stage game, the

continuation play after a signal of R  is a sequential equilibrium.   When r

has not appeared, the long run player optimally plays F .  Playing U gives

no short-run gain and hastens the onset of 1Out , and playing T shifts

probability from the bad signal b to the signal r  which is even worse.10

The short-run players are playing short-run best responses.  In this

equilibrium, the long run player does not give in to the temptation to play

T .  As a result, with positive probability, the short-run players never

become sufficiently pessimistic to begin exiting, and so the long run

player achieves his best payoff.

In the above example there were two exit actions.  The next

proposition states that when there is only one exit action and the long-run

player’s exit payoff is independent of his own action, the worst Nash

equilibrium payoff for the long run player is (not much worse than) his

exit payoff.  Note that this condition is satisfied in the principal-agent

applications discussed in section 5.  The proposition is a consequence of

FL (1992).

Proposition 3: Consider a participation game with a single short-run

player and a unique exit action.  If

                                                
10 Playing T gives probability ½ of shifting to the absorbing state where payoffs are –2.
Playing the equilibrium action of F has probability at most ½ of switching to the state
where payoffs are 0.
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 (i)  there exists a pure  action11 1â ,  such that 1ˆ( ) { }B a exit= ,

(ii) the prior distribution assigns positive probability to a type that

is committed to 1â ,

and

(iii) the long-run player’s action is identified conditional on entry

then there is a lower bound on the payoffs to the rational type which

converges to the exit payoff,  as the discount factor approaches 1.

Proof:  FL (1992) established12 that for any game there exists a lower

bound ( )b δ  on the set of Nash equilibrium payoffs for the rational type,

and that as 1δ → ,  ( )b δ converges to a limit that is at least

1 2 1

1 1 2

( )
max min ( , )

a C B a
u

α
α α

∈ ∈ %

where 1( )B a% is the set of self-confirmed best-responses to for the short-run

player to 1a , and C is the set of actions corresponding to the support of the

prior distribution over commitment types. Because the long-run player’s

action is identified conditional on entry and 1ˆ( ) { }B a exit= , we have
1ˆ( ) { }B a exit=% , and because the type that plays 1â  has positive prior

probability, the FL (1992) bound is at least 1 1ˆ( , )u a exit .

ã

For games satisfying the conditions of the proposition, the exit

minmax condition is not necessary for bad reputation.  The worst

                                                
11 The assumption that this is  a pure action is not necessary here;   we state the result this
way for consistency with the rest of the paper.

12  The statement of the FL theorem  requires that commitment types including mixing
types have full support, in which case the set C  is the space of all (mixed) actions, but
the proof given there also shows that the version of the lower bound given here is correct.
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equilibrium continuation value that the short-run players could inflict is

arbitrarily close to the exit payoff and hence a patient long run player

could not be deterred from his tempation to avoid a bad reputation.

5. Poor Reputation Games and Strong Temptations

Recall that an action is vulnerable to a temptation if when the

short-run players participate, the temptation lowers the probability of all

bad signals, and increases the probability of all others.  In this case the bad

reputation result requires the exit minmax condition, as demonstrated by

the example in Section 4.4. Notice, however, that in the example the

relative probability of g and r is changed by the temptation. If the

temptation satisfies the stronger property that the relative probability of

the other signals remains constant, then we can weaken the assumption of

exit minmax. In this section we develop this result, and give an application

to games with two actions.

First we give a formal definition of a strong temptation:

Definition 10: An action �A  is vulnerable to a strong temptation relative to

a set of signals 9
)

if there exists a number �S �  and an action IB such

that

1) If � �A %� �� , Y 9�
))

 then 1 1 1 1( | , ) ( | , )y b a y a aρ ρ ρ− −≤ −) )

2) If � �A %� ��  and � � EY Y 9 9� �
)

 then 
1 1 1 1

1 1 1 1

( | , ) ( | , )

( ’| , ) ( ’| , )

y b a y a a

y b a y a a

ρ ρ
ρ ρ

− −

− −= .

3) For all � �E %� �� , � � � � � �� � 	 � � 	U B E U A E� �p .

The action IB is called a strong temptation.

The first and third parts of this definition are the same as in the

definition of a temptation; the additional strength comes from part (2),

which requires that the temptation not merely increase the probability of

all of the good signals, but leave their relative probabilities unchanged.
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Note that strong temptation is equivalent to temptation in games in which

the set < � 	E9 9 9�
)

 has a single element, for example games in which

there are only two entry signals; in particular applies when the game of

Section 4.4 is modified so that the only signals when entry occurs are g

and r.  

This condition lets us prove an analog of  lemma 3:  and E :

Lemma 4: In a participation game, if � �� 	 CONHULL
T
H %B� �� or

� �� 	 CONHULL
T
H %B� ��  and � �

�
� 	

T
H FB Hp  for some �H �  and friendly

action �F   that is vulnerable to a strong temptation  size S , then

� � � �
� 	� 	 MAX �� 	 � � 	 � � 	 � � 	

TT Y 9 H TV H U Y Y V H YE S E S E�b � � ,

where  
�

�

�

�
� ÅIFÅ

� � 	

e ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅOTHERWISEÅÅÅ

5 Y 9
9U Y

U

SS

£� ¬¦ ­�¦ ­� � �¦ ­�¦¦ ­­�� � ®¤¦¦¦¦¦¥
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The proof, which is in the Appendix, follows that of lemma 3, but takes

advantage of the fact that the long-run player’s continuation expected

value, conditional on a friendly action, a non-exit profile, and a signal not

in E9 9�
)

, is the same for the equilibrium action and the strong

temptation �B .

Define

� � �

� � � �

� CONHULL� 	 IMAGE� 	
e MAX � � 	

A % "
U U A

B

B
� �

�

� �
�

This is a bound on the long-run player’s payoff when the short-run players

play exit actions that are a best response to some (possibly incorrect)

conjectures.
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Definition 11: A participation game is a poor reputation game if there is

an unfriendly set �. , a friendly set �&  that is orthogonal to �. , and a

set of signals 9
)

 that are unambiguous for �. , and such that every

enforceable � �F &�  is vulnerable to strong temptation relative to 9
)

.

The next result says that poor reputation games have much the

same consequences as bad reputation games.

Theorem 2: In a poor reputation game of commitment size    � ���&H I ,

 �

��
eLIM V U

El
b .

With lemma 4 in hand, the proof of Theorem 2 is very close to that of

Theorem 1, and is omitted.  Notice that it is possible for a game to be both

a bad reputation game and a poor reputation game, and, since strong and

ordinary temptation are equivalent when < � 	E9 9 9�
)

 is a singleton, the

two are necessarily equivalent in this case. The original EV game is such

an example. Notice also that example 4.4 in which we construct a non-bad

equilibrium has three signals rather than two. With two signals, the game

would still fail the exit minmax condition and fail to be a bad reputation

game, but it would still be a poor reputation game, and would not admit a

good equilibrium. Finally, observe the proofs of both Lemma 3 and 4 can

be generalized, so that the difference between the best equilibrium payoff

(in the limit as �E l ) and the most favorable outcome with exit is

bounded by a scale factor times the the product of two terms, namely (i)

the change in relative probabilities induced by a temptation and (ii) the

excess of the best result given exit over the minmax. In particular, the

bound on the difference is continuous in the each of these terms, so that if

either is small the best equilibrium payoff for a patient long-run player can

only exceed the best exit payoff by a small amount.

We turn now to the special case of two-player participation games

where there is only one signal in 9
)

and short-run player payoffs depend

only on the signal. We focus on the case where one signal in

< � 	E9 9 9�
)

, so that bad reputation implies poor reputation. We show
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that these games are not poor reputation games (and by implication not

bad reputation games either).

Proposition 4: In a two-player participation game suppose there are only

two “entry signals”  (that is two elements of eY Y− ), that the short-run

player has only two actions, and that the short-run player’s realized

payoff is determined by the signal.  Then the game is not a poor reputation

game.

Proof: Notice that since the short-run player has only two actions, they

correspond to “entry” and “exit” respectively. Consequently, the short-run

player payoff conditional on entry depends only on the distribution over

signals induced by the long-run player action. If we normalize the short-

run player’s payoff function so that his exit payoff is 0, and suppose that

both the friendly and unfriendly sets are non-empty, then one signal yields

a  negative payoff and the other signal’s payoff is positive; call these the

“bad” and “good” signals respectively. If the game has no non-empty

unfriendly set, it is not a poor reputation game;  so we can suppose there is

at  least one non-empty unfriendlly set. Any unfriendly set �!
)

 consists of

actions with a sufficiently high probability of sending the bad signal, and

the bad signal (as a singleton set) is the only set 9
)

that can be

unambiguous for �!
)

. Let �F  be the friendly action in the (finite) friendly

set that maximizes the short-run player's payoff. The payoff to this action,

conditional on it not generating the bad signal with the negative payoff, is

positive, and since any temptation relative to 9
)

must reduce the

probability of the bad signal, a temptation must give the short-run player a

higher payoff than this “friendliest” friendly action. For this to be true,

there must be a pure strategy �eB  that gives the short-run player at least this

same utility. Clearly �eB  induces entry, and since it is a pure strategy, it

must be in the friendly set. This contradicts the fact that �F  was assumed

to maximize short-run player utility in the friendly set.

ã
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We believe that the assumptions of this proposition imply that there is an

equilibrium where the rational type’s payoff is bounded below by a

positive number as �E l  but we have not been able to show this.

6. Principal-Agent Entry Games

In this section we consider a class of applications which have the

nature of an agency relationship.  The long- run player (the agent) takes an

action that affects the payoffs of both a principal (that period’s short run

player) and herself. When the principal’s and the agent’s preferences

differ over the action set, and the action is not perfectly observed, we have

a classical problem of incentives. A repeated interaction can often

substitute for explicit contracts in alleviating this incentive problem, as

the long run agent’s objective of establishing a good reputation can

provide an incentive for efficient behavior.  In this section we classify

agency environments in which the repeated interaction has the opposite

effect:   Bad reputation can intensify rather than mitigate the agent’s

incentive problem.

There is a single short-run player (the principal) whose only choice

is whether to enter or to exit.  If the principal enters, then the long-run

player (the agent) chooses a payoff-relevant action, otherwise both players

receive a reservation value which is normalized to zero.   Formally
2 { , }A exit enter=  and 2 1( , ) 0u a exit = for each 1a ∈ 1A .  For simplicity we

write 2 1 2 1( , ) ( )u a enter u a= .  We assume there is an action 1a ∈ 1A  for

which 1 1( ) 0u a ≥ , so that the exit minmax assumption is satisfied.  (Note

that this assumption will hold whenever the principal has the option to

refuse to participate.  Note also that from Theorem 2 this assumption is not

necessary for games with two signals.)

For these games we can immediately identify the relevant friendly

set.  Define
1 1 1 2 1{ : ( ) }F a A u a= ∈ ≥ 0

which is the set of pure friendly actions.  We know that 1 1ˆF F⊂  for any

friendly set 1F̂ .  In fact, within the class of principal-agent games, any bad
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reputation game is a bad reputation game with friendly set 1F .  To see this

note that if 1 1( ) 0Fα =  then 2 1( ) 0u α < , i.e. exit is the unique best reply to
1α .  Thus 1F  is itself a friendly set.13  Furthermore 1 1ˆsupp( ) supp( )F F⊂

so that orthogonality is preserved, and if every 1 1ˆf F∈ is vulnerable then

every 1 1f F∈  is vulnerable.  Thus we can restrict attention to 1F .

To show that these are bad reputation games, it suffices to find an

unfriendly set orthogonal to �&  with unambiguous signals, such that every

enforceable point in �&  is vulnerable to a temptation.

6.1 Games with Hidden Information

In these games the principal has some private information that is

relevant for a decision affecting both principal and agent.  Each period,

nature draws a state ω ∈ Ω  independently from a probability distribution

that we denote by p.14 The agent privately observes the state and then

selects a decision d ∈  D .  Conditional on the realized state and the

decision of the agent, a signal z ∈  Z  is drawn from the distribution

( | , )m z dω  where we assume that ( | , ) 0m z dω >  for each , ,  and z dω .

Future short run players observe both z  and the decision d .  Each player

j  has state-dependent utility function ( , , )j d zπ ω  and evaluates stage

payoffs according to expected utility with respect to the distributions ( )p ω
and ( | , )m z dω .

To apply Theorem 1, we find conditions under which this defines a

bad reputation game.  The set of actions 1A  for the long-run player is the

set of maps 1 :a DΩ → .  The stage-game utility function is

1 1( ) ( ) ( | , ) ( , ( ), )j j

z Z

u a p m z d a z
ω

ω ω π ω ω
∈Ω ∈

= ∑ ∑ .

Finally eY Y Z D− = × and

                                                
13 When there is more than one principal, this conclusion does not follow, and mixed
friendly sets will generally have to be considered.  See the discussion in section 4.3 and
footnote 7.
14 This is a slight abuse of notation, as p also denotes the probability distribution over
types in the incomplete-information games, but no ambiguity should result.
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1

1

{ : ( ) }

(( , ) | , ) ( ) ( | , )
a d

z d a entry p m z d
ω ω

ρ ω ω
=

= ∑

Proposition  5: The hidden information game is a bad reputation game if

there exists a decision d  such that 1a ∈ 1F  implies ∅ ≠ 1{ : ( ) }a dω ω = ≠

Ω .

Proof:  Let � 	A D  denote the constant action that chooses D  regardless of

the state X , and take [ � 	]! A D�
)

. Because ( | , ) 0m z dω > , the set of

signals { }dY Z d= ×  is unambiguous for A
)

. If  �A  is friendly, then

1{ : ( ) }d a dω ωΩ = = ≠ ∅ . For each B Dv  let �B  be the action defined by
�� 	B BX �  and � �� 	 � 	�

D
B AX X X� � 8 .  Then any mixed strategy that

puts positive weight on every �B  will decrease the probability of  signals

in  dY  and increase the probability of all other non-exit signals, so �A  is

vulnerable to such mixed strategy.

ã

Many examples can be found that meet the condition of the proposition,

and the  EV example is a special case;  the theorem extends the example to

allow for public signals z  about the short run players’ realized payoffs..

For illustration, consider the following extension of the EV example.  If

the correct repair is chosen, then the car works, otherwise it does not, and

this outcome is observed by future motorists.  Proposition 5 implies that as

long as the mechanic’s diagnosis is not perfect, the game is a bad

reputation game.  Formally, let { , }Z work not= .  Suppose that for each

motorist (independently and with equal probability), nature selects a

necessary repair from the set { , }tuneup engine .  Conditional on this, the

mechanic observes state [ � ]TUNEUP ENGINEX �  representing the

mechanic’s diagnosis, and selects a repair [ � ]D TUNEUP ENGINE� .

Suppose that with positive probability (but as small as desired) X is

incorrect, i.e. not equal to the repair that is truly necessary.  Then it

follows that ( | , ) 0m z dω >  for each , ,  and z dω .  We can now define the

motorists’ payoff as a function of , ,  and z dω  to yield expected payoff

function 2 1( )u a  identical to the original EV stage-game payoffs.  Thus the
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friendly set (which is defined only in terms of the short-run player’s

payoffs) from EV remains so, and we can apply Proposition 5 using the

decision d engine=  to show that the modified game is a bad reputation

game.

The strength of Proposition 5 raises the question of whether

people typically do employ  advisors, and if so, why they do.  One set of

responses is that in some cases the advisor is not really used for advice,

but is either employed as a costly signal, or is hired not for the advice per

se  but for its implementation. For example, a country might know the

advice that the IMF will recommend, but find it useful

to delegate the implementation of the advice so that it can avoid taking full

responsibility for the resulting hardships.

A second set of responses explains why Proposition 5 does

not apply even though the advisor really is relied on for advice. Some

advice games aren't participation games because the advisor can

 make "speeches" even without any "customers;" this may describe

political advisors and investment columnists. Alternatively, perhaps some

of the short-run players are "naïve" and enter  even when entry is not a

 best response to equilibrium play. These sorts of "noise players" ensure

that the long player can build a track record; formally, the game would not

once again not be a participation game because the long-run player's

action would always have some effect on the expected  distribution  of

signals given the play of the "rational" short-run players.

The third  type of response builds on the fact that Theorems 1 and

2 do not pin down play, as opposed to payoffs, and are most powerful for

discount factors that are close to 1. Thus, our results would be consistent

with a game where the rational type played "honestly" (or Stackelberg) for

a long time for a given fixed discount factor.
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6.2 Rules Rather than Discretion

We can build on the analysis of hidden information games to

discuss the emergence of rules over discretion in agency relationships.  To

motivate the idea, consider college admissions.  The university (the long-

run agent) receives an application.  The applicant is described by a set of

characteristics ω  ∈  Ω = oΩ ×  nΩ .  Some ( oΩ ) of these characteristics

are publicly observable  (for example race and SAT scores) and others

( nΩ ) are observed only by the university. This may include information

that is truly private (like an interview) or information that require the

expertise of the agent to interpret (for example, the strength of the

applicant’s high school.)  A pure strategy for the university is a map from

characteristics to the decision space D= (admit, deny). The probability of

drawing characteristics X  is � 	 �P X � . The university’s preferences over

applicants are summarized by the payoff function 1( )π ω  if the student is

admitted, and 2  if the student is denied.

The short-run principal, player 2, is the state governor who chooses

between allowing the university discretion in admissions, or imposing a

rigid admission rule based on observable characteristics.  There are many

possible rules that the principal might use, but since she is a short-run

player we can restrict attention to the rule that maximizes the principal’s

expected short-run payoff. This rule is a mapping : og DΩ → that

mandates admission if and only if 1( )o g admitω −∈ .  The imposition of a

rigid admission rule represents “exit.”   The public signal at date t is
2( , , )o

t t ty d a ω= , where 
T
D $� is the date-t decision, and any signal with

2
ta rule= is an exit signal. The governor shares the same preferences as

the university, receiving a utility of �� 	Q X  for admits and 2  for rejects.

Because the university can always implement  g its own, exit

minmax condition is satisfied.   In order for discretion to improve upon,  g

for some set of verifiable characteristics, the admission decision should

depend on the unverifiable characteristics.  That is 1 1a F∈  only if
1( , )o na admitω ω = and 1 ˆ( , )o na denyω ω =  for some nω , ˆ nω and oω .  Then
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by essentially the same argument as in Proposition 5, the game is a bad

reputation game with unfriendly set
1 1{ : ( , ) }oa a denyω ⋅ =

For example, oω may be racial characteristics, and the types associated

with this unfriendly set represents the governor’s fear that the university

admissions are biased against members of the race in question.

6. 2. Games with Hidden Actions

On the other hand, agency games with hidden actions, or moral

hazard, tend not to be susceptible to bad reputation effects.  The problem

is that the second part of the definition of temptation typically fails

because deviations will generally lower the probability of some good

signals.  However, a special case in which a hidden action game is a bad

reputation game occurs when there is only one short-run player and only

two signals.

The following proposition is an immediate application of the

definition of a bad reputation game in this setting.

Proposition 6: Suppose in a principal-agent entry game that

{ , }e L HY Y y y− =  and that �A)  strictly maximizes the probability of ,Y

with � �� 	 �U A �)
. If for every friendly enforceable �A  there is a �B  such

that � �� \ 	 � \ 	, ,Y B Y AS S�  the game is a bad reputation game.

To apply this result, suppose that the agent chooses an action from

a one-dimensional set ordered so that higher actions are more likely to

give rise to the high signal.  Specifically, we let 1 1 1{ ,..., }A a a= ⊂ ℜ  and
1( | )Hy aρ  are an increasing function of 1a . We assume that 2 1( )u a  is

concave so that 1F  is an interval.  Whether or not the game is a bad

reputation game then depends on whether the principal prefers extreme or

interior actions.

Proposition 7: The hidden action game with two non-exit signals is a bad

reputation game if and only if 1 1 1 1{ , }a a A F⊂ − .
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Proof:   Suppose 1 1 1 1{ , }a a A F⊂ − .  Then � �A A�)
 and every friendly

action � �A A� )
 is vulnerable to the (unfriendly) temptation �A .  On the

other hand if, 1 1a F∈ , then the only candidate set of bad signals is Y
)

=

{ }Ly , meaning that �A is not vulnerable to a temptation. In case � �A &� ,

we simply reverse the role of the signals.

ã

In these two-signal games, as in the hidden information games,

short-run player utility depends on aspects of the long-run player strategy

that is unobserved by subsequent short-run players. Proposition 4 shows

that this must be the case for a game with two entry signals to be a bad-

reputation game.
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7. Mulilateral Entry Games

We now consider games with multiple principals. In these

“mutilateral entry” games, the short-run players choose only whether to

participate or exit.  If any short-run player chooses to exit, that player

receives the reservation payoff of 0, but play between the agent and other

principals is unaffected. That is, { , }jA exit enter= for each 1j > , and the

unique exit profile is 1 ( ,..., )ea exit exit− ≡ .  The payoff of the short-run

players who enter depends only on the action of the principal, and not on

how many  other short-run players chose to enter; to simplify notation we

denote this “entry payoff” as �� 	JU A .  If all principals exit, the long-run

player’s payoff is 0; if m of them choose to enter, the long-run player’s

payoff is 1 1( , )u a m . We assume that the agent cannot be forced to

participate, so that there exists an action 1a  such that for all m,
1 1( , ) 0u a m ≥ .

We do not require that 1 1( , )u a m  is linear in m, so this class of

games includes those in which the agent has the opportunity to take a

costly action prior to the entry decision of the short-run players. Consider

for example, a game in which the long-run player is an expert advisor, and

the decision of the short-run player is whether or not to pay the long-run

player for advice. One example of this is the EV example of car repairs,

where the long-run player is able to determine the type of repair the car

needs. Other examples include stockbrokers advising clients on portfolio

choices, doctors advising patients on treatments, and the IMF advising

countries on economic policies. In the EV example, the private

information emerges as a consequence of the decision of the short-run

player to consult the long-run player, so the advice is specific to the short-

run player. In another cases, at least some part of the information is not

specific to the short-run player.  The advisor receives a report about the
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general desirability of various actions, and then meets with each of his n

short-run customers, possibly learning about their individual needs.  Here

the advisor receives the signal regardless of whether or not he is consulted

by any particular short-run player, and he may incur costs ahead of time

for doing so. That is, the long-run player’s payoff may depend on his

action even if the short-run players decline to participate.

 Costs incurred on exit are consistent with a bad reputation game

provided that conditional on exit the temptations are less costly than the

friendly actions. For example, the long-run player might be a stockbroker,

and the general non-client specific information might be something about

general economic conditions, acquired in advance in the form of economic

reports that will be presented to the client. The friendly actions in this case

are to report truthfully; the bad action might be to always claim that times

are good. In this case the temptation is to announce that times are bad

when they are actually good, to avoid being mistaken for the type that

always announces good times. If it is costly to put together a persuasive

package of economic data indicating that times are bad when in fact they

are good this would not be a bad reputation game. If it is more costly to

put together an honest report, then it would be a candidate for a bad

reputation game.

We have the following obvious extension of Proposition 5.

Proposition 8: Suppose in a multilateral entry game that

{ , }e L HY Y y y− =  and that �A)  strictly maximizes the probability of ,Y

with �� 	 �JU A �)
. If for every friendly enforceable �A  there is a �B  such

that � �� \ 	 � \ 	, ,Y B Y AS S�  the game is a bad reputation game.

As an illustration, , suppose that the short-run players are students,

the long-run player a teacher, and the signals are teaching evaluations.

(This model could apply equally well to the decision to attend a particular

college, graduate school, or take a particular job.)  Each period, each

short-run player decides whether to enter - that is, take the class, or not.

The long run player has a pair of binary choices: he can either teach well
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or teach poorly, and he can either administer teaching evaluations honestly

or manipulate them. The public signals are whether the evaluations

(averaged over respondents) are good, (Y  or poor, Y . If the evaluations

are administered honestly and the class is taught well, there is probability

.9 of a good evaluation. If evaluations are administered honestly and the

class is taught poorly, the probability of good evaluations is only .1.

Manipulating the evaluations is certain to lead to a good evaluation.  All

players get 0 if no students decide not to take the class. For a short-run

player who enters, the short run player’s payoffs are +1 for good teaching

and -1 for bad. Let M  denote the number of students who take the class.

The rational type of long-run player pays a cost of M  to teach well; good

evaluations are worth �M , while manipulating evaluations costs �M .

Hence in the one-shot game with only the rational type, the unique

sequential equilibrium is for the rational type to teach well and not

manipulate the evaluations, for an expected payoff of .8.

However, when there is a small probability that the instructor is a

bad type, and the instructor faces a sequence of short-run students,

Proposition 7 applies.  To see this, we see that teaching poorly and

administering the evaluations honestly is the unfriendly action �A) . The

friendly set consists of the pure actions “teach well, administer honest

evaluations” and “teach well, manipulate.” Crucially, the action “teach

well, manipulate” is unenforceable: teach poorly and manipulate yields a

higher stage game payoff and the same distribution over signals.  So the

only enforceable action in the friendly set is “teach well, administer

honestly.” This admits the temptation “teach poorly, manipulate.” Here the

short-run player recognizes that if the long-run player chooses not to send

the signal honestly, he loses his incentive to teach well, and so there is no

reason to enter
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Appendix: Proofs

Lemma 1: If 
T
H  is a positive probability history in which Y 9�

))
 occurs in

period T  and � �

�
� 	; � 	= ��

T
H & &N H
�

2 b  then � �

�
� 	 � ��	

T
H FB Hp  for some

friendly �F .

Proof: Given 
�T

H
�

 the short-run players’ profile has positive probability on

a profile that does not exit. At such profiles � �� 	
T
H FB Hp  for some

friendly 1f . In particular, we must have � �
� �� 	; = � 	� 	 � 	T TH A H A F AN B H
�

� p

for each action A in the support of �F .  Since � �

�
� 	; � 	= ��

T
H & &N H
�

2 b

we see that � � � �

�� 	� 	 � � �	 � 	 � � �	 � � �	 � 	TH A F A & F AB H H Hp � p , where

the last inequality follows from the definition of �&   Since this holds for

each A  in the support of �F , the conclusion follows.

ã

We will let  � �
� � �� \ 	 � \ � 	� � 		T T TP H H HS B B�
� � �

¸ � ¸  denote

probability distributions over signals induced by the equilibrium strategies

at history �TH � ;  similarly

� �
� �e

� \ � 	 � 	; = � \ � 	� � 		T T TP H H A H
R

N R S R B�
� �

�2
¸ 2 � ¸�

)

denotes the equilibrium distribution on signals conditional on R  being in

the set e2of types that are committed to actions in �. . The probability

distribution �!�  induced by a mixed profile �B�  can be written as a

convex combination of the component distributions �
E

B�
�

, which has

support entirely in � �! %� �� , and �
E

B� , which has support entirely in
�%� . Then � �

^ �� 	
E E

MB M B� �� �  induces the same distribution over �!�  as
�� 	THB� , where � �� 	 CONHULLTH %B� �� , �M � . Although , �B�

�

 and
�B�  need  not correspond to mixed strategy profiles (since they can have

correlation), we may still write � � � � � � � �� � 	� � � � 	� � \ � 	
E T E EU V HB B B B S B B� � �¸

and so forth for the expected values of
� � � � � � � �� � 	� � � � 	� � \ � 	TU A V H A AB B S B� � �¸  with respect to the weights �

EB� ,



43

and similarly for �
EB�
�

. With that in mind, let
� �

� � �
� \ � 	 � \ � 	� � 		

ET T T
P ENTRY H H HS B B�

�

� � �

¸ � ¸  be the  distribution of signals

after history 
�T

H
�

, given that the realization of the short-run players’

(equilibrium) action is an entry profile, and let
� � �

^� �
� \ � � 	 � \ � � 		

ET T
P A ENTRY H A HS B�

� �

¸ � ¸ .

Lemma 2: In a bad reputation game, if 
T
H  is a positive probability history

with respect to a Nash equilibrium, and the signals in 
T
H  all lie in E9 9�

)

a) At most 	 
 	 
�

�

 LOG ��	; = � OG �� 	K K L

R
N Z Z� � 2 � �

)
 of the signals

are in 9
)

.

b) If the commitment size is � ��� ���	 � 	& IH I�  then
� �� 	; � 	= ��

T
H & &N H2 b .

Proof:  First observe that if �� 	; =THN Z
�

2 p
)

, then the short-run players

must exit in period T , so 
�

� 	 � 	
T T
H HN N

�

� . Suppose that 
T
H  is a positive

probability history in which Y)  occurs in period t. From Bayes’ rule  

� �

�

� \ � 	 � 	; =
� 	; =

� \ 	
T T

T

T

P Y H H
H

P Y H
N

N � �

�

2 2
2 �

) )))
)

Since Y)  has positive probability at time T  conditional on 
�T

H
�

, it must be

that �

�
� 	

T
HB�
�

 has positive probability of entry. It follows that �

�
� 	

T
HB
�

puts weight less than Z  on �. , and that for any � �A .�

�

�
�

� \ � 	
� \ � 	

T

T

P Y H
R

P Y A H
�

�

2
p

))
)

Consequently
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�
� 	; =

� 	; = �
�� 	

T

T

H
H

R

N
N

Z Z
�

2
2 p

� �

)
)

.

Since signals in E9  convey no information about the long-run player’s

type, it  follows that if all signals lie in E9 9�
)

, and signals in 9
)

 occur K

times, then 

�
� 	; = ��	; =�

�� 	

K

T
H

R

N N
Z Z

� ¬­� ­� ­� ­2 p 2� ­� ­� ­� � ­�� ­� ®

) )

Hence if 

	 

	 


LOG� 	 LOG ��	; =
�

LOG �� 	
K

R

Z N

Z Z

� 2
p �

� �

)

then � 	; =
T
HN Z2 p

)
, so in all subsequent periods the signal must be an exit

signal. (Recall that in a bad reputation game, 1r > ; this implies  that the

denominator above is not zero.)  Again because 1r > , it is sufficient that

	 


	 

LOG� 	 LOG ��	; =

�
LOG �� 	

K

R

Z N

Z Z

� � 2
p

� �

)

which is the condition in part a).

We now turn to part b).  For any history H on the equilibrium path at

which entry occurs with positive probability, we must have � �� 	H FB Hp

for some friendly �F .  By assumption every enforceable friendly action is

vulnerable to temptation, so that conditional on entry, the total probability

of each bad signal Y 9�
))

 is at least KH  at such a history h .  In particular,

consider any history �H
U�

 after which a bad signal Y)  actually occurs.

Since bad signals are entry signals, entry must have had positive

probability at �H
U�

, and hence conditional on entry, Y)  had total

probability at least KH .  Bayes’ rule then implies
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�� 	; = ��� 	 � 	; =H H
U U

N R KH N R
�

b  for any type R Thus
� �

�� 	; � 	= ��� 	 � 	; � 	=H & H &
U U

N KH N
�

2 b 2  for each τ in which a bad signal

occurs.  In particular

� �� 	; � 	= ��� 	 ��	; � 	=K
TH & &N KH N2 b 2 (1.1)

where k  is the number of bad signals in th .

  Bayes’ rule gives us the following inequalities

� �

�

� �

�

� 	; = MIN � \ � � 	
� 	; =

� \ � 	
N .

H P Y N ENTRY H
H

P Y ENTRY H

U U

U

U

N
N

� �

�

�

2
2 p

) )
)

)

and

� �

� �

� �

� �
�

�

� �
� �

�

� 	; � 	=MAX � \ � � 	
� 	; � 	=

� \ � 	

� 	; � 	=MAX � \ � � 	

� \ � 	

A &

A .

H & P Y A ENTRY H
H &

P Y ENTRY H

H & P Y A ENTRY H

P Y ENTRY H

U U

U

U

U U

U

N
N

N

� �

�

�

� �
�

�

2
2 b

2
b

)

)

)

)

where the last inequality comes from the assumption that �&  and �. are

orthogonal.

Divide the first inequality by the second and apply the definition of

r  to get

�

� �
�

� 	; = � 	; =
� 	; � 	= � 	; � 	=

H H
R

H & H &
U U

U U

N N
N N

�

�

2 2
p

2 2

) )

for each {1, , }tτ ∈ K  such that y Yτ ∈
)

.  Since there are k  such τ , we

obtain

� �

� 	; = ��	; =
� 	; � 	= ��	; � 	=

T K

T

H
R

H & &
N N

N N
2 2

p
2 2

) )

. (1.2)

Finally, we define κ  by the following equation
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 �

�

��	; =
���	; � 	=

R &
&

L
N H

N

�� ¬2 ­� ­ �� ­� ­� 2� ®

)

. (1.3)

Our commitment size assumption15 is that

(1.4)

	 


	 

	 


	 


�

�
LOG � LOG� 	

�� LOG� 	� LOG 	
�

�

��	; =
LOG LOG

���	; � 	=

LOG

��	; =
��	; � 	=

� ��	; � 	=

�
�

�
�

R
R

&
&

R

& &
&

&

&

HK HK

N H

N

L

H N
N

N

H
HK

H
HK

� � ¬ ¬­ ­� � ­ ­� � ­ ­� �� � � ® ®

� ¬2 ­� ­�� ­� ­� ­2� ®

�

  ¯2¡ °2 b ¡ °2¢ ±

� ¬­�� ­� ­�� ®

� ¬­�� ­� ­�� ®

)

)

With these preliminaries in hand, we can conclude the proof.  First

suppose that

	 
 �

�

� 	; =
�� 	; � 	=

T

T

H
&

H &
N H

N

�2
�

2

)

.

Then it follows immediately that

�� 	; � 	=
�TH & &
H

N 2 �

and we are done.  On the other hand, the opposite inequality implies by

(1.2) and (1.3) that k κ≤ . Consequently, by (1.1) and (1.4) we have

 �� 	; � 	=
�TH & &
H

N 2 b .

ã

Recall that

�

�

�
�

� � 	
� OTHERWISE

5 Y 9
U Y SS

£� ¬¦ ­�¦ � �­�¦ ­�¦� ®� ¤¦¦¦¦¥

)

%%

                                                
15 The first line in this derivation  follows from the definition of I . The second line  is an

application of the rule: ( )
log log log loglog

log
b b a aa

bc c cca e e b= = = .
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�
�

� � 	
OTHERWISE

Y 9
Y

E
SE S
E

£¦ � �¦¦¦� ¤¦¦¦¦¥

)

%%

and � �� 	 [ \ � \ � 	� � 		 �]E

T T T
9 H Y 9 9 Y H HS B B�� � � �

)
.

Lemma 3: In a participation game if � �� 	 CONHULLTH %B� �� or
� �� 	 CONHULLTH %B� ��  and � �

�� 	TH CFB p  for some �C �  and vulnerable

friendly action �F  with temptation bounds S , ρ%  then

� � �
� 	� 	 MAX �� 	 � � 	 � � 	 � � 	

TT Y 9 H TV H U Y Y V H YE S E S�b � �% % .

Proof:  We need to calculate the long-run player payoff separately as a

function of whether the short-run players exit or not. Using the

decomposition of the short-run players’ profile that we introduced before

the proof of lemma 2,   we write

� � � � � � �
^� 	 � � � 	 �� 	 � � � 	T T E T EV H V H F V H FM B M B� �� � � .

First assume 0λ ≥  and consider the value � � �� � � 	T EV H F B�

conditional on exit.  By exit minmax, this value is no more than
1

( )max ( , )
ty Y h tv h yδ∈ and thus from the definition of �U  we can conclude

that

� � � � �
� 	� � � 	 MAX �� 	 � � 	 � � 	 � � 	

TT E Y 9 H TV H F U Y Y V H YB E S E S�

�b � �% % .

  If  � �� 	 CONHULLTH %B� ��  then 1λ =  and we are done with the first case

in the statement.

Now consider now the second case in the claim of the lemma,
� �� 	 CONHULLTH %B� �� , so that entry has positive probability and 1λ < .

In this case, �F  must be enforceable, since otherwise the rational type

could do better by changing from his equilibrium action to one that

replaces the probability on the support of �F  with probability on the

improving and observationally equivalent mixed strategy that defeats it,
�F  and get a strictly higher utility.  Every enforceable friendly action is
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vulnerable to temptation, so let �B  be a temptation for �F .  Since �F is

played in equilibrium, it earns at least as much as �B , so that

< > < >

� � � � � �

� � � � � � � � � � � �

^ ^

� � � � 		 � � � � 		

� � � 	 � � � 	 �� 	 � � � 	 � � � 	

�

T T T T

T E T E T E T E

V H F H V H B H

V H F V H B V H F V H B

B B

M B B M B B

� �

� � � �

�

� � � � �

p

The expression < >� � � � � �� � � 	 � � � 	T E T EV H F V H BM B B� ��  is non-positive because

given exit, �B  and �F  induce the same distribution over signals, and hence

earn identical continuation values, and by the definition of a temptation,
� � � � � �� � 	 � � 	

E E
U B U FB B� �p , so that �B  does at least as well in the current

period..

 Thus, � � � � � �
^ ^� � � 	 � � � 	 �T E T EV H F V H BB B� �� p .  Expanding this inequality and

using the fact that 1 1 1 1 1 1 1
~ ~( , ) ( , )e eu f u b Uα α− −− ≤ ,

(1.5)
< >

< >

� � � � � �
^ ^

� � � � �
^ ^�

�� 	 � \ � 	 � \ � 	 � � 	

� \ � 	 � \ � 	 � � 	

E E TY 9

E E TY 9 9

5 Y F Y B V H Y

Y B Y F V H Y

E E S B S B

E S B S B

� �

�

� �

�

� � � p

  ¯�¡ °¢ ±

�
�

)

)

)

) ) )

Define

� �� � 	 MAX � � 	 �T TY 9
V H 9 V H Y

�
� p)

)
.

The inequality holds because continuation values for histories on the

equilibrium path of a Nash equilibrium must exceed the minmax value,

which we have normalized to zero.  We will use this fact repeatedly in the

remainder of the proof.  By the definition of a temptation,
� � � �

^ ^� \ � 	 � \ � 	E EY B Y FS B S B� ��) )
 for each Y) .  Thus, inequality (1.5) can be

reduced to
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< >� � � � � � �
^ ^

�

� � �
^

�

�� 	 � � 	 � \ � 	 � \ � 	 � � 	

� \ � 	 � � 	

T E E T

Y 9 9

E T

Y 9 9

5 V H 9 Y B Y F V H Y

Y F V H Y

E E E S B S B

ES S B

� �

�

�

�

£ ²¦ ¦¦ ¦¦ ¦� � p �¤ »¦ ¦¦ ¦¦ ¦¥ ¼
p

�

�

)

)

)

%

where the second inequality uses part 2 of the definition of a temptation.

We can now expand the definition of � � �
^� � � 	T EV H F B� and bound it as

follows.

� � � � � � � � �
^ ^ ^

�
� � �

� �

�
� 	

�� 	 � � 	 � \ � 	 � � 	 � \ � 	 � � 	

�� 	
�� 	 � � 	 � � 	

MAX �� 	 � � 	 � � � 	

MAX �� 	 � � 	
T

E E T E TY 9
Y 9

T T

TY 9

Y 9 H

U F Y F A V H Y Y F V H Y

5
5 V H 9 V H 9

U Y V H Y

U Y

E B E S S B

E E
E E

S S
E

E S
S

E S

� � �
�

�

�

�

  ¯
¡ °� � �¡ °
¡ °¢ ±

�
b � � � �

� ¬­�� � � � ­� ­�� ®

b � �

� �))
)

))

) )

) )

% %

) )%
%

% � �� � 	 � � 	TY V H YE S%

where the last inequality follows because when 1λ < , ( )tY Y h⊆
)

(Recall

that the vulnerability of 1f  implies 1 1| , ) 0y f aρ −( >)
 for each y Y∈

))
 and

each entry profile 1a− .)

This concludes the proof because if 0λ =  then � � � �
^� 	 � � � 	T T EV H V H F B��

and if (0,1)λ ∈  then \ ^� � � � � � �
^� 	 MAX � � � 	� � � � 	T T E T EV H V H F V H FB B� �b .

ã

Lemma 4: In a participation game, if � �� 	 CONHULL
T
H %B� �� or

� �� 	 CONHULL
T
H %B� ��  and � �

�
� 	

T
H CFB p  for some �C �  and friendly

action �F   that is vulnerable to a strong temptation  size S , then

� � � �
� 	� 	 MAX �� 	 � � 	 � � 	 � � 	

TT Y 9 H TV H U Y Y V H YE S E S E�b � �

,
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where 
�

�

�

�
� ÅIFÅ

� � 	

e ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅOTHERWISEÅÅÅ

5 Y 9
9U Y

U

SS

£� ¬¦ ­�¦ ­� � �¦ ­�¦¦ ­­�� � ®¤¦¦¦¦¦¥

)
)

and �

�
�

� � 	

OTHERWISE

Y 9
9Y

E
SE S

E

£ � ¬¦ ­�¦ ­� � �¦ ­�¦¦ ­­�� ¤ � ®¦¦¦¦¦¥

)
)

Proof: The proof of Lemma 4 is similar to that of lemma 3; indeed the

case �M �  is identical, and when �M �  the derivation of equation (1.5)

is unchanged

< >

< >

� � � � � �
^ ^

� � � � �
^ ^�

�� 	 � \ � 	 � \ � 	 � � 	

� \ � 	 � \ � 	 � � 	

E E TY 9

E E TY 9 9

5 Y F Y B V H Y

Y B Y F V H Y

E E S B S B

E S B S B

� �

�

� �

�

� � � p

  ¯�¡ °¢ ±

�
�

)

)

)

) ) )

(1.5)

Since the good signals are changed proportionately by the temptation, it

follows that 
� �

^� � � �

^ ^� �

^

� � \ � 	
� \ � 	 � \ � 	

� � \ � 	
E

E E

E

9 9 B
Y B Y F

9 9 F
S B

S B S B
S B

�

� �

�

�
)
)  for each

/y Y Y∈
)

.  Thus,

< >� � � � �

^ ^�

� �
^ � � �

^� ��
^

� �
^ � � �

^� � �
^

� \ � 	 � \ � 	 � � 	

� � \ � 	
� � \ � 	 � � 	

� � \ � 	

� � \ � 	
� � \ � 	 � � 	

� � \ � 	

E E TY 9 9

E
E TY 9 9

E

E
E TY 9 9

E

Y B Y F V H Y

9 9 B
Y F V H Y

9 9 F

9 9 B
Y F V H Y

9 9 F

S B S B

S B
S B

S B

S B
S B

S B

� �

�

�

�

��

�

�

� �

�

 � ¬ ¯­�¡ °� � ­� ­� ­¡ °�� ®¢ ±
� ¬­�� � ­� ­� ­�� ®

�

�

�

)

)

)

)
)

)

)

� � � �
^ ^ �

� �
^

� � \ � 	 � � \ � 	
� � � 	

� � \ � 	
E E

T
E

9 9 B 9 9 F
V H 9 9

9 9 F

S B S B
S B

� �

�

� ¬� ­�� ­� ­� ­�� ®

) )
)

)

where �� � � 	
T

V H 9 9
)

 is the expected continuation value after playing 1f

and observing a signal in /Y Y
)

.  Substituting into (1.5),

< >� � � � � �

^ ^

� � � �
^ ^ �

� �
^

� � � � �

^ ^

�� 	 � \ � 	 � \ � 	 � � 	

� � \ � 	 � � \ � 	
� � � 	

� � \ � 	

� � \ � 	 � � \ � 	 � � � 	

E E TY 9

E E
T

E

E E T

5 Y F A Y B A V H Y

9 9 B A 9 9 F A
V H 9 9

9 9 F A

9 9 B A 9 9 F A V H 9 9

E E S S

S S
E

S

E S S

� �

�

� �

�

� �
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  ¯�¡ °p
¡ °¢ ±
  ¯p �¢ ±

� )

)

) ) )

) )
)

)

) ) )



51

Set

� �� � 	 MAX � � 	
T TY 9

V H 9 V H Y
�

� )

)
.

From the fact that �B  reduces the probability of every bad signal by a

positive amount,

< >� � � � �

^ ^

� � � � �
^ ^

� \ � 	 � \ � 	 � � 	

� \ � 	 � \ � 	 � � 	

E E T

E E T

Y F A Y B A V H Y

9 F A 9 B A V H 9

S S

S S

� �

� �

�

  ¯b �¢ ±

) ) )

) ) )

for each y Y∈
))

.  Thus,

(1.6)
� � � � � �

^ ^
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^ ^

�� 	 � \ � 	 � \ � 	 � � 	

� � \ � 	 � � \ � 	 � � � 	

E E T

E E T

5 9 F A 9 B A V H 9

9 9 B A 9 9 F A V H 9 9

E E S S

E S S

� �

� �

  ¯� � � p¢ ±
  ¯�¢ ±

) ) )

) ) )

 which implies
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^ ^�

� � � �

^ ^

� �

� � � �

^ ^

�� 	 � \ � 	 � \ � 	 � � 	
� � � 	

� � \ � 	 � � \ � 	

�� 	 � � 	

� � \ � 	 � � \ � 	

E E T

T

E E

T

E E

5 9 F A 9 B A V H 9
V H 9 9

9 9 B A 9 9 F A

5 V H 9

9 9 B A 9 9 F A

E E S S

E S S

E E
E S S

� �

� �

� �

  ¯� � �¢ ±b
  ¯�¢ ±

� �
b

  ¯�¢ ±

) ) )
)

) )

)
) )

where the second line uses the fact that �� � 	 �
T

V H 9 p
)

.

Because 1b  lowers the probability of all bad signals by at least ρ , it raises

the total probability of the remaining signals by at least Y ρ
)

, i.e.

� � � �
^ ^� � \ � 	 � � \ � 	
E E

9 9 B A 9 9 F A 9S S S� �  ¯� p¢ ±
) ) )

.  This and the fact that

the numerator on the right hand side of the previous inequality is non-

negative gives
� �

�
�� 	 � � 	

� � 	 T
5 V H 9

V 9 9
9

E E
E S

� �
b

)
)

)
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Finally, we conclude:
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^ ^ ^ ^
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)

)

)
) )

The conclusion of the proof is now identical to that of Lemma 3: if 0λ =
then � � � �

^� 	 � � � 	T T EV H V H F B��  and if (0,1)λ ∈  then

\ ^� � � � � � �
^� 	 MAX � � � 	� � � � 	T T E T EV H V H F V H FB B� �b .

ã
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