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Abstract. In games with incomplete information, conventional hierarchies of belief are
incomplete as descriptions of the players’ information for the purposes of determining a
player’s behavior. We show by example that this is true for a variety of solution concepts.
We then investigate what is essential about a player’s information to identify rationalizable
behavior in any game. We do this by constructing the universal type space for rationaliz-
ability and characterizing the types in terms of their beliefs. Infinite hierarchies of beliefs
over conditional beliefs, what we call ∆-hierarchies, are what turn out to matter. We show
that any two types in any two type spaces have the same rationalizable sets in all games if
and only if they have the same ∆-hierarchies.

1. Introduction

1.1. Example. Consider the following two player game of incomplete information. There

are two states of the world Ω = {−1,+1} . Each player i has three actions Ai = {ai, bi, ci} ,
and a payoff ui which depends on the actions chosen by each player and the state of the

world. The payoffs are summarized in the following table.

a2 b2 c2
a1 1,1 -10,-10 -10,0

b1 -10,-10 1,1 -10,0

c1 0,-10 0,-10 0,0

ω = +1

a2 b2 c2
a1 -10,-10 1,1 -10,0

b1 1,1 -10,-10 -10,0

c1 0,-10 0,-10 0,0

ω = −1

Focusing only on the subsets {ai, bi}, we have a common interest game in which the players

wish to choose the same action in the positive state and the opposite action in the negative

state. Failing to coordinate is costly, and the action ci is a“safe”alternative when, conditional

on the state, i is uncertain of his opponent’s action.

To complete the description of the game, we need to specify the players’ information about

the state, the players’ information about one another’s information, and so on. One way to
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model these hierarchies of belief is given by the following type space: Each player i has two

possible types, Ti = {−1,+1}, and there is a common prior µ ∈ ∆ (T1 × T2 × Ω) given by

µ (ti, t−i, ω) =

1
4

if ω = ti · t−i

0 otherwise

In this type space, each player assigns each state equal ex ante probability, but would

learn the state with certainty, were he to learn his opponent’s type. In particular, if the two

players’ types have opposite sign, the state is certainly ω = −1 and if the types have the

same sign, then the state is certainly ω = +1.

In the game with this information structure it is possible in Bayesian Nash equilibrium

for the players to achieve perfect coordination where types ti = 1 play ai and types ti = −1

play bi. Symmetrically, there is another equilibrium where ti = 1 play bi and ti = −1 play

ai. Obviously it is also an equilibrium for both to play ci independent of type.

1.2. Type Spaces and Hierarchies. A type space is a convenient device for specifying in

a parsimonious way the infinite string of data (hierarchies of belief) necessary to close the

model. This was the view of Harsanyi (1967-68) and it is the standard practice in economic

models with incomplete information. We can see from our example how hierarchies of beliefs

are embedded in the type space. Each player assigns equal probability to each state of the

world. These are the first-order beliefs. Since player i holds this first-order belief regardless

of whether is type is −1 or +1, and since player −i assigns probability 1 to player i having

one of these two types, it follows that each player is certain of the others’ first-order beliefs.

These are the second-order beliefs. The same reasoning implies that each player is certain

of the other’s second-order beliefs and so on. Indeed, in this type space it is always common

knowledge that the two states are equally likely.

One potential concern with the use of a type space for modeling hierarchies of belief is

the following. If hierarchies of belief are what really matter, then we must be assured that

any hierarchy we might wish to model can be captured in some type space. This concern

has been resolved by Mertens and Zamir (1985) and Brandenburger and Dekel (1993) who

showed that when the set of states of the world Ω has some minimal structure, then any

internally consistent (“coherent”) hierarchy can be modeled using a type space. In fact, there

exists a single universal type space U(Ω) which simultaneously captures them all: for every

coherent hierarchy there is a type in the universal type space with that hierarchy.1

1On the other hand, when the set of states lacks the topological structure assumed by these authors,
Heifetz and Samet (1999) showed that the type space framework may not be sufficiently general to model
all coherent hierarchies.
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There is another potential concern which has not received the same attention. The type

space we used in our example is but one of many that would capture those specific hierarchies

of belief. Indeed, any specification of the players’ hierarchies can be equally well generated

by many different type spaces. If hierarchies are what matter, and if type spaces are simply

a convenient device used to model them, then we should be assured that the predictions we

would get from a given hierarchy should not depend on the particular type space used to

model it. However, the type space can matter, and this can be seen in our example.

Recall that in our example, each player has the same hierarchy of beliefs regardless of his

type. It appears that there is a spurious duplication of types. So instead consider the simpler

type space in which each player has exactly one type and this type knows the other player’s

type and assigns equal probability to the two states of the world. Formally, T ∗i = {∗}, and

there is a common prior µ∗ given by µ∗(∗, ∗,+1) = µ∗(∗, ∗,−1). This type space generates

exactly the same hierarchies of belief as in our first example: common knowledge that the

states are equally likely. However, when the game in our example is played over this type

space, the unique Bayesian Nash equilibrium, the unique correlated equilibrium, indeed the

unique rationalizable outcome, is for both players to play ci.
2

We cannot be assured that our predictions are invariant to the choice of the type space.

This is not a showstopper however, it simply means that our premise was wrong: it is not

(only) hierarchies that matter for (correlated) equilibrium and rationalizability. While the

additional types in the original type space are duplicates in terms of their hierarchies, they

are not redundant because they generate a payoff-relevant means of correlating behavior with

the state of the world.3 What matters in an incomplete information game are the hierarchies

and the information a player with a given hierarchy would obtain about the state of the

world conditional on knowing the other player has a given hierarchy.

2It deserves emphasis that the issue we are pointing to here is distinct from the familiar one that adding
redundant types to an information structure creates the possibility that the players can correlate their action
choices and thus increases the set of equilibrium outcomes. That observation is equivalent to the statement
that the set of correlated equilibria of a game is larger than the set of Nash equilibria of a game. To see
that something different is happening in our example, note that the sets of correlated equilibria in the two
games are distinct. Adding redundant types in order to generate correlation in play can never affect the
set of correlated equilibria (see Brandenburger and Dekel (1987)). Indeed, it can never affect the set of
rationalizable outcomes as it does here.

3A similar example and observation appears in Dekel, Fudenberg, and Morris (2003). They introduce a
new version of rationalizability in which players can conjecture correlations between the opponents action and
the state beyond those correlations that are explicitly modeled in the type space. Conventional hierarchies
are sufficient to identify the sets that are rationalizable under this alternative definition. In the context of
our example, all actions satisfy their definition for every type in every type space.
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To make the point in another way, let us frame the discussion in the context of the Mertens

and Zamir (1985) and Brandenburger and Dekel (1993) universal type space. In U(Ω), there

is exactly one type for each possible coherent hierarchy. And by the definition of a type

space, for each type there is a belief defined over the product of the types of the other player

and the states of the world. This implies that for each pair of hierarchies (i.e. universal

type) ti and t−i, there is only one possible belief ti can have about states of the world

conditional on knowing that the opponent has hierarchy t−i (modulo measure zero variations

in versions of conditional probability). Indeed, one can interpret the representation theorems

of Mertens and Zamir (1985) and Brandenburger and Dekel (1993) as proving that if the

players’ information is completely summarized by their hierarchies, then the modeler has no

freedom in specifying these conditional beliefs as they are in fact uniquely determined. On

the other hand, we see from our example that even in very simple, standard type spaces,

two types with the same hierarchies can hold different conditional beliefs, and that this can

make a difference in outcomes. It is easily verified that the universal types corresponding to

the hierarchies in our example behave like the types in the second type-space, not the first.4

Thus, the universal type space is not rich enough to model what could be modeled in an

alternative type space.

This observation has some significance for the philosophical debate (see Aumann (1987),

Brandenburger and Dekel (1993), and Gul (1998)) about whether or not the information

structure in a game is common knowledge. The universal type space has been interpreted

as precisely that information structure that can be assumed without loss of generality to

be common knowledge. For example, Brandenburger and Dekel (1993) suggest that the

universal type space realizes Aumann’s hypothesis of a completely specified “state space.”

This is certainly true if, as in Brandenburger and Dekel (1993), one considers the information

structure purely as a model of beliefs (about beliefs) about uncertain events. But if what

is important is the the range of possible behaviors in a game and not just beliefs, then our

example shows that there is a loss of generality in assuming that the universal type space

4Any type in any type space has a “representative” type in U(Ω). The representative is the unique type in
U(Ω) with the same hierarchy. Thus, any type space can be mapped into U(Ω). When this mapping applied
to the first type-space we considered, the two types of player i are collapsed to a single type t∗i which assigns
probability 1 to t∗−i. Thus, the image in U(Ω) of our first type space is isomorphic to our second type space.



HIERARCHIES OF BELIEF AND INTERIM RATIONALIZABILITY 5

is commonly known. In particular, this assumption would imply that whenever the players

commonly know that each state in the example is equally likely, they must play action c.5.

1.3. Universal Types for Rationalizability. As argued above, from the point of view of

rationalizability, conventional hierarchies of belief are incomplete as descriptions of a player’s

information. The goal of this paper is to identify exactly what must be known about a

player’s information to determine what will be rationalizable for that player in any game of

incomplete information. To do this, we first construct a type space which is universal in the

following sense. Any type in any type space can be interpreted as a rule which associates

each game form with the set of actions that are rationalizable for that type. We construct

a space of types R by collecting every rule associated with any type in any type space. We

show how to view R as a proper type space and that for this type space the rationalizable

rule associated with any type is exactly the rule used to define it. If what we care about

when we consider a player’s “type” is how that player might conceivably behave in any game

(i.e. what is rationalizable), then R is universal in the sense that it contains every possible

type.

To further emphasize the point made in the previous subsections, let us observe that R
is larger than the standard universal type space. To see this, revisit our example from the

introduction. Each of the types ti of player i in the first type space we examined has a

rationalizable rule. (In fact it is easily shown that they have the same rule.) Let us try

to find a type in U(Ω) that gives rise to the same rule. The first thing to observe is that

any such type must have the same hierarchy of beliefs as ti. Indeed, for any two types with

distinct hierarchies there is some game in which they have distinct rationalizable sets.6 But

as we mentioned previously, there is only one type in U(Ω) with this hierarchy and this type

cannot have the same rule because it has a different rationalizable set in the game from our

example.

Next, we characterize the types in R in terms of their beliefs. We show how to interpret

any type ti in any type space as an infinite hierarchy of beliefs about conditional beliefs. Here

5In Section 6 we present an example that makes an even stronger point in this regard. There we describe
a game with an action that could not be played in any Bayesian Nash (or correlated) equilibrium by any
type when it is assumed that the universal type space is common knowledge. Nevertheless, this action could
be played in a very simple, completely standard type space where there is common knowledge of rationality
and common knowledge that the players’ beliefs are coherent.

6This is a consequence of the more general Theorem 2 below. However, this particular implication can be
shown directly by considering games (similar to those in Morris (2002)) in which players are asked to name
their own hierarchies and bet on the announcement of the other. Two types with different hierarchies will
disagree about some n-th order belief of the opponent and the state of the world, and there is some bet that
would separate them.
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the first order belief is the probability distribution over all the possible conditional beliefs the

player could have about the state of the world. This probability distribution is derived for

ti as follows. First, determine for each type of the opponent what would be the conditional

belief ρ(ti, t−i) ∈ ∆(Ω) of ti if the opponent’s type were known. Then, the probability of

any set X ⊂ ∆Ω of possible conditional beliefs is the probability ti assigns to the set of

types t−i for which ρ(ti, t−i) belongs to X. Once we have derived first-order beliefs of this

form for every type, we can in the usual way derive the second-order beliefs: the probability

any type ti assigns to the events consisting of first-order beliefs of the opponent and the

conditional beliefs of ti. Higher-order beliefs are defined analogously. Let us refer to the

resulting infinite hierarchies as ∆-hierarchies. In a completely standard fashion, we may

construct the universal space U(∆Ω) of all ∆-hierarchies.

We show that the mapping which associates each type in R with its ∆-hierarchy is a

bijection, R ↔ U(∆Ω). The implication is that within this particular type space, R, to

determine what is rationalizable for a player in any game, it is necessary and sufficient to

identify that player’s ∆-hierarchy. We then extend this characterization to all possible type

spaces. We consider for any type space the natural mapping into R that maps types to their

associated rationalizable rule. This mapping preserves ∆-hierarchies. Thus, by the previous

result, two types from any (possibly different) type spaces have the same rationalizable

behavior across games if and only if they have the same ∆-hierarchies.

The rest goes as follows. Section 2 introduces notation and definitions used in the paper.

Section 3 is central to the paper: it presents construction, analyzes properties and character-

izes space R. Sections 4 and 5 sketch some of the proofs. Section 6 comments and contains

further examples.

2. Preliminaries

2.1. Notation. If A is a topological space, we treat it as a measurable space with its Borel

σ-field, denoted BA. ∆A is the space of Borel probability measures. If A is a Polish space,

then ∆A endowed with the weak∗ topology is also Polish. For any a ∈ A let δ (a) ∈ ∆A be

the Dirac measure concentrated on a point a.

For any measure µ ∈ ∆A and integrable function f : A → R we use µ [f ] to denote the

expectation of f with respect to µ. For any measure µ ∈ ∆ (A×B) , denote by CAµ (·) :

B → ∆A a version of conditional probability over A given b ∈ B (which exists whenever A

is Polish. Our results do not depend on the choice of version). Similarly, for any measurable

subset B′ ⊆ B, we denote CAµ (B′) ∈ ∆A as conditional probability given B′.

KA is is the space of all non-empty closed subsets of A with the Hausdorff metric. If A is

Polish, then so is KA.
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Given two measurable spaces, A,B and a measurable mapping φ : A → B we can in

a natural way define a mapping which transports probability measures ∆φ : ∆A → ∆B,

such that for any measure µ ∈ ∆A, any measurable subset B′ ⊆ B, we have ∆φ (µ) (B′) =

µ (φ−1 (B′)) .

2.2. Type spaces. We consider games with two players. We take as given a Polish space of

basic uncertainty Ω. A Type space over Ω, T = (Ti, µi)i=1,2 is a pair of measurable spaces Ti

and two mappings µi : Ti → ∆ (Ω× T−i) . We say that a type space has weakly measurable

beliefs if for any measurable function f : Ω× T−i → R, sets

{ti : µ [f ] < 0}

are measurable. We say that a type space has strongly measurable beliefs, if there exist jointly

measurable functions ρi : Ti × T−i → ∆Ω, such that

ρi (ti, t−i) = CΩµ (ti) (t−i) .

Let T W(Ω) be the collection of all type spaces over Ω with weakly measurable beliefs and

T S(Ω) be the collection of all type spaces over Ω with strongly measurable beliefs7.

A type mapping between two type spaces T, T ′ ∈ T S (Ω) , denoted φ : T → T ′ is a pair of

measurable mappings φi : Ti → T ′i .

2.3. Games. A game form (or simply game) over Ω is a tuple G = (ui, Ai)i, such that Ai

are Polish spaces and ui : Ai × A−i × Ω → R are bounded measurable functions for both

i. A game G = (ui, Ai)i is compact, if ui are continuous and Ai are compact. A game

G = (ui, Ai)i is finite if ui are continuous and Ai are finite. We let G denote the class of all

compact games, however all of our results apply equally well if G is taken to be (smaller)

class of all finite games.

Sometimes it is useful to use product games : take any two games G1, G2 ∈ G, Gk =(
Ak

i , ui

)
. We construct a product game G = G1 ×G2 = (Ai, ui) , where the action sets in G

are the products of the actions sets from the original games, Ai = A1
i × A2

i , and payoffs are

given by

ui

((
a1

i , a
2
i

)
,
(
a1
−i, a

2
−i

)
, ω

)
= u1

i

(
a1

i , a
1
−i, ω

)
+ u1

i

(
a2

i , a
2
−i, ω

)
.

Note that G ∈ G.

7Obviously any type space with strongly measurable beliefs has also weakly measurable beliefs, T S(Ω) ⊆
T W(Ω). The connection in the other way is not clear. For any type space T ∈ T W(Ω), standard theorems
guarantee existence of conditional beliefs ρ (ti, t−i) , which are measurable in t−i for given ti. We do not
know, in general, whether we can choose conditional beliefs which are jointly measurable

This is in fact possible in some special cases. Suppose that sets of types Ti in type space T ∈ T W(Ω)
are separable and metrisable. Then, we think we may show that conditionals can be chosen in a jointly
measurable way and T ∈ T S(Ω).
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2.4. Interim Rationalizability. Fix a type space T ∈ T S(Ω), and a game G = (Ai, ui).

An assessment is a pair of subsets α = (α1, α2) where αi ⊂ Ti × Ai. Alternatively an

assessment can be defined by the pair of correspondences αi : Ti ⇒ Ai, with αi(ti) := {ai :

(ti, ai) ∈ αi}. The image αi(ti) is interpreted as the set of actions that player i of type ti
could conceivably play.

A behavioral strategy for player i is a measurable function σi : Ti → ∆Ai. The expected

payoff to type ti of player i from choosing action ai when the opponent’s strategy is σ−i is

given by

Ui(ai, σ−i|ti) = µT
i (ti)[σ−i(t−i)[ui(ai, ·, ·)]]

=

∫
T−i×Ω

∫
A−i

ui(ai, ·, ω)dσ−i(t−i)dµ
T
i (ti)

The strategy σi is a selection from the assessment α if for each i, σi(ti) ∈ ∆αi(ti) for all

ti ∈ Ti. Let Σi(αi) be the set of all strategies for i that are selections from α.

For some results, it is convenient to use an alternative notation for payoffs and strategies.

Given a payoff function ui : A × Ω → R, we derive a new payoff function πi : A × T → R,

defined directly in terms of the types as follows

πi(a, t) = ρi(ti, t−i)[ui(ai, a−i, ·)].

A conjecture for player i is a probability measure σ∆
−i ∈ ∆(T−i×A−i). The set of conjectures

for a given type ti is the set Σ∆(ti) of σ∆
−i satisfying

marg
T−i

σ∆
−i = marg

T−i

µT
i (ti).

For any behavior strategy σ−i, and for any ti, there is a conjecture σ∆
−i ∈ Σ∆(ti) such that

Ui(ai, σ−i|ti) = σ∆
−i[πi(ai, ·, ti, ·)] := Ui(ai, σ

∆
−i|ti)

for every ai ∈ Ai. Conversely, if σ∆
−i is a conjecture for ti, then there is a behavior strategy

σ−i satisfying the same equalities. This is to show that we can either work with behavioral

strategies or conjectures, whichever is most convenient.

An action ai is an interim best-response for ti against σ−i if Ui(ai, σ−i|ti) ≥ Ui(a
′
i, σ−i, |ti)

for all a′i ∈ A−i. Let Bi(σ−i|ti) denote the set of all interim best-responses for ti to σ−i.

Likewise B∆
i (σ∆

−i|ti) the set of all best-responses to the conjecture σ∆
−i. If X is some subset

of strategies (or conjectures), then Bi(X|ti) (respectively B∆
i (X|ti)) is the set of all best-

responses to elements of X.

An assessment α has the best-response property if every action attributed to player i is an

interim best-reply to some selection from α−i, i.e,

αi ⊂ {(ti, ai) : ai ∈ Bi(Σ−i(α−i)|ti)}
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If the above is satisfied with equality, then we say that α has the fixed-point property.

Proposition 1. There exists a maximal (in the sense of set inclusion) assessment with the

fixed-point property

Proof. It is easy to verify that the union of assessments with the best-response property has

the best-response property. Let R be the union of all assessments with the best-response

property. Obviously R is the maximal set with the best-response property. We claim that R

has the fixed-point property, in which case it will be the maximal such set. If R did not have

the fixed-point property then there exists a type ti and action ai such that ai is an interim

best-reply to some selection from R−i. But then we can add the pair (ti, ai) to R and obtain

a larger assessment with the best-response property, a contradiction. �

Definition 1. Given a type space T , and a game G, the interim rationalizable correspondence

is the maximal assessment with the fixed-point property, denoted RG,T . We say that ai is

interim rationalizable for type ti if ai ∈ RG,T
i (ti).

We conclude this section by stating some important properties of rationalizable corre-

spondences which are proved in Section 5. The rationalizable correspondence is non-empty,

closed-valued, and measurable in a strong sense.8

Proposition 2. For each type space T ∈ T S(Ω), for each type ti ∈ Ti, the set RG,T
i (ti)

of interim rationalizable actions is non-empty and closed. Thus, we can view RG,T
i as a

function from Ti to KAi. This function is measurable: for every B ∈ BKAi
, the set

{ti ∈ Ti : RG,T
i (ti) ∈ B}

is a measurable subset of Ti.

3. The Space of Rationalizable Rules

In this section we construct and characterize the universal type space of rationalizable

rules.

3.1. Construction. We begin with the following sets for each i:

Si =
∏
G∈G

KAG
i

Any element ri of Si can be viewed as a rule which assigns a (closed) subset of AG
i to each

G ∈ G - recall that KAG
i is a compact Polish space with the Hausdorff metric. The value of

8It is somewhat surprising that the correspondence need not be closed (i.e. upper hemi-continuous) even
for compact games and Ω compact, indeed even for finite games when Ω is finite. This is shown by example
in section 6.
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a rule ri on particular game G ∈ G is denoted by ri (G) . We equip Si with the associated

product topology and Borel σ-algebra.

A rule ri is rationalizable if there exists a type space T and a type ti ∈ Ti such that

RG,T
i (ti) = ri(G) for every G ∈ G. We use the notation R

(·),T
i : Ti → Si for the mapping

which associates types in T with their corresponding rules. Let Ri be the subset of Si

consisting of all rationalizable rules, i.e.

Ri =
⋃

T∈T S(Ω)

R
(·),T
i (Ti).

The space Ri inherits the topology and σ-algebra from Si. The derived σ-algebra is denoted

BRi
.

We pause here to record the following important fact used repeatedly later.

Lemma 1. For any type space T ∈ T S (Ω) , the mapping R
(·),T
i : Ti → Ri is measurable.

Proof. By the monotone class theorem and the choice of topology on Ri, we need to check

that for any finite number of games G1, . . . , Gk ∈ G and open set KA ⊆ KAG1

i × . . .×KAGn

i ,

the set (
R

(·),T
i

)−1

(KA×
∏

G∈G,G 6=Gi for i=1,..,k

KAG
i ) =

(
RG1,T

i × . . .×RGk,T
i

)−1

(KA)

is measurable. Consider the product game G = G1 × . . . × Gk =
(
AG

i , u
G
i

)
. Observe that

KA is an open subset KA ⊆ KAG
i and RG1,T

i × . . .× RGk,T
i = RG,T

i . Now by proposition 2,

the set
(
RG,T

i

)−1

(KA) is measurable in Ti. �

3.2. R as a Type Space. Our goal is to treat R as a type space by assigning beliefs to

each rule ri ∈ Ri. We do this by transporting in the natural way the beliefs of some type

ti (in some existing type space) from which ri was derived. There are two purposes of this

exercise. First, it will allow us to check whether the construction is internally consistent.

Having specified beliefs of each type in R we can solve for the rationalizable actions within

the type space R of any type ri for any game G and determine the rule R
(G),R
i (ri) generated

by ri. Then we can check whether this rule R
(G),R
i (ri) indeed coincides with ri. Next, once

we have verified the internal consistency, we can proceed to characterize rationalizable rules

in terms of their beliefs and higher-order beliefs. The latter will be the focus of the remainder

of the paper.

There is an important subtlety involved in transforming R in an internally consistent way

into a type space. In this subsection we will revisit the example from the introduction to

illustrate the issues involved and to motivate the development to follow. Consider the direct

approach to defining the beliefs of a rule ri ∈ Ri. Since ri is a rationalizable rule, there



HIERARCHIES OF BELIEF AND INTERIM RATIONALIZABILITY 11

is a type ti in a type space T which generates ri. Recall that R
(·),T
−i : T−i → R−i is the

measurable mapping which carries types from T−i into the space R−i. To define the beliefs

of type ri = R
(.),T
i (ti) over the types of the opponent, we similarly transport the belief of ti:

marg
R−i

µRi (ri) =
(
∆R

(.),T
−i

)
(marg

T−i

µT
i (ti)) (3.1)

This is not enough however, as we must define beliefs of ri over types of the opponent and

states of the world. To make these beliefs consistent with those of the original type ti, the

only choice is to put:

CΩµ
R
i (ri)(r−i) = CΩµ

T
i (ti)

((
R

(.),T
−i

)−1

(r−i)

)
(3.2)

i.e. conditional on a rule r−i of the opponent, ri holds the same beliefs over Ω as ti would

have conditional on the set (R
(·),T
−i )−1(r−i) of types in T−i which generate rule r−i.

Unfortunately, with beliefs translated in this way, some important information from the

original type space T is lost, and the internal consistency of the construction fails. To see this,

let us trace through these mappings as applied to the type space from the introduction. First

of all, as we mentioned previously, both types of player i generate the same rationalizable

rule, so R
(·),T
i (+1) = R

(·),T
i (−1) := ri for i = 1, 2. Then by (3.1), type ri must assign

probability 1 to the single type r−i (she knows the rule of her opponent), and by (3.2), type

ri must assign equal probability to each state of the world (conditional on r−i). In other

words, independent of the opponent’s information, ri thinks that each state is equally likely.

But such a type is isomorphic to the type ∗ from the second type space T ∗ in the example

which we previously showed has a different rationalizable rule. In the terminology we use

below, this way of mapping beliefs does not preserve rationalizable sets and this means that

the rule of type ri is not equal to ri, i.e. the model is not internally consistent.

The right way to transform R into a type space is therefore somewhat more involved. Our

development will involve two steps. First, we need to identify what information contained

in the beliefs from the original type space T is important for rationalizability in that type

space. As our discussion in the introduction suggests, what are important are beliefs about

conditional beliefs. To develop a framework for such beliefs, we will consider a new class of

type spaces where the space of basic uncertainty is ∆Ω, the space of (conditional) beliefs

about Ω. A type in such a type space has beliefs about the opponent’s type and ∆Ω. In

the usual fashion, these can be unfolded into beliefs about ∆Ω, beliefs about the opponent’s

beliefs about ∆Ω and so on. We will show how to treat the space of rationalizable rules as a

type space R(∆) over ∆Ω. In a certain sense, this is the right way to think about the space

of rules.



12 JEFFREY C. ELY AND MARCIN P ↪ESKI

Nevertheless, in order to determine what is rationalizable for a type in a game (whose

payoffs are defined over Ω) we must be able to calculate expected payoffs and so we must

interpret the beliefs as probabilities over the opponent’s type and Ω. Having seen the con-

struction of the space R(∆), it will be readily apparent how to transform R(∆) back into a

type space over Ω in such a way that the final type space, R(Ω), is internally consistent.

3.3. The Type Space R(∆). Let us take as our space of basic uncertainty the (Polish)

space ∆Ω. Exactly as with Ω itself, we can define a type space over ∆Ω. The beliefs of

a type ti in such a type space T are probabilities over ∆(∆Ω × T−i). We interpret these

as joint probabilities over the types of the opponent and conditional beliefs about Ω. We

will consider the class of all type spaces over ∆Ω with weakly measurable beliefs, denoted

T W (∆Ω).

There is a natural way in which any type space T = (Ti, µi) over Ω can be transformed

into a type space T∆ =
(
T∆

i , µ
∆
i

)
∈ T W (∆Ω) . Let T∆

i = Ti and for any ti ∈ T∆
i we define

µ∆
i (ti) ∈ ∆(∆Ω × T−i) to be the unique probability measure satisfying the following two

conditions:

(1) beliefs about opponent types are unchanged,

marg
T∆
−i

µ∆
i (ti) = marg

T−i

µi (ti) ,

(2) conditional beliefs of ti ∈ T∆
i about ∆Ω given type t−i are a point mass on the

conditional belief ti in Ti given type t−i

C∆Ωµ
∆
i (ti) (t−i) = δ (CΩµi (ti) (t−i)) ,

here δ (·) denotes Dirac delta measure.

The logic behind this definition is the following. The translated beliefs µ∆
i (ti) capture

exactly the joint probability over opponent’s types and the resulting conditional beliefs as

embodied in µi(ti). In the appendix we show that this defines a weakly measurable belief

mapping.

Lemma 2. Suppose that T ∈ T S (Ω) . Then T∆ ∈ T W (∆Ω)

Now, we may define the beliefs of a rule ri ∈ Ri generated by some type ti by trans-

porting the transformed beliefs µ∆
i (ti). Find some type space T and type ti ∈ Ti, such that

R
(·),T
i (ti) = ri and put

µR
i (ri) = ∆

(
id∆Ω ×R

(·),T
−i

) (
µ∆

i (ti)
)
.

As defined, the beliefs of type-rules ri are potentially dependent on the choice of type

space and type ti ∈ Ti. Since there are potentially many type spaces with different types
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having the same rationalizable rule, it is important to verify that all such types will generate

the same beliefs:

Proposition 3. For any two type spaces T, T ′ ∈ T S(Ω), any two types ti ∈ Ti, t
′
i ∈ T ′i , if

both types generate the same rules,

R
(·),T
i (ti) = R

(·),T ′
i (t′i) ,

then they also generate the same beliefs about the conditional beliefs and the opponent’s rules,

∆
(
id∆Ω ×R

(·),T
−i

) (
µ∆

i (ti)
)

= ∆
(
id∆Ω ×R

(·),T ′
−i

) (
µ∆

i (t′i)
)
.

To see how this treatment avoids the problem with the more direct approach, let us return

to the example from the introduction. Recall that ri is the rule generated by both types of

player i. The previous proposition states that w.l.o.g the beliefs of ri can be derived from

type +1. The first step is to derive the belief µ∆
i :

µ∆
i (+1, δ{ω=+1}) = µ∆

i (−1, δ{ω=−1}) = 1/2.

Next, we apply the mapping ∆
(
id∆Ω ×R

(·),T
−i

)
to obtain

µRi (ri)(r−i, δ{ω=+1}) = µRi (ri)(r−i, δ{ω=−1}) = 1/2.

Just as before, the two types of the opponent generate the same rule and so will be mapped

to a single element r−i and so ri must assign probability 1 to r−i, i.e. she knows the rule of

her opponent. However, now type ri assigns equal probability to the events “the opponent

has rule r−i and I will know for sure that the state is +1” and “the opponent has rule r−i

and I will know for sure that the state is −1.” This is exactly the joint probability over

(R-equivalence classes of) types of the opponent and conditional beliefs held by the original

type from which ri was derived.

Having defined the beliefs, the final element is to show that the belief mapping is weakly

measurable, so thatR(∆) is a well-defined type space. The proof of the following proposition

is deferred to the next section (4.2).

Proposition 4. The belief mapping µRi : Ri → ∆ (∆Ω×R−i) is weakly measurable. Thus,

R ∈ T W (∆Ω)

3.4. The Type Space R(Ω). By viewing R as a type space over ∆Ω, we have identi-

fied rationalizable rules with their beliefs about the types of the opponent and conditional

probabilities of events in Ω. Recall that Proposition 3 states that for type spaces over Ω,

these beliefs precisely determine a type’s rationalizable rule. Our goal is to show that the

mapping which associates an arbitrary type ti with its rule ri = R
(·),T
i (ti) ∈ R(∆) pre-

serves (the essential structure of) these beliefs and therefore that as a type R
(·),T
i (ti) has the
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same rationalizable rule as ti, namely ri. This will show that the construction is internally

consistent.

However we cannot make this argument working with R(∆), as it is not a type space over

Ω. First, to be able to discuss rationalizability, we must find the right model for R(∆) within

the class of type spaces over Ω. The structure of beliefs in R(∆) suggests the answer. In

R(∆), given a rule for the opponent, a type ri has a (possibly non-degenerate) probability

distribution over conditional beliefs about Ω. On the other hand, within any type space

over Ω, any type can have only one conditional belief about Ω for each possible type of the

opponent. Thus, to replicate the structure of beliefs from R(∆) within a type space over Ω,

we must include a sufficiently rich set of types. Indeed, our set of types will be of the form

Ri ×∆Ω with the idea that type (ri, τ) will be the type whose rationalizable rule will be ri

and conditional on which player −i will have belief τ over Ω.

Precisely, we define a type space over Ω, R(Ω) = (R × ∆Ω, µ
R(Ω)
i ) in the following way.

Let (R×∆Ω)i = Ri×∆Ω be the space of types. For every type (ri, τi) ∈ Ri×∆Ω we define

the beliefs

µ
R(Ω)
i (ri, τi) ∈ ∆

(
Ω× (R×∆Ω)−i

)
as the unique measure satisfying the following two conditions:

(1) marginal beliefs about ∆Ω×R−i are obtained from R(∆),

marg
∆Ω×R−i

µ
R(Ω)
i (ri, τi) = µRi (ri) ,

(2) given any (r−i, τ−i) ∈ (R×∆Ω)−i conditional beliefs about Ω are equal to τ−i,

Cµ
R(Ω)
i (ri, τi) (r−i, τ−i) = τ−i

Obviously the conditional probabilities are measurable so that these beliefs properly define

a type space with strongly measurable beliefs, R(Ω) ∈ T S(Ω).

3.5. Internal Consistency of R(Ω). For any type space T ∈ T S(Ω) and an arbitrary

τ ∈ ∆Ω, consider the type-mapping φT,τ : T → R×∆Ω defined by

φT,τ
i (ti) = (R

(·),T
i (ti), τ). (3.3)

The measurability of φT,τ follows from Lemma 1.

Definition 2. We say that type mapping φ : T → T ′ , T, T ′ ∈ T S (Ω) preserves rationaliz-

able sets, if for all games G ∈ G, for all types ti ∈ Ti

RG,T
i (ti) = RG,T ′

i (φi (ti)) .
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We will present some sufficient conditions for a mapping to preserve rationalizable sets

and show that φT,τ satisfies these conditions. These conditions are described in terms of the

way in which beliefs are implicitly transformed by the mapping.

Suppose that we have two type spaces T = (Ti, µi) , T
′ = (T ′i , µ

′
i) over the same space of

basic uncertainty X (for our purposes, X will be either Ω or ∆Ω.) Consider a type mapping

φ : T → T ′, such that for every ti, there is a measurable mapping φti : T−i → T ′−i, such that,

for any measurable subset S ′ ⊆ T ′−i

marg
T ′−i

µ′ (φ (ti)) (S ′) = marg
T−i

µ (ti)
(
φ−1

ti
(S ′)

)
. (3.4)

The mappings φti are referred to as the dual mappings. We can interpret the dual mapping

φti as describing how player i type ti “thinks” that types of the opponent are transported.

We say that a type mapping is exact iff φti = φ for every ti (or types t−i are transported

in exaclty the same way as type ti ”thinks”). We say that a type mapping φ is exact with

respect to beliefs iff for every ti ∈ Ti and every t−i ∈ T−i,

µ′ (φti (t−i)) = µ′ (φ (t−i)) (3.5)

(or beliefs of types t−i are transported in exaclty the same way as type ti ”thinks” about

transporting beliefs). Thus, an exact mapping is also exact with respect to beliefs. We

say that a type mapping preserves beliefs iff for any type ti ∈ Ti and for almost any type

t′−i ∈ T ′−i

CXµ (ti)
(
φ−1

ti

(
t′−i

))
= CXµ

′ (φ (ti))
(
t′−i

)
. (3.6)

We say that a type mapping preserves conditional beliefs iff for any type ti ∈ Ti, for almost

any type t−i ∈ T−i

CXµ (ti) (t−i) = CXµ
′ (φ (ti)) (φti (t−i)) . (3.7)

Thus, if a mapping preserves conditional beliefs, then it also preserves beliefs. However, the

converse does not hold necessarily. Consider the type mapping informally described in the

introduction which associated types in the example with their counterparts in the universal

type space U(Ω). It can easily be checked that this mapping preserves beliefs but does not

preserve conditional beliefs. Indeed the mappings considered by Mertens and Zamir (1985)

and Heifetz and Samet (1999) which associate types with their hierarchies are equivalent to

our exact, belief-preserving type-mappings. They do not preserve conditional beliefs. The

following lemma shows that the latter is a sufficient condition for a mapping to preserve

rationalizable sets.

Lemma 3. Suppose that for type spaces T, T ′ ∈ T S(Ω) there is a type mapping φ : T → T ′,

which is exact with respect to beliefs and preserves conditional beliefs. Then it preserves

rationalizable sets.
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Proof. Fix a game G. The rationalizable correspondence for G in type space T is RG,T
i .

Consider the following assessment for typespace T ′

α′i = φ̂(RG,T
i ) ∪

⋃
t′−i∈T ′−i

φ̂t−i
(RG,T

i )

where φ̂ = φ× idA. We will show that α′i has the best-response property.

Let us write S ′i = φ(Ti) ∪ ∪t−i
φt−i

(Ti). Note that for any t′i ∈ S ′i,

α′i(t
′
i) =

⋃
ti∈φ−1(t′i)

RG,T
i (ti) ∪

⋃
t−i

⋃
ti∈φ−1

t−i
(t′i)

RG,T
i (ti) (3.8)

and for any t′i /∈ S ′i, α′i(t′i) = ∅.
Pick ti ∈ Ti. Let t′i = φ(ti), ai ∈ RG,T

i (ti), and σ∆,T
−i ∈ Σ∆,T

−i (RG,T
−i |ti) with ai ∈ BT

i (σ∆,T
−i ).

We construct a conjecture for t′i as follows:

σ∆,T ′

−i = σ∆,T
−i ◦ φ̂−1

i

We claim that for any zi ∈ Ai,

UT ′

i (zi, σ
∆,T ′

−i ) = UT
i (zi, σ

∆,T
−i )

To show this, we first use the fact that φ preserves conditional beliefs to establish that the

type-dependent payoff function πi is preserved under φ. For any action profile a, and type

profile t̂ ∈ T ,

πT
i (a, t̂) =

(
CΩµ

T
i

(
t̂i
) (
t̂−i

))
[ui(a, ·)]

=
(
CΩµ

T ′

i

(
φ(t̂i)

) (
φti(t̂−i)

))
[ui(a, ·)]

= πT ′

i (a, φ(t̂i), φti(t̂−i))

Next, it follows that

UT
i (zi, σ

∆,T
−i ) = σ∆,T

−i [πT
i (zi, a−i, t̂)]

= σ∆,T
−i [πT ′

i (zi, a−i, φ(t̂i), φti(t̂−i))]

= σ∆,T ′

−i [πT ′

i (zi, a−i, ·, ·)]

= UT ′

i (zi, σ
∆,T ′

−i ).

The third equality holds because by the construction of σ∆,T
−i , for any measurable subset

C ⊂ R,

σ∆,T ′

−i ({(t′−i, a−i) : πT ′

i (zi, a−i, t
′
i, t

′
−i) ∈ C}) = σ∆,T

−i ({(t−i, a−i) : πT ′

i (zi, a−i, t
′
i, φti(t−i)) ∈ C}.

This establishes our claim.
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Next, note that σ∆,T ′

−i ∈ Σ∆,T ′

−i (α′−i|t′i). In particular, because φti(R
G,T
−i ) ⊂ α′−i, we have

σ∆,T ′

−i (α′−i) ≥ σ∆,T
−i (RG,T

−i ) = 1. We have therefore shown that ai ∈ BT ′
i (α′−i|t′i). since ai was

arbitrary, we conclude RG,T
i (ti) ⊂ BT ′

i (α′−i|t′i).
Next consider t′′i = φt−i

(ti) for some t−i. Because φ is exact with respect to beliefs,

µT ′
i (t′i) = µT ′

i (t′′i ). It follows that

RG,T
i (ti) ⊂ BT ′

i (α′−i|t′i) = BT ′

i (α′−i|t′′i )

It now follows from (3.8) that α′ has the best-response property.

Now turn to the rationalizable correspondence RG,T ′

i on T ′. Construct an assessment for

T as follows.

αi(ti) =
⋃
t−i

RG,T ′

i (φt−i
(ti))

We will show that α has the best-response property.

Pick ti ∈ Ti. Because φ is exact with respect to beliefs, for any t−i, φt−i
(ti) and φ(ti)

have the same beliefs in T−i, and therefore RG,T ′

i (φt−i
(ti)) = RG,T ′

i (φ(ti)). Thus, αi(ti) =

RG,T ′

i (φ(ti)). Let ai ∈ RG,T ′

i (φ(ti)) so that there is a conjecture σ∆,T ′

−i ∈ Σ∆,T ′

−i (RG,T ′

−i |φ(ti))

such that ai ∈ BT ′
i (σ∆,T ′

−i ). We derive a conjecture for ti in a few steps.

First, consider the behavior strategy σ′−i defined by σ′−i(t
′
−i) = CA−i

σ∆,T ′

−i (t′−i). We can

select a measurable version of CA−i
σ∆,T ′

−i so that σ′−i(t
′
−i) ∈ ∆RG,T ′

−i (t′−i) for each t′−i. Now

there corresponds a behavior strategy for T , namely σ−i = σ′−i◦φti . Construct the conjecture

σ∆,T
−i from µT

i (ti) and σ−i. It can easily be checked that this construction yields

σ∆,T ′

−i = σ∆,T
−i ◦ φ̂−1

i

and since α−i = φ̂−1
i (RG,T ′

−i ),

σ∆,T
−i (α−i) = [σ∆,T

−i ◦ φ̂−1
i ](RG,T ′

−i ) = σ∆,T ′

−i (RG,T ′

−i ) = 1

hence σ∆,T
−i ∈ Σ∆,T

−i (α−i|ti).
Furthermore, the claim from the first half of the proof applies and we can conclude ai ∈

BT
i (σ∆,T

−i ) so that ai ∈ BT
i (α−i|ti). As ai was selected arbitrarily, we have shown that α has

the best-response property.

To summarize, we have shown that there is an assessment on T ′ with the best-response

property such that RG,T
i (ti) ⊂ α′i(φ(ti)). Since RG,T ′

i includes any assessment with the best-

response property, it follows that

RG,T
i (ti) ⊂ RG,T ′

i (φ(ti))

Likewise, in the opposite direction we showed

RG,T ′

i (φ(ti)) ⊂ RG,T
i (ti)
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and this concludes the proof. �

It is easy to check that by the definition of beliefs in the type spaceR(∆), for any type space

T ∈ T S(Ω), the type mapping R(·),T : T∆ → R(∆) is in fact exact and preserves beliefs. We

argue in the proposition below that, as a consequence, the type mapping φT,τ : T → R(Ω)

is exact with respect to beliefs and preserves conditional beliefs. Then lemma 3 allows us to

say that φT,τ preserves rationalizable sets.

Proposition 5. For any type space T ∈ T S (Ω) and τ ∈ ∆Ω, the type mapping φT,τ : T →
R(Ω) is exact with respect to beliefs and preserves conditional beliefs. Hence, it preserves

rationalizable sets. Moreover, for any rule ri ∈ Ri, any τi ∈ ∆Ω

ri = R
(·),R(Ω)
i (ri, τi) .

Proof. Let T = (Ti, µi) . We define the dual mapping for type ti ∈ Ti by

φT,τ
ti (t−i) =

(
R

(·),T
−i (t−i) , CΩµi (ti) (t−i)

)
.

By Lemma 1, φT,τ
ti is measurable. We check that for any measurable set B ⊂ (R×∆Ω)−i

marg
R−i×∆Ω

µ
R(Ω)
i

(
φT,τ

i (ti)
)

(B) = marg
R−i×∆Ω

µ
R(Ω)
i

(
R

(·),T
i (ti) , τ

)
(B)

= µRi

(
R

(·),T
i (ti)

)
(B)

= µT∆

i (ti)
({

(t−i, τ) :
(
R

(·),T
−i (t−i) , τ

)
∈ B

})
= marg

T−i

µi (ti)
({
t−i :

(
R

(·),T
−i (t−i), CΩµi (ti) (t−i)

)
∈ B

})
= marg

T−i

µi (ti)
(
φ−1

ti
(B′)

)
(the third equality comes from our observation in the text that the mapping R(·),T : T∆ →
R(∆) is exact and preserves beliefs; the fourth from the definition of beliefs on the space

T∆). Therefore, the type mapping φT,τ
ti satisfies equation (3.4) and so is a valid dual mapping.

Verification that φT,τ preserves conditional beliefs becomes straightforward:

CΩµ
R(Ω)
i

(
φT,τ

i (ti)
) (

φT,τ
ti (t−i)

)
= CΩµ

R(Ω)
i

(
φT,τ

i (ti)
) (

R
(·),T
−i (t−i) , CΩµi (ti) (t−i)

)
= CΩµi (ti) (t−i) .

In order to check exactness with respect to beliefs, note that for any ri ∈ Ri, any τi, τ
′
i ∈ ∆Ω,

µ
R(Ω)
i (ri, τi) = µ

R(Ω)
i (ri, τ

′
i) so that for any ti ∈ Ti, t−i ∈ T−i

µ
R(Ω)
i

(
φT,τ
−i (t−i)

)
= µ

R(Ω)
i

(
R

(·),T
−i (t−i) , τ

)
= µ

R(Ω)
i

(
R

(·),T
−i (t−i) , CΩµi (ti) (t−i)

)
= µ

R(Ω)
i

(
φT,τ

ti (t−i)
)
.
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Take now any rationalizable rule ri ∈ Ri and some τi ∈ ∆Ω. There is type in a type space

ti ∈ Ti, such that ri = R
(·),T
i (ti) . Since the type mapping φT,τ preserves rationalizable sets,

we have

ri = R
(·),T
i (ti) = R

(·),R(Ω)
i (ri, τ) = R

(·),R(Ω)
i (ri, τi) .

The last equality comes from the fact that beliefs of types in R(Ω), hence by proposition 3

also their rationalizable sets, depend only on the ri-coordinate. �

The construction of the space R(Ω) assures that types (ri, τi) , (r
′
i, τ

′
i) ∈ Ri(Ω) have the

same beliefs if they agree on the first coordinate, ri = r′i. The second part of the last

proposition strengthens the implication into equivalence: since types (ri, τi) , (r
′
i, τ

′
i) ∈ Ri(Ω)

must have different rationalizable behavior whenever ri 6= r′i, it follows that they must have

also different beliefs. Since beliefs of (ri, τi) ∈ R(Ω) are generated from beliefs of ri ∈ R(∆),

it follows that two different rules ri 6= r′i must have different beliefs in type space R(∆). In

particular, the implication of proposition 3 may be strengthened to equivalence: two types

generate the same rules if and only if they generate the same beliefs about conditional beliefs

and rules of the opponent.

3.6. ∆-hierarchies. Our construction of the space of rationalizable rules has one advantage

and one fault. The advantage is that it is direct and relatively simple. The fault is that its

construction reveals little about the internal structure of the space. The goal of this section

is to characterize rules in terms of their beliefs. We do this by first presenting an alternative

type space which is defined directly in terms of players’ beliefs. Then we show that this

space is actually equivalent to R(∆).

The idea behind this alternative construction is very simple. Recall that R(∆) is a type

space over ∆Ω. In completely standard fashion we may derive from the beliefs of any type

its first-order beliefs about ∆Ω, second-order beliefs about the opponent’s first-order beliefs

cross ∆Ω, etc. In other words, types in R(∆) can be interpreted as infinite hierarchies of

beliefs over the space ∆Ω. We refer to these as ∆-hierarchies. We present below a version

of the Mertens and Zamir (1985) theorem on the existence of a universal type space U(∆Ω)

consisting of all such hierarchies.

Theorem 1 (Mertens and Zamir (1985), Brandenburger and Dekel (1993), Battigalli and

Siniscalchi (1999)). Let X be a Polish space and T W(X) the class of all type spaces over

X with weakly measurable beliefs. There exists a universal type space U(X) ∈ T W(X) such

that for any type space T ∈ T W(X), there is a unique exact and beliefs preserving type
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mapping uT
i : Ti → Ui (X)9. Moreover, Ui(X) ' ∆ (X × U−i (X)) for both players i (in the

sense of homeomorphism).

The proof is in the appendix. It follows that of Mertens, Sorin, and Zamir (1994). The

latter applies to continuous type spaces, but the proof is easily adapted to cover measurable

type spaces as in our case. When we apply the theorem to the Polish space ∆Ω, the mapping

uT∆

i : T∆
i → U(∆Ω) gives the ∆-hierarchy of type ti ∈ Ti for any type space T ∈ T S(Ω).

We will show that R(∆) and U(∆Ω) are isomorphic with respect to exact and belief-

preserving type mappings. First, note that just as we transformed R(∆) into a type space

over Ω, we may define a type space L (Ω) where the set of types for i is Ui (∆Ω)×∆Ω. and

the belief mapping µ
L(Ω)
i is defined by

marg
∆Ω×U∆Ω

−i

µ
L(Ω)
i (ui, τi) = µ

U(∆Ω)
i (ui)

CΩµ
L(Ω)
i (ui, τi) (u−i, τ−i) = τ−i

for any (ui, τi) ∈ LΩ
i , and (u−i, τ−i) ∈ LΩ

−i. In particular, notice that beliefs (hence also

rationalizable sets) of any type (ui, τi) ∈ LΩ
i depend only on its ui-coordinate.

We show how to map any type space T ∈ T S(Ω) into L(Ω) in a way that preserves

rationalizable sets. First, fix some τ ∈ ∆Ω and let inτ
i : Ui(∆Ω) → Li(Ω) be the inclusion

mapping inτ
i (ui) = (ui, τ) . We may define a type mapping lT,τ

i : T → L (Ω) as the following

composition

lT,τ = inτ
i ◦uT∆

i . (3.9)

Such a mapping preserves rationalizable sets, as the following lemma together with lemma

3 show:

Lemma 4. For any type space T ∈ T (Ω) , a type mapping lT,τ : T → L (Ω) is exact with

respect to beliefs and preserves conditional beliefs.

Proof. The proof here is completely analogous to the first half of the proof in proposition

5 �

Before we can show that spaces R(∆) and U (∆Ω) are equivalent (or, in other words,

the spaces R(Ω) and L (Ω)) are equivalent, we need one more result. Define the projection

projT : T ×∆Ω → T with proj (ri, τi) = ri.

Lemma 5. Let S, T ∈ T S (∆Ω) .

9In the language of category theory, universal type space is a terminal object within the category of type
spaces T W (X) connected with type morphisms which are exact and preserve beliefs.
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(1) For any exact, belief preserving type mapping φ∆ : S → T, mapping

φ = inT,τ ◦φ∆ ◦ projS

is an exact with respect to beliefs, conditional beliefs preserving type mapping φ :

S ×∆Ω → T ×∆Ω.

(2) Suppose T has the following property: ti 6= t′i =⇒ µi (ti) 6= µi (t
′
i). Then for any

exact with respect to beliefs, conditional beliefs preserving type mapping φ : S×∆Ω →
T ×∆Ω, mapping

φ∆ = projT ◦φ ◦ inS,τ

is an exact, belief preserving type mapping φ∆ : S → T.

Notice that both spaces, R(∆) and U (∆Ω) have the property assumed in the second part

of lemma: U (∆Ω) by the previous theorem and R(∆) by the remark following proposition

5.

Proof. We begin with the first part of lemma: φ∆ is exact and preserves beliefs. For any

(si, τi) ∈ Si ×∆Ω, define φ(si,τi) : S−i ×∆Ω → T−i ×∆Ω with

φ(si,τi) (s−i, τ−i) =
(
φ∆ (s−i) , τ−i

)
.

We check that (3.4) holds: for any subset B′ ⊆ Ti ×∆Ω

marg
T−i×∆Ω

µT×∆Ω (φ (si, τi)) (B′) = marg
T−i×∆Ω

µT×∆Ω
(
φ∆ (si) , τ

)
(B′)

= µT
(
φ∆ (si)

)
((ti, τ−i) ∈ B′)

= µSi (si)
((
φ∆ (s−i) , τ−i

)
∈ B′)

= µSi (si)
((
φ∆ (s−i) , τ−i

)
∈ B′)

= marg
S−i×∆Ω

µS×∆Ω (si, τi)
(
φ−1

(si,τi)
(B′)

)
(where the third equality comes from exactness and belief preserving of φ∆). It is immediate

to verify that φ is exact with respect to beliefs and preserves conditional beliefs.

We move to the second part of the lemma: Since φ preserves conditional beliefs and

is exact with respect to beliefs, there is for any (si, τi) ∈ S × ∆Ω a measurable mapping

φ(si,τi) : S−i ×∆Ω → T−i ×∆Ω, such that equations (3.4), (3.5), (3.7) hold. Due to the fact

that φ is exact with respect to beliefs, it must be that if φ−i (s−i, τ−i) = (t−i, τ−i), then for

every (si, τi) ∈ Si×∆Ω, there is τ ′i ∈ ∆Ω, such that φ(ui,τi) (s−i, τ−i) = (ti, τ
′
i) . Indeed, types

with different t-coordinate have different beliefs. Therefore,

projT ◦φ(si,τi) = projT ◦φ
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and φ∆ is exact. Since φ preserves conditional beliefs, it must be that φ (si, τi) =
(
φ∆

i (si) , τi
)
.

This implies the second equality in the following: for any si ∈ Si, for any t−i ∈ T−i

C∆Ωµ
S
i (si)

((
φ∆

i

)−1
(t−i)

)
= C∆Ω marg

S−i×∆Ω
µS×∆Ω

i (si, τ)
{
(φi)

−1 ({t−i} ×∆Ω)
}

= C∆Ω marg
T−i×∆Ω

µT×∆Ω
i (φi (si, τ)) ({t−i} ×∆Ω)

= C∆Ωµ
T
i

(
φ∆

i (si)
)
(t−i) ,

and φ∆ preserves beliefs. �

We can finally prove the theorem

Theorem 2. There are unique exact and beliefs preserving type mappings ι : U (∆Ω) →
R(∆) and ι−1 : R(∆) → U (∆Ω) . Either mapping is inverse of the other: ι−1 ◦ ι = idU(∆Ω)

and ι ◦ ι−1 = idR(∆).

Proof. Existence and uniqueness of type mapping ι−1 is assured by theorem 1. In order

to show existence of exact, beliefs-preserving mapping from U (∆Ω) to R(∆), note first

that by the first half of proposition 5, there is exact with respect to beliefs and conditional

beliefs preserving type mapping φL(Ω),τ : L (Ω) → R(Ω). The second part of lemma 5 then

guarantees existence of exact and beliefs preserving mapping
(
φL(Ω),τ

)∆
: U (∆Ω) → R(∆).

Suppose now that we have two different exact and belief preserving mappings ι1, ι2 :

U (∆Ω) → R(∆). There is ui ∈ Ui(∆Ω), such that ι1 (ui) 6= ι2 (ui) . By the first part of lemma

5 there are then two type mappings φ1, φ2 : L (Ω) → R(Ω) which preserve conditional beliefs

and φ1 (ui, τ) = (i1 (ui) , τ) 6= (i2 (ui) , τ) = φ2 (ui, τ) . By lemma 3, φ1 (ui, τ) and φ2 (ui, τ)

must have the same rationalizable rules. But this is a contradiction because proposition

5 shows that the rationalizable rule for φ1 (ui, τ) is ι1(ui) while the rationalizable rule for

φ2 (ui, τ) is ι2(ui).

The equality ι−1 ◦ i = idU(∆Ω) comes from the uniqueness of exact and belief preserving

mapping from U (∆Ω) to itself. The second equality i ◦ ι−1 = idR(∆) is a consequence of

the fact that i ◦ ι−1 would generate an exact with respect to beliefs and conditional belief

preserving mapping from R(Ω) to itself (the first part of lemma 5 guarantees that). Such

a mapping has to preserve rules, so it has to preserve r-coordinates of types in R(Ω) This

implies that i ◦ ι−1 = idR(∆) �

This leads directly to the following corollary which is the main result of the paper.

Corollary 1. Any two types from any two type spaces have the same rationalizable rules if

and only if they have the same ∆-hierarchies, i.e.

R
(·),T
i (ti) = R

(·),S
i (si) ⇐⇒ uT∆

i (ti) = uS∆

i (si)
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Proof. Consider the following diagram, where ι̃ = inR,τ ◦ι ◦ projU (as in the first part of

Lemma 5.)

R(∆)

ι−1zzuuuuuuuuu

U(∆Ω)

ι
::uuuuuuuuu

inU,τ $$IIIIIIIII
R(Ω)

projR
ccHHHHHHHHH

L(Ω)

ι̃

;;vvvvvvvvv

T∆

uT∆

OO

T

φT,τ

OO

//
id

oo

The route T → T∆ → U(∆Ω) → L(Ω) is the mapping lT,τ (see 3.9). By Lemma 4, this

mapping is exact with respect to beliefs and preserves conditional beliefs. By the first part of

Lemma 5, ι̃ has the same properties. Since these properties are preserved under composition,

the route T → T∆ → U(∆Ω) → L(Ω) → R(Ω) is exact with respect to beliefs and perserves

conditional beliefs, hence it preserves rationalizable sets. Thus, it defines the same mapping

as the direct route φT,τ . This, together with Theorem 2 establishes that the diagram is

commutative. Thus, we can determine the rationalizable rules of types ti and si by tracing

the indirect route to R(Ω). Because ι is a bijection, the result follows immediately. �

4. Belief mapping

We have two goals in this section. First we want to show that belief mapping on the space

of rules does not depend on the choice of representative type and type space - hence it is

well-defined (proposition 3). We show that types with the same rule have the same beliefs

about ∆Ω and rules of the opponent and types with different beliefs have different rules. To

this end we use special characterization theorem, proof of which, among others, contains a

construction of games which have different rationalizable sets for different beliefs. Second,

we attempt to show that the belief mapping is measurable (4).

4.1. Characterization of rules through beliefs. In the previous section we defined beliefs

of type-rules over conditional beliefs and type-rules of the opponent, ∆Ω ×R−i. It is often

useful to consider only restricted version of these beliefs: only about conditional beliefs and

rationalizable sets of the opponent in some particular game G =
(
AG

i , u
G
i

)
, i.e. beliefs about

∆Ω×KAG
−i. Precisely, for any type we may define beliefs ∆RG,T

i (ti) ∈ ∆
(
∆Ω×KAG

−i

)
with
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formula:

∆RG,T (ti) := ∆
(
id∆Ω ×RG,T

−i

) (
µ∆

i (ti)
)
.

In other words, in order to determine beliefs ∆RG,T (ti), we need to take first type ti ∈ Ti,

find her beliefs µT∆

i (ti) ∈ ∆ (∆Ω× T−i) , compute rationalizable sets of the correspon-

dence of the opponent types in game G and transport naturally beliefs µT∆

i (ti) into beliefs

∆
(
id∆Ω ×RG,T

−i

) (
µ∆

i (ti)
)
.

In particular, if proposition 3 is true and we may properly define beliefs for every rule,

beliefs ∆RG,T
i (ti) are equal to marginal beliefs of the type-rule. Precisely, take any game

G ∈ G, any type ti ∈ Ti and observe that, if proposition 3 holds, then

∆RG,T
i (ti) = marg

∆Ω×KAG
−i

µ
R(∆)
i

(
R

(·),T
i (ti)

)
= marg

∆Ω×KAG
−i

µ
R(∆)
i (ri)

for rationalizable rule ri = R
(·),T
i (ti) . This comes from the definition of the space of rules:

its elements are product of rationalizable sets in different games from G.

The important fact is:

Theorem 3. For any two type spaces T, T ′ ∈ T (Ω) , any two types, ti ∈ Ti and t′i ∈ T ′i , if

for every game G ∈ G, rationalizable sets of both types are equal,

RG,T
i (ti) = RG,T ′

i (t′i) ,

then for every game G ∈ G, beliefs of both types about ∆Ω and rationalizable sets of the

opponent in G are equal,

∆RG,T
i (ti) = ∆RG,T ′′

i (t′i) .

In other words, if rationalizable sets of both types are equal for any game G then types’

beliefs about rationalizable sets of the opponent and conditional beliefs about state of the

world are equal for any game G. (Note the order of the quantifiers!). We show first how we

can use the theorem to prove proposition 3:

Proof of Proposition 3. The proposition is a consequence of the theorem, but with one com-

plication. The theorem implies that for any game G ∈ G

marg
∆Ω×KAG

i

∆
(
id∆Ω ×R

(·),T
−i

) (
µ∆

i (ti)
)

= ∆RG,T
i (ti) = ∆RG,T ′′

i (t′i)

= marg
∆Ω×KAG

i

∆
(
id∆Ω ×R

(·),T
−i

) (
µ∆

i (t′i)
)
,

or that marginal beliefs about conditional beliefs and opponent rationalizable sets in game

G are the same. This statement holds for any G. However, it is not enough for us, since we

need to argue that joint beliefs about opponent’s rules (all of their rationalizable sets) are

actually the same.
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By Kolmogorov consistency theorem, it is enough to show that for any finite number of

games G1, . . . , Gk ∈ G we have

marg
∆Ω×KA

G1
i ...×KA

Gk
i

∆
(
id∆Ω ×R

(·),T
−i

) (
µ∆

i (ti)
)

= marg
∆Ω×KA

G1
i ...×KA

Gk
i

∆
(
id∆Ω ×R

(·),T
−i

) (
µ∆

i (t′i)
)
.

The last equality is equivalent to

∆
(
id∆Ω ×RG1,T

−i × . . .×RGk,T
−i

) (
µ∆

i (ti)
)

= ∆
(
id∆Ω ×RG1,T

−i × . . .×RGk,T
−i

) (
µ∆

i (t′i)
)
.

To show this is however not so difficult: Observe that product of rationalizable sets in games

G1, . . . , Gk is equal to the set of rationalizable actions in the product game G = G1×. . .×Gk,

where product game is defined in the section 2. This means that

∆
(
id∆Ω ×RG1,T

−i × . . .×RGk,T
−i

) (
µ∆

i (ti)
)

= ∆RG,T
i (ti) = ∆RG,T ′′

i (t′i)

= ∆
(
id∆Ω ×RG1,T

−i × . . .×RGk,T
−i

) (
µ∆

i (t′i)
)
.

which ends the proof. �

We prove now the theorem. Suppose that there are two types ti ∈ Ti, t
′
i ∈ T ′i which have

different beliefs about ∆Ω and rationalizable sets in at least one game G ∈ G. We show

that it means that there is potentially another game G′ ∈ G, in which each of two types

has different rationalizable sets. The difficulty is that G′ is not necessarily equal to G - it is

possible that two types have the same rationalizable sets of actions in same game, despite

differences in beliefs.

Before we continue, we need a technical result. For a fixed game G = (Aj, uj) ∈ G, define

the following set of continuous bounded functions f : ∆Ω×KA−i → [0,∞)

FG =


f (τ,K) = max

k=1,...,N1

sup
a1,...,aN2

∈K
τ [ψ (k, a1, ..., aN2 , ω)] :

for some natural N1, N2 and

continuous bounded function ψ : {1, . . . , N1} × AN2
−i × Ω → [0,∞) .

 .

On the first coordinate τ ∈ ∆Ω, functions f ∈ FG are “piecewise linear” and convex. On

the second coordinate K ∈ KA−i, they are set-increasing: for any two sets K ⊆ K ′, K,K ′ ∈
KA−i, f (τ,K) ≤ f (τ,K ′). Next, define the set of differences of functions from FG

LG =
{
f − g : f, g ∈ FG

}
⊆ C (∆Ω×KA−i) .

We have the following lemma:
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Lemma 6. For any game G the collection of sets {µ : µ [f ] < 0} ⊆ ∆ (∆Ω×KA−i) for

f ∈ LG generates the weak∗ topology on ∆ (∆Ω×KA−i) . In particular, for any µ, µ′ ∈
∆ (∆Ω×KA−i) , µ 6= µ′ there is function fG ∈ FG, such that

µ
[
fG (τ, A)

]
6= µ′

[
fG (τ, A)

]
.

We leave the proof of lemma for the appendix.

Proof of Theorem 3: Suppose that ∆RG∗,Tµ (ti) 6= ∆RG∗,T ′µ′ (t′i) for some gameG∗ =
(
A∗j , u

∗
j

)
.

The lemma says that there are natural numbers N1, N2 and continuous bounded function

ψ : {1, . . . , N1} × AN2
−i × Ω → [0,∞) such that for f : ∆Ω×KA−i → R defined by

f (τ,K) = max
k=1,...,N1

sup
a1,...,aN2

∈K
τ [ψ (k, a1, ..., aN2 , ω)] ,

we have either

∆RG∗,Tµ (ti) [f ] < ∆RG∗,T ′µ′ (t′i) [f ]

or

∆RG∗,Tµ (ti) [f ] > ∆RG∗,T ′µ′ (t′i) [f ] .

Suppose w.l.og. that the first strict inequality holds. Find λ > 0, such that

∆RG∗,Tµ (ti) [λf − 1] < 0 < ∆RG∗,T ′µ′ (t′i) [λf − 1]

We will prove the theorem by constructing a game G = (Aj, uj) , such that RG,T (ti) 6=
RG,T (t′i).

First, find a game G0 =
(
A0

j , u
0
j

)
, such that A0

−i = {1, . . . , N1} and all actions of player

−i are rationalizable for all types of player −i, .i.e. for any t−i ∈ T−i any t′−i ∈ T ′−i,

RG0,T
−i (t−i) = RG0,T ′

−i

(
t′−i

)
= A0

−i (such a game always exists). Denote Z = {0, 1} and define

sets of actions in game G as

Ai = A0
i × (A∗i )

N2 × Z,

A−i = A0
−i ×

(
A∗−i

)N2 .

Payoffs of player −i are given by

u−i

((
a0
−i, a

∗
−i,1, . . . , a

∗
−i,N2

)
,
(
a0

i , a
∗
i,1, . . . , a

∗
i,N2

, z
)
, ω

)
= u0

−i

(
a0
−i, a

0
i , ω

)
+

N2∑
k=1

u∗−i

(
a∗−i,k, a

∗
i,k, ω

)
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(in particular they do not depend on z) and payoffs of player i are given by

ui

((
a0

i , a
∗
i,1, . . . , a

∗
i,N2

, z
)
,
(
a0
−i, a

∗
−i,1, . . . , a

∗
−i,N2

)
, ω

)
= u0

i

(
a0

i , a
0
−i, ω

)
+

N2∑
k=1

u∗i
(
a∗i,k, a

∗
−i,k, ω

)
+ z

[
λψ

(
a0
−i, a−i,1, ..., a−i,N2 , ω

)
− 1

]
.

We show that the rationalizable sets for types ti and t′i are different in G. First observe,

that due to the product structure of the game G, for any type space S, for any type s−i ∈ S−i,

RG,S
−i (s−i) = A0

−i ×
[
RG∗,S
−i (s−i)

]N2

and for any si ∈ Si,

RG,S
i (si) = RG0

i (si)×
[
RG∗,S

i (si)
]N2

× Zi (si) ,

where Zi (si) ⊆ Z.

In type space T , consider the (pure) behavioral strategy for player −i which as type s−i

selects a0
−i ∈ {1, . . . , N1} and (a∗−i,1, . . . , a

∗
−i,N2

) from RG∗,S
−i (s−i) to maximize the expression

ρi(ti)(s−i)[ψ(a0
−i, a

∗
−i,1, . . . , a

∗
−i,N2

, ω)]. By the measurable maximum theorem, this defines

a measurable selection from RG,T
−i .10 Call this strategy σ−i. We can define the analogous

strategy σ′−i for type space T ′ where type t′i replaces ti in the definition.

We calculate the payoff to type t′i of player i from playing z = 1 against σ′−i:

µ′i (t
′
i)

[
λ · max

k=1,...,N1

sup
a1,...,aN2

∈K
ρT ′

i (t′i)
(
s′−i

)
[ψ (k, a1, ..., aN2 , ω)]− 1

]
= ∆RG∗,T ′µ′ (t′i) [λf − 1] > 0.

Thus, 1 ∈ Zi (t
′
i) . On the other hand, the strategy σ−i clearly maximizes, among all ratio-

nalizable strategies for player −i in type space T , the payoff that type ti could receive from

playing z = 1 and

µi (ti)

[
λ · max

k=1,...,N1

sup
a1,...,aN2

∈K
ρT

i (ti) (s−i) [ψ (k, a1, ..., aN2 , ω)]− 1

]
= ∆RG∗,Tµ (ti) [λf − 1] < 0.

hence 1 /∈ Z(ti). �

10See Aliprantis and Border (1994, Theorem 14.91). We need only check that
ρi(ti)(·)

[
ψ

(
a0
−i, a

∗
−i,1, . . . , a

∗
−i,N2

, ω
)]

is measurable in s−i and RG∗,S
−i (s−i) is a measurable correspondence.
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4.2. Measurability. The above shows that the belief mapping on the space of rules µi :

Ri → ∆ (∆Ω×R−i) is well-defined. Here we show that this belief mapping is measurable.

We begin with a lemma identifying some measurable subsets of rationalizable rules.

Lemma 7. For any game G = (Ai, ui) ∈ G, for any closed subset A′ ⊆ Ai, the subset of

rationalizable rules {ri ∈ Ri : ri (G) ⊆ A′} is closed in Ri.

Proof. For closed A′, the set KA′ = {K ∈ KAi : K ⊂ A′} is closed in KAi (see Aliprantis

and Border (1994, Theorem 3.63)). Thus, by the definition of the product topology on Ri,

{ri ∈ Ri : ri (G) ⊆ A′} = {ri ∈ Ri : ri(G) ∈ KA′}

is closed. �

Proof of Proposition 4. Let D be the collection of all subsets E of ∆Ω×R−i such that the

mapping

ri → µRi (ri)[1E]

is Borel measurable. We prove the proposition by showing that D includes all measurable

sets.

Let P∗(G) be the collection of all finite subsets of G, and define

C =
⋃

Γ∈P∗(G)

{
V = V 0 ×

∏
G∈G

V G :
V 0 ⊂ ∆Ω, V G ⊂ KAG

−i are measurable

and V G = KAG
−ifor all G /∈ Γ

}
Note that C is an algebra (closed under taking complements, finite intersections and unions)

and generates the product topology and hence the σ-algebra on ∆Ω × R−i. We first show

that C ⊂ D.

Consider any element V ∈ C for which Γ = {G} is a singleton. If we can show that

{ri : marg∆Ω×KAG
−i
µRi (ri)(V

0 × V G) ∈ I} is a measurable set of rules for every interval

I ⊂ [0, 1], it will follow that V ∈ D. Since {µ ∈ ∆(∆Ω × KAG
−i) : µ(V 0 × V G) ∈ I}

is a measurable set, it suffices to show that marg∆Ω×KAG
−i
µRi : Ri → ∆(∆Ω × KAG

−i) is a

measurable mapping.

By Lemma 6 there is a base for the Borel σ-algebra, on ∆Ω × KAG
−i consisting of sets of

the form

W f = {µ : µ[f ] < 0}

for all functions f ∈ LG. In the course of the proof of Theorem 3, we showed that for any

fG ∈ FG and s ∈ R, there is a game G̃ and a closed subset of actions Ã ∈ A−i such that for

any type space T ∈ T S (Ω) the following two sets of types ti ∈ Ti are equal{
ti : RG̃,T

i (ti) ⊆ Ã
}

=
{
ti : ∆RG,T

i (ti)
[
fG

]
< s

}
.
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This implies that the following two sets of rationalizable rules are equal{
ri ∈ Ri : ri

(
G̃

)
⊆ Ã

}
=

{
ri ∈ Ri : marg

∆Ω×KAG
−i

µRi (ri)
[
fG

]
< s

}
.

By Lemma 7, the first set is measurable. Now since f = fG
1 − fG

2 for some fG
1 , f

G
2 ∈ FG, we

have

W f =
⋃

x1,x2∈Q,
x1+x2<0

⋂
m=1,2

{
µ : µ[fG

m] < xm

}
,

where Q is the set of rational numbers. Then[
marg

∆Ω×KAG
−i

µRi

]−1

(W f ) =
⋃

x1,x2∈Q,
x1+x2<0

⋂
m=1,2

{
ri ∈ Ri : marg

∆Ω×KAG
−i

µRi (ri)
[
fG

m

]
< xm

}

is measurable as countable union of finite intersections of measurable sets. Therefore the

inverse image of every set in a base for the sigma-algebra is measurable and this implies

that marg∆Ω×KAG
−i
µRi is measurable. (See Aliprantis and Border (1994, Lemma 8.16).) Now

consider an element V ∈ C for which Γ is an arbitrary finite set. Consider the product game,

G̃ =
∏

ΓG, where the product set V G̃ =
∏

G∈Γ V
G is a measurable subset of KAG̃

−i. By

the product structure, for any rationalizable rule r−i(G̃) =
∏

G∈Γ r−i(G). Thus if we define

V ′ = V 0× V G̃×
∏

G/∈ΓKAG′
−i, we have 1V ′ = 1V , and we have already shown that V ′ belongs

to D.

We have shown C ⊂ D. Now consider any sequence of measurable subsets En ⊂ ∆Ω×R−i

such that En ⊂ En+1, E ∈ D, and let E = ∪En. The sequence of indicator functions 1En

increases pointwise to 1E. By countable additivity, µRi (ri)(E) = limµRi (ri)(En), and hence

for any open interval I,{
ri : µRi (ri)[1E] ∈ I

}
=

⋃
n

⋂
m>n

{
ri : µRi (ri)[1En ] ∈ I

}
which is measurable. Thus E ∈ D and D is a monotone class that includes the algebra C.
By the monotone class lemma, D includes all Borel sets. �

5. Compact and finite games

In this section we characterize rationalizable correspondences for compact games with

continuous payoffs. For this class of games, the procedure of iterative elimination of never-

interim-best-replies leads to RG,T
i in at most a countable number of steps.11

11Without any assumptions on the game or the type space, one can show that the iterative procedure
leads to RG,T

i after sufficiently (transfinitely) many steps of elimination. This follows from a straightforward
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The proof of Proposition 2 proceeds in two steps. First, we show that the rationalizable

correspondence is non-empty and closed if the type space is a Polish space and satisfies the

additional property that the mapping from types to beliefs is continuous in a strong sense.

This implies in particular that the rationalizable correspondence is measurable for these type

spaces and that rationalizable sets for given type are compact. The space L (Ω) introduced

in section 3.6 naturally satisfies this condition.

Next, by lemma 4, from any type space, there is a measurable mapping preserving ratio-

nalizable sets to L (Ω) . It will follow that the thesis of the Proposition holds for all type

spaces in T S(Ω).

Suppose that T is a type space and each Ti is a Polish space. Say that T is continuous if for

each i, the mapping µT
i : Ti → ∆(T−i × A−i) is continuous. If in addition, there is a version

of the conditional belief mapping ρi that is continuous then we say that T is ∆-continuous.

Note that ∆-continuity is a stronger property than continuity alone. We have two lemmas,

proved in the Appendix.

Lemma 8. If T is ∆-continuous, and G is a compact, continuous game, then πi is jointly

continuous.

It can be shown by an argument directly parallel to the proof of the previous lemma that

Ui is jointly continuous.

If B−i ⊂ T−i × A−i is an measurable assessment for i, then we say that σ∆
−i is compatible

with B if σ∆
−i(B) = 1. Given a type space, for any measurable subset B ⊂ T−i × A−i, and

type ti, we let Σ∆(B|ti) denote the set of conjectures for ti that are concentrated on B. That

is

Σ∆(B|ti) = {σ∆
−i : marg

T−i

σ∆
−i = marg

T−i

µi(ti) and σ∆
−i(B) = 1}

Lemma 9. Suppose T is a continuous type space and let Si ⊂ Ti be a compact subset of

types and B ⊂ A×−i T−i is a closed assessment. Then the correspondence

Σ∆(B|·) : Si ⇒ ∆(T−i × A−i)

has compact graph.

Finally, we can show the proposition:

extension of the arguments in Lipman (1994). However, in general this set may be empty and the correspon-
dence need not be closed or even closed-valued. Compactness and continuity are used here only to deliver
these properties.
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Proposition 6. Suppose that T is ∆-continuous and G is a compact game. Then the ratio-

nalizable correspondence is closed and for any type ti ∈ Ti in any type space T ∈ T S (Ω) ,

RG,T
i = RG,T

i :=
⋂
k≥0

RG,T
k,i

Proof. We start with showing inductively that each RG,T
n,i is a closed correspondence. It is

obviously true for n = 0. Suppose now it is true for some arbitrary n, and let (tki , a
k
i ) → (ti, ai)

with (tki , a
k
i ) ∈ R

G,T
n,i . Then for each k there is a conjecture σ∆,k

−i ∈ Σ∆(RG,T
n−1,−i|tki ) such that

ak
i ∈ Bi(σ

∆,k
−i ). By Lemma 9, there is a subsequence σ∆,l

−i converging to σ∆
−i ∈ Σ∆(RG,T

n−1,−i|ti).
Finally, by the continuity of Ui(ai, σ

∆
−i),

Ui(a
l
i, σ

∆,l
−i ) → Ui(ai, σ

∆
−i)

Ui(zi, σ
∆,l
−i ) → Ui(zi, σ

∆
−i)

Thus, al
i ∈ Bi(σ

∆,l
−i ) for all l implies ai ∈ Bi(σ

∆
−i). We have shown that (ti, ai) ∈ RG,T

n,i and

hence that the latter is closed.

The first step implies that correspondence RG,T
i is closed as intersection of closed sets.

Now, we move to show that RG,T
i = RG,T

i . Because RG,T
i has the fixed-point property, we

have RG,T
i ⊂ RG,T

k,i for every k, hence RG,T
i is contained in RG,T

i . To show equality, therefore,

it suffices to show that RG,T
i also has the fixed-point property and is therefore a subset of

RG,T
i . We need to show

RG,T
i = {(ti, ai) : ai ∈ Bi(σ

∆
−i) for some σ∆

−i ∈ Σ∆(RG,T
−i |ti)}.

Suppose ai ∈ Bi(σ
∆
−i) for some σ∆

−i ∈ Σ∆(RG,T
−i |ti). Then σ∆

−i ∈ Σ∆(RG,T
k,−i|ti) for every k and

hence (ti, ai) ∈ RG,T
k,i for every k. This shows that (ti, ai) ∈ RG,T

i .

Suppose (ti, ai) ∈ RG,T
i , i.e. (ti, ai) ∈ RG,T

k,i for every k. Then for each k there is a

σ∆,k
−i ∈ Σ∆(RG,T

k,−i|ti) such that ai ∈ Bi((σ
∆,k
−i ). Since RG,T

i is closed, we are allowed to use

lemma 9 to extract a convergent subsequence σ∆,l
−i → σ∆

−i. Argument above should convince

us that ai ∈ Bi(σ
∆
−i). In order to conclude that (ti, ai) is best response to some conjecture

from Σ∆(RG,T
−i |ti), it is enough to check that σ∆

−i ∈ Σ∆(RG,T
−i |ti). Notice however that this is

immediate consequence of two facts:

marg
T−i

σ∆
−i = lim

l→∞
marg

T−i

σ∆,l
−i = marg

T−i

µi(ti),

σ∆
−i(R

G,T
−i ) = lim

n→∞
σ∆
−i(R

G,T
n,i ) = lim

n→∞
lim
l→∞

σ∆,l
−i (RG,T

n,i ) = 1.

The last equality follows from the definition of σ∆,l
−i ∈ Σ∆(RG,T

k(l),−i|ti) for some k (l) : for

k ≤ k (l) we have σ∆,l
−i (RG,T

k,i ) = σ∆,l
−i (RG,T

k(l),i) = 1. This ends the proof. �
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Proof of proposition 2. By the previous proposition, if T is ∆-continuous, then the ratio-

nalizable correspondence is closed. Because the range space Ai is compact, RG,T
i is upper

hemi-continuous, i.e. for every closed F ⊂ Ai, the set {ti ∈ Ti : RG,T
i (ti) ∩ F 6= ∅} is closed,

and in particular measurable. Now by Corollary 14.70 in Aliprantis and Border (1994), it is

measurable viewed as a function from Ti to KAi.

Notice that L (Ω) is ∆-continuous: conditional beliefs given type of the opponent (τ−i, u−i)

are equal to τ−i regardless of what is type of player i, ti. Hence, rationalizable correspondence

on L (Ω) is closed.

Lemma 4 shows that any type space T ∈ T S (Ω) can be mapped by a type mapping which

preserves rationalizable sets into space L (Ω) 12. Thus, for any given type space T ∈ T S(Ω),

the rationalizable correspondence RG
i , T is the composition of this measurable mapping and

the rationalizable and closed correspondence for L (Ω) , RG
i , L (Ω) . Thus, RG

i , T is non-empty,

closed-valued, and when viewed as a function, measurable. �

6. Comments and other examples

6.1. Example. The conventional universal type space U(Ω) is not rich enough from the

point of view of solution concepts such as Bayesian equilibrium or Rationalizability. We

have previously shown this by demonstrating that there are types whose rationalizable rules

are not represented by any type in U(Ω). Here we present an example which makes the

point even stronger: there is an action which is not rationalizable for any type in U(Ω), yet

as we show below, it is easy to construct simple, perfectly standard type spaces in which

the action is rationalizable. Consider the two-player game with two states of the world with

payoff matrix given in figure 1.

a2 b2 b′2 a′2
a1 1,1 1,-9 -1,-9 -1,-1

b1 -9,1 0,0 -9,-9 -9,-1

b′1 -9,-1 -9,-9 0,0 -9,1

a′1 -1,-1 -1,-9 1,-9 1,1

ω = +1

a2 b2 b′2 a′2
a1 1,1 1,-9 -1,-9 -1,-1

b1 -9,1 -9,-9 0,0 -9,-1

b′1 -9,-1 0,0 -9,-9 -9,1

a′1 -1,-1 -1,-9 1,-9 1,1

ω = −1

Figure 1. Actions bi and b′i are not rationalizable in U(Ω).

12Note that through the proof of this lemma we do not need results from section 2.4. In other words,
there is no circularity in the argument.
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We will show that neither bi nor b′i are rationalizable for any type in U(Ω). Note first

that an equal mixture between ai and a′i guarantees a payoff of 0. Thus, bi and b′i are best-

replies only if player i is certain that the opponent plays an action in {b−i, b
′
−i}, and the

action is correlated with the state. Now if i assigns greater than 1/2 probability to state

+1, then it is easily verified that action ai achieves strictly higher payoff than bi, and action

a′i achieves strictly higher payoff than b′i, regardless of the opponent’s strategy. Likewise, if

the probability of state +1 is less than 1/2, then ai must do better than b′i and a′i better

than bi. Thus, actions bi or b′i can be rationalizable only for types who assign the two states

equal probability and who assign probability 1 to opponent’s types for whom b−i or b′−i are

rationalizable. Now the game is symmetric, so the same analysis applies to player −i with

the player’s roles reversed. Putting these two conclusions together, actions bi and b′i are

rationalizable only for types of player i who assign equal probability to the two states, and

probability 1 to the event that player −i has the same beliefs and assigns probability 1 to the

event that bi and b′i are rationalizable for i. By induction, bi and b−i are rationalizable only

for those types of player i for whom it is common-knowledge that the two states are equally

likely. Let υi be the type in Ui(Ω) with this hierarchy of beliefs, and υ−i the analogous type

for player −i. Note that in U(Ω), type υi assigns probability 1 to υ−i and equal probability to

the two states. But then no matter what mixed action is played by υ−i, it is never correlated

with the state. Thus bi and b′i can never be best-replies, hence never be rationalizable for

type υi.

Nevertheless, both bi and b′i are rationalizable for all types in the type space from the

introduction. Indeed, any pure strategy profile in which the two types of each player play

different actions in {bi, b′i} is a Bayesian Nash equilibrium.

6.2. Upper-Hemicontinuity. The literature has had some interest in finding the “right”

topology on the universal type space to capture similarity of types with respect to their

strategic behavior. One requirement of such a topology is that the rationalizable correspon-

dence should be upper hemi-continuous. Our results shed some light on what would be

required of such a topology. We have shown (Proposition 6) that a sufficient condition for

upper hemi-continuity is that the topology be fine enough so that conditional beliefs are

continuous. Here we show that this is in general necessary as well.

Suppose that Ω = {−1, 1} and consider the game from the introduction and the following

type space: Ti = [−1, 1] and beliefs are defined by

µi(ti) {t−i, ω} =

1
2

if t−i ∈ {ti,−ti} and sign[ti · ω] = sign[t−i],

0 otherwise



34 JEFFREY C. ELY AND MARCIN P ↪ESKI

It is easy to verify that these beliefs are generated by a common prior and they are

continuous as a function of ti. However conditional beliefs over Ω exhibit a discontinuity at

ti = t−i = 0. Indeed, if ti = t−i 6= 0, then ti assigns probability 1 to state ω = 1 conditional

on t−i, but if ti = t−i = 0, then both states have equal conditional probability.

For ti = t−i 6= 0, the set {−ti,+ti} × {−t−i, t−i} is a belief- closed subspace which is

isomorphic to the first type space from the introduction. Thus, all actions are rationalizable

for these types. However, the belief-closed subspace {0} × {0}, is isomorphic to the second

type space and hence action ci is the unique rationalizable action for types ti = t−i = 0. Thus,

for this finite game with a finite set of states of the world and continuous belief-mapping,

the rationalizable correspondence is not upper hemi-continuous.

6.3. Discontinuous Games. We have defined rationalizability as a fixed-point of the in-

terim best-reply operator. Just as Bernheim (1984) and Pearce (1984) showed in the complete

information case, this is equivalent to the more customary iterative definition for compact

and continuous games. However, the fixed point definition is more flexible as it is guaran-

teed to exist (although possibly empty) for any game (note that the proof of proposition 1

assumes nothing about the game.) Thus, all of our results that do not rely on the iterative

characterization of rationalizability in extend immediately to discontinuous games. For ex-

ample, Lemma 3 uses only the fixed-point definition and since the conclusion of Proposition

5 relies only on Lemma 3, we can extend our results to conclude that for any game, two

types have the same rationalizable sets if they have the same ∆-hierarchies. In particular

this is true even for games in which the rationalizable sets are reached only after transfinitely

many rounds of elimination, see Lipman (1994).

6.4. Universal Type Space for the Measurable Case. Following the literature, we say

that a type space U over a space of basic uncertainty X is universal among type spaces with

property Y if for every such type space there is a unique mapping into U which preserves

beliefs. Mertens, Sorin, and Zamir (1994) showed that there exists a universal type space for

all continuous type spaces, assuming X is a Polish space. On the other hand, Heifetz and

Samet (1999) showed that there is no universal type space for measurable (not necessarily

continuous) type spaces when X is assumed only to be measurable. Our Theorem 1 is a

positive result for an in-between case. It shows the existence of a universal measurable type

space under the assumption that X is Polish. This may be comforting because while there

may be good reason to assume some structure on the physical world X, but there is no good

reason to assume structure on a type space which is nothing more than an artificial modeling

construct.
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Appendix A. Sketch of proof of theorem 1

We follow a construction of universal type space over Polish space X from Mertens, Sorin,

and Zamir (1994). Suppose that we have a sequence of Polish spaces {Pn}n≥0 with a sequence

of continuous mappings hn : Pn+1 → Pn. Then the projective limit is a subset P ⊆ P0×P1×. . .
of all points (p0, p1, . . .) , such that hn (pn+1) = pn for all n. We can show that such set is

a Polish space in product topology. There are continuous induced mappings Hn : P → Pn,

which are projections of sequence on its nth coordinate.

We may construct an universal space U (X) for Polish X as a projective limit of hierarchies

of beliefs. Define inductively spaces of nth hierarchy of beliefs of player i - Un
i as

U0
i = {∗} and for n > 0 Un

i = ∆
(
X × Un−1

−i

)
.



36 JEFFREY C. ELY AND MARCIN P ↪ESKI

Define inductively mappings hn
i : Un+1

i → Un
i with

h0
i (ui) = ∗ for ui ∈ U1 and

hn = ∆
(
id
X
×hn−1

−i

)
for n > 0.

The last mapping is a transported measure through mapping idX ×hn−1
−i : X × Un−1

−i →
X × Un−2

−i . Then U (X) is an projective limit of the system (Un
i , h

n
i )i. There are induced

mappings Hn
i : UX

i → Un
i , such that

Hn
i = hn

i ◦Hn+1
i .

Mertens, Sorin, and Zamir (1994) show that if type space T is continuous (belief mapping

is continuous) then there exists a sequence of continuous uT,n
i : Ti → Un

i , h
n
i ◦ u

T,n+1
i = uT,n

i ,

which extend to the continuous mapping uT
i : Ti → Ui, which is a unique exact and preserves

beliefs. The difference in our case is that we are not able to guarantee continuity of mappings

uT,n
i . However, we show that weak measurability of belief mapping assures that maps uT,n

i

defined exactly in the same way as in Mertens, Sorin, and Zamir (1994) are measurable.

Moreover, the generate pointwise converging measurable mappings u
T,n,u∗i
i : Ti → Ui, for

some u∗i ∈ Ui, which converge to to measurable mapping uT
i : Ti → Ui. This mapping is, by

the same reasons, unique exact and belief preserving mapping.

Precisely, we use the following lemma:

Lemma 10. Suppose that there is a Polish space B and measurable mapping φ−i : T−i → B.

Then mapping Φi : Ti → ∆ (X ×B) defined with

Φi (ti) = ∆
(
id
X
×φ−i

)
µi (ti)

is measurable.

Proof. We need to check whether for any measurable function f : X × B → R, sets

{ti : Φi (ti) [f ] < 0} are measurable. But

{ti : Φi (ti) [f ] < 0} = {ti : µi (ti) [f (x, φ−i (t−i))] < 0}

and the last set is measurable due to definition of weak measurability of belief mapping. �

Choose now some u∗i ∈ Ui and construct mappings u
T,n,u∗i
i : Ti → Ui with u

T,n,u∗i
i (ti) = u∗i

and later inductively

un+1
i = ∆

(
id
X
×un

−i

)
µi (ti) .

By lemma, each of these mappings is measurable. Moreover, they converge pointwise to

mapping uT
i , which is also measurable (as a pointwise limit of measurable mappings). We

check as in Mertens, Sorin, and Zamir (1994) that it is unique exact and belief-preserving

mapping.
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Appendix B. Proof of lemma 2

.

We need the following result

Lemma 11. Let A and B be measurable spaces and g : A×B → [0, 1] a jointly measurable

map. If m : A → ∆(B) is measurable, then the map Lg : A → R defined by Lg(a) =

m(a)[g(a, ·)] is measurable.

Proof. There exists a sequence of simple functions gn : A× B → R such that gn ↑ g and by

the definition of the Lebesgue integral, for any probability measure ν ∈ ∆(A×B).

ν[gn] → ν[g]

In particular, for any given a ∈ A, if ν is the measure whose marginal on B is m(a) and

whose marginal on A is δa,

Lgn(a) = ν[gn] → ν[g] = Lg(a)

Thus, if we can show that Lf is measurable for all simple functions f , then we will have

shown that Lg is measurable as the pointwise limit of measurable mappings.

First consider f = 1α×β for α ⊂ A and β ⊂ B (measurable.) We have Lf (a) = 1α(a) ·
m(a)(β) which is measurable since m was assumed to be measurable. Thus, Lf is measurable

for all f that are indicators of product sets. Now for any finite k, let α1, . . . αk and β1, . . . , βk

be measurable subsets of A and B respectively and note that for f =
∏k

l=1 1αl×βl
,

Lf (a) =
∏

l

1αl
·m(a)(∩lβl)

is measurable. Thus if f = 1∩l(αl×βl) =
∏

l 1αl×βl
, then Lf is measurable, and if

f = 1∪l(αl×βl) =
∑

l

1αl×βl
−

∑
S⊂{1,...,k}

(|S| − 1)
∏
l∈S

1αl×βl

then Lf is measurable as a linear combination of measurable functions. Note also that

L1¬E = L1−1E = 1− L1E . Thus Lf is measurable for all indicator functions f of sets in the

algebra generated by the product sets.

Now consider any sequence Xn with Xn ⊂ A × B, Xn ⊂ Xn+1 for all n and ∪nXn = X.

The corresponding sequence L1Xn is an increasing sequence of maps converging pointwise to

L1X . Thus if L1Xn are measurable for all n, so is L1X . It follows that the collection of sets

X such that L1X is measurable is a monotone class. Since it includes the algebra generated

by the product sets, by the monotone class lemma it includes the corresponding σ-algebra,
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i.e. the product sigma-algebra on A×B. Finally, since any simple function f : A×B → R

has the form

f(a, b) =
k∑

j=1

cj1Xj
(a, b)

for some coefficients cj and measurable sets Xj ⊂ A × B, any such Lf is measurable as a

linear combination of measurable functions. �

Proof of Lemma 2. We must show that for any measurable f : ∆Ω×T−i → R, the mapping

ti → µ∆
i (ti)[f ]

is measurable. Define g(ti, t−i) = f(ρi(ti, t−i), t−i). Note that g is jointly measurable and

µ∆
i (ti)[f ] = µi(ti)[g(ti, ·)].

Now apply lemma 11. �

Appendix C. Proof of lemma 6

Let H denote the Hilbert cube [0, 1]N. Since Ω is Polish, there is a countable sequence

of functions h∗k : Ω → [0, 1] , which define a compatible metric on ∆Ω, d∆Ω (τ, τ ′) =
∞∑

k=1

1
2k |τ [h∗k]− τ ′ [h∗k]| and a mapping H : ∆Ω → H

H (τ) = (τ [h∗1] , τ [h∗2] , . . .) .

The mapping H embeds ∆Ω (with the weak topology) in the Hilbert cube (with the

product topology). Suppose we have a family F of continuous functions f : H×KA−i → R

such that the collection of sets

{µ : µ [f (h,A)] < 0} ⊆ ∆ (H×KA−i)

is a subbase for the weak topology on ∆(H×KA−i) (in which case we say that F generates

the topology). Then, because H is an embedding, it will follow that the corresponding family

F ′ ⊂ C(∆Ω×KA−i)

F ′ = {f ′ : f ′(τ,K) = f(H(τ), K) for some f ∈ F}

generates the topology on ∆(∆Ω×KA−i). The strategy of proof is to find such an F so that

the corresponding F ′ is included in LG.
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For each natural number n, define the following set of continuous functions f : [0, 1]n ×
KA−i → [0,∞) :

Fn =


f (z1, . . . , zn, A) = max

k=1,...,N1

sup
a1,...,aN2

∈A
ηk (a1, ..., aN2) · z :

for some natural numbers N1, N2 and

some continuous bounded functions η1, . . . , ηN1 : AN2 → [0, 1)n .


where · is a scalar product of two vectors in Rn. Next, define set of differences of functions

from Fn

Ln = {f − g : f, g ∈ Fn} ⊆ C ([0, 1]n ×KA−i) .

We have a lemma:

Lemma 12. Set Ln is uniformly dense in the set C ([0, 1]n ×KA−i) .

Proof. This is a standard argument applying the lattice version of the Stone-Weierstrass

theorem (see Aliprantis and Border (1994, Theorem 7.45)). We need to verify that Ln:

• is closed under scalar multiplication: If (f−g) ∈ Ln, then for any λ ∈ R, λ(f−g) ∈ Ln

as well;

• contains constant function: 1 ∈ Ln;

• is closed under finite sums: first note that for any f, g ∈ Fn, z = (z1, . . . , zm) ∈ [0, 1]n

and K ∈ KA−i

f (z,K) + g (z,K)

= max
k=1,...,Nf

1

sup
a1,...,a

N
f
2

∈K
ηk

(
a1, ..., aNf

2

)
· z

+ max
l=1,...,Ng

1

sup
a1,...,a

N
g
2
∈K

νl
(
a1, ..., aNg

2

)
· z

= max
k=1,...,Nf

l=1,...,Ng

sup
a1,...,a

N
f
2

∈K

a1,...,a
N

g
2
∈K

(
ηk

(
a1, ..., aNf

2

)
+ νl

(
a1, ..., aNg

2

))
· z

so that f + g ∈ Fn. But this implies that for any (f − g), (f ′− g′) ∈ Ln we also have

(f + f ′)− (g + g′) ∈ Ln;
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• is closed with respect to taking maximum of two functions: for any f, g ∈ Fn, z ∈
[0, 1]n , K ∈ KA−i

max {f (z, A) , g (z, A)}

= max


max

k=1,...,Nf
1

sup
a1,...,a

N
f
2

∈K
ηk

(
a1, ..., aNf

2

)
· z,

maxl=1,...,Ng
1

sup
a1,...,a

N
g
2
∈K

νl
(
a1, ..., aNg

2

)
· z


= max

k=1,...,Nf
1 +Ng

2

sup
a1,...,a

N
f
2 +N

g
2

∈K
ϕk

(
a1, ..., aNf

2 +Ng
2

)
· z

where

ϕk
(
a1, ..., aNf

2 +Ng
2

)
= ηk

(
a1, ..., aNf

2

)
for k ≤ N f

1 and

ϕk
(
a1, ..., aNf

2 +Ng
2

)
= ν

k−Kf
m

(
aNf

2 +1, ..., aNf
2 +Ng

2

)
for N f

1 < k ≤ N f
1 +N g

1 .

Then h = max (f, g) ∈ Fn. Together with the fact that

max {f − g, f ′ − g′} = max {f + g′, f ′ + g} − (g + g′)

and the previous point, it implies that max {f − g, f ′ − g′} ∈ Ln for any f−g, f ′−g′ ∈
Ln;

• separates points: for any z, z′ ∈ [0, 1]n , z 6= z′, there is vector η ∈ Rn, such that

η · z 6= η · z′. Similarly, for any K,K ′ ∈ KA−i, K 6= K ′, there is a continuous function

s : A−i → [0, 1] , such that

f (A) = sup
a∈K

s (a) = 1 > 0 = sup
a∈K′

s (a) = f (A′) .

�

Finally we can prove lemma 6. Any f ∈ C([0, 1]n × KA−i) can be viewed as an ele-

ment f ′ ∈ C(H × KA−i) by writing f ′(h,K) = f(h1, . . . , hn, K). By the Stone-Weierstrass

theorem (algebraic version, see Aliprantis and Border (1994, Theorem 7.46)) ∪nC([0, 1]n ×
KA−i) is uniformly dense in C(H × KA−i). By lemma 12, family Ln is uniformly dense

in C ([0, 1]n ×KA−i). Thus ∪nLn in uniformly dense in ∪nC([0, 1]n × KA−i) and hence in

C(H×KA−i). We conclude that the family ∪nLn generates the topology on ∆(H×KA−i)

(see Aliprantis and Border (1994, Theorem 12.2)).

The proof is now completed by showing that each f ∈ Ln corresponds to a function f ′

belonging to LG by the formula f ′(τ,K) = f(H(τ), K). By the linear structure of LG it

suffices to show that for each g ∈ Fn, the composition g ◦H : ∆Ω× KAG
−i → R belongs to
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FG. This is verified by noting that

(g ◦H)(τ,K) = max
k=1,...,N1

sup
a1,...,aN2

∈K
ηk (a1, ..., aN2) · (τ [h∗1 (ω)], ..., τ [h∗n (ω)])

= max
k=1,...,N1

sup
a1,...,aN2

∈A
τ

[
n∑

m=1

h∗m (ω) ηk
m (a1, ..., aN2)

]
.

Since
∑n

m=1 h
∗
m (ω) ηk

m (a1, ..., aN2) is a bounded continuous function from {1, ..., N1}×
(
AG
−i

)N2×
Ω → R, g ◦H is an element of FG. �

Appendix D. Proofs of Lemmas from Section 5

Proof of Lemma 8. Pick M > sup |ui(a, ω)| (recall that we assume that ui is bounded for

this class of games.) Let (ak, tk) → (a∞, t∞) ∈ A×T . The set {tk}∞k=1 is compact, and so by

∆-continuity, the corresponding family of measures {ρi(t
k)} ⊂ ∆Ω is also compact. Because

Ω is a Polish space, the family is tight, i.e. for every ε > 0, there exists a compact Kε ⊂ Ω

such that ρi(t
k)(Kε) > 1− ε for all k ∈ {1, . . . ,∞}. We have∣∣πi(a

k, tk)− πi(a
∞, t∞)

∣∣ ≤ ∣∣∣∣∫
Kε

ui(a
k, ·)dρi(t

k)−
∫

Kε

ui(a
∞, ·)dρi(t

∞)

∣∣∣∣ + 2εM

Since Kε is compact and ui is continuous,

sup
ω∈Kε

∣∣ui(a
k, ω)− ui(a

∞, ω)
∣∣ → 0

i.e., the sequence of functions ui(a
k, ·) : Kε → R converges uniformly to ui(a

∞, ·). It follows

that ∣∣∣∣∫
Kε

ui(a
k, ω)dρi(t

k)−
∫

Kε

ui(a
∞, ·)dρi(t

∞)

∣∣∣∣ → 0

and so

lim sup
k

∣∣πi(a
k, tk)− πi(a

∞, t∞)
∣∣ ≤ lim sup

k

∣∣∣∣∫
Kε

ui(a
k, ·)dρi(t

k)−
∫

Kε

ui(a
∞, ·)dρi(t

∞)

∣∣∣∣ + 2εM

= 2εM

and since ε was arbitrary, we have shown πi(a
k, tk) → πi(a

∞, t∞). �

Proof of Lemma 9. The proof uses the following result (see Aliprantis and Border (1994,

Theorem 12.20)): If X is a Polish space, then a family F ⊂ ∆(X) has compact closure if

and only if F is tight, i.e. for every ε > 0 there is a compact K ⊂ X such that ν(K) > 1− ε
for all ν ∈ F .

Pick ε > 0. Since Si is compact, by the continuity of T so is µT
i (Si) = {µT

i (ti) : ti ∈ Si}
and by the continuity of marginals, so is margT−i

µT
i (Si). By the above result, there is a

compact K ⊂ T−i such that margT−i
µT

i (ti)(K) > 1 − ε for all ti ∈ Si. Thus for any ti ∈ Si
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and σ∆
−i ∈ Σ∆(B|ti), we have σ∆,ti

−i (K × A−i) = margT−i
µT

i (ti)(K) > 1 − ε. Since K × A−i

is compact, this shows that the family ⋃
ti∈Si

Σ∆(B|ti)

is tight and therefore has compact closure.

Because σ∆,k
−i is a sequence from this set, it has a convergent subsequence σ∆,l

−i → σ∆
−i. The

proof is concluded by showing that σ∆
−i ∈ Σ∆(B|ti).

(1) (δx denotes Dirac measure on x.) margTi
σ∆,l
−i = δtli → δti and by continuity of

marginals, margTi
σ∆,l
−i → margTi

σ∆
−i, thus margTi

σ∆
−i = δti .

(2) margT−i
σ∆,l
−i = margT−i

µT
i (tli). Because T is continuous, margT−i

µT
i (tli) → margT−i

µT
i (ti)

and since margT−i
σ∆,l
−i → margT−i

σ∆
−i, we have margT−i

σ∆
−i = margT−i

µT
i (ti).

(3) MT−i×A−i
σ∆,l
−i (B) = 1. Since taking marginals is continuous and the set of proba-

bility measures assigning probability 1 to a closed set is closed, MT−i×A−i
σ∆
−i(B) =

MT−i×A−i
[limσ∆,l

−i ](B) = 1.

�


