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Abstract

We introduce best response dynamics for settings where
agents' preferences are diverse.  Under these dynamics,
which are defined on the space of Bayesian strategies, rest
points and Bayesian Nash equilibria are identical.  We prove
the existence and uniqueness of solution trajectories to these
dynamics, and provide methods of analyzing the dynamics
based on aggregation.
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1.  Introduction

 We study best response dynamics for populations with diverse preferences.  The
state variables for these dynamics are Bayesian strategies:  that is, maps from
preferences to distributions over actions.  We prove the existence, uniqueness, and
continuity of solutions of these dynamics, and show that the rest points of the
dynamics are the Bayesian equilibria of the underlying game.  We then characterize
the dynamic stability of Bayesian equilibria in terms of aggregate dynamics defined
on the simplex, making it possible to evaluate stability using standard dynamical
systems techniques.
 We offer three motivations for this study.  First, we feel that in interactions
involving large populations, different individuals are unlikely to evaluate payoffs
in precisely the same way.  Therefore, in constructing evolutionary models, it seems
realistic to explicitly allow for diversity in preferences.  We shall see that doing so
eliminates pathological solution trajectories that can arise under best response
dynamics when preferences are common.
 A second motivation for our study is to provide foundations for models of
preference evolution.1  In these models, natural selection of preferences is mediated
through behavior, as the preferences that survive are those that induce the fittest
behavior.  Ideally, models of preference evolution should be built up from models
of behavior adjustment defined for settings where preferences are diverse but fixed.
By providing tools for analyzing behavior under diverse preferences, this paper
provides the groundwork for studying competition among the preferences
themselves.
 Our third and most important motivation is to provide methods for the
evolutionary analysis of Bayesian games.  Nearly all work in evolutionary game
theory has considered games with complete information.  At the same time, the
proliferation of game theory in applied economic analysis is in large part due to its
deft handling of informational asymmetries; in this development, games of
incomplete information have played a leading role.  In offering evolutionary
techniques for studying Bayesian games, we hope that the insights of evolutionary
game theory can be brought to bear more broadly in applied work.
 We consider a population of agents facing a repeated strategic interaction.
Unlike their counterparts in standard evolutionary models, different agents in our

                                                
1  See, for example, Güth and Yaari (1992), Ely and Yilankaya (2001), and Sandholm (2001).
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model evaluate payoffs using different payoff functions.  We assume that the
subpopulation of agents with any given payoff function is of negligible size relative
to the population as a whole.  A complete description of behavior is given by a
Bayesian strategy:  a map that specifies the distribution of actions played in each
subpopulation.  The appropriate notion of equilibrium behavior is Bayesian
equilibrium, which requires that each subpopulation play a best response to the
aggregate behavior of the population as a whole.  
 Our goal is to model the evolution of behavior in a diverse population in a
plausible and tractable way.  To do so, we build on the work of Gilboa and Matsui
(1991), who introduced the best response dynamic for the common preference
setting.  Under their dynamic, the distribution of actions in a population always
adjusts toward some best response to current behavior.  To define our Bayesian best

response dynamic, we require instead that the distribution of actions within each
subpopulation adjust toward that subpopulation's current best response.

To complete the definition of the Bayesian dynamic, we must specify a notion of
distance between Bayesian strategies.2  We utilize the     L

1 norm, which measures the
distance between two Bayesian strategies as the average change in the
subpopulations' behaviors.  We establish that the law of motion of the Bayesian
dynamic is Lipschitz continuous under this norm, enabling us to prove that
solutions to the dynamic exist and are unique.
 This uniqueness result is of particular interest because it fails to hold when
preferences are common.  Under common preferences, multiple solution
trajectories to the best response dynamic can originate from a single initial
condition.  This property is the source of surprising solution trajectories:  Hofbauer
(1995) offers a game in which solutions to the best response dynamic cycle in and out
of a Nash equilibrium in perpetuity.  Our uniqueness result implies that even slight
diversity in preferences renders such solution trajectories impossible.
 Since our dynamic is defined on the (    L

1) space of Bayesian strategies, it is difficult
to analyze directly.  To contend with this, we introduce an aggregate best response

dynamic defined directly on the simplex.  We show that there is a many-to-one
mapping from solutions to the Bayesian dynamic to solutions to the aggregate
dynamic; the relevant mapping is the one that converts Bayesian strategies to the
aggregate behavior they induce.  Thus, if we run the Bayesian dynamic from two
Bayesian strategies whose aggregate behaviors are the same, the two solutions to the
                                                
2 By doing so, we fix the interpretation of the differential equation that defines the dynamic—see
Section 2.2.
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Bayesian dynamic exhibit the same aggregate behavior at all subsequent times.
 Were we only interested aggregate behavior, we could focus our attention
entirely on the aggregate dynamic.  But in most applications of Bayesian games, the
full Bayesian strategy is itself of cardinal importance.  For example, in a private
value auction, the distribution of bids is on its own an inadequate description of
play; to determine efficiency, one must also know which bidders are placing which
bids.  Knowing the entire Bayesian strategy is also critical in studying preference
evolution:  there we must know which preferences lead players to choose the fittest
actions, as these are the preferences that will thrive under natural selection.
 Since the full Bayesian strategy is of central interest, it is important to be able to
determine which Bayesian equilibria are dynamically stable.  To accomplish this, we
establish a one-to-one correspondence between the equilibria that are stable under
the Bayesian dynamic and the distributions that are stable under the aggregate
dynamic.  Using this result, one can determine which Bayesian equilibria are stable
under the original     L

1 dynamic by considering a much simpler dynamic defined on
the simplex.3

 Of course, this simpler dynamic is still a nonlinear differential equation, so it is
not immediately clear whether these aggregation results are of practical importance.
Fortunately, Hofbauer and Sandholm (2002, 2004), have established global
convergence results for the aggregate best response dynamic in a number of
interesting classes of games.  In addition, a companion to the present paper
(Sandholm (2003)) uses the aggregation results developed here to prove dynamic
versions of Harsanyi’s (1973) purification theorem.  

Ellison and Fudenberg (2000) study fictitious play in a population with diverse
preferences.  In fictitious play, all players choose a best response to the time average
of past play.  Since this time average is the model’s state variable, fictitious play
defines a dynamic directly on the simplex even when preferences are diverse.  In
fact, it is easy to show that the dynamic studied by Ellison and Fudenberg (2000) are
equivalent (after a time reparameterization) to our aggregate best response dynamic.
The connections between these processes are considered in greater detail in the final
section of the paper.

                                                
3 Were the mapping between solution trajectories one-to-one as well, the stability results would
follow as an immediate consequence.  However, since this mapping is actually many-to-one, these
results are not obvious—see Section 6.
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2.  The Best Response Dynamic

A unit mass of agents recurrently plays a population game.  Each agent chooses
one of n actions, which we identify with basis vectors in     R

n :  S = {e1, e2, … , en}.4  W e
let ∆ = {x ∈     R+

n :    xii∑  = 1} denote the set of distributions over actions.

2.1  Common Preferences

In typical evolutionary models, all agents share the same preferences.  Here, we
represent these preferences by a Lipschitz continuous function π: ∆ →     R

n ; πi(x)
represents the payoff to strategy i when aggregate behavior is x.  An important
special case is based on random matching in a symmetric normal form game with
payoff matrix A ∈     R

n n× ; in this case, the payoff function is the linear function π(x) =
Ax.  More generally, our setup also allows the payoffs to each action to depend
nonlinearly on the population state, a feature that is essential in some
applications—see Sandholm (2004).

Let   BRπ : ∆ ⇒ ∆ denote the best response correspondence for payoff function π:

  BRπ (x) = 
    
arg max ( )

y
y x

∈

⋅
∆

π

Action distribution x* ∈ ∆ is a Nash equilibrium  under π if x* ∈   BRπ (x*):  that is, if
each agent chooses an action that is optimal given the behavior of the others.

The best response dynamic on ∆ is defined by

(BR)     ̇x  ∈   BRπ (x) – x.

The usual interpretation of this dynamic is that agents occasionally consider
switching actions, choosing a best response whenever they do so.  The –x term arises
because at each moment in time, all agents are equally likely to consider a switch.

Gilboa and Matsui (1991), Matsui (1992), and Hofbauer (1995) study the best
response dynamic in the context of random matching in normal form games.  For
most payoff matrices, there are action distributions that admit multiple best
responses, and hence many possible directions of motion under (BR); hence,

                                                
4 All results in this paper are easily extended to allow multiple player roles (i.e., to allow different
subsets of the population to choose from different sets of actions).
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solutions to (BR) need not be unique.  For example, if the population begins at a
Nash equilibrium x*, agents who switch to best responses can do so in proportions
x*, resulting in a stationary solution trajectory at x*.  But if the agents who switch to
a best response do so in proportions other than x*, the population may move away
from the equilibrium.  This can lead to complicated solution trajectories:  Hofbauer
(1995) presents a game in which the population continually travels though cycles of
varying lengths, passing through a Nash equilibrium at the start of each circuit.
 We show that the existence of solutions that leave Nash equilibria is a
consequence of the assumption that all agents' preferences are identical.  The source
of the nonuniqueness of solutions to (BR) is the fact that for most payoff matrices,
there is a set of action distributions admitting multiple best responses.  Indeed,
Hofbauer's (1995) example is generic, in that all payoff matrices close to the one he
considers yield qualitatively similar dynamics.
  Our analysis shows that there is another sense in which Hofbauer's (1995)
example is not generic.  The analysis relies on the following observation:  if we fix a
distribution over actions, the set of payoff matrices that generate indifference at that
distribution is negligible.  Therefore, in a population with diverse preferences, best
responses are “essentially unique”, and the function that defines the best response
dynamic in this context is single valued.  To establish the uniqueness of solutions,
and thus the equivalence of rest points and Bayesian equilibria, we must establish
that this function is not only single valued, but also Lipschitz continuous.  We show
below that this is true if distances between Bayesian strategies are measured in an
appropriate way.

2.2  Diverse Preferences

To incorporate diverse preferences, we suppose that the distribution of payoff
functions in the population is described by a probability measure µ on the set of
payoff functions Π = {π: ∆ →     R

n π  is Lipschitz continuous}.  In the language of

Bayesian games, µ represents the distribution of types, which in the current context
are simply the agents' payoff functions.  The common preferences model
corresponds to the case in which µ places all mass on a single point in Π.  We rule
out such cases below, focusing instead on settings with genuine diversity.
 We suppose that there are a continuum of agents with each preference π ∈ Π i n
the support of µ.  Each agent chooses a pure action in S.  The behavior of the
subpopulation with preference π is described by a distribution in ∆.  A Bayesian
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strategy is a map σ: Π → ∆, where σ(π) is the distribution over pure actions chosen i n
aggregate by the agents of type π.  Each Bayesian strategy σ can be viewed as a
random vector on the probability space (Π, µ) that takes values in ∆.  The set Σ = {σ:
Π → ∆} contains all (Borel measurable) Bayesian strategies.  We consider a pair of
Bayesian strategies σ, ρ ∈ Σ equivalent if σ(π) = ρ(π) for µ-almost every π.  In other
words, we do not distinguish between Bayesian strategies that indicate the same
action distribution for almost every type.
 Let E denote expectation taken with respect to the probability measure µ.  The
proportion of agents who play action i under the Bayesian strategy σ is then given by
Eσi = 

    
σ π µi d( )

Π∫ , and the aggregate behavior induced by σ ∈ Σ is Eσ ≡ (Eσ1, … , Eσn) ∈

∆.  That is, the operator E takes both random variables and random vectors as
arguments, handling each in the appropriate way.  We sometimes call Eσ the
distribution induced by σ.  Our notion of distance between distributions is the
summation norm on     R

n :  for x ∈     R
n , let

    x  = 
    

xi
i

n

=
∑

1

.

Each agent's best responses are defined with respect to current aggregate behavior
x = Eσ ∈ ∆ .  We let B: ∆ ⇒ Σ denote the best response correspondence, which we
define by

B(x)(π) ≡   BRπ (x) = 
    
arg max ( )

y
y x

∈

⋅
∆

π .

The best response B(x) ∈ Σ is a Bayesian strategy; for each π ∈ Π, B(x)(π) is the set of
distributions in ∆ that are best responses against aggregate behavior x for agents with
preference π.

We state some weak but useful conditions on the preference distribution µ i n
terms of the best response correspondence B; classes of preference distributions that
satisfy these conditions are introduced below.  Condition (C1) requires that for all
aggregate behaviors x ∈ ∆, the set of agents with multiple best responses has
measure zero.

(C1) B is single valued.



–7–

Under condition (C1), all selections from B(x) are equivalent, allowing us to regard
B: ∆ → Σ as a function rather than as a correspondence.

Each Bayesian strategy σ ∈ Σ induces some distribution Eσ ∈ ∆; the best response
to this distribution is B(E(σ)).  We say that the Bayesian strategy σ* is a Bayesian

equilibrium  if it is a best response to itself:  that is, if σ* = B(E(σ*)).  We let Σ* ⊆ Σ
denote the set of Bayesian equilibria.  Observe that under condition (C1), all
aggregate behaviors induce a unique, pure best response:  for all x, µ{π: B(x)(π) ∈ {e1,
… , en}} = 1.  Hence, all Bayesian equilibria must also be pure.5

The Bayesian best response dynamic is described by the law of motion

(B)   ̇σ  = B(E(σ)) – σ

on Σ, the space of Bayesian strategies.  The right hand side of this equation is a map
from Σ to   ̂Σ  = {σ: Π →     R

n }, a linear space containing all directions of motion
through Σ.
 To complete the definition of the dynamic, we must specify the norm used to
measure distances between points in   ̂Σ .  To interpret equation (B) preference by
preference, one would employ the L∞ norm,

  σ L∞  = 
  
esssup ( )

π

σ π
∈Π

.

This norm defines too strong a topology for our purposes.  To see why, consider two
strategy distributions x, y ∈ ∆ that lie close to one another.  As long as there is a non-
null set of preferences whose best responses to x and y differ, the Bayesian best
responses B(x) and B(y) are far apart in the L∞ norm:     B x B y

L
( ) ( )− ∞ = 2.  For this

reason, the law of motion (B) is discontinuous in this norm, so standard methods of
establishing the existence and uniqueness of solution trajectories fail.

To create a tractable model, we need to use a norm on   ̂Σ  that makes it easier for
two points to be close to one another, so that under this norm equation (B) defines a
continuous law of motion.  In particular, we want pairs of Bayesian strategies that
only differ in the choices of agents whose preferences lie in some set of small
measure to be regarded as close together.  One appropriate choice of norm is the L1

norm, which we denote by ⋅ :

                                                
5 Of course, this observation is originally due to Harsanyi (1973).
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σ  ≡ 
    

E i
i

n

σ
=
∑

1

 = 
    
E i

i

n

σ
=
∑










1

 =   Eσ .

Under this norm, the distance between a pair of Bayesian strategies is determined by
the average change in behavior over all subpopulations.  Hence, if the best
responses to x and y differ only for a set of preferences of measure ε, then these best
responses are close in L1 norm:      B x B y( ) ( )−  = 2ε.6

In order to establish existence and uniqueness of solution trajectories to the
Bayesian best response dynamic, it is enough to know that the dynamic is Lipschitz
continuous.  The following lemma is a first step in this direction.

Lemma 2.1: E: Σ →  ∆ is Lipschitz continuous (with Lipschitz constant 1).

Proof:  Since E is linear, it is enough to show that   Eσ  ≤ σ .  And indeed,

  Eσ  = 
    

E i
i

n

σ
=
∑

1

 ≤ 
    

E i
i

n

σ
=
∑

1

 = σ .  

Given Lemma 2.1, Lipschitz continuity of the dynamic is a consequence of the
following condition.

(C2) B is Lipschitz continuous (with respect to the L1 norm).

Condition (C2) asks that small changes in aggregate behavior x lead to
correspondingly small changes in the best response B(x), where the distance between
best responses is measured using the L1 norm.

Our two conditions on the function B will hold as long as the preference
distribution µ is both sufficiently diverse and sufficiently smooth.  We illustrate this
using two examples.  Our first example concerns random matching in normal form
games.  In this example, every agent’s payoffs are derived from some payoff matrix
A ∈     R

n n× , but different agents have different payoff matrices.

                                                
6  The choice of norm is also important issue in other models of evolution with infinite dimensional
state variables.  For example, in Oechssler and Riedel’s (2001) work on replicator dynamics for games
with infinite strategy spaces, the choice of norm determines the set of payoff functions for which the
dynamic is well defined.
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Proposition 2.2:  Let λ be a probability measure on     R
n n× , and define the preference

distribution µ by µ{π:  π(x) = Ax for some  A  ∈ M} = λ(M).  If λ admits a bounded

density function with compact support, then B satisfies conditions (C1) and (C2).

 For our second example, we suppose that all agents’ preferences are based on the
same (possibly nonlinear) payoff function, but that each agent has idiosyncratic
preferences θi in favor of or against each action i ∈ S.

Proposition 2.3:  Let F ∈ Π be a Lipschitz continuous payoff function, let ν be a

probability measure on     R
n , and define the preference distribution µ by µ{π:  π(x) =

F(x) + θ for some θ ∈ Θ} = ν(Θ).  Suppose that ν admits a bounded density function f:

    R
n  →  R  and that either (i) ν has compact support, (ii) ν is a product measure , or (iii)

for each  pair (i, j), i ≠ j, the density gji: R → R for the difference θj – θi is bounded .
Then B satisfies conditions (C1) and (C2).

3.  Basic Properties

 We now establish some basic properties of solutions to the Bayesian best
response dynamic (B).  Since we will interpret equation (B) in the     L

1 sense, we begin
by reviewing the notions of continuity and differentiability for trajectories through
the     L

1 space (  ̂Σ , ⋅ ); see Lang (1997) for additional details.

  Let {σt} = {σt}t≥0 be a trajectory through   ̂Σ .  We say that σ  ∈   ̂Σ  is the L1 limit of σs

as s approaches t, denoted σ  = 
    
L

s t s
1 lim
→

σ , if

 
    
lim
s t→   σ σs −  = 

    
lim
s t→   E sσ σ−  = 0.

The trajectory {σt} is L1 continuous  if σt = 
    
L

s t s
1 lim
→

σ  for all t.  If there exists a     ̇σ t  ∈   ̂Σ

such that

    ̇σ t  = 
    
L t t1

0
lim

ε

εσ σ
ε→

+ −





,

we call     ̇σ t  the L1 derivative of trajectory {σt} at time t.  
 As usual, the L1 derivative     ̇σ t  describes the direction of motion of the trajectory

{σt} ⊂   ̂Σ  at time t.  But even when this derivative exists, the (standard) derivative
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d
dt (σt(π)) of the distribution trajectory {σt(π)} ⊂     R

n  of any particular preference π need
not exist:  the slope   

1
ε (σt+ε(π) – σt(π)) ∈     R

n  of the line segment from (t, σt(π)) to (t + ε,

σt+ε(π)) may not converge as ε approaches zero.  For the L1 derivative to exist, the
measure of the set of preferences π for which this slope is not close to     ̇σ t (π) ∈     R

n

must become arbitrarily small as ε vanishes.
 A Lipschitz continuous function f:   ̂Σ  →   ̂Σ  defines a law of motion

(D)   ̇σ  = f(σ)

on   ̂Σ .  A trajectory σ:   R+  →   ̂Σ  is an L1 solution to equation (D) if     ̇σ t  = f(σt) µ-almost
surely for all t, where     ̇σ t  is interpreted as an L1 derivative.7

 Theorem 3.1 sets out the basic properties of solutions of the Bayesian dynamic.
Its proof is provided in the Appendix.

Theorem 3.1:  (Basic properties of solutions to (B))
 (i) There exists an     L

1 solution to (B) starting from each σ0 ∈ Σ.  This solution is

unique in the     L
1 sense:  if {σt} and {ρt} are     L

1 solutions to (B) such that ρ0 = σ0 µ-a.s.,
then ρt = σt µ-a.s. for all t.

(ii)  If {σt} and {ρt} are     L
1 solutions to (B), then

  σ ρt t−  ≤     σ ρ0 0− eKt ,

where K is the Lipschitz constant of f(σ) = B(E(σ)) – σ.
(iii) Solutions to (B) remain in Σ at all times t ∈  [0, ∞).
(iv)  From each σ0 ∈  Σ  there is an     L

1 solution to (B) with the property that

µ(π: σt(π) is continuous in t) = 1.

(v) σ* is a rest point of (B) if and only if it is a Bayesian equilibrium.

 Part (i) guarantees the existence and uniqueness of solutions to (B), while parts
(ii) and (iii) establish continuity in initial conditions and forward invariance of Σ.
Since (B) is Lipschitz, these results are nearly standard; the main technicality that
must be addressed is the fact that the domain Σ of the dynamic is closed.
                                                
7  The definition of an L1 solution requires that the derivative     ̇σ t   exist at all times t ≥ 0.  In contrast,
since the standard best response dynamic (BR) has a discontinuous law of motion, to ensure tha t
solutions to (BR) exist one must allow differentiability to fail at a zero measure set of times.



–11–

If {σt} is an     L
1 solution to (B), then so is any trajectory {    ̂σ t } that differs from {σt} on

some measure zero set Πt ⊂ Π at each instant t.  Thus, while part (i) of the theorem
guarantees the existence of a unique     L

1 solution to (B), this result imposes no
restrictions on the distribution trajectory {σt(π)} of an individual preference π:  as
time passes, it is possible for the behavior of the subpopulation with preference π to
jump haphazardly about the simplex.  Fortunately, part (iv) of the theorem shows
that we can always find an     L

1 solution with the property that the behavior associated
with almost every preference changes continuously over time.  Finally, part (v) of
the theorem observes that the rest points of (B) are precisely the Bayesian equilibria
of the underlying game.

4.  Aggregation and Equilibrium

We have established that solution trajectories of the best response dynamic (B)
exist and are unique.  However, since this dynamic operates on an     L

1 space, working
with it directly is rather difficult.  In the coming sections, we show that many
important properties of the dynamic can be understood by analyzing an aggregate
dynamic.  The aggregate dynamic is defined on the simplex, and so can be studied
using standard methods.

Before introducing the aggregate dynamic, we reconsider the Bayesian equilibria
σ* ∈ Σ*, which are the rest points of (B).  Since the Bayesian strategy σ induces the
distribution E(σ) ∈ ∆, Bayesian equilibria satisfy σ* = B(E(σ*)).

If the current distribution is x ∈ ∆, the Bayesian strategy that is a best response to
this distribution is B(x), which in turn induces the distribution E(B(x)). We therefore
call x* ∈ ∆ an equilibrium distribution if x* = E(B(x*)), and let ∆* ⊆ ∆ denote the set
of equilibrium distributions.  
 The connection between Bayesian equilibria and equilibrium distributions is
established in the following result.

Theorem 4.1:  (Characterization of equilibria)
 The map E : Σ* →  ∆* is a homeomorphism whose inverse is B : ∆* →  Σ* .

 Proof:  First, we show that E maps Σ* into ∆*.  Let σ ∈ Σ* be a Bayesian
equilibrium:  σ = B(E(σ)).  Then E(σ) = E(B(E(σ))), so E(σ) ∈ ∆*.
 Second, we show that E is onto.  Fix a distribution x ∈ ∆*, so that x = E(B(x)); we
need to show that there is a Bayesian strategy σ ∈ Σ* such that E(σ) = x.  Let σ = B(x).
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Then since x ∈ ∆*, E(σ) = E(B(x)) = x.  Furthermore, this equality implies that B(E(σ))
= B(x) = σ, so σ ∈ Σ*.  Thus, E is onto, and B(x) ∈ E–1(x).

Third, we show that E is one-to-one, which implies that B(x) = E–1(x).  Fix two
Bayesian equilibria σ, ′σ  ∈ Σ*, and suppose that E(σ) = E( ′σ ).  Then σ = B(E(σ)) =
B(E( ′σ )) = ′σ .
  Finally, the continuity of E and B follows from Lemma 2.1 and condition (C2).  

 The space Σ of Bayesian strategies is considerably more complicated than the
space of distributions ∆.  Nevertheless, Theorem 4.1 shows that if we are only
concerned with Bayesian equilibria σ* ∈ Σ*, it is sufficient to consider the
equilibrium distributions x* ∈ ∆*.  We can move between the two representations
of equilibria using the maps E and B, whose restrictions to the equilibrium sets are
inverses of one another.
 If we are concerned with disequilibrium behavior, then the one-to-one link
between Bayesian strategies and distributions no longer exists:  E maps many
Bayesian strategies to the same distribution over actions, and if the Bayesian strategy
σ is not an equilibrium, B does not invert E:  that is, B(E(σ)) ≠ σ.

Fortunately, we are able to prove analogues of Theorem 4.1 for solutions to the
Bayesian best response dynamic (B).  To do so, we introduce the aggregate best
response dynamic (AB), which is defined on the simplex.  In the next section, we
show that the expectation operator E is a many-to-one map from solutions to (B) to
solutions to (AB).  In Section 6, we establish a one-to-one correspondence between
stable rest points of (B) and stable rest points of (AB).  Therefore, while the Bayesian
dynamic operates on the complicated space Σ, the answers to many important
questions about this dynamic can be obtained by applying standard tools to dynamics
on the simplex.

5.  Aggregation of Solution Trajectories

Under the dynamic (B), the Bayesian strategy σt always moves toward its best
response B(E(σt)).  Hence, the target point only depends on σt through its distribution
E(σt).  This "bottleneck" provides the basis for our aggregation results.

We define the aggregate best response dynamic by

(AB)     ̇xt  = E(B(xt)) – xt.
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Under this law of motion, the distribution xt moves toward the distribution induced
by the best response to xt.  Lemma 2.1 and condition (C2) imply that this dynamic is
Lipschitz continuous.  Therefore, solutions to (AB) exist, are unique, are Lipschitz
continuous in their initial conditions, and leave ∆ forward invariant (see Theorem
A.1 in the Appendix).  Moreover, the rest points of (AB) are easily characterized.

Observation 5.1:  The set of rest points of (AB) is ∆*, the set of equilibrium

distributions.

Let f: Σ →   ̂Σ  and g: ∆ →     R
n  be Lipschitz continuous functions, and consider the

following laws of motion on Σ and ∆.

(D)   ̇σ  = f(σ);
(AD)     ̇x  = g(x).

We say that the dynamic (D) aggregates to the dynamic (AD) if whenever {σt} is an L1

solution to (D), {Eσt} is a solution to (AD).

Theorem 5.2: (Aggregation of solution trajectories)
  The Bayesian best response dynamic (B) aggregates to the aggregate best response

dynamic (AB).

Theorem 5.2 tells us that the dynamic (AB) completely describes the evolution of
aggregate behavior under the dynamic (B).  If {σt} is a solution to (B), then the
distribution it induces at time t, Eσt, is equal to xt, where {xt} is the solution to (AB)
starting from x0 = Eσ0.  Since aggregate behavior at time t under (B) is fully
determined by aggregate behavior at time 0, Bayesian strategies that induce the same
aggregate behavior also induce the same aggregate behavior trajectories.
  It is important to note that this mapping between solution trajectories is many-
to-one.  For example, consider a solution {σt} to (B) whose initial Bayesian strategy
aggregates to an equilibrium distribution: Eσ0 = x* ∈ ∆*.  Observation 5.1 and
Theorem 5.2 imply that the distribution trajectory {Eσt} induced by {σt} is degenerate:
Eσt = x* for all t.  However, {σt} is itself degenerate only if σ0 is a Bayesian
equilibrium; there are many Bayesian strategies σ ∈     E x−1( *) that aggregate to x* but
are not Bayesian equilibria, and hence are not rest points of the dynamic (B).  As we
shall see in Section 6, the fact that the mapping between solutions is many-to-one
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rather than one-to-one makes relating stability under (B) and (AB) more difficult
than it may first appear to be.

Theorem 5.2 is an immediate consequence of Theorem 5.4, which characterizes
the dynamics on Σ that can be aggregated.  The proof of Theorem 5.4 requires the
following lemma.

Lemma 5.3:  If {σt} ⊂   ̂Σ  is an L1 differentiable trajectory, then     E tσ̇( ) ≡   
d
dt tEσ .

 Proof:  Since E is continuous by Lemma 2.1,

    E tσ̇( ) = 
    
E L t t1

0
lim

ε

εσ σ
ε→

+ −





 = 
    
lim
ε

εσ σ
ε→

+ −



0

E t t  = 
    
lim
ε

εσ σ
ε→

+ −
0

E Et t  =   
d
dt tEσ .  

Theorem 5.4:  The dynamic (D) aggregates to the dynamic (AD) if and only i f
(    E fo )(σ) = (    g Eo )(σ) for all σ ∈ Σ.

 Proof:  Let {σt} be an L1 solution to (D).  Applying Lemma 5.3, and taking
expectations of both sides of equation (D), we find that

  
d
dt tEσ  = E    ̇σ t  = Ef(σt).

Thus, if     E fo  ≡     g Eo , it follows that g(Eσt) = Ef(σt) =   
d
dt tEσ ; hence, {Eσt} solves (AD),

and so f aggregates to g.  Conversely, if f aggregates to g, then {Eσt} solves (AD), so
g(Eσt) =   

d
dt tEσ  = Ef(σt).  As σ0 was chosen arbitrarily, it follows that     E fo  ≡     g Eo .  

 Theorem 5.4 implies that given any Lipschitz continuous function F: ∆ → Σ, the
dynamic

  ̇σ  = F(E(σ)) – σ

aggregates to (AD) with g(x) = E(F(x)) – x.  Thus, dynamics on Σ can be aggregated
whenever the target point F(E(σ)) is only a function of aggregate behavior.  In fact,
the stability results in the next section extend immediately to all dynamics of this
form.
 Before considering the question of stability in the next section, we use Theorem
5.2 to establish an instability result.  Suppose that the aggregate best response
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dynamic (AB) exhibits a limit cycle,8 or that equilibrium distributions are avoided i n
some more complicated fashion.  What we can we say about behavior under the
Bayesian dynamic (B)?

Theorem 5.5:  Let σ0 ∈ Σ and x0 = Eσ0 ∈ ∆, and let {σt} and {xt} be the solutions to (B)
and (AB) from σ0 and x0.  Let σ* ∈ Σ* and x* = Eσ* ∈ ∆*.  Then

     σ σt − *  ≥     x xt − *   and      σ̇ t  ≥     ẋt   for all t ≥ 0.

In particular, if {xt} avoids an ε-neighborhood of ∆* and maintains a speed of at least

δ, then {σ t} avoids an ε-neighborhood of Σ* and maintains a speed of at least δ.

Proof:  Theorem 5.2 tells us that Eσt = xt for all t ≥ 0.  Hence, Lemma 2.1 implies
that

     σ σt − *  ≥     E Etσ σ− *  =     x xt − * ,

while Lemmas 2.1 and 5.3 imply that

     σ̇ t  ≥     E tσ̇  =   
d
dt tEσ  =     ẋt .

The remaining claims follow from these inequalities and Theorem 4.1.  

6.  Aggregation and Stability

As we discussed in the introduction, it is important in many applications to be
able to predict not only the behavior distribution Eσ, but the full Bayesian strategy σ.
This observation motivates our stability analysis of the Bayesian dynamic (B).  The
results in this section establish that under three standard notions of stability,
stability of Bayesian strategies under (B) is equivalent to stability of distributions
under (AB).  Thus, to evaluate the stability of Bayesian strategies under (B) it is
enough to determine the stability of the corresponding distributions in ∆ ⊂     R

n ,
which can be accomplished using standard techniques.

We begin by reviewing the three notions of dynamic stability we will consider.
                                                
8  This can occur, for example, in perturbed versions of Rock-Scissors-Paper games whose unique Nash
equilibrium is not an ESS.



–16–

Let Z be a subset of a Banach space (    ̂Z , ⋅ ), and let the function h : Z →     ̂Z  define a

dynamic on Z via the equation of motion

(M)     ̇z = h(z).

Suppose that Z is forward invariant under the dynamic (M), and let z* ∈ Z be a rest
point of the dynamic:  h(z*) = 0.  We say that z* is Lyapunov stable under (M) if for
each set A ⊂ Z containing z* that is open (relative to Z) there is an open set A ' ⊂ A
that contains z* such that any trajectory that begins in A' always stays in A:  if {zt} is a
solution to (M) with z0 ∈ A ', then {zt} ⊂ A.  We call z* asymptotically stable under
(M) if it is Lyapunov stable and if there is an open set A  containing z* such that any
trajectory starting in A converges to z*:  if {zt} is a solution to (M) with z0 ∈ A, then

    
lim
t→∞

zt = z*.  If we can choose A = Z, we call z* globally asymptotically stable.

The following lemma underlies many of our stability results.

Lemma 6.1  Let σ ∈ Σ, let x = Eσ ∈ ∆, and let y ∈ ∆.  Then there exists a ρ ∈ Σ
satisfying Eρ = y and ρ σ−  =   y x− .

Lemma 6.1 says that if the Bayesian strategy σ has a distribution x that is ε away from
the distribution y, there is another Bayesian strategy ρ that is ε away from σ and that
aggregates to y.  A constructive proof of this lemma can be found in the Appendix.
The result is not obvious because in constructing ρ, we must be certain that the
distribution ρ(π) played by each preference π lies in the simplex.

We first characterize Lyapunov stability under the Bayesian dynamic.

Theorem 6.2:  (Lyapunov stability)
  The distribution x* ∈ ∆* is Lyapunov stable under  (AB) if and only if t h e

Bayesian strategy σ* = B(x*) ∈  Σ* is Lyapunov stable under (B).

To establish this connection, we need ways of moving between neighborhoods of
Bayesian equilibria σ* and equilibrium distributions x*.  Since the operators E: Σ →
∆ and B: ∆ → Σ are continuous and map equilibria to equilibria, they along with
Lemma 6.1 are the tools we need.

That the Lyapunov stability of σ* implies the Lyapunov stability of x* follows
easily from these facts.  The proof of the converse requires an additional lemma.
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Lemma 6.3.  Let A ⊂   ̂Σ  be an open convex set, and let {σ t} ⊂    ̂Σ  be an     L
1 differentiable

trajectory with σ0 ∈  A  and such that σ t +    ̇σ t  ∈ A for all t.  Then {σt} ⊂ A.

The point σt +     ̇σ t  is the location of the head of the vector     ̇σ t  if its tail is placed at σt,

and so represents the target toward which the trajectory is moving at time t.  The
lemma, which is proved in the Appendix, says that if the trajectory starts in the
open, convex set A and always moves toward points in A, it never leaves A.

Now, suppose that x* is Lyapunov stable.  If V  is a convex neighborhood of σ*,
then     B V−1( ) is a neighborhood of x*.  Since x* is Lyapunov stable, trajectories that
start in some open set W  ⊂     B V−1( ) stay in     B V−1( ).  Therefore, if the Bayesian
trajectory {σt} starts at σ0 ∈     E W V− ∩1( ) , then the distribution trajectory {Eσt} stays i n

    B V−1( ), and hence the Bayesian trajectory {B(E(σt))} stays in V.  Since the trajectory
{σt} begins in V and always heads toward points B(E(σt)) ∈ V, Lemma 6.3 implies that
it never leaves V.

Proof of Theorem 6.2:  First, suppose that σ* = B(x*) is Lyapunov stable under (B).
To show that x* is Lyapunov stable under (AB), we need to show that for each open
set O containing x* there is an open set O' ⊂ O containing x* such that solutions to
(AB) that start in O' never leave O.  Since E: Σ → ∆ is continuous,     E O−1( ) is open;
since Eσ* = x* by Theorem 4.1, σ* ∈     E O−1( ).  Because σ* is Lyapunov stable, there
exists an open ball C ⊂     E O−1( ) about σ* of radius ε such that solutions to (B) that start
in C stay in     E O−1( ).
  Let O' be an open ball about x* of radius less than ε that is contained in the open
set     B C−1( ) ∩  O.  Let {xt} be a solution to (AB) with x0 ∈  O'.  By our choice of O',

    x x0 − *  < ε.  Thus, by Lemma 6.1, there exists a Bayesian strategy σ0 such that Eσ0 =

x0 and   σ σ0 − *  =     x x0 − *  < ε; the inequality implies that σ0 ∈ C.  Hence, if {σt} is the

solution to (B) starting from σ0, then {σt} ⊂     E O−1( ).  Therefore, Theorem 5.2 implies
that {xt} = {Eσt} ⊂ O.

Now suppose that x* is Lyapunov stable under (AB).  To show that σ* = B(x*) is
Lyapunov stable under (B), it is enough to show that for each set U ⊂ Σ containing
σ* that is open relative to Σ, there is an set U ' ⊂ U containing σ* that is open
relative to Σ such that solutions to (B) that start in U' never leave U.
 Let V  be an open ball in   ̂Σ  about σ* such that V  ∩  Σ ⊂ U.  Since can view the
continuous function B: ∆ → Σ as having range   ̂Σ  ⊃ Σ,     B V−1( ) ⊂ ∆ is open relative to
∆ and contains x*.  Because x* is Lyapunov stable, we can find an set W ⊂     B V−1( ) that
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contains x* and that is open relative to ∆ such that solutions to (AB) that start in W

never leave     B V−1( ).
The set     E W−1( ) is open relative to Σ and contains σ*; therefore, U ' =     E W V− ∩1( )

possesses both of these properties as well.  Let {σt} be a solution to (B) with σ0 ∈ U '.
Then Eσ0 ∈ W.  Therefore, since {Eσt} solves (AB) by Theorem 5.2, Eσt ∈     B V−1( ) for all
t, and so B(E(σt)) ∈ V for all t.  But since     ̇σ t  = B(E(σt)) – σt, σt +     ̇σ t  ∈ V  for all t.  Thus,

Lemma 6.3 implies that {σt} ⊂ V.  Moreover, Theorem 3.1 (ii) implies that {σt} ⊂ Σ;
we therefore conclude that {σt} ⊂ V ∩  Σ ⊂ U.  

We continue by characterizing asymptotic stability.

Theorem 6.4:  (Asymptotic stability)
The distribution x* ∈ ∆* is asymptotically stable under  (AB) if and only if t h e

Bayesian strategy σ* = B(x*) ∈ Σ* is asymptotically stable under (B).

That the asymptotic stability of the Bayesian strategy σ* implies the asymptotic
stability of its distribution x* follows easily from Lemma 6.1 and Theorem 5.2.  The
proof of the converse also requires the following lemma.

Lemma 6.5:  Let {σ t} be the solution to (B) from some σ0 ∈ Σ with Eσ0 = x* ∈ ∆*, a n d
let σ* = B(x*) ∈ Σ*.  Then 

  
lim
t

t
→∞

σ  = σ*.  Indeed,

σt ≡   e
t− σ0 + (1 –   e

t− )σ*.

If {σt} is a Bayesian trajectory whose initial distribution is an equilibrium, then while
σt may change over time, its distribution does not:  Eσt = x* for all t.  Consequently,
under the best response dynamic (B), σt always heads from σ0 directly toward the
point B(E(σt)) = σ*.  The proof of Lemma 6.5 can be found in the Appendix.
 Now, suppose that x* is asymptotically stable under (AB).  Then if σ0 is close
enough to σ*, Eσ0 will be close to x*, so if {σt} solves (B), Theorem 5.2 tells us that
{Eσt} converges to x*.  Lemma 6.1 then implies that if t is large, we can find a
Bayesian strategy   ̂σ  that is close to σt and that aggregates to x*; by Lemma 6.5, the
solution to (B) from   ̂σ  converges to σ*.  That {σt} must converge to σ* then follows
from the continuity of solutions to (B) in their initial conditions.
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Proof of Theorem 6.4:  Since Lyapunov stability is covered by Theorem 6.2, we
need only consider convergence of nearby trajectories to σ* and x*.  For all ε > 0 and
any σ ∈ Σ and x ∈ ∆, define Nε(σ) = {ρ ∈ Σ: ρ σ−  ≤ ε} and Nε(x) = {y ∈ ∆:   y x−  ≤ ε} to

be the ε neighborhoods of σ and x, respectively.
Suppose that σ* = B(x*) is asymptotically stable.  Then there exists an ε > 0 such

that solutions to (B) with σ0 ∈ Nε(σ*) converge to σ*.  Now suppose that {xt} is a
solution to (AB) with x0 ∈ Nε(x*).  By Lemma 6.1, there exists a   ̂σ 0 ∈ Nε(σ*) satisfying
Eσ0 = x0; therefore, the solution {  ̂σ t } converges to σ*.  Since xt =     E tσ̂  by Theorem 5.2,

and since E is continuous by Lemma 2.1,

    
lim
t tx
→∞

 = 
    
lim ˆ
t tE
→∞

σ  = 
    
E L

t t
1 lim ˆ
→∞( )σ  = Eσ* = x*.

Hence, all solutions to (AB) starting in Nε(x*) converge to x*.
Now suppose that x* is asymptotically stable and let σ* = B(x*).  We can choose

an ε > 0 such that all solutions to (AB) starting in Nε(x*) converge to x*.  Now
suppose that σ0 ∈ Nε(σ*); we will show that {σt}, the solution to (B) starting from σ0,
must converge to σ*.  First, observe that

     E xσ 0 − *  =     E E B xσ 0 − ( ( *))  =     E( *)σ σ0 −  ≤     Eσ σ0 − *  =   σ σ0 − *  ≤ ε,

so Eσ0 ∈ Nε(x*).  Theorem 5.2 implies that {Eσt} is the solution to (AB) starting from
Eσ0; hence, 

    
lim
t tE
→∞

σ  = x*.

 Fix η > 0.  It is enough to show that there exists a T such that     σ σt − *  < η for all t

≥ T.  Let K be the Lipschitz coefficient of f(σ) = B(E(σ)) – σ, and let δ =     n
K K− +( )η

2

1
.  Since

    
lim
t tE
→∞

σ  = x*, there is a τ1 such that     E xtσ − *  < δ whenever t ≥ τ1.  Let τ2 = l n    
2n
η , and

choose T = τ1 + τ2.
Fix t > T.  Then since t – τ2 > T – τ2 = τ1, Lemma 6.1 implies that there is a   ̂σ 0 such

that E  ̂σ 0 = x* and

     σ στt− −
2 0

ˆ  =     E xtσ τ− −
2

*  < δ.

Let {    ̂σ t } be the solution to (B) with initial condition   ̂σ 0.  Since no two points in Σ are

further than distance n apart, Lemma 6.5 implies that

   
ˆ *σ στ 2

−  =     e
− −τ σ σ2

0
ˆ *  ≤     ne−τ 2
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Moreover, it follows from Theorem 3.1 (ii) that

     σ στt − ˆ
2

 ≤     σ στt− −
2 0

ˆ     e
Kτ 2 .

Therefore,

     σ σt − *  ≤     σ στt − ˆ
2

 +   
ˆ *σ στ 2

−

 ≤     σ στt− −
2 0

ˆ     e
Kτ 2  +     ne−τ 2

< δ    e
Kτ 2  +     ne−τ 2

=   
η
2  +   

η
2  = η.  

We conclude this section by characterizing global asymptotic stability.  The proof
of this result is analogous to that of Theorem 6.4.

Theorem 6.6:  (Global asymptotic stability)
The distribution x* ∈  ∆* is globally asymptotically stable under (AB) if and only i f

the Bayesian strategy σ* = B(x*) ∈  Σ* is globally asymptotically stable under (B).

Remark 6.7:  While we have stated our stability results for isolated equilibria x* ∈ ∆*
and σ* = B(x*) ∈ Σ*, one can extend these results to allow for closed connected sets of
equilibria X* ⊂ ∆* and B(X*) ⊂ Σ*.

7.  Best Response Dynamics and Fictitious Play

Under common preferences, the close connections between the best response
dynamic and fictitious play are well known.  In fictitious play, players always choose
a best response to their beliefs, which are given by the time average of past play.  In
the continuous time formulation, if we let ct denote current behavior, then at =

    
1

0t s

t
c ds∫  represents beliefs.  The requirement that current behavior is a best response

to beliefs is stated as ct ∈   BRπ (at).  By differentiating the definition of at and
substituting, we obtain the law of motion for beliefs under fictitious play:

(FP)     ̇at  =     
1
t tc  – 

    
1

0
2t s

t
c ds∫
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 =     
1
t t tBR a a( ( ) )π −

Therefore, after a reparameterization of time, the evolution of beliefs under (FP) is
identical to the evolution of behavior under the best response dynamic (BR).

Ellison and Fudenberg (2000) study fictitious play in a population with diverse
preferences.  As in the standard case, players choose a best response to the time

average at = 
    
1

0t s

t
c ds∫  of past behavior.  Since players are matched with opponents

drawn from the population as a whole, the object that is averaged to determine
beliefs is ct = E(B(at)), the distribution of behavior at time t.  This yields the law of
motion

(PFP)     ̇at  =     
1
t t tE B a a( ( ( )) )− ,

which is a reparameterization of our aggregate best response dynamic (AB).  
 Observe that the state variable under population fictitious play is the average
distribution of past behavior, at ∈ ∆.  If one keeps track of this, one can always
compute the best response B(at) ∈ Σ as well as the best response distribution E(B(at))
∈ ∆.  The latter object determines the direction in which the time average at evolves.
In contrast, the Bayesian best response dynamic must specify how behavior in every
subpopulation evolves, so the relevant state variable is not the distribution of
behavior xt ∈ ∆, but the Bayesian strategy σt ∈ Σt.  Thus, while the dynamics (PFP)
and (AB) are nearly identical, the evolution of Bayesian strategies under population
fictitious play and under the Bayesian best response dynamic are quite different.
  As an illustration, suppose that (PFP) and (AB) are currently at state at = xt.
Under population fictitious play, the current Bayesian strategy must be B(at), the best

response  to beliefs at; in particular, it is always pure.  Under the best response
dynamic, the current Bayesian strategy σt must be one that aggregates to at:  in other
words, σt ∈ E–1(at) = {σ ∈ Σ:  E(σ) = at}.  In fact, B(at) is contained in E–1(at) only if at is
an equilibrium distribution and σt = B(at) is the corresponding Bayesian equilibrium.  
 On the other hand, if the solution to (AB) from at = xt converges to some
equilibrium distribution x*, then one can show that under both population
fictitious play and the Bayesian best response dynamic, the Bayesian strategy σt

converges to the Bayesian equilibrium σ* = B(x*).  Indeed, by proving that
equilibrium and stability analyses for the Bayesian best response dynamic (B) can be
performed directly in terms of the aggregate dynamic (AB), we have demonstrated
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that the close connections between fictitious play and the best response dynamic
from the common preference case persist when preferences are diverse.
 Ellison and Fudenberg (2000) use their model of population fictitious play to
investigate the evolutionary stability of purified equilibria (Harsanyi (1973)),
obtaining stability and instability results for 2 x 2 and 3 x 3 games.  By building on the
results in this paper and recent studies of perturbed best response dynamics, one can
investigate the stability of purified equilibria in games with arbitrary numbers of
strategies.  This question is pursued in a companion paper, Sandholm (2003).

Appendix

A.1  Basic Properties of Dynamical Systems on ∆ and Σ

We begin this appendix by establishing the existence, uniqueness, and forward
invariance of solution trajectories of the aggregate best response dynamic (AB).  In
fact, we will establish this result for a more general class of dynamics on the simplex.
 Let g: ∆ →     R

n  be a vector field on the simplex that satisfies

(LC) g is Lipschitz continuous on ∆.
(FI1)     g xii

( )∑  = 0 for all x ∈ ∆.

(FI2) For all x ∈ ∆, gi(x) ≥ 0 whenever xi = 0.

Condition (LC) is the usual Lipschitz condition used to prove the existence of
unique solution trajectories to the differential equation     ̇x  = g(x).  Condition (FI1)
says that     ẋii∑  = 0, implying the invariance of the affine space   ̃∆  = {x ∈     R

n :    xii∑  =

1}.  Condition (FI2) says that whenever the component xi equals zero, its rate of
change     ̇xi  is non-negative.

Theorem A.1:  Let g: ∆ →     R
n  satisfy (LC), (FI1), and (FI2), and let     ̃g  be a Lipschitz

continuous extension of g  from ∆  to   ̃∆ .  Then  solutions to     ̇x  =     ̃g (x) from each x0 ∈ ∆

exist, are unique , are Lipschitz continuous in x0, and remain in ∆ at all positive

times.

 Let   x E
 = 

    
xii

2∑ denote the Euclidean norm on     R
n .  Then the proof of Theorem

A.1 relies on a geometrically obvious observation that we state without proof.



–23–

Observation A.2:  Let C be a compact, convex subset of     R
n , and define the closest

point function c:     R
n  →  C by

c(x) = 
    
arg min

z C
Ex z

∈

−

Then      c x c y
E

( ) ( )−  ≤   x y
E

−  for all x, y ∈     R
n .  Hence, by the equivalence of norms o n

    R
n , there exists a k > 0 such that     c x c y( ) ( )−  ≤   k x y− for all x, y ∈     R

n .

Proof of Theorem A.1:  Define     ̂g :   ̃∆  →     R
n  by     ̂g (x) = g(c(x)).  Then condition (LC)

and Observation A.2 imply that     ̂g  is Lipschitz.  Therefore, standard results (e.g.,
Hirsch and Smale (1974, Chapter 8)) show that solutions to     ̇x  =     ̂g (x) exist, are

unique, and are Lipschitz continuous in their initial conditions.  The forward
invariance of ∆ under     ̇x  =     ̂g (x) follows from Theorem 5.7 of Smirnov (2002).

Now consider any Lipschitz continuous extension     ̃g  of g to   ̃∆ , and fix an initial
condition x0 ∈ ∆.  Since the solution {xt}t≥0 to     ̇x  =     ̂g (x) starting from x0 does not leave
∆, and since     ̃g  and     ̂g  are identical on ∆, this solution is also a solution to     ̇x  =     ̃g (x).
But since     ̃g  is Lipschitz, this must be the only solution to     ̇x  =     ̃g (x) from x0.  W e
therefore conclude that ∆ is forward invariant under     ̃g .  Since ∆ is closed, forward

invariance implies that the solution is well defined at all times t ∈ [0, ∞) (see, e.g.,
Hale (1969, p. 17-18)).  

We now prove an analogue of Theorem A.1 for dynamics on Σ.  Let f: Σ →   ̂Σ
satisfy

(LC') f is     L
1 Lipschitz continuous on Σ.

(FI1')     fii
( )( )σ π∑  = 0 for all σ ∈ Σ and π ∈ Π.

(FI2') For all σ ∈ Σ and π ∈ Π, fi(σ)(π) ≥ 0 whenever σi(π) = 0.
(UB) For all σ ∈ Σ and π ∈ Π,     f( )( )σ π  ≤ M

The first three conditions are analogues of the conditions considered previously.
Condition (FI1') ensures that solutions stay in the affine space   ̃Σ  = {σ ∈   ̂Σ : σ(π) ∈   ̃∆
for all π ∈ Π}, while condition (FI2') ensures that whenever no one i n
subpopulation π uses strategy i, the growth rate of strategy i in this subpopulation is
non-negative.  Finally, condition (UB) places a uniform bound on f(σ)(π), which is
needed because f(σ) is infinite dimensional.
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Existence, uniqueness, continuity in initial conditions, and forward invariance of
Σ for     L

1 solutions to   ̇σ  = f(σ) are established in Theorem A.3.  This result implies
parts (i), (ii), and (iii) of Theorem 3.1.

Theorem A.3:  Let f: Σ →     R
n  satisfy (LC'), (FI1'), (FI2'), and (UB), and let     f̃  be a

Lipschitz continuous extension of f from  Σ to   ̃Σ .  Then solutions to   ̇σ  =     f̃ (σ) f r o m

each σ0 ∈ Σ exist, are unique , are Lipschitz continuous in σ0, and remain in Σ at all

positive times.

In addition to these properties, we would also like to establish that some     L
1

solution {σt} has continuous sample paths:  in other words, that for each π ∈ Π, the
behavior σt(π) of the subpopulation with preference π changes continuously over
time.  While not every     L

1 solution has this property, we can prove that there is
always one that does.  Call {    ̃σ t } a modification of {σt} if µ(π: st(π) =     ̃st (π)) = 1 for all t.

Theorem A.4:  Let {σt} be an     L
1 solution to   ̇σ  =     f̃ (σ), where      f̃ :   ̃Σ  →   ̂Σ  is     L

1

continuous and pointwise bounded .  Then there exists a modification  {    ̃σ t } of {σt}
with continuous sample paths:  i.e., such that µ(π :     ̃σ t (π) is continuous in t) = 1.

While of interest in its own right (in particular, because it implies Theorem 4.1(iv)),
Theorem A.4 is also useful for proving Theorem A.3.
 To prove these two results, we introduce the notion of an     L

1 integral of a
trajectory through   ̂Σ ; for a complete treatment, see Lang (1997, Chapter 10).  If {σt} is
an L1 continuous trajectory through   ̂Σ , then its L1 integral over the interval [a, b],

denoted 
  
σ ta

b
dt∫ , is the L1 limit of the integrals of any sequence of step functions     { }σ t

n

satisfying     lim sup [ , ]n t a b t
n

t→∞ ∈ −σ σ  = 0.  If {σt} is an     L
1 solution to   ̇σ  =     f̃ (σ), then by

definition we have that σu = σ0 + 
    

˜( )f dtt

u
σ

0∫ .  Moreover, if τ : Π → [0, u] is a random

time and f is pointwise bounded, then a step function approximation can be used to

show that σu = στ + 
    

˜( ) { }f dtt t

u
σ τ1

0 ≥∫ .

Proof of Theorem A.3:
Define     f̂ :   ̃Σ  →   ̂Σ  by     f̂ (σ) = f(c(σ)), where c(σ)(π) ≡ c(σ(π)).  Then for all σ, ρ ∈   ̃Σ ,

    
ˆ( ) ˆ( )f fσ ρ−  =     f c f c( ( )) ( ( ))σ ρ−
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≤     K c c( ) ( )σ ρ−

=     K E c c⋅ −( ( )) ( ( ))σ π ρ π
≤     K Ek⋅ −σ π ρ π( ) ( )
=   K k σ ρ− ,

where K and k  are the Lipschitz constants for f and c, respectively.  Hence,     f̂  is     L
1

Lipschitz on   ̃Σ .  Therefore, standard results imply that there exist unique solutions
to   ̇σ  =     f̂ (σ) from each initial condition σ0 ∈   ̃Σ , and that solutions are Lipschitz

continuous in σ0.
Let σ0 ∈ Σ, let {σt} be the     L

1 solution to   ̇σ  =     f̂ (σ) from σ0, and suppose that σu ∉ Σ

for some u.  Then for some strategy i the set Ai = {π ∈ Π:  [σu(π)]i < 0} has positive
measure under µ.  By Theorem A.4, we can suppose that {σt} has continuous sample
paths.  Hence, the random time τ(π) = max{t ≤ u:  [σu(π)]i ≥ 0} is well defined and is
strictly less than u when π ∈ Ai.
  Observe that if σ ∈   ̃Σ  has σi(π) ≤ 0, then ci(σ)(π) = 0, and hence     f̂i (σ)(π) = fi(c(σ))(π)

≥ 0 by condition (FI2').  We therefore have the following     L
1 integral inequality:

[σu]i = [στ]i + 
    

ˆ ( ) { }f dti t t

u
σ τ1

0 ≥∫  ≥ [στ]i

Observe that [στ(π)]i = 0 when π ∈ Ai.  Hence, for almost every π ∈ Ai, [σu(π)]i ≥ 0,
contradicting the definition of Ai.  Therefore, the trajectory {σt} cannot leave Σ,
which is thus forward invariant under   ̇σ  =     f̂ (σ).

Forward invariance of Σ under any Lipschitz continuous extension of f to   ̃Σ  is
proved in the same fashion as the analogous part of Theorem A.1.  

We now prove Theorem A.4.  To do so, we introduce the     L
2  norm on   ̂Σ :  

     σ L2  = 
    

E ii

n
σ 2

1=∑ .

If the trajectory {σt} is L2 continuous, then its L2 integral, 
  

b

ta
dtσ∫ , is defined as the L2

limit of the integrals of any sequence of step functions     { }σ t
n  satisfying

    lim sup [ , ]n t a b t
n

t L→∞ ∈ −σ σ 2  = 0.  The L2 integral satisfies this standard inequality:

    
b

ta L
dtσ∫ 2

 ≤ 
    

σ t La

b
dt2∫ .
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 Since µ is a finite measure, the L1 and L2 norms define the same topology on any
set of functions satisfying the uniform boundedness condition (UB).  In particular,

    
L

s t s
1 lim
→

σ  = 
    
L

s t s
2 lim
→

σ  whenever either limit exists.  It follows that if {σt} is pointwise

bounded and L1 continuous, its L1 and L2  integrals are the same:  
  
σ ta

b
dt∫  = 

  
b

ta
dtσ∫ .

 The proof of Theorem A.4 relies on Lemma A.5, which is a direct implication of
the Kolmogorov continuity theorem (Karatzas and Shreve (1991, Theorem 2.2.8)).

Lemma A.5:  Suppose that {σ t} is L2 Lipschitz continuous (i.e., that there is a constant
K < ∞  such that     σ σt s L

− 2  ≤ K  t s−  for all s and t).  Then there exists a modification

{    ̃σ t } of {σt} such that µ(π:     ̃σ t (π) is continuous in t) = 1.

Proof of Theorem A.4:
 By definition, the trajectory {σt} satisfies the L1 integral equation

σt = σ0 + 
    

˜( )f dss

t
σ

0∫ .

Since the function     f̃  is L1 continuous and pointwise bounded by some constant M,

the trajectory {    f̃ (σt)} is as well.  Hence, 
    

˜( )f duus

t
σ∫  = 

    
t

us
f du˜( )σ∫ , and so

    σ σt s L
− 2  = 

    
˜( )f duus

t

L
σ∫ 2

 = 
    

t

us L
f du˜( )σ∫ 2

 ≤ 
    

˜( )f duu
Ls

t
σ

2∫  ≤   M t s− .

That is, {σt} is L2 Lipschitz.  The result therefore follows from Lemma A.5.  

A.2  Other Proofs

Proof of Proposition 2.2:
 Condition (C1), which requires that B is single valued, obviously holds, so we
focus on the Lipschitz continuity condition (C2).  In this proof, we use the Euclidean

norm   x E
 = 

    
xii

2∑  for points in     R
n .  Since this norm is equivalent to the

summation norm, our proof implies the result for the latter norm as well.  It is
enough to show that the Lipschitz inequality     B x B y( ) ( )−  ≤ C   x y

E
−  holds when

  x y
E

−  is sufficiently small.

Fix x, y ∈ ∆ and i ≠ j.  The set of payoff matrices that choose i over j at x and j over
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i at y is

Πij = {A:  (Ax)i > (Ax)j and (Ay)i < (Ay)j}
= {A:  (Ai – Aj) · x > 0 > (Ai – Aj) · y}.

Here, Ai and Aj denote rows of the matrix A.
We can associate with each payoff matrix A a difference vector dij = Ai – Aj ∈     R

n .
Let f:     R

n n×  → R denote the density function of the measure λ, and let gij:     R
n  → R be

the density of the measure on the difference dij that is induced by λ.  If [–c, c]n×n

contains the support of f, and M is an upper bound on f, then by integrating out
irrelevant components and changing variables, one can show that

gij(d) ≤     ( )2
2

c Mn n− for all d ∈     R
n .

Moreover, the support of gij is contained in the cube [–2c, 2c]n, and hence in the ball S
⊂     R

n  centered at the origin with radius r =     2c n .
Let

Dij = {d ∈ S:  d · x > 0 > d · y},

and let m represent Lebesgue measure on     R
n .  Suppose we can show that

m(Dij) ≤ K   x y
E

− (3)

for some K independent of x, y, i, and j.  Then since a change in best response
requires a reversal of preferences for at least one strategy pair, it follows that

    B x B y( ) ( )−  = 2µ(π:  B(x)(π) ≠ B(y)(π)) (4)
≤ 2

    
λ( )

,

Π ij
i j i≠
∑

≤ 2
    

( ) ( )
,

2
2

c M m Dn n
ij

i j i

−

≠
∑

≤ 2(n2 – n)    ( )2
2

c Mn n− K   x y
E

− .

To bound m(Dij), we first change coordinates in     R
n  via an orthogonal

transformation T ∈     R
n n×  so that   ′x  = Tx and   ′y  = Ty satisfy   ′x  = (    ′x1 , 0, 0, … , 0) and   ′y
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= (    ′y1 ,     ′y2 , 0, … , 0), with     ′x1 ,     ′y1 ,     ′y2  ≥ 0.  The orthogonal operator T is the composition

of a sequence of rotations and reflections, and so preserves Euclidean distance, inner
products, and Lebesgue measure (see Friedberg, Insel, and Spence (1989, Sections 6.5
and 6.10)).  Hence, Dij = {d ∈ S:  Td · Tx > 0 > Td · Ty}, and so

  ′Dij = {  ′d  ∈ S:   ′d  ·   ′x > 0 >   ′d  ·   ′y }

= {  ′d  ∈ S:   ′d  · Tx > 0 >   ′d  · Ty}
= {  ′d  ∈ S:   ′d  = Td for some d ∈ Dij}

Therefore, m(Dij) = m(  ′Dij ).
Whether a vector is an element of   ′Dij  only depends on its first two coordinates.

For   ′d  ∈ S, let α(  ′d ) ∈ [0, 2π) be the amount by which the vector (1, 0) ∈     R
2  must be

rotated counterclockwise before it points in the same direction as (    ′d1 ,    ′d2).  Since all   ′d

∈   ′Dij  form acute angles with   ′x  and obtuse angles with   ′y , we see that

  ′Dij = {  ′d  ∈ S:  α(  ′d ) ∈ [0,   
π
2 ) ∪ (  

3
2
π , 2π) and α(  ′d ) ∈ (α(  ′y ) +   

π
2 , α(  ′y ) +   

3
2
π )}

= {  ′d  ∈ S:  α(  ′d ) ∈ (  
3
2
π , α(  ′y ) +   

3
2
π )}.

Hence, since m(S) <     ( )2r n ,

m (  ′Dij ) = 
    

α( )′y
2π

 m(S) < α(  ′y )     ( )2r n . (5)

Therefore, to prove inequality (3) it is enough to show that

α(  ′y ) ≤ k  x y
E

−  = k  ′ − ′x y
E
. (6)

(To see why the equality in expression (5) holds, let (X1, X2, … , Xn) represent a
random vector drawn from a uniform distribution on the ball S.  Then the random
angle Θ formed by the first two components (defined by (cosΘ, sinΘ) = (X1/    X X1

2
2
2+ ,

X2/    X X1
2

2
2+ )) is independent of the remaining components.)

To establish inequality (6), we fix c > ε ≥ 0 and let Zε = {z ∈     R
2 :     ( , ) – ( , )c z z

E
0 1 2  = ε,

z2 ≥ 0} be the set of vectors in     R
2  with a positive second component that are ε away

from the vector (c, 0).  The largest possible angle between the vector (1, 0) and a
vector in Zε is
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θ(ε) ≡ 
    
max ( )
z Z

z
∈ ε

α  = 
    
cos min cos( ( ))−

∈







1

z Z
z

ε

α  = 
    
cos min

( , ) ( , )
( , ) ( , )

−

∈

⋅









1 1 2

1 2

1 0
1 0z Z

E E

z z
z zε

.

If we let δ = c – z1, then the minimization problem becomes

    

min
( , ) ( , )

( , )[ , ]δ ε

δ ε δ

δ ε δ∈

⋅ − −

− −0

2 2

2 2

1 0 c

c
E

 = 
    
min

[ , ]δ ε

δ

δ ε∈

−

− +0 2 22

c

c c
.

Taking the derivative of this expression with respect to δ and setting it equal to zero
yields δ =     

ε 2

c ; hence,

θ(ε) = 
    
cos− −









1
2 2c
c
ε

.

It follows that θ(0) = 0 and that   ′θ ε( ) = 1/    c2 2− ε  whenever ε < c.  Therefore, if c ≥
1/  n  and ε ≤ 1/    2n , then   ′θ ε( ) ≤     2n , and so

θ(ε) ≤     2n  ε.

Now suppose that   x y
E

−  ≤ 1/    2n .  Then since     ′x1  =   ′x
E
 =   x E

 ≥ 1/  n , setting c

=     ′x1  and ε =   x y
E

−  =   ′ − ′x y
E
 yields

α(  ′y ) ≤ θ(  x y
E

− ) ≤     2n   x y
E

− ,

establishing inequality (6) for all cases in which   x y
E

−  is sufficiently small.  Thus,

inequality (5) implies that

m(Dij) = m(  ′Dij ) ≤     ( )2r n ·    2n   x y
E

− ,

and so inequalities (3) and (4) let us conclude that

    B x B y( ) ( )−  ≤ 2(n2 – n)    ( )2
2

c Mn n−  ·     ( )2r n ·    2n   x y
E

− .  

Proof of Proposition 2.3:
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 Again, condition (C1) clearly holds, so we need only consider the Lipschitz
continuity condition (C2).  Fix x, y ∈ ∆ and i ≠ j.  Let Πij ⊂ Π represent the set of
preferences that prefer strategy i to strategy j at distribution x but prefer j to i at y:

Πij = {π:  πi(x) > πj(x) and πi(y) < πj(y)}

Then by definition, µ(Πij) = ν(Dij), where Dij ⊂     R
n  is given by

Dij = {θ:  Fi(x) + θi > Fj(x) + θj and Fi(y) + θi > Fj(y) + θj}
= {θ:  Fi(x) – Fj(x) > θj – θi > Fi(y) – Fj(y)}.

Now suppose we can show that ν(Dij) ≤ K  x y−  for some K that is independent of x,

y, i, and j.  Then

    B x B y( ) ( )−  = 2 µ(π:  B(x)(π) ≠ B(y)(π))
≤ 2 

    
µ( )

,

Π ij
i j i≠
∑

= 2 
    

ν( )
,

Dij
i j i≠
∑

≤     2
2( )n n K x y− − .

Each vector θ ∈     R
n  is associated with a single value of θj – θi ∈ R. Let f:     R

n  → R
denote the density of the measure ν, let M be the upper bound on f, and let gji: R → R
denote the density of the measure for the difference θj – θi that is induced by ν.  In
case (i), there is a compact set [–c, c]n that contains the support of f; by integrating out
irrelevant components and changing variables, one can show that

gji(d) ≤     ( )2 2c Mn− for all d ∈ R.

In case (ii), f(θ) =     fi ii
( )θ∏  for some marginal densities fi. Since f is bounded, there is

also a constant     M̂  that bounds all of the functions fi.  Hence, a convolution yields

gji(d) ≤ 
    

f d z f z dzj i( ) ( )− −
−∞

∞

∫  = E fj(d + θi) ≤     M̂ for all d ∈ R.

Thus, cases (i) and (ii) both imply case (iii):  gji ≤   M  for some constant   M .
The interval of values of θj – θi that lie in the set Dij has length

(Fi(x) – Fj(x)) – (Fi(y) – Fj(y)) = (Fi(x) – Fi(y)) + (Fj(y) – Fj(x)) ≤ 2  KF   x y− ,
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where   KF  is the Lipschitz coefficient for F.  Therefore,

ν(Dij) ≤     M K x yF⋅ −2 ,

and we conclude that

    B x B y( ) ( )−  ≤     2 22( )n n M K x yF− ⋅ ⋅ − .  

The proof of Lemma 6.1 relies on the following observation.

Lemma A.6:  Let a, b ∈     R
n .  If a and b lie in the same orthant (i.e., if ai ≥ 0 ⇔ bi ≥ 0),

then    a b+  =   a  +   b .

Proof of Lemma 6.1:
Let x = Eσ, let d = y – x, and let C = {k: dk < 0}.  For all k ∈ C, define   δ

k  ∈     R
n  by

    

δ j
k

k

d

d k

d j k

j C k

d j Cj

ii C

=

=

∈ −

−
∑







∉











 ∉

if 
if 

if 

,
{ },

.

0

Notice that 
  

δ j
k

j∑  = 0 for each k and that   δ k

k C∈∑ = d.  Moreover, since each   δ
k  lies i n

the same orthant of     R
n , Lemma A.6 implies that 

  
δ k

k C∈∑  =   δ k

k C∈∑ .

For each k ∈ C, let   η
k  = x +   δ

k .  We want to show that   η
k  ∈ ∆.  To begin, observe

that 
  

ηj
k

j∑  = 
  

xjj∑  + 
  

δ j
k

j∑  = 1.  To check that   ηj
k  ≥ 0 for all j, first note that if j = k ,

then   ηk
k  = xk + dk = yk ≥ 0.  If j ∈ C – {k}, then   ηj

k  = xj ≥ 0.  Finally, if j ∈ C, then since dk

is negative,   ηj
k  = xj – 

  

d

d k
j

ii C

d
∈∑





  ≥ xj ≥ 0.

For each k ∈ C, define rk: Π → R+ by

rk(π) = max {r:  σ(π) + r  δ
k ∈ ∆},

and define   z
k : Π → ∆ by

  z
k (π) = σ(π) + rk(π)  δ

k .
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Fix π ∈ Π; we want to show that   zk
k (π) = 0.  Suppose to the contrary that   zk

k (π) > 0.
Then since   z

k (π) ∈ ∆, 
  

zj
k

j k
( )π

≠∑  < 1, and so   z
k (π) ∈int(∆); hence,   z

k (π) + ε  δ
k  = σ(π) +

(rk(π) + ε)  δ
k  ∈ ∆ for all small enough ε > 0, contradicting the definition of rk(π).

Next, we show that Erk ≥ 1.  To see this, suppose to the contrary that Erk < 1.  Then

  ηk
k  = xk + dk < xk + Erk  δ k

k  =   Ezk
k  = 0, contradicting that   η

k  ∈ ∆.  Therefore, if we let tk =

1/Erk, then tk ∈ (0, 1].
Now define ρ: Σ → ∆ by

ρ(π) = σ(π) + 
    

t rk k
k

k C

( )π δ
∈
∑ .

To see that ρ(π) ∈ ∆ for all π ∈ Π, observe that

    
ρ πj

j

( )∑  = 
    

σ πj
j

( )∑  + 
    

t rk k j
k

k Cj

( )π δ
∈
∑∑  = 1 + 

    
t rk k j

k

jk C

( )π δ∑∑










∈

 = 1

and that ρj(π) ≤ σj(π) only if j ∈ C, in which case

ρj(π) = σj(π) + tj rj(π)   δ j
j  ≥ σj(π) + rj(π)   δ j

j  =     zj
j( )π  = 0,

since   δ j
j  < 0.  Moreover,

Eρ = Eσ + 
  
E t rk k

k

k C

δ
∈
∑









  = x + 

  
t Erk

k
k

k C

δ
∈
∑  = x + 

  
δ k

k C∈
∑  = x + d = y.

Finally, applying Lemma A.6 twice, we find that

ρ σ−  = 
  

t rk k
k

k C

δ
∈
∑  = 

  
E t rk k

k

k C

δ
∈
∑  = 

  
E t rk k

k

k C

δ
∈
∑











 = 
    

δ k
k k

k C

E t r( )
∈
∑  = 

  
δ k

k C∈
∑  = 

  
δ k

k C∈
∑  =   d  =   y x− .  

Proof of Lemma 6.3:
Let σ0 ∈ A, and suppose that {σt} leaves A  in finite time.  Since {σt} ⊂   ̂Σ  is

continuous and since A  is open, τ = min{t:  σt ∉ A} exists, and ρ ≡ στ lies on the
boundary of A.  To reach a contradiction, it is enough to show that {σt} cannot reach
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ρ in finite time.
 The separation theorem for convex sets (Zeidler (1985, Proposition 39.4)) implies
that there is a continuous linear functional F:   ̂Σ  → R such that F(σ) < F(ρ) ≡ r for all
σ ∈ A.  Therefore, to prove the lemma it is enough to show that if σ0 ∈ A  and F(σt +

    ̇σ t ) ≤ r for all t, then F(σt) < r for all t.  Since F is continuous and linear,     
d
dt tF( )σ  =

F(    ̇σ t ) ≤ r – F(σt) (for details, see the proof of Lemma 5.3).  Thus, F(σt) will increase
most quickly if we maximize     

d
dt tF( )σ  by letting     

d
dt tF( )σ  = r – F(σt) at all times t (which

we can accomplish by setting     ̇σ t  ≡ ρ – σt).  In this case, F(σt) =   e
t− F(σ0) + (1 –   e

t− )r,

which is less than r for all finite t.  

Proof of Lemma 6.5

 Let {σt} be the solution to (B) from some σ0 ∈ Σ with Eσ0 = x* ∈ ∆*, and let σ* =
B(x*).  Since Theorem 5.2 implies that {Eσt} solves (AB), it follows from Proposition
5.1 that Eσt = x* for all t.  Hence, B(E(σt)) = B(x*) = σ* for all t.

Since the solution to (B) from σ0 is unique, it is enough to verify that σt ≡   e
t− σ0 +

(1 –   e
t− )σ* satisfies equation (B).  And indeed,

    ̇σ t  = 
    
L t t1

0
lim

ε

εσ σ
ε→

+ −





 = 
    
L e et t1

0

1
0lim ( )( *)( )

ε ε
ε σ σ

→

− + −− −( )

= (σ0 – σ*) 
    
lim

( )

ε

ε

ε→

− + −−









0

e et t

= (σ0 – σ*)   
d
dt

te−

 = (σ* – σ0)   e
t−

 = σ* – σt

= B(E(σt)) – σt.  
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