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Abstract

In auction environments in which agents have private values, the
Vickrey auction induces agents to truthfully reveal their preferences
and selects the efficient allocation accordingly. When the agents’ valu-
ations are interdependent, various generalizations of the Vickrey auc-
tion have been found which provide incentives for truthful revelation of
all private information and preserve efficiency. However, these mech-
anisms generally do not provide the bidders with dominant strategies.
The existing literature has therefore used a stronger equilibrium solu-
tion concept. In this paper we show that while the generalized VCG
mechanism admits a multiplicity of equilibria, many of which are inef-
ficient, the efficient equilibrium is often the unique outcome of iterative
elimination of ex post weakly dominated strategies.
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1 Introduction

The Vickrey-Clarke-Groves Mechanism is among the pillars of mechanism
design and implementation theory. In its simplest form, the Vickrey Auction
is a selling mechanism under which bidders with private valuations for a sin-
gle object have a dominant strategy to submit a bid equal to their valuation,
thereby ensuring that the auction will be won by the bidder whose valua-
tion is the highest. More generally, in social choice environments in which
agents have private values (they have all the information that is relevant
to determine their preferences), and utilities are quasi-linear in money, the
Vickrey-Clarke-Groves (VCG) mechanism induces agents to truthfully reveal
their preferences, and selects the efficient outcome accordingly.

Attention has recently turned to efficient implementation in environments
characterized by interdependent values. Values are interdependent whenever
the preferences of one agent depends on some information held privately by
another agent. To achieve an ex post efficient allocation in such an environ-
ment, a planner must induce truthful revelation of all private information
with the understanding that the social alternative will be chosen to maxi-
mize total surplus as calculated on the basis of this information. For a simple
example of such an environment, consider a planner who must decide how
to allocate a single indivisible object among a given set of agents. When
the agents’ valuations for the object are interdependent, various generalized
versions of the Vickrey auction have been found to provide incentives for
truthful revelation and efficiently allocate the object.

However, unlike in private value contexts, the generalized VCG mech-
anism does not provide the players with dominant-strategy incentives for
truthful revelation. Instead, in these interdependent valuation contexts, the
implementation notion used has been weakened to an equilibrium concept.
Specifically, it has been shown that the generalized VCG mechanism admits
an er post Nash equilibrium in which all agents report truthfully. While
ex post equilibrium is a more conservative equilibrium concept than, for
example, Bayesian Nash equilibrium, it nevertheless presumes considerable
coordination on the part of the players. In particular, there is generally a
vast multiplicity of ex post equilibria, most of which are not efficient. Thus,

1See Maskin (1992), Dasgupta and Maskin (2000), Perry and Reny (1999), Bergemann
and Valimaki (2000), Ausubel (1999), and Krishna (2000). Each of these papers, including
the present one, assumes a single-dimensional type for each bidder. Jehiel and Moldovanu
(2000) prove impossibility results when types are multi-dimensional.



while the existing literature has shown how the VCG mechanism can be ex-
tended to interdependent valuation settings, these generalizations have not
been shown to have the same robustness as their private value counterparts.

In this paper we show some progress on this dimension. We study ex
post efficient implementation in single object and multi-unit auction environ-
ments with interdependent valuations. We find conditions under which the
efficient ex post equilibrium of a version of the generalized Vickrey auction is
the unique outcome of iterative elimination of weakly dominated strategies.
When there are two bidders and any number of identical objects, a sufficient
condition for dominance solvability is a standard single-crossing condition.
This condition has been observed in the literature as essentially necessary
for efficient implementation even in ex post equilibrium. Thus, when there
are two bidders, the generalized Vickrey auction is dominance solvable (es-
sentially) whenever it has an efficient ex post equilibrium.

When there are more than two bidders, dominance solvability becomes
a strictly stronger requirement than implementation in ex post equilibrium.
We demonstrate this in the context of a symmetric linear model in which the
necessary and sufficient conditions can be easily identified and interpreted.
While the single crossing condition assumes only that the valuation of bidder
1 1s more sensitive to the private information of bider 7z than that of other
bidders, the necessary and sufficient condition we identify is that the influence
of ¢’s private type on his own valuation is greater than the influence of the
sum of the types of the other bidders.

Interestingly however, even when our condition is not satisfied, our nega-
tive result for the case of 3 or more bidders does not conclusively rule out the
existence of a dominance solvable efficient mechanism. This is because our
condition applies to the class of generalized VCG mechanisms; and while it
is known that all ex post efficient direct revelation mechanisms belong to this
class, as we show in this paper, the revelation principle fails for our solution
concept of iterative elimination of weakly dominated strategies. Thus, unlike
nearly all implementation notions studied in the literature, it does not suffice
for our solution concept to focus on direct revelation mechanisms. The pos-
sibility is therefore open that a dominance solvable, efficient indirect auction
mechanism can be found when our condition fails.

Finally, it is well known that the outcome of iterative elimination of
weakly dominated strategies often depends on the chosen order in which
strategies are eliminated. We wish to show that the efficient ex post equilib-
rium is the outcome under any possible order of elimination. However, we



argue by examples that in games such as auctions, order independent elim-
ination is too much to ask for due simply to technical issues related to the
infinity of strategies and payoff discontinuities. We therefore identify a weak
restriction, which we call vigilance, on the elimination procedures considered
and prove that every order of elimination satisfying this restriction yields the
efficient ex post equilibrium. In finite games, vigilance reduces to the condi-
tion that the elimination procedure does not leave any dominated strategies
in the ultimate solution. Thus, in finite versions of our auction environment,
this latter condition is sufficient to ensure that the (finite) generalized VCG
mechanism yields the efficient ex post equilibrium as the unique (i.e. order
independent) dominance solution.

This paper is organized as follows. In section 2 we describe the class of
environments we study, and we present the versions of weak dominance, and
iterative elimination of weakly dominated strategies that we employ. The
concept of vigilance is defined and discussed here. In section 3, we prove our
result for the case of two bidders and a single object. In section 4, we show
that using a (new) version of the generalized VCG mechanism, this result can
be extended to the case of two bidders and any number of identical objects.
In Section 5, we study the general case in which there are more than two
bidders. In a model with symmetric, linear valuation functions, we identify
necessary and sufficient conditions for the generalized VCG mechanism to be
dominance solvable. Finally, in section 6 we present our counterexample to
the revelation principle.

2 Preliminaries

2.1 Dominance Solvability

For this subsection, we consider an arbitrary game of incomplete information.
Each player ¢ € {1,...,n} has a set T; of types, and a set A; of actions. The
payoff to player i is 7;(a, s) when the type profile is s € T" and the profile of
chosen actions is @ € A. A pure strategy for player 7 is a map o; : T; — A;
specifying an action for each possible type. Let ¥; be the set of all pure
strategies for 7.

Definition 1 Let¥_; C ©_; be a subset of strategy profiles for the opponents
of 1. Strategy o; € X; ex post weakly dominates strategy &; against _; if for



every type profile s € T and every o_; € f],i,
mi(03(8:), 0-i(54), 8) > mi(Gi(s:),0-i(54), 8)
with strict inequality for at least one o_; € Y, and s.

Ex-post weak dominance is the most conservative version of weak domi-
nance possible in this incomplete-information setup. Other notions of domi-
nance, such as ex-ante, or interim dominance, evaluate expected payoffs using
some exogenous beliefs about the distribution of types. For any given belief,
a strategy may be dominated in either of these senses without being ex-post
dominated. On the other hand in finite games, if a strategy is ex-post dom-
inated, then it is ex-ante and interim dominated for any full-support prior
beliefs.?

In what follows, we will often say that an action a; is dominated for a type
s; by another action a; against a set of strategies. By this we mean that the
payoff to s; using a; is at least as high as the payoff from using a; and strictly
higher in at least one possible case. Clearly a strategy o; is dominated if and
only if 0;(s;) is dominated for at least one s;. If we say that a strategy o; is
dominated within a given subset [ of strategy profiles, we mean that o; € [;
and there is an element of 3; which dominates o; against #_;. Finally, we
say that a set [ of strategy profiles is internally undominated if there is no
strategy o; € 3; which is dominated within .

In private value settings, the Vickrey auction implements the efficient
allocation in dominant strategies. In general interdependent value settings,
there is no efficient mechanism in which the players have a dominant strategy.
However, we will show below that efficiency can be achieved as the unique
outcome of iterative elimination of ex-post weakly dominated strategies.

There are subtle aspects of iterative elimination of weakly dominated
strategies, especially in games such as auctions in which there are infinitely
many types and actions and in which payoffs are not continuous. In the
remainder of this section, we formalize the types of elimination procedures
we will consider.

2The finite/full-support qualification is necessary here because otherwise an ex-post
dominated strategy may satisfy the strict inequality in the definition only for a profile of
types which have probability zero, in which case the strategy would not be dominated in the
other senses. Of course our auction mechanisms have infinite strategy sets as an efficient
auction in our setting must. It is nevertheless true in each of the dominance arguments we
present that the strict inequality would be satisfied with positive probability under any
full-support prior. We however do not take the time to prove this in each case below.



In any game with finitely many strategy profiles X, an elimination se-
quence is a sequence (¥ of strategy profiles satisfying the following four con-
ditions

1. 8=y

9. gk C gh1

3. 0; € BF71\ B¥ only if 0; is dominated against 87"
4. Ng/B* is internally undominated.

It is well-known that even in finite games, the outcome of iterative elim-
ination of weakly dominated strategies can depend on the chosen order in
which strategies are eliminated. Our definition of an elimination sequence
imposes no requirements on the order of elimination.

Our main focus is on environments with a continuum of types, in which
an efficient mechanism must have infinitely many strategies.® In games with
infinitely many strategies, the definition of an elimination sequence must be
modified in two ways. First, we must strengthen the third requirement as
follows.

3'. 0; € BF71\ 8% only if 0; is dominated against 3*;' by an element of 3F.

That is, we add the requirement that eliminated strategies must be domi-
nated by a strategy that survives. In games with infinite strategy sets and
discontinuous payoffs, it is possible that each element of an infinite subset
of strategies is dominated by another element of the same set, without any
element of the set dominated by an undominated strategy. In our positive
results below, when we construct an elimination sequence leading to the ef-
ficient equilibrium, we will be careful to show that all eliminated strategies
are dominated by strategies that are not themselves dominated.

We wish also to show that the solutions we obtain by our elimination se-
quences would be obtained under any alternative order of elimination. How-
ever, when the mechanism has infinitely many strategies, the definition of an

3Even if there are truly only finitely many types, the finite generalized VCG mechanism
requires that the mechanism designer know precisely the set of possible types of each player.
On the other hand, when there are two bidders, the second price auction can be used no
matter what the size of the set of types. So if we are interested in mechanisms which
minimize the informational demands on the designer, we are forced to consider infinite
mechanisms.



elimination sequence for finite games is far too permissive. We will modify*
condition 4 as follows. Let D* be the set of strategies that are dominated
within ¥~ by an element of 3*.

4'. There exists a K such that if o; € D* for K consecutive rounds k =
kl, P k}(, then ag; ¢ ﬂkK-H'

In finite games, condition 4', which we call vigilance, is equivalent to 4. In
infinite games, it is possible to construct pathological elimination sequences
in which a strategy is dominated in every round of the process, but if not
eliminated in any finite stage, is undominated within the final set of strategy
profiles. Vigilance rules out such elimination sequences. Another possibility
is that a set of strategies X can be dominated in every round, and if they
are eliminated at any finite stage then a further set of strategies Y could be
eliminated. With a non-vigilant elimination sequence it is possible that the
set X is eliminated only “at the limit,” at which point it is no longer possible
to eliminate Y.° Vigilance will ensure that all strategies in X are eliminated
in finite time. In infinite games, we define an elimination sequence to be a
sequence satisfying conditions 1, 2, 3, 4.

Definition 2 A dominance solution of an incomplete information game with

4Condition 4’ is not a strict strengthening of condition 4. In some games, there are
elimination sequences which satisfy 1, 2, 3’, and 4’, but which do not satisfy 4. In particu-
lar, it can happen that a strategy which is undominated in every round becomes dominated
only in the limit set. The appropriate solution to such situations would be to extend the
elimination procedure to trans-finite rounds. In our application, 4’ does imply 4 as this
problem does not arise. We therefore do not introduce the necessary additional notation.

SHere is a two-player example illustrating both possibilities. Each player’s strategies
are the integers. The payoffs are as follows. If o; > 0, then m;(0;,0-;) = 1—1/0; if
0; < o_;+1 and —1 otherwise. m;(0,-) =& > 0. For player 2, m2(-,02) = —1 for g2 < 0,
and for player 1, when o1 < 0, m1(01,02) = 1 if 09 < 0, otherwise € if 05 = 0 and —1 if
oy > 0. Consider first the elimination sequence given by ¥ = {01 : 01 < 0 or o1 > k}
and 85 = {0} U {02 : 02 > k}. This elimination sequence is not vigilant because the
negative strategies of player 1 are dominated in every stage after round 1, but are never
eliminated. Note that the negative strategies are not dominated in the limit strategy set
because none of the positive strategies remain despite the fact that for every finite k,
there are infinitely many positive strategies in 3*. Hence condition 4 is satisfied in this
case. Next consider the elimination sequence given by 8f = {o; : 1 < 0 or oy > k} and
B85 = {0} U {02 : |o2| > k}. This elimination sequence is not vigilant because all negative
strategies for player 2 are dominated in every round, but it takes infinitely many rounds
to eliminate them. If they were eliminated in finite time, as required by vigilance, then
the negative strategies of player 1 could also be eliminated. Again, condition 4 is satisfied.

7



strateqy profiles 33, is a subset 3 C Y such that for some elimination sequence

g, B =B

We pause here to note the role that vigilance plays in our results. We
present two types of results below. First, for each of our mechanisms we ex-
hibit an efficient dominance solution. Second, we argue that every dominance
solution is efficient (recall that with weak dominance, we cannot take this
for granted as we could with strict dominance which is order-independent).
By limiting (albeit by what we argue is a purely technical restriction) the set
of elimination sequences under consideration, we strengthen the first type of
result, but weaken the second.

Note that for any game, eliminating all dominated strategies in every
round yields a vigilant elimination sequence and hence every game has at
least one dominance solution (although it may be empty).

Finally, while we focus on the solution concept of iterative elimination of
weakly dominated strategies, we now recall the definition of ex post equilib-
rium, the solution concept previously studied in this context.

Definition 3 An ez post equilibrium is a profile (f]l, ey f]n) of strategy sub-
sets with ¥; C X, such that for each strategy profile (o4, ..., 0,) with o; € ¥;,
each type profile s, and each player i,

mi(0i(8:), 0-i(5-i), 8) > mi(ai, 0_i(5-4), 5)
for each action a; € A;.

Our definition is non-standard because it ascribes sets of (pure) strategies
to each player, rather than a unique strategy. Because the definition implies
that each player i is (ex post) indifferent among each of the strategies in
S, regardless of the strategies in $_; used by the remaining players, we can
interpret this as a mixed-strategy ex post equilibrium. There is no need to
specify the randomization used by the players in this mixed-strategy equilib-
rium, because each player would be indifferent among all of his equilibrium
strategies regardless of the mixtures used by the opponents.

2.2 Auctions with Interdependent Valuations

We consider auction settings with n bidders competing for a single object
(we will generalize this framework to multi-unit auctions in Section 4). The



set. of bidders is Z. Each bidder 7 is assumed to observe a private type
s; € T; = [0, 1]. Bidder i’s value for the object depends on the realized profile
of types s € T := [[T; according to the continuous function v; : T — R,
where v; is strictly increasing and satisfies the following standard single-
crossing condition:

Assumption 1 (Single-Crossing Property) For any i # j and §_;, the
difference

9(si) = vi(si, 8 5) — vj (84,5 4)
crosses zero at most once, and from below.

When bidder 7 is awarded the object and makes payment ¢;, his net payoftf is
vi(s) — t;.

We will consider direct and indirect auction mechanisms. An auction
mechanism is a triple (A,p,t) == ({4}, {pi}71, {t:i}7-1). Here A4; is a set
of actions available to bidder ¢. In a direct mechanism, these will be reports
of bidders’ private types, while in an indirect mechanism, they could be bids,
or more complicated messages. For each i, p; : A — [0,1] is a mapping
specifying the probability p;(a) with which i is awarded the object when the
profile of actions is a. The vector p(a) = (pi(a),...,ps(a)) is called the
outcome. Finally t; : A; — R specifies the transfer made by bidder 7 to the
auctioneer as a function of the chosen actions.

Any dominance solution 3 of an auction mechanism yields an outcome
correspondence f : T = A{l,...,n}. The set f(s) of possible outcomes
for type profile s is the set {p(a) : a = o(s) for some ¢ € }. For any
p € A{1,...,n}, let C(p) denote the support of p. The (ex post) efficient
allocation correspondence is e, defined by p € e(s) iff C'(p) C argmax;v;(s).
(We are implicitly assuming that it is never efficient for the auctioneer to
keep the object.) We will say that a dominance solution 3 of an auction
mechanism is efficient if its outcome correspondence satisfies () # f(s) C e(s)
for every s.

Definition 4 The efficient allocation correspondence is ex post dominance
implementable if there exists a mechanism of which every dominance solution
s an efficient ex post equilibrium.

Note that our implementation notion requires that the dominance solu-
tion also be an ex post equilibrium. Another potentially problematic feature



of iterative elimination of dominated strategies in infinite games is that the
dominance solution in general need not be a Nash equilibrium. In such a
case, we would obviously lose faith in our proposed dominance solution, and
this motivates the additional requirement. Fortunately, as we show, the gen-
eralized VCG mechanism does not suffer from this problem.

3 Auctions with Two Bidders

This section considers the case of two bidders and one object. We shall prove
that the single crossing property is sufficient for efficient allocation to be ex
post dominance implementable.

Theorem 1 When there are two bidders, the efficient allocation is ex post
dominance implementable.

3.1 Illustration of the Proof

The proof of Theorem 1 is lengthy primarily because of the complications
introduced by asymmetric valuation functions. However, the main idea can
be understood with a simple diagram in the special case in which v;(0,0) =
v2(0,0) and vy (1,1) = v9(1,1), i.e. symmetry at the extremes. We normalize
these extreme values to 0 and 1 respectively.

In figure 1 we have depicted a box representing the set of type profiles in
a two-bidder auction environment. The horizontal and vertical axes are s;
and sy respectively. Our assumptions of continuity, monotonicity and single
crossing imply that there is a continuous curve, which we will refer to as the
“pivot curve” consisting of all type profiles in which the bidders’ valuations
are equal. In the special case we analyze here, the pivot curve connects the
bottom left corner with the upper right corner of the box. By the single
crossing condition, everywhere to the right of this curve, efficiency demands
that the object be awarded to bidder 1, and to the left, bidder 2.

For every point s on the pivot curve, let v(s) denote the bidders’ common
valuation for the object at type profile s. By monotonicity, the value v(s)
increases as s moves up the pivot curve. In a standard second-price auction,
the following strategies constitute an ex post equilibrium (see Maskin (1992)).
When bidder i has type s;, he bids the value v(s;, s ;), where (s;,s_;) is the
point on the pivot curve whose ith coordinate is s;. That is, bidder ¢ bids

10
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Figure 1: Pivot Curve and Indifference Curves

his pivotal valuation, which we denote by b;(s;). Since this bidding behavior
implies that 1 outbids 2 if and only if s is to the right of the pivot curve, this
equilibrium yields an ex-post efficient allocation.

Unfortunately, this efficient equilibrium is not the unique ex post equi-
librium of the second-price auction. In fact, there are uncountably many
inefficient ex post equilibria. A simple class of inefficient ex post equilibria is
constructed as follows.® Fix any 0 < A < 1/2. Modify the efficient bidding
strategies so that each type s; such that by(s;) € [1/2 — A,1/2 + A] bids
vy(s1,b5(1/2 + A)), and each type sy such that by(s) € [1/2 — A, 1/2 + A]
bids vy (b7 '(1/2 — A), s3). Other types bid as in the efficient equilibrium. It
can easily be checked that this is an ex post equilibrium, and the object is
misallocated whenever 1/2 — A < by(s1) < ba(s2) < 1/2+ A.

This multiplicity may not be surprising at first; indeed even in the case of
private values, there are inefficient equilibria of the second-price auction.
However, with private values, all inefficient equilibria involve dominated
strategies. This is not the case in our setting. When A is chosen sufficiently

6The following inefficient ex post equilibria translate naturally to inefficient undom-
inated ex post equilibria of the English auction. Krishna (2000) provides examples of
inefficient perfect Bayesian equilibria of the English auction, but his examples are either
dominated or fail the “ex post regret” criterion. Applying our iterative dominance argu-
ments to ascending auctions with interdependent valuations is left for future work.

11



small, the strategies described above are not dominated. Furthermore, for
any k, A can be chosen small enough that the resulting strategies are not
dominated even after £ rounds of elimination.

We now argue, however, that for any type s;, any bid not equal to b;(s;)
would be eliminated after sufficiently many rounds of elimination. The first
step is to eliminate for all types of either bidder bids greater than 1 and less
than 0. Bids greater than 1 are dominated because the value of the object is
always less than or equal to 1, and bids below 0 are dominated because the
value of the object is always greater than or equal to 0.

Next consider a point s* on the pivot curve. Let b = by(st) = bo(s})
be the value that each bidder assigns to the object when the type profile is
s*. We can find “indifference curves” for each bidder ¢ through the point
s*, connecting all of the type profiles at which bidder ¢ assigns value b to
the object. The single crossing condition implies that bidder 1’s indifference
curve lies above that of bidder 2 to the left of the pivot curve, and below to
the right, as shown in figure 1.

Consider the type s} of bidder 1 for whom v;(s{, 1) = b. By monotonicity,
for any type s; < si, the maximum possible value for the object, v;(sy,1) is
strictly less than b. Moreover, for any such s;, there is a bid b < b such that
type s1’s valuation is less than or equal to b’ for any possible type of bidder
2. By bidding b, type s; will win the auction and earn a strictly negative net
payoff whenever the opponent bids between b’ and b. By instead bidding ¥,
s1 will lose the auction in all these cases and obtain a payoff of zero. Since
only in these cases does b’ change the outcome relative to b, it follows that o’
dominates b for type s;.” Thus, we can eliminate a bid of b for any type of
bidder 1 below si. By the same argument, we can eliminate b for any type of
bidder 2 below s}, and we can apply the analogous arguments for all possible
bids corresponding to pivotal valuations.

Now consider type s3, depicted in figure 2. This type is defined by
vo(sh, s2) = b. After having eliminated b for all types of bidder 1 less than
s1, bidder 2 can deduce, whenever he wins at a price b, that bidder 1’s type
is no less than s}. This means in particular that conditional on winning at
price b, the value of the object to type s2 is at least b. And by monotonicity,
for any type s, > s2, the object would be worth strictly more than b.

We wish to conclude from this that b is dominated for such a type s,

"This sketch ignores the possibility that b’ itself may be eliminated. In fact, as we show
in the proof, an undominated bid can be found which dominates both ' and b in this case.

12
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Figure 2: Iterative Elimination for b

by some b > b. To make this argument we must calculate the payoff to
s9 conditional on winning at prices slightly higher than 6. The assumed
continuity of the valuation functions implies that for bids near b, the set of
types of bidder 1 eliminated in round one is not much different than the set
eliminated for b, namely [0, s1). In particular, the smallest type that remains
for a bid slightly higher than b is close to si. This means that we can find a b’
higher than, but close enough to b such that conditional on winning against
any bid between b and b’ type s, is ensured of a strictly positive net payoff.
It follows that ', which leads to a different allocation only in these cases,
dominates b for s,.2

This argument shows that in the second round of elimination, b can be
eliminated for every type of bidder 2 greater than s3. The analogous argu-
ment eliminates b for all types of bidder 1 greater than s?. As suggested by
figure 2, we can now iterate this argument deriving bounds s¥, s§ successively
eliminating b for more and more types of each bidder. We claim that the se-
quences s¥ and s§ converge to s} and s} respectively, and thus that these
are the the only types for whom b is not eliminated after infinitely many

rounds of elimination. Indeed, if v;(s¥, s57') = vy(s¥, s5) = b for every k,

and if (s*,s%) were any convergent subsequence of these bounds with limit

8 Again, a more careful argument is required to show that b is dominated by an undom-
inated b'.

13



§ = (81, 82), then by continuity of the valuation functions v;(8) = ve(8) = b,
ie., § =s".

Since this argument applies to every bid v(s) for s on the pivot curve,
and since we have already eliminated all other bids for every type of both
bidders, after iterative elimination of ex-post weakly dominated strategies
there remains a unique bidding strategy for each bidder 7, namely the efficient
ex-post equilibrium in which s; bids b;(s;).

The formal proof below treats the asymmetric case and also shows that
not only this elimination sequence, but every vigilant elimination sequence
leads to the efficient allocation.

3.2 Proof of Theorem 1

We consider the following generalized VCG mechanism. Each bidder i’s
message space is [0,1]. The set of reporting strategies is the set R; of maps
pi + [0,1] — [0,1]. Given the profile of reports r, bidder i’s imputed val-
uation is v;(r), and the object is awarded to the bidder with the highest
imputed valuation. Ties are broken by randomization. The winning bidder 7
makes a payment to the auctioneer equal to his pivotal valuation: v;(sf,r_;)
where sf = min{s; € [0,1] : v;(s;,7—;) > v_i(r_i, s;)}. The loser makes no
transfer. As is well-known, the truthful reporting strategies form an ex-post
equilibrium of this mechanism whose outcome is ex-post efficient.

We begin by introducing some notation. Consider the set S of type pairs
s such that v(s) = vo(s). If S = (), then by the intermediate value theorem
(hereafter IVT), either v; > v, for every type profile or vy > v; for every
type profile. In either case, every strategy profile brings about the unique
efficient allocation. In particular, no strategy is dominated, R is the unique
dominance solution and we are done. So assume S # (), and let S; C [0, 1]
be the projection of this set into bidder ’s set of types.

Lemma 1 1. S; is an interval [s;, $;].
2. If s; < s; then vi(si, 5-;) < v_i(8_4, s:) for every §_;.
3. If s; > 8; then vi(s;, §_5) > v_;(8_;,8;) for every §_;.
4. If s; > 0 then s_; = 0.

5. If s; <1 then s_; = 1.

14



Proof: Suppose s; ¢ S;. There there exists no s_; € [0,1] such that
v;(8iy54) = v_i(s4,8). Then either v;(s;, s ;) — v (s 4,8) > 0 for ev-
ery s_;, or the opposite inequality holds for every s_;. This is a consequence
of the intermediate value theorem (hereafter IVT) and the continuity of v;
and v_;.

The single crossing condition implies in the former case that for all s} > s;,
and every s_;, v;(s},5-;) > v_;(s_i, s), and hence s, ¢ S;. In the latter case
the conclusion is that s, ¢ S; for every s, < s;. This argument shows that
the complement of S; is of the form [0, s;) U (5;,1], and hence that S; is an
interval.

To prove the second part, note that v;(s;,s—;) = v_i(s_i,s;). By the
single-crossing condition v;(s;, s_;) < v_;(s_i, s;), since s; < g_i. There could
not be any §_; such that v;(s;,§_;) > v_;(§_4,s;) otherwise the IVT would
imply the existence of a s’ ; such that v;(s;,s";) = v_;(s";, s;) which is im-
possible since s; < s;. The third part is proven by a similar argument.

The fourth and fifth claims follow immediately from the second and third.

In view of this result, we will write S; = [s;, §;] (by the continuity of
the valuation functions, S; is closed). For each s; € S;, we denote by b;(s;)
the unique value b such that there exists a s_; € T_; for which v;(s;, s_;) =
v_i($_;,8;) = b. Observe that b_;(r_;) is the generalized VCG payment
bidder 7 would have to make if he were to win the auction against a report
of r_; € S ;.° Furthermore b;(s1) = ba(s2) := b and b;($7) = by(s3) := b.
From the continuity and monotonicity of the valuation functions, b;(-) is a
continuous, increasing bijection between S; and B := [b,b]. We now extend
b; to all of T; = [0, 1], by specifying b;(s;) = v;(s;,1) for s; > §; and b;(s;) =
v; (84, 0) for s; < s;.

We now introduce the following relation, which is central to the argument.
Given b € B, and s_; € T_;, implicitly define ¢;(s_;,b) € [0, 1] by

vi(pi(s—i,b),5-5) =b

where this exists. Note that when such a type exists, it is unique by the
strict monotonicity of v;.

91n fact, the value bi(s;) is the bid that type s; would make in the efficient ex post
equilibrium of the second-price auction. Thus, our arguments below that a report r; is
dominated for a type s;, are equivalent to showing that, in the second-price auction, the
bid b;(r;) is dominated for type s;.
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Lemma 2 1. (s 4,-) is continuous on its domain of definition.
2. ¢i(-, b) is decreasing on its domain of definition.
3. If s; = @i(s_4, b) exists, then ¢_;(s;,b) exists.

4. Fori=1,2, for each b € B, either ¢;(1,b) or ¢ ;(0,b) exists.

Proof: The first two claims follow from our assumed properties of v;: con-
tinuity in the first case, monotonicity in the second case.

To prove the third, assume first v_;(s_;,8;) < b. Then v;(s;,s ;) >
v_i(s_4, ;) and therefore s; > s; by part 2 of Lemma 1. If s; > §;, then
by monotonicity v_;(s74, s;) > v_;(s74,$) > b. On the other hand, if s; < &,
then there exists § ; such that v;(s;, § ;) = v_;(8_4, 8;)- By the single-crossing
condition, since v_;(s_;, $;) — vi($i,5-;) < 0 we must have §_; > s_;. By
monotonicity, v;(s;, $_;) > v;(s;,5—;) = b, hence v_;(s_;,s;) > b. In either
case there exists §_; such that v_;(5_;,s;) > b and the IVT now implies the
existence of s, € [s_;, §_;] for which v_;(s";,s;) = b. Thus ¢_;(s;,b) = s',.
The case of v_;(s—;, s;) > b1is handled by first noting that this implies s; < §;
and applying the analogous argument.

Finally, for the fourth claim, suppose for bidder 2, say, that ¢5(1,b) does
not exist, i.e. there is no sy such that vy(1,sy) = b. Since b € B we know
that v9(1,1) > b, and hence by the IVT we must have vy(1, s5) > b for every
9. In particular, v5(1,0) > b.

Observe that v1(s1, $2) = va(s1, s2), and hence by the single-crossing con-
dition, v1(s1,0) > va(s1,0) since 0 < so. Applying the single-crossing condi-
tion again, we see that v;(1,0) > v9(1,0) > b. And since v1(0,0) < b, the
IVT yields a s; such that v1(s1,0) = b, and ¢1(0,b) = s;. [ |

Define the following pair of functions.

i(s—i,b) if it exists

0 otherwise

@i(5_3,b) if it exists

1 otherwise
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It follows from parts 3 and 4 of Lemma 2 that for each b € B and i =1, 2,
©i(m®,(b),b) and @;(M°,(b),b) exist. We can thus inductively define
MF(b) = ;(m*1(b), b) k=1,2,...

mF(b) = @;(MF7H(B),0) k=1,2,...

2

which by Lemma 2 yield continuous functions of b for each k.

Lemma 3 For all k > 1 and for allb € B,
1. s; > (resp. >)MF(b) = wvi(si,5_;) > (resp. >) b Vs_; > mF7L(b).
2. 8; < (resp. <)mE(b) = wv;(si,5_;) < (resp. <) b Vs_; < M*71(b).

Proof: We prove the first claim. The second is shown by the symmetric
argument. If s; > M¥(b) and s_; > m"7*(b), then by the monotonicity of v;,
vi(84, 5_i) > vi(s5, m*51(b)) > v;(MF(b), m*7(b)) and the latter is equal to b
by definition. [ |

We wish first to show that for each b = b;(s;) € B, the sequences MF(b)
and m#(b) for i = 1,2, converge. By definition, M°,(b) < s~; and m%,(b) >
5_;. Hence by the monotonicity of ¢; (part 2 of Lemma 2),

M (b) = @;(m®;(b),b) < M;(b)

because the latter is either 5; or ¢;(s_;,b). Similarly m}(b) > m?(b).

Now by the monotonicity of ¢;, we can inductively conclude that m¥(b) >
my1(b) and MF(b) < MF*(b) for all k > 1. Furthermore, since the range
of ©; is S;, these sequences are bounded. Hence for ¢ = 1,2, there are types
m}(b) and M (b) such that m¥(b) — m?(b) and MF(b) — M} (b).

Finally, since v;(m#(b), M*71 (b)) = v;( MF(b), m*7'(b)) = b, for all k > 1,
the continuity of the valuation functions implies that for each 1,

vi(m; (b), M2;(b)) = vi(M; (b), mZ,(b)) = b

—1

which in turn implies m}(b) = M} (b) = s;.
To summarize the argument to this point, for each s; € 5;,

MY (bi(s:)) 4 s
my (bi(si)) 1 s
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We now describe an elimination sequence which yields an efficient dom-
inance solution. As a first step, we eliminate any strategy p such that for
some s; < §;, p(s;) > §; or for some s; > s;, p(s;) < s;. This can be done
in the former case because a report r; > s; will win the auction against any
report of the opponent, in particular, against a report r_; = s_;. In this
case, the payment would be b;(5;) = v;($;, sZ;) > v;(s;, $—;) for any type 5_;
of the opponent. The alternative report §; for type s; would affect the allo-
cation only in this case, and in this case would win with a lower probability.
Since the net payoff from winning in this case was negative, this is a strict
improvement. To summarize, for every type of the opponent, and for every
report of the opponent, the report s; does no worse than r;, and does strictly
better whenever the opponent reports s_;. A similar argument shows that a
report of r; < s; is dominated for a type s; > s; by the report s;.

Next, for each £ = 1,2, ..., define the following subsets of S; x S;:

DF = {(s;,7;) €[0,1] x S; : 55 > MF(b(rs))}
Czk = {(Si,’f’i) € [0, 1] X Sz 18 < mf(b(rz))}

We observe that any such pair of sets describes a set of admissible bidding
strategies for bidder i, namely, the set of bidding strategies p(-) such that for
each s; € S;,

(51, p(51)) ¢ C U DF

Let 3F denote the set bidding strategies represented in this sense by the sets
CF and DF, and set 57! = R.

Lemma 4 For each k > 0, every strategy not in (3%, is dominated within
B*=L, by a strategy in BF.

Proof: Consider any (s;, ;) € D¥. Define

By the continuity of b; and M}, Z is closed. Suppose Z # (). Then the
value b;(r}) = min Z is well-defined, and by continuity s; = MF(b;(r})) >
m¥(b;(r})) and thus (s;,77) ¢ C¥ U DE. We claim that reporting r} ex post
dominates reporting r; for s;.

To prove this, note that the report of r; changes the allocation relative
to that which would obtain under r; if and only if bidder —i reports some

r_; Where

b_i (T'_Z') S [bz (Ti)a bz (T:)]
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Note first that in all such cases, by reporting r; 7 wins the auction and pays
b_;(r_;) rather than losing the auction and paying nothing, as he would if he
were to report 7;. And second, observe that given the strategies ﬂf{l for —i
that remain, a type s_; will report 7_; only if s_; > m*71(b_;(r_;)).
Consider any such b_;(r_;). Suppose s; < MPF(b_;(r_;)). Then since
b_i(r—;) € [bi(rs), bi(r])], there is some type §; € [r;, 7] such that b_;(r_;) =
b;(5;) and thus
si < MF(i(3:))- (2)

Now if 51 = T, then bz(’l"z) = bz (§z) = b—i(’r—i) and thus Mzk(bz(n)) =
MF(b_;(r_;)) > s;, which is a contradiction since (s;,r;) € DF. So §; € (r;, r}]
and thus b;(8;) € (bi(r:), bi(r})]. Now by our supposition (2) and the defi-
nition of 7 we must have b;(8;) < b;(r}), so in fact b;(8;) = bi(r). But
this implies s; = MZF(b;(5;)), which contradicts (2). We thus conclude that
our original supposition was false and s; > MF(b_;(r_;)) for all b ;(r_;) €
[i(rs), bi(r7)]-

By Lemma 3, it follows that for all b_;(r_;) € [b;(13), bi(r))], vi(ss, 5—i) >
b i(r ;) for every s ; > m* (b ;(r ;). Furthermore, since s; > MF(b;(r;)),
Lemma 3 implies that the inequality is strict for b_;(r_;) = b;(r;). We have
just shown that for all reports of —¢ such that reporting r; wins the object
where reporting r; would not, and for all types of —i that could make such
reports in f;l, the value of the object exceeds its price, strictly in at least
one case.. Thus, the report r ex post dominates r; for s;.

Now suppose Z = (). Then applying the same argument as above, s; >
MFE(b) for all b € [b;(r;), b], implying that v;(s;, 8 ;) > b for all such b for every
possible §_; for which there remains a report r_; such that b = b_;(r_;). Since
truthful reporting is never eliminated, one such possibility is s~;, reporting b.
In this case v;(s;, 5_;) > b = v;(5;, 5_;) and so monotonicity implies s; > 5;. In
this case, r; is dominated for s; by the truthful report s;. This report changes
the allocation only in the above mentioned cases, where it ensures that ¢ wins
the auction an pays b_;(r_;), a price strictly less than his valuation.

In both cases, the dominating reports r} satisfy (s;,77) ¢ D¥ U CF. By a
similar argument, it can be shown that for any (s;,r;) in CF, the report r; is
dominated for s; by an alternative report r; for which (s;,r}) ¢ DF U CF.

We have thus shown that for any type s; € S;, if (s;,7;) € C¥ U DF, then
r; is ex post dominated for s; by an alternative report that is not in C¥U D¥.
It follows that all bidding strategies other than those in 8¥ are dominated by
a strategy in B¥ and thus can be eliminated. u
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We can now conclude the proof of the existence of an efficient dominance
solution of the generalized VCG mechanism. Let 3 be the set of strategy
profiles remaining after the elimination sequence 8*. A reporting strategy p;
remains in [; for bidder ¢ iff

( (8;,1]  for s; > §;
[5;,1]  for s; = §;
pi(si) € ¢ {s;} for s; € S;
[0,s;] fors;=s;
[[0,5:) for s; <s;

Thus, for any profile of strategies within 3, the allocation is identical, except
possibly in the event that s = 5 or s = s. However, in either of these two
cases, the two bidders have the same valuation for the object, and for any
strategy profile in [, the winner will pay that valuation. Thus, no strategies
in # are dominated within 3. Note also that [ is an ex post equilibrium.
Moreover, the allocation is ex post efficient. Finally, this elimination sequence
is vigilant because every dominated strategy is eliminated at every stage.

We now establish that every dominance solution is an efficient ex post
equilibrium. We will show that every vigilant dominance solution is a subset
of 3. Let Bk be a vigilant elimination sequence. Then there exists K such that
any strategy that is dominated in K consecutive stages must be eliminated.
We define

B (s:) = {oi(s:) : pi € B}
We will make use of the following lemma:
Lemma 5 For every s; € S;
1. If b=b_;(s—;) > bi(s;), then v;(s;,s_;) < b.
2. If b=b_;(s_;) < b;(s;), then v;(s4,5_;) > b.

Proof: Consider the first claim. There is a §; > s; such that v;($;,s ;) =
b_i(s_;). By monotonicity, v;(s;,s_;) < b_;(s_;) = b. The second claim
follows from the symmetric argument. [ |

The first step is to show by induction that no elimination sequence can
eliminate a strategy p; specifying p;(s;) = s; for all s; € S;, pi(s;) > & for
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all s; > §; and p;(s;) < s; for all s; < s;. We will call any such strategy a
“truthtelling” strategy. A

Obviously all truthtelling strategies belong to 3°. Now consider any stage
of elimination k such that for each i all truthtelling strategies remain in 8% 1.
First consider any untruthful report r; for type s; € (s;, ;) of bidder i. If
ri > 8, then b;(r;) > b;i(s;) and whenever —i uses a truthtelling strategy
p—i, and his type s_; satisfies b_;(s_;) € (b;(s;), b;(r;)), bidder 7 will win the
auction and pay b_;(s_;). By Lemma 5, b_;(s_;) > v;(s;, 5 ;). Since i would
have lost the auction in these cases with report s;, truthtelling does strictly
better. On the other hand, if r; < s;, then for any b_;(r_;) € (b;(r3), bi(s:)),
bidder 7 would lose the auction with r; whereas he would have won with s;
and payed b_;(s_;). In these cases, given truthelling by —i, i’s payoff from
winning would be strictly positive by Lemma 5, so again s; strictly prefers to
tell the truth. We have shown that there is at least one possible case in 5*~!
namely truthtelling by the opponent, such that s; € (s;, $;) strictly prefers
to tell the truth. Thus, truthtelling by such types cannot be dominated. A
slight modification of this argument delivers the same conclusion for types s;
and 5;. (For example, a report greater than §; cannot dominate §; because
either report always leads to the same outcome.)

Next, given that truthelling is an element of ﬁk_l, reports r; > §; for types
si > & and r; < s; for types s; < s; cannot be eliminated. To see this note
that if, say , type s; > §; reports 7; < §; rather than r; > §; (other alternatives
can never change the allocation), then in the event that the opponent’s type
is s~; (which is 1 in this case) and reports truthfully, i will lose the auction
with #; rather than win with r; and pay b = v;(3;,57;) < v;(s;,574). Since
there is at least one case in which r; leads to a strictly lower payoff than r;,
we conclude that 7; cannot dominate r;. A similar argument shows that no
reports below s; can be dominated for a type s; < s;.

We have shown that no truthtelling strategy can be eliminated in any
round. Thus, every dominance solution B is non-empty and includes all
truthtelling strategies. We will now show that B C . To do so, we will show
that there is no strategy p; in I satisfying any of the following:

1. pi(s;) = 3; € S; for some s; # 5;
2. Pz’(Si) > §; for some s; < 3;

3. pi(si) < s; for some s; > s;
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To show that 2 cannot hold for any p; in B observe that the domination
argument used in the first round of elimination leading to § in the proof of
Lemma 4 applies in any round in which all truthtelling strategies survive.
Thus, if s; < §; and r; > s;, then r; is dominated for s; by s; in every round.

Suppose r; is not eliminated in any round for type s;. Then by vigilance,
it must be the case that in some round £ < K, reporting $; is eliminated
for type s;. Let k be the first round in which reporting §; is eliminated
for type s;. Then there is some report 7;, which survives for type s; in
round k£ and dominates reporting $; within ,3’“‘1. This means that for every
b € [b;(7:),bi(5;)], and for every s_; such that b € b_i(ﬁf:l(s_i)), we have
v;(8i, 5—;) < b. This implies, by lemma 5 and the fact that all truthtelling
strategies remain, that 7#; > s;. Applying lemma 5 again, we conclude that
for every b in the interior of this interval, v;(s;,s_;) < b for b_;(s_;) =
b. Since the report of 7; changes the allocation relative to r; only when
b_i(r_;) € [bi(7;),b;(8;)] and in all such cases the payoff to bidder i is non-
positive and in some cases strictly negative, 7; dominates r; as well. We can
iterate this argument to conclude that for every k&, r; is dominated within ,@k_l
by an element of 3*. Therefore, by attentiveness, r; ¢ BZ(SZ) An analogous
argument shows that 3 cannot hold.

Finally, we show that 1 cannot be true of any p; in B. We will do this
by demonstrating that for every k, every (s;,r;) € DF U CF is eventually
eliminated. The argument is by induction. Let (s;,7;) € D} UC}. Then r;
is dominated within 3° for s; by some 70 # r;. By the same argument as
above, ) dominates r; for s; within B’“ for every k.

Suppose ¥ € BZK (s;). Then by vigilance, since r; could be eliminated
in K consecutive stages, r; must be eliminated for s; in BZK . On the other
hand, if 79 ¢ 3K(s;), then there is a sequence of reports 70,71, ..., 7T, such
that r] € ﬂAZK(sZ), and for each ¢t = 0,...,T — 1, there is a stage k(t) such
that ¢ was eliminated in stage k(¢) because it was dominated within ()
by 1+ e B+l We can now argue just as above that 70 is dominated
successively by each r!, and hence that r{ could have been eliminated for K
consecutive stages. By vigilance, 10 ¢ BZK (s;). Thus all reporting strategies
in 3Y will be eliminated by stage K. i

Now suppose that for a given _E, all strategies in 3%\ B* are eliminated
by round kK, and let (s;,7;) € CF*' U DF'. By lemma 4, 7; is dominated
within G5X for s; by some r0. If 9 € S*+DK  then r; could be eliminated
in each of the K intervening stages and by vigilance would be eliminated in
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stage (k + 1) K.

If r0 ¢ B*+DK then there exists a sequence of reports 77, 1;, ..., 7],
corresponding to stages k(t) for t = 0,...,T — 1 with r} € p*+DX and with
each 7! eliminated in stage k(t), dominated within 3*® by it e gEO+1,
Then by the same transitivity argument used previously, r? is dominated
successively by each r! and hence r; could be eliminated in each stage from
kK +1 to (k+ 1)K and hence by vigilance must be eliminated in the latter
stage. .

~ Since (s;,7;) was arbitrary, we have shown that all strategies within 5%\
B+ must be eliminated by stage (k+ 1)K, and this concludes the inductive
step and the proof.

4 Multi-Unit Auctions with Two Bidders

The essential equivalence between implementability in ex post equilibrium
and ex post dominance implementability of efficient allocation generalizes
straightforwardly to multi-unit auctions with two bidders. Suppose there are
L > 1 identical objects. For any i € Zand 1 <1 < L,let o' : T — R,
be bidder ¢’s marginal valuation of the /th object he wins. We assume non-
increasing marginal valuations: [1 <1 < I’ < L] = [v! > v*]. We maintain
the assumption that v! is continuous, strictly increasing, and satisfies the
following single-crossing condition:

Assumption 2 (Single-Crossing Property) For any 1 <[ < L, for any
© # j and 55, the difference

9(si) = vi(si, 8;) — 07T (s4, 8)

crosses zero at most once, and from below.

Theorem 2 When there are two bidders and L > 1 identical objects, the
efficient allocation is ex post dominance implementable.

Proof: Label the L objects from 1 to L. Consider the following indirect
version of the generalized VCG mechanism. We imagine L simultaneous
auctions. For each auction [ there will correspond sets S! and B' = [, V]
and mappings bl(-) constructed just as in the single-unit case, now using the
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valuation functions v!(-) and vy ~""'(-). For notational convenience below,

we will modify the definition of bi outside of S! by defining

b =1+ maxvl(s)

20,8

b= —1+ minw;(s)

0,8

and setting b!(s) = b for s; > 5;' and bl(s) = b for s; < s;.

Each bidder simultaneously submits L reports r}, ..., rF. with the restric-
tion that bl(rl) <,... < bF(rl) and bi(rd) > ... > bl (rl). Let A; denote
the set of reportlng strategles for ¢ meeting the corresponding restriction.
The idea is that for some [, bidder 1 should win objects 1 through I, and
bidder 2 objects [+1 through L. Thus object [ is awarded to the bidder with
the greater imputed valuation according to the reports r! using the marginal
valuation functions v, vZ ™. Ties will always be broken in favor of bidder
1'% The payment of the winner of object [ is calculated in the same way
as the single unit VCG auction, using these reports and marginal valuation
functions.

For each [ and for each k = 0,1..., we define the functions mf,(-) and
Mfl() on the sets B’ as before. By the same argument as in the single object
case, these functions converge pointwise to e.g. mj,(b) where bt (m3 (b)) = b.

Moreover,
mm or ever: and for k >
Le a6 F I < L, and k>0
1. 88 < gt < st sh > S and &' > &

2. m]f,l(b) < m’f,l+1(b): Mf,l(b) < M{C,l-i—l(b)’ mg,l(b) > mg,l-ﬁ-l(b)? Mé“,l(b) >

Proof: The first follows from the assumption of non-increasing marginal
valuations. Non-increasing marginal valuations also implies that the second
claim holds for £ = 0. Finally, the non-increasing marginal valuations and
the monotonicity of ¢; implies that the same inequalities are satisfied for
every k > 0. [ |

10This simplifies the notation in the proof. In general, any tie-breaking rule of the
following form will suffice. Prior to receiving reports, the auctioneer chooses an integer
t € {0,...,L}. It can be kept secret or revealed to the bidders. If there is a tie in auction
l, then object [ is awarded to bidder 1 if and only if I < ¢.
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The first step of elimination is to delete all reporting strategies p; such
that for some [ and for some s; € (s;!, '), pi(s;) ¢ S!. For example, take
51 < 51! and suppose p!(s1) > s1' so that bt (p!(s1)) = b. And suppose [ is
the smallest index for which these two inequalities are satisfied for s;. We
will show that p;(s1) is dominated for s; by the following list of reports 7.

FA max{r < p}(s1) : b}(r) < b} X >1
R UACY A <l

By construction, 75 € A;. To show that it dominates p;(s1), note that
71 yields a different allocation than p;(s;) only in the event that bidder 2
submits a list of reports ry such that for some auction A,

by (71?) < b3(r3) < by (pi(s1)) (3)

with at least one of the inequalities strict. Notice that this can only be true
for A > [ since it is only in these auctions that bidder 1’s report has changed.
And in this case, since 71 # p}(s1) by definition we must have b} (%) = b.
Furthermore, for A < I, b}(p}(s1)) > bi(p(s1)) = b, implying that bidder 1
will win the first [ — 1 objects for sure, and hence his marginal valuation for
any additional object is no greater than v!.

Now consider a A satisfying (3). For any s, we have

vi(s) < vis) <V,

where the first inequality follows from the assumption of declining marginal
valuations. To demonstrate the second inequality, observe that p!(s1) > ;'
implies that 51! < 1 so that ;' = 1. Hence, b' = v!(s1,1) > v!(s) by mono-
tonicity of v!. Since b < b(r3), and the latter is the price bidder 1 would
have to pay for object A , we have just shown that bidder 1’s marginal valua-
tion for any additional objects is strictly less than their price for any possible
type of bidder 2. Thus, by lowering his reports to 7;, against any strategy
of 1 for which the allocation is altered, 1 strictly reduces the probability of
earning a negative payoff. Thus, 7, ex post dominates p;(s;) for ;.1

By a similar argument we can eliminate any reporting strategy p; such

that pi(s;) < s for some ! and s; > si. Such a reporting strategy will

1 The report list 71 may itself be dominated. However, it is straightforward to extend
the arguments from the single-unit case to find an undominated strategy that dominates
p1 for type s;.
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be dominated by one in which the report to the /th auction is raised to s},
with reports to all auctions A < [ correspondingly raised in order to satisfy
feasibility. This change affects the allocation only when b3 (r}) < &' for some
A < I, in which case 1 wins the auction and pays no more than '. In this
case, we can argue analogously to the above that bidder 1’s valuation always
strictly exceeds this price and hence the change only increases the probability
of a positive payoff. The symmetric pair of arguments applies to bidder 2.

We construct the remainder of the elimination sequence as follows. For
each £k = 0,1,..., define the following nested sequence of strategy sets for
each bidder i

B =1{pi € Ni 1 bi(pi(s:)) =b e B' =
s; € [mﬁl(b),Mfl(b)] l=1,...,L} (4)
Let 8% be the set of profiles 8% x 8%, and set 37! = A.

Lemma 7 For each k > 0, every strategy not in (3%, is dominated within
B*=1, by a strategy in (F.

Proof: Consider first a reporting strategy pisuch that p;(s;) = rq for a type
s1 of bidder 1. Suppose for some auction A,

b’l\(rf‘) € B* but s; < m'f,,\(bi‘(rf‘)). (5)
And suppose [ is the highest index A for which this is true for s;,7r;. Let
Z = {ri' € [s},r]] : s > mi, (by(r1))}

by the continuity of 4, and my, Z is closed.
Suppose Z # (. Then define rf = max Z, and consider the alternative

list of reports 7y = (r},...,r},...,rE). We claim first that ¥} € A;.
Suppose
b (ri) > b () (6)
Then
b (rf) > . (7)

Since r; was feasible,
by (ri) > o1 (7). (8)
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It follows that bit!(rit!) < b'*! otherwise b5 (rtt!) = b > bt > bt (r}) which
contradicts (8). Combining this with (7), we have shown that b (ri*1) €
B! Thus, o' (r{*") is well defined and

s12>mi (07 () > mi, (07 (1)) 9)

where we have the first inequality by the definition of [ and the second in-
equality is an application of lemma 6. But now (6), (8) and (9) contradict
the definition of r]. Thus 7 is feasible.

We now show that 7; dominates r; for s;. First note that 7 changes the
allocation relative to r1 only if bidder 2’s report ro satisfies

by(ra) € (by(1"), by (r1)]

By construction of 7, we have s; < mf (by(r2)) for every such ry. And in
these cases, bidder 1 will lose the auction for object [ rather than winning
and paying price bb(r}).

Since for any A <

b (r?) 2 by (1) 2 by(ry) > b3(ry)
bidder 1 will win'? all objects 1,...,l — 1. Furthermore, for every A\ > [,
b (r?) < bi(i') < by(ry) < B3(r2)

bidder 1 will lose all objects [+1, ... L. Thus, the change from r; to 7, affects
only the allocation of object I and bidder 1’s marginal valuation for object [
is given by v!(-).

For any reporting strategy p, for bidder 2 in the set 57!, if pl(sq) = rb,
then bidder 2’s type s, must be no greater than Mf,l_l(blz(ré)). And since
s1 < m¥ (bh(r})), Lemma 3 implies that for every such sy,

Vi (51, 82) < by(r).

Thus, for any s, that would report 7}, the marginal payoff to bidder 1 from
winning object [ is strictly negative. Therefore in all cases in which 7y changes
the allocation relative to rq, it strictly increases the payoff of bidder 1.

Now suppose Z = . Then s; < mf ,(b) for all b € [0}, Bt (r})]. This implies
in particular that s; < s} because if s; > st then s; > m’il(bl). And by

I2Recall that ties are broken in favor of bidder 1.
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Lemma 6, s; < s} for all A > I. We can show by the same argument as
above that for any report 75 such that b (r}) € [b', 8 (r})], bidder 1 will win
all objects 1,...,l—1, and for any type s, of bidder 2 such that the report
is possible in 57!, bidder 1’s marginal valuation for the /th object is strictly
less than bl (%), the price.

Since for all X > I, mf,(b) > mf (b) and b3(ry) > by(r5), the payoff for
all objects A > [ is strictly negative as well. It follows that r; is dominated
for s; by the report 7} defined as follows.

[ ita<i
T =
S1 ifA>1

Obviously 7, € A;. And since s; < s}, and hence b} (%) = b for all A\ > [,
by reporting 71, bidder 1 is guaranteed to lose auctions I, ..., L, and avoid
the strictly negative payoff. Thus 7 dominates p;(s1) for type s;.

To complete the domination argument, let {Ay,...,Ax} be the set of
indices of auctions for which (5) holds. By definition, A = I, and we have
just shown that p;(s;) is dominated for s; by a list of reports, call it 7(K)
for which (5) is not satisfied for any A > Ag. By repitition of the domination
argument above, 7(K) is dominated by a report list 7(KX — 1) for which (5)
is not satisfied for any A > Ag_1. By induction, we arrive at a list of reports
7(1) for which (5) is not satisfied for any auction, and which dominates 7(2)
and by the transitivity of the dominance relation, dominates p;(s;).

Now consider the set of auction indices p for which

Vi (7*(1)) € B* but s; > Mﬁu(bﬁ‘(F“(l))). (10)

Let [ be the lowest index p for which (10) is satisfied for s;,7(1). By an
induction argument similar to the one in the previous paragraph, we can
then show that 7(1), and by transitivity p;(s;), is dominated by a report list,
call it p(s;) for which neither (5) nor (10) are satisfied for any auction.
Since s, was arbitrary, we have shown that for any p;outside 8F, there is
a p} in B¥ which dominates it within 8% 1. |

We can now conclude the proof of theorem 2. Let 3 be the set of strategy
profiles that remain after the elimination sequence 8*. A reporting strategy
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p; remains in F; for bidder 7 iff p; € A; and, for all [,

((54,1] for s; > &

[si,1]  for s; = &
pi(s:) € < {s;} for s; € S!
[0,§iq for s; = s;

L[0,si')  fors; < st

l

Clearly this is an efficient ex-post equilibrium. The proof that any vigilant
elimination sequence leads to a subset of 3 follows lines identical to the single-
unit case and is omitted. [ |

5 Auctions with n > 3 Bidders

We have shown that when there are two bidders, the standard single crossing
condition, essentially necessary for existence of an efficient ex post equilib-
rium, is sufficient for ex post dominance implementation. In this section, we
show that with more than two bidders, conditions for ex post dominance im-
plementability are generally strictly stronger than single crossing. To obtain
easily interpretable necessary and sufficient conditions for ex post dominance
implementation, we specialize in this section to symmetric linear valuation
functions. Specifically, we assume the valuation functions take the following
form.
Vi e L, v; = as; +ZSj.
J#i

For this symmetric linear setting, there exists an efficient ex post equilib-
rium of the generalized VCG mechanism if and only if ¢ > 1.Moreover, any
direct revelation mechanism which has an efficient ex post equilibrium is a
generalized VCG mechanism. Thus, to search for ex post dominance imple-
menting direct mechanisms, it suffices to consider generalized VCG mecha-
nisms.

The generalized VCG mechanism takes the following form. Each bidder
i reports his type (i.e. A; = T;). If r is the profile of reports, each bidder’s
valuation is calculated assuming r was truthful, i.e. v; = v;(r). If v; > v; for
each j # i, then i is awarded the object (p;(r) = 1). In the event of ties, p;(r)
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can be chosen arbitrarily. In the symmetric linear setting with a > 1, the
winner is the bidder reporting the highest type. The payment is determined
as follows. Let bidder ¢ be the winner of the object, and let 7; = min{s; € S; |
Vj € T,vi(si,r—i) > vj(si,r—;)}. Then t;(r) = v;(7;,7—;) + fi(r—;) and Vj # 1,
t;(r) = f;(r_;), where f; and the f;’s are arbitrary functions measurable only
to r_; and the r_;’s, respectively.

The following proposition states that, in auctions with n > 3 bidders,
the generalized VCG mechanism ex post dominance implements the efficient
allocation only if a bidder’s valuation is sufficiently sensitive to his own signal.

Proposition 1 In the symmetric linear setting with n > 3 bidders, the gen-
eralized VCG mechanism ex post dominance implements the efficient alloca-
tion if and only if a > n — 1.

Proof: We first prove that, whenever a > n—1, truth-telling is a dominance
solution of the generalized VCG mechanism with all the f;’s identically zero.
Since truth-telling induces efficient allocation whenever a > 1, this will fin-
ish the proof of the “if” part.!> We then prove that the generalized VCG
mechanism, for any arbitrary f;’s, is not dominance solvable if a < n — 1.

To begin with, we show that iteratively undominated reports must lie
above some lower bound. Say that bidder ¢ is pivotal at report r; if ¢ has
reported the highest type and the second highest report is r;.

Suppose that type s; of bidder i is pivotal at report r;. Then the maximum
report among the other bidders is r;, and 4’s payment is at most (a +n —
1)r;. Bidder i’s payoff conditional on being pivotal at r; is therefore at least
as; — (¢ +n — 1)r;. This payoff is zero for r; = r(s;) where

E(Si) =

as;
a+n-—1

Note also that this minimum payoff is strictly positive for all reports less than
r(s;). It follows that any report below the lower bound r(s;) is dominated
by r(s;). Note that r(0) = 0.

Now, assuming that each bidder’s reporting strategy is bounded below
by some linear function r(-) whose slope is between _"— and 1, and with
inverse s(-) we will construct an upper bound 7(-).

13We must also show that every dominance solution is an efficient ex post equilibrium.
That part of the proof would be similar to the corresponding part of the proof of theorem
1.
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First, observe that for any report r;, no type greater than s(r;) will report
rj. Suppose that under report profile r, type s; of bidder i is pivotal at report
r;. Bidder ¢’s payoff is

as; + E Sk —arj — E Tk

ki

Since s; < s(r;), this payoff is no greater than

as; + s(r;) — (a + 1)rj + (n — 2) max(s(7%) — %)

fkg’r‘j
Since the slope of s(-) is greater than 1, the maximum is
as; + (n—1)s(r;) — (a+n—1)r;

By assumption, @ > n — 1. Therefore, the slope in r; of the right hand
expression is at most % — (@ +n — 1) which is negative. Letting
7(s;) be the r; for which this expression is zero, we can implicitly solve for
f(SZ’)

#(s) = as; + (n — 1)s(7(s;)) (11)

a+n—1

and conclude that any report greater than 7(s;) is dominated for type s; by
the report 7(s;).

Since s(-) is linear, so will be 7(s;). And because the slope of s(-) is
greater than 1, it follows that the slope of 7(s;) is also greater than 1.

Now, we assume that all iteratively undominated reporting strategies are
bounded above by some linear 7(-) with slope greater than 1, with inverse
5(-), and derive a new lower bound.

Suppose that under report profile r, type s; of bidder i is pivotal at report
r;. Bidder 4’s payoff is at least

as; + s(r;) — (a+1)r; + (n — 2) min (s(7%) — 7)

<7
Since the slope of 5(-) is less than 1, the minimum is
asi + (n—1)5(r;) — (a+n—1)r;

The slope in r; is negative, so we can set this expression equal to zero, solve
for r(s;):

_asi+ (n—1)5(z(si))
N a+n—1

r(s:) (12)
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and conclude that any report less than r(s;) is dominated for type s; by the
report r(s;). If the slope of 5 is greater than one, then the slope of r will also
be greater than one.

We can use equations (11) and (12) to iteratively construct upper and
lower bounds on the set of iteratively undominated reporting strategies. We
now show that r(1) increases monotonically to 1. Recall that in order for
our construction of 7(-) to be valid, we required that the slope of r(-) to be
greater than _—*—. Since this was satisfied by the initial lower bound, it will
be satisfied by every subsequent lower bound provided the slopes increase
along the sequence. Since each bound is linear, it suffices that the intercept
r(1) increases monotonically. Furthermore, since the slope of r(-) is less than
one, it will follow that r(-) increases monotonically to the identity mapping.
Plugging in the identity mapping to equation 11 shows that the limit of 7(+)
must also be the identity. Thus showing that r(1) increases to 1 will complete
the proof.

Consider any value 0 < r(1) < 1. By linearity, the inverse is defined by
s(r) =r/r(1). Using equation (11), we can solve for 5(r) :

a+n—1—z(—_ﬁ
a

Plugging in to equation (12) and solving for r’(1) (after some manipulation):

a2

r'(1) = 1-r(1)
a? + [ ) } (n—1)2

Since r(1) <1 and a > n—1, r'(1) > r(1). This finishes the proof of the “if”
part.

We now prove that the generalized VCG mechanism, for any arbitrary
fi’s, is not dominance solvable if « < n — 1. Consider the subset of reporting
strategy profiles § := [[ 3; where 3; = {r; € R; : 7i(s;) = a + S, €
[0, a_’i;il]} We will show that for any reporting strategy r; € (3; and al-
ternative reporting strategy r; € B;, there exists some reporting strategy
r_; € B_; against which r; does strictly better than r; does. Hence # must be
a subset of any dominance solution, and hence there is no efficient dominance
solution.

Fix any reporting strategy r; € (; and alternative reporting strategy

ri € B;. Since 1} # r;, there exists §; € S; such that r.(s;) # r;(8;). Suppose
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ri(8;) <1 < 1ri(8;). Consider r; € 3;, j # 14, such that r;(s;) = a + ;—5j,
where a = min{r, 2= L-}. At the state of the world s; = §; and Vj # i,
55 = “+Z L(r — a), employing reporting strategy r; results in bidder i losing
the object and getting net payoff —fi(r_;). Whereas employing reporting
strategy 7, results in bidder ¢ winning the object and getting net payoff

as;i + (n — )¥2(r —a) = (a +n — 1)r — fi(r_). If r > 225 then

a= (H"_nll, and the difference will be
a+n-—1 n—1
S; -1 - - -1
as; + (n —1) " (r a—i—n—l) (a+n—1)r
—1- —1)2
= aéi—i-(a-i-n—l)n ar_(n )
a a
-1- —1)?
< a§i+(a+n—1)n a_(na)
= as —a
< 0,

where the strict inequality follows from r < ri(s;) < 1. If r
o = r, and the difference will be

asi—(a+n—1)r

a
- 3 .
as;— (a+n )7a+n—181
= 0’

where the strict inequality follows from the definition of r. So employing
reporting strategy r; unambiguously results in lower net payoff at the state
of the world s; = §; and Vj # i, s; = ‘“L%“_l(r — «). The case where
ri(8;) < r < r;i(8;) is handled symmetrically. Combining the two cases we
conclude that there always exists some reporting strategies r_; € f_; against
which 7; does strictly better than r; does. This completes our proof. [ |

Let’s summarize what we have and what we have not proved in this
section. We have shown that, in the symmetric linear setting with n > 3
bidders, the generalized VCG mechanism is dominance solvable if and only if
a > n—1. Since the generalized VCG mechanism is already the unique direct
mechanism that implements the efficient allocation in ex post equilibrium,
it is hopeless to construct other direct mechanisms that ex post dominance
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implement the efficient allocation when a < n — 1. We summarize all these
in the following corollary.

Corollary 1 In the symmetric linear setting with n > 3 bidders, there exists
a direct mechanism that ex post dominance implements the efficient allocation
iof and only if a > n — 1.

However, we have not proved that a > n — 1 is necessary for ex post
dominance implementation of the efficient allocation. The reason is that we
have only looked at direct mechanisms. For most other equilibrium concepts,
it suffices to look at direct mechanisms in order to obtain necessary conditions
for implementation. This is because the revelation principle holds for most
other equilibrium concepts. Unfortunately, the revelation principle breaks
down for dominance solvable mechanisms. Since this is an observation that
should be of independent interest, we shall discuss it in a separate section.

6 Failure of the Revelation Principle

We shall give an example in this section to demonstrate how the revelation
principle fails to hold for dominance solution. Our example may not be
the simplest one one can conceive, and makes use of a rather rich set of
social alternatives. But it makes a point which we believe has not been
addressed before in the literature. In the implementation literature, the
revelation principle holds for most of the equilibrium concepts as long as we
do not require unique implementation. However, when it comes to ex post
dominance implementation (unique or not), the revelation principle breaks
down.

Consider a situation with seven social alternatives (z, y, wa, wg, 24, 2B,
and o), two players (1 and 2), and each player having two types (s; = i4, 5,
i = 1,2). The players have quasi-linear utilities, with the corresponding
valuation functions being summarized by Table 1. Table 1 also depicts the
efficient rule, f, that the mechanism designer wants to implement.

We first show that no dominance solvable direct mechanisms can (truth-
fully) implement f. Suppose an implementing direct mechanism exists. Such
a direct mechanism will be fully characterized by a pair of transfer functions,
t1(s1, s2) and ta(s1, s2).

If truth-telling is the dominance solution, there must be some untruthful
strategy that is dominated for some player, say player 1. An untruthful
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Table 1: Players’ valuations and the efficient rule.

strategy is dominated for player 1 only if there is some type, say 14 for
player 1 such that telling the truth (reporting A), is at least as good as lying
(reporting B), for every type and report of player 2. This yields the following
set of inequalities, with at least one strict.

v1(f(1a,24)|14,24) +11(14,24) > v1(f (1B, 24)[14,24) +1:1(15,24)  (13)
v1(f(1a,28)|14,24) +t1(14,28) > v1(f(15,28)|14,24) + t:1(15,25) (14)
v1(f(1a,24)14,28) +t1(14,24) > v1(f(1B,24)|14,28) + t1(1B,24) (15)
v1(f(1a,28)|14,28) +t1(14,28) > vi(f(15,28)|14,28) + t1(15,25). (16)
Using the valuations from table 1, (14) and (15) reduce to
t1(1a,24) > 2+ t1(15,24) (17)
t1(1a,25) > 2+ t1(1g, 25). (18)

Since truth-telling is a dominance solution, it is also an ex post equi-
librium in this finite game. Therefore truthful reporting should be a best-
response for 1 to truthful reporting by 2 for every type profile, in particular
whenever player 1 is of type 1p:

vi1(f(18,24)|18,24) + t1(1B,24) > v1(f(14,24)18,24) +t1(14,24)

v1(f(1B,28)|1B,28) + ti(18,28) > vi(f(14,28)|18,28) + t1(14,28).

This can be rewritten as

t1(14,24) <2+ t1(1B,24) (19)
t1(14,25) < 2+ t:1(1g, 25). (20)
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In view of (17)-(18), inequalities (19) and (20) are satisfied with equality
implying that player 1 is indifferent between reporting A or B when type 15
and 2 tells the truth.

Notice that (17) and (18) also imply

24+ t1(14,24) > (1, 24) (21)
2+1(14,2p) > ti(15,25) (22)

so that
v1(f(1a,24|1B,28) +t1(14,24) > t1(15,24) (23)
v1(f(1a,28|1B,24) +t1(14,25) > t1(1p,25) (24)

i.e. 11is willing to report A when he is type 1 and 2 is lying.

We have shown that 1 is willing to report A for every type profile and for
every behavior of player 2. Moreover, at least one of the preferences is strict
(in (13)-(16)). Therefore, the strategy of reporting A independent of type is
an ex post weakly dominant strategy for 1 and hence could never be deleted.
But then truthful reporting could not be the dominance solution.

Now we demonstrate that f can be ex post dominance implemented with
an indirect mechanism, and hence the revelation principle fails. The indirect
mechanism has message space {i,ip,ic} for each player i = 1,2 (ic can be
interpreted as a “fictitious type” that is augmented to the message space of
the direct mechanism), and transfer functions identical to zero. The outcome
function is depicted in Figure 3.

“2A)7 “2377 “20”

“1,4” T Y 24
uan Y T ZB
c:lcw wy wpg 0

Figure 3: A dominance solvable indirect mechanism.
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The process of iterative elimination of dominated strategies goes as fol-
lows. In the first round, for any player i = 1,2, when his true type is iy,
reporting ¢ is dominated by reporting i¢; similarly, when his true type is
1B, reporting 74 is dominated by reporting ¢¢. In the second round, for any
player ¢+ = 1,2, reporting ¢¢ is dominated no matter what his true type is.
So after two rounds of elimination, only truth-telling survives. We urge the
reader to do the straightforward verification that truth-telling is an ex post
equilibrium both for this indirect mechanism and for its corresponding direct
mechanism (i.e., the direct mechanism derived by eliminating messages not
used on the equilibrium path).
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