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Abstract. Every invariant biseparable preference relation can be represented

by an integral on the set of continous a¢ ne mappings over a set of priors,

where the integral is taken in the sense of Choquet. In looser terms: the

representation takes the form of an integration over priors. As a by-product,

we provide a novel interpretation of the �(f)-MEU functional and of its relation

with the Choquet integral.

1. Introduction

Invariant biseparable preferences (see [5], for an explanation of this terminology)

constitute a wide class of preferences which includes as special cases several popular

models of decision making: Subjective Expected Utility (SEU), Choquet Expected

Utility (CEU), Maxmin Expected Utility (MEU), Maxmax Expected Utility as well

as any �xed convex combination of Maxmin and Maxmax (�-MEU; � 2 [0; 1]). Re-
cently, Ghirardato, Maccheroni and Marinacci [3] (henceforth, GMM) have shown

that every invariant biseparable preference is represented by a functional I which is

convex combination of the Maxmin and the Maxmax functional, but the coe¢ cient

in the convex combination is allowed to vary with the act being evaluated. Besides

this restriction, the functional I appears to be fairly arbitrary. In fact, an additional

axiom (to the ones identifying invariant biseparable preferences) is called upon to

pin down the exact form of the functional. Suggestively, though a bit imprecisely,

this conforms to the interpretation provided by GMM: the set of priors appearing

in the representation describes the ambiguity faced by the decision maker, while the

additional axiom describes his attitudes toward ambiguity, thus leading to various

criteria for decision making.

In this paper, we study the representation of invariant biseparable preferences

provided by GMM. In Section 3, we observe that the additional axiom is really an

axiom on the way the decision maker deals with the set of priors, thus con�rming

GMM interpretation. For instance, SEU corresponds to integrating over priors with

respect to some probability measure, while other models correspond to other types

of operations. Equipped with this observation, we look depeer into the correspon-

dence between models of decision making and operations on the set priors. Our

main result is perhaps surprising: only one type of operation su¢ ces to characterize
1
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invariant biseparable preferences. We �nd that every invariant biseparable prefer-

ence corresponds to the operation of integrating over priors with respect to some

capacity, with integration being performed in the sense of Choquet. The converse

is true as well: the operation of (Choquet-) integrating over priors produces an

invariant biseparable preference.

Clearly, SEU is a special case of this procedure, which obtains when the capacity

is a probability measure. Equivalently, all non-SEU models appear to be the gen-

eralization, moving from the case of a probability to that of a capacity, of the idea

of integrating over priors. Di¤erent models of decision making thus correspond to

di¤erent properties of the capacity with respect to which integration is performed.

One of these models, the CEU model, looks, however, quite di¤erent from the oth-

ers mentioned above. Because of this, in the �nal section we go back to the idea

of integrating over priors. We show that the case of integrating with respect to a

probability can be described in two equivalent ways. Each of these admit a fairly

natural extension to the case of a capacity, but these two extensions are not equiv-

alent: one, more permissive, leads to the functional form of GMM, the other to

CEU.

2. Setting and notation

We consider the usual framework of decision making under uncertainty. This

consists of four primitives: (1) A measurable space (S;�) �� a �-algebra of subsets

of S �which is called the state space; (2) A prize space X, assumed to be a mixture

space ([2], [4]); (3) A set F of alternatives available to the decision maker, which

are viewed as mappings S �! X, and are called acts; (4) A preference relation %
on F .
Existence of a utility function u : X �! R (guaranteed by the assumptions

below) allows us to identify the set of acts with the set B(S;�) of bounded real-

valued �-measurable functions on S by means of the mapping g 7�! u � g. By a
mild abuse of notation, in what follows we simply write g in the place of u � g.
Sometimes, we just write B(S) in the place of B(S;�). The notation ba1(�)

stands for the set of �nitely additive probability measures on �, and the weak*-

topology on ba1(�) is the one produced by the duality (ba(�); B(S)). Let M �
ba1(�). In the remainder of the paper, we will encounter three other spaces: (i) the

space of all bounded, measurable functions on M , which is denoted by B(M); it is

understood that the �-algebra on M is the one generated by the weak*-topology;

(ii) the space of all weak*-continuous a¢ ne mappings on M , which is denoted by

A(M); and, �nally (iii) the space of all weak*-continuous mappings on M , which

is denoted by C(M).
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3. Invariant biseparble preferences

Let Fc � F denote the set of constant acts, that is acts h such that h(s) = x 2 X
for any s 2 S. The class of invariant biseparable preferences is identi�ed by the

following axioms:

A1 % is complete and transitive.
A2 (C-independence) For all f; g 2 F and h 2 Fc and for all  2 (0; 1)

f � g () f + (1� )h � g + (1� )h

A3 (Archimedean property) For all f; g; h 2 F , if f � g and g � h then 9; � 2
(0; 1) such that f + (1� )h � g and g � �f + (1� �)h.
A4 (Monotonicity) For all f; g 2 F , f(s) % g(s) =) f % g.

A5 (Non-degeneracy) 9x; y 2 X such that x � y.
By adding one of the following alternative axioms to the �ve above, one obtains

several well-known models:

A6 (a) (SEU, Anscombe and Aumann [2]) For all f; g 2 F such that f � g,
1
2f +

1
2g � g;

A6 (b) (CEU, Schmeidler [9]) For all f; g 2 F such that f � g, 12f +
1
2g � g if

f and g are comonotonic;

A6 (c) (MEU, Gilboa and Schmeidler [6]) For all f; g 2 F such that f � g,
1
2f +

1
2g % g;

A6 (d) (�-MEU, GMM [3]) For all f; g 2 F , C�(f) = C�(g) implies f � g.1

3.1. The structure of invariant biseparable preferences. GMM [3] have shown

that every invariant biseparable preference is represented by a sup-norm continuous

functional I : B(S) �! R having the form

(3.1) I(f) = (1� �̂(f)) min
m2M

Z
fdm+ �̂(f)max

m2M

Z
fdm

where M � ba1(�) is weak*-closed and convex.
That is, decision makers who obey axioms A1 to A5 are described by a criterion

which is a convex combination of maxmin expected utility and maxmax expected

utility. The coe¢ cient in the convex combination may, however, depend on the act

which is evaluated. As such, the functional I appears to satisfy very few restrictions:

it is a sup-norm continuous functional minorized by the concave MEU functional

and majorized by the convex Maxmax Expected Utility functional.

As it turns out, however, the mapping �̂ : B(S) �! [0; 1] in the above represen-

tation has an interesting property ([3], Theorem 11):

(1) If f; g 2 B(S) are such that
�R
fdm

�
m2M =

�R
gdm

�
m2M , then �̂(f) = �̂(g).

1For a de�nition of C�(�), see GMM.



4 MASSIMILIANO AMARANTE

That is, the coe¢ cient �̂(�) depends only on the pro�le of expected utilities
associated to an act rather than on the act itself. In fact, more is true ([3], Theorem

11):

(2) If f; g 2 B(S) are such that
�R
fdm

�
m2M = 

�R
gdm

�
m2M + �1, where

 > 0, � 2 R and 1 is the function M �! R which is identically equal to 1, then
�̂(f) = �̂(g).

Let A(M) be the set of weak*-continuous a¢ ne mappings on M and let � :

B(S) �! A(M) be de�ned by f 7�!  f , where  f : M �! R is the function

that at point m 2 M takes the value  f (m) =
R
fdm (it is readily checked that

 f 2 A(M)). Then, property (1) allows us to rewrite the functional I as

(3.2) I(f) = V (�(f)) = (1� �(�(f))) min
m2M

�(f) + �(�(f))max
m2M

�(f)

where � : A(M) �! [0; 1] is de�ned by �(�(f)) = �̂(f), which can be done in view

of property (1). The mapping �, which is the canonical mapping B(S) �! A(M),

is sup-norm to sup-norm continuous and the functional V : A(M) �! R �which
we will refer to as the GMM functional �is sup-norm continuous (see Amarante [1]

for details):
B(S)

��! A(M)

I & # V

R

This decomposition clari�es the nature of GMM representation: it shows that

additional axioms of type A6 (�) a¤ect the form of the functional I only in that

they a¤ect the form of the functional V . In other words, in the context of invariant

biseparable preferences, we should be viewing axioms of type A6 (�) as restrictions
on the form the functional V or, in more intuitive terms, as restrictions on the

way the decision maker deals with the set of priors M . We can rephrase this in a

more suggestive way: the representation of invariant biseparable preferences always

takes the form of an "integration of priors". For instance, if we demand that V

be linear, then I = V � � is precisely the usual integration over prior procedure,
I(f) =

Z
�(f)dP , which leads to SEU by virtue of a well-known argument. In all

other cases, we may then give the same interpretation as long as we think of V as

corresponding, loosely speaking, to some other notion of integration.

3.2. Main result. The interpretation of GMM�s representation as an integration
over priors theorem is much more compelling than what we said above. In the

remainder of this paper, we are going to show that if I : B(S) �! R represents an
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invariant biseparable preference, then it is always the case that

(3.3) I(f) =

Z
�(f)dC

for some capacity C on M . That is, I has exactly the form of an integration over

priors but integration is performed in the sense of Choquet.

We will use this result to provide a new rationale for the �(f)-MEU functional.

In Section 7, we will show that there are two equivalent procedures describing

integration over priors when the capacity C in (3.3) is a probability measure. Both

of these admit a formal extension to the case of a capacity, but their equivalence

breaks down, generally speaking, when we do so. Thus we can think of them as of

two alternative, but equally legitimate, extensions of the usual notion of integrating

over priors. We will show that one of these extensions corresponds precisely to

the �(f)-MEU functional, while the other corresponds to the notion of Choquet

functional on B(S) (the one that obtains in correspondence of axiom A6 (b).

4. Preliminary observations

The above considerations about the structure of invariant biseparable preferences

tell us that all the action is in the GMM functional V : A(M) �! R, which thus
becomes the object of our study. For reasons that will become clear momentarily, it

will be convenient to consider functionals de�ned on a larger domain. LetM denote

the Borel �-algebra generated by the weak*-topology on M , and let B(M) denote

the Banach space (sup-norm) of all bounded, M-measurable functions. Notice

that A(M) is a sup-norm closed linear subspace of B(M). We are going to focus

on functionals W : B(M) �! R having the form

(4.1) W ( ) = (1� �( )) inf
m2M

 + �( ) sup
m2M

 

where  2 B(M) and � : B(M) �! [0; 1].

4.1. Choquet Integrals. We have already seen that any SEU model obtains by
means of an integration over priors. A similar fact is immediately seen to hold

for many other models. In fact, if the mapping �̂(�) in (3.1) is constant, then the
functional V : A(M) �! R takes the form

V ( ) = (1� �) min
m2M

 + �max
m2M

 

for  2 A(M). Clearly, one such a V admits an obvious (purely formal) exten-

sion to the whole B(M), and it is immediate to verify that such an extension is

monotone and comonotonic additive. Hence, as a (trivial) consequence of Schmei-

dler�s theorem [8], we have
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Proposition 1. Every �-MEU is an integration over prior. That is,

I(f) = V (�(f)) =

Z
�(f)dC

for some capacity C :M�! [0; 1].

Notice that, in particular, every Maxmin Expected Utility model obtains as a

Choquet integration over priors. Proposition 1 motivates the following question:

(Q): Which �(f)-MEU are Choquet integrations over priors?

4.2. Capacities. When V is extended to the whole B(M) in a way that makes it

monotone and comonotonic additive �like in the cases seen above �the capacity C

is de�ned by the restriction of V to the indicator functions. For functionals having

the form (4.1), this restriction coincides with the restriction of the function �(�) to
the indicator functions. In other words, for E 2 M and for functionals having the

form (4.1), we have

C(E) = V (�E) = �(�E)

Looking at this from the reverse angle, a necessary condition for a V of the form

(4.1) to be representable by a Choquet integral is that

V ( ) =

Z
 dC with C(E) = �(�E) for every E 2M

Remark 1. Models of the type �-MEU are associated with the capacity C on M
de�ned by

C(E) = � if E =2 f?;Mg

C(?) = 0 C(M) = 1

It is easily seen that for � 2 (0; 1) these capacities are neither concave nor convex,
while � = 0 and � = 1 produce capacities that are convex and concave, respectively.

4.3. Monotone, comonotonic additive W : B(M) �! R. We now give neces-
sary and su¢ cient conditions for a functionalW of the form (4.1) to be comonotonic

additive. Notice that since the functionals inf and sup are both monotone and

comonotonic additive on B(M) (this is so becauseM contains all the singletons),

conditions guaranteeing that W is either monotone or comonotonic additive are

conditions on the function �(�) only. We have already observed that if �(�) is
constant, then W is both monotone and comonotonic additive.

In order to economize on notation, for  2 B(M), let us set si( ) = sup �inf  .

Proposition 2. W is comonotonic additive if and only if

(a) for any pair of non-constant comonotonic functions  ;' on B(M), �(�) is
such that

�( + ') = �( )
si( )

si( ) + si(')
+ �(')

si(')

si( ) + si(')
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(b) for any non-constant  2 B(M) and for any ' 2 B(M) such that '(m) � x

for each m 2M
�( + x) = �( )

Proof. The condition W ( + ') =W ( ) +W (') is immediately seen to be equiv-

alent to condition (a). The condition W ( + x) = W ( ) + x immediately seen to

be equivalent to condition (b). �

Every comonotonic additive functional which is also monotone is positively ho-

mogeneous. It turns out that for functionals of the form (4.1) the monotonicity

condition is not needed. That is, comonotonic functionals of the form (4.1) are

automatically positively homogeneous (see Appendix).

5. The GMM functional V : A(M) �! R

The GMM functional V : A(M) �! R de�ned in (3.2) enjoys the following

properties:

(1) V is monotone ([3], Proposition 5);

(2) For any  2 A(M), y > 0 and x 2 R, �(y + x) = �( ) ([3], Theorem 11).

It is immediate to check that property (2) of Section 3 implies that if ' = y +x,

then V ( + ') = V ( ) + V ('). That is, V is additive on isotonic (see below)

mappings.

5.1. Comonotonic vs isotonic mappings on B(M). Two mappings,  ;' 2
B(M) are comonotonic if and only if 8m;m0 2M

[ (m)�  (m0)]['(m)� '(m0)] � 0

Two mappings  ;' 2 B(M) are isotonic if and only if

 (m) �  (m0) () '(m) � '(m0)

that is, if they order elements of M in the same way.

Clearly, two isotonic mappings are comonotonic but two comonotonic mappings,

 and ', may fail to be isotonic because we may have  (m) =  (m0) while '(m) <

'(m0) or vice versa. However, the following simple lemma shows that converse

is approximately true, in the sense that if  and ' are comonotonic and non-

constant, then there exist mappings  and 0 which are arbitrarily close to  and

', respectively, and that are isotonic to each other. In particular, if  and ' are in

A(M), then the converse is exactly true.

Lemma 1. If  and ' are non-constant and comonotonic, then 8x; x0 2 (0; 1), the
mappings  = x + (1� x)' and 0 = x0 + (1� x0)' are isotonic. In particular,
if  and ' are in A(M), then  and ' are comonotonic if and only if they are

isotonic.
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Proof. Let  and ' be non-constant and comonotonic, and let (m) � (m0) � 0.
Observe that we cannot have  (m) �  (m0) < 0 and '(m) � '(m0) > 0 or vice

versa because  and ' are comonotonic. Hence, (m) � (m0) � 0 implies both
 (m)� (m0) � 0 and '(m)�'(m0) � 0, which imply 0(m)� 0(m0) � 0. In the
other direction, (m)� (m0) < 0 implies that at least one between  (m)�  (m0)

and '(m)� '(m0) is strictly negative and the other is non-positive because of the

comonotonicity if  and '. Hence, 0(m)� 0(m0) < 0, which completes the proof

of the �rst part.

Now, suppose that  and ' are in A(M). Then, both  and 0 are in A(M) as

well. Since they are a¢ ne and isotonic, 9a > 0 and b 2 R such that

(5.1) 0 = a + b

In particular,2

a =
0( �m)� 0(m

¯
)

( �m)� (m
¯
)

where �m and m
¯
are point of maximum and minimum, respectively ( �m and m

¯
exist

because both  and 0 are continuous on the compact set M ; they can be taken

to be the same for both functions because  and 0 are isotonic). By setting

 ̂ =  ( �m)�  (m
¯
) and '̂ = '( �m)� '(m

¯
), the expression for a can be rewritten as

a = x0 ̂+(1�x0)'̂
x ̂+(1�x)'̂ , from which we see that a satis�es

( ̂ � '̂)(ax� x0) = (1� a)'̂

From (5.1), we have

 (x0 � ax) = (x0 � ax)'� (1� a)'+ b

and combining the last two equations

 =
 ̂

'̂
'+ b

as claimed. �

The equivalence of comonotonicity and isotonicity for mappings in A(M) now

implies

Corollary 1. The GMM functional V : A(M) �! R de�ned in (3.2) is monotone
and comonotonic additive.

The latter result leads us to reformulate question (Q) asked at the end of sub-

section 2.1 as follows:

2The expression of a is well-de�ned: neither  nor 0 can be constant because of the comonotonicity
and non-constancy of  and '.
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(Q�): Can V be represented by a Choquet integral with respect to some ca-

pacity?

The main di¢ culty in answering this question is that the subspace A(M) does

not contain the indicator functions on M . As a consequence, we cannot de�ne the

capacity by using V only. In fact, the trouble is greater than that: A(M) is neither

a lattice �which prevents us to use Zhou�s theorem [10] �nor is a �ltering family

with respect to the space of continuous functions on M (in fact, A(M) is norm-

closed subspace in C(M)), which prevents us to mimic Zhou�s argument. These
considerations lead us to yet another reformulation of question (Q) as follows:

(Q�): Does there exist a monotone, comonotonic additive extension �V of V

to the whole B(M)?

For if this is the case, then �V would be representable by a Choqet integral,

and we would get the conclusion that any �(f)-MEU model can be represented by

means of a Choquet integration over a set of priors.

6. Choquet-Integrating over priors: �(f)-MEU

The above question is answered in the a¢ rmative in the course of the proof of

the theorem below. Thus, we have

Theorem 1. A functional I : B(S) �! R represents an invariant biseparable

preference if and only if for any f 2 B(S)

I(f) =

Z
�(f)dC

for some capacity C : M �! [0; 1], where � is the canonical mapping B(S) �!
A(M).

We are going to show that the GMM functional V : A(M) �! R in (3.2) has a
monotone, comonotonic additive extension to the wholeB(M). Then, the result will

follow by applying Schmeidler�s theorem [8]. Let K0 denote the intersection of the

positive cone with the unit ball in B(M). In order to obtain the desired extension,

it will be convenient to begin by restricting the mapping � : A(M) �! [0; 1]

appearing in (3.2) to the domain A(M) \ K0, and then extend both � and the

corresponding functional to the whole B(M).

Proof. Begin with the functional V of (3.2), and consider the mapping � : A(M)\
K0 �! [0; 1]. Now, let ' 2 K0nA(M)\K0 and observe that ' cannot be constant

because constant mappings are in A(M). Hence, it follows that si(') > 0. More-

over, for  2 A(M) \ K0 and x 2 [0; 1) we have si(x + (1 � x)') > 0 (because

si(x + (1 � x)') = 0 implies x + (1 � x)' = y for some constant y, and this
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in turn implies ' = � x
1�x +

1
1�xy. Since the RHS is an element of A(M), this

contradicts ' =2 A(M)).
Now de�ne

(6.1) ~�(') = sup

�
inf  � inf '

si(')
+ �( )

si( )

si(')

�
where the sup is taken over all  2 A(M) \ K0 such that  � ' [the set of

 2 A(M)\K0 such that  � ' is always nonempty because the function identically
equal to 0 is in A(M) \K0]. Notice that ~�(') 2 [0; 1].
Now, 8x 2 [0; 1] and  2 A(M) \K0 de�ne

~�(x + (1� x)') = �( )
si(x )

si(x + (1� x)') + ~�(')
si((1� x)')

si(x + (1� x)')
and

~�( ) = �( ) if  is constant

and notice that for x = 1 and  non-constant this coincides with the given � :

A(M) \K0 �! [0; 1]. Notice also that for  � y 2 R, we have ~�(xy + (1� x)') =
~�('), where 0 � y < 1.
Now, for all convex combinations of the form x +(1�x)', de�ne the functional

~V (x + (1� x)')(6.2)

= (1� ~�(x + (1� x)')) inf
m2M

(x + (1� x)') + ~�(x + (1� x)') sup
m2M

(x + (1� x)')

and observe that

(a) ~V coincides with the original functional V on A(M) \K0;

(b) ~V is monotone: In light of the observation (a), it su¢ ces to show that

 � ' implies ~V ( ) � ~V (') and  � ' implies ~V ( ) � ~V (') (the case of convex

combinations of the form x +(1�x)' obviously reduces to one of these two cases).
For the case  � ', notice that the desired property is immediately delivered by

the very de�nition (6.1) of ~�('). For the case  � ', from (6.1) we have that

8" > 0, there exists a  0 � ',  0 2 A(M) \K0 such that

~V ( 0) + " � si(') > ~V (')

Hence, 8" > 0

V ( )� V ( 0)� " � si(') = ~V ( )� ~V ( 0)� " � si(') < ~V ( )� ~V (')

and for "! 0, we have

0 � V ( )� V ( 0) = ~V ( )� ~V ( 0) � ~V ( )� ~V (')

where the �rst inequality follows from the fact that the functional V is monotone

on its domain.
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(c) For 0 � y < 1, x 2 [0; 1] and  2 A(M) \K0, ~V (xy + (1� x) ) = xy + (1�
x) ~V ( ). In particular, ~V ((1� x) ) = (1� x) ~V ( ).
(d) If  2 A(M)\K0 and ' are comonotonic, then 8x 2 [0; 1], ~V (x +(1�x)') =

x ~V ( )+(1�x) ~V ('), for conditions (a) and (b) in Proposition (2) are satis�ed for all
convex combinations of the form x +(1�x)' whenever  and ' are comonotonic.
By trans�nite induction, the mapping ~�(�) has an extension to the whole K0

such that the corresponding functional ~V , as de�ned by (6.2), has all the properties

(a) to (d) listed above. We still denote such extensions by ~�(�) and ~V , respectively.
Now, for any  2 B(M),  non-constant, de�ne

��( ) = ~V

�
 � inf  
si( )

�
= ~V ( 0)(6.3)

and

�V ( ) = (1� ��( )) inf
m2M

 + ��( ) sup
m2M

 

Since the function  0 =
�
 �inf  
si( )

�
2 K0, this is well-de�ned. Now, observe that

(a�) �V jA(M)= V : By de�nition for any non-constant  2 A(M)

��( ) = ~V

�
 � inf  
si( )

�
= ~V ( 0)

= V ( 0) (by (a) above)

= �( 0) (by de�nition of V )

= �( ) (by property (2) of �, Section 3)

Hence, for any non-constant  2 A(M), we have �V ( ) = V ( ). Now, we can

extend �V to the subspace of constant functions by setting �V (x) = V (x) for any

x 2 R.
(b�) �V is positively homogeneous and constant-additive: For x > 0, y 2 R and

 2 B(M),

�V (x + y) = inf(x + y) + ��(x + y) � si(x + y)

= inf(x + y) + ~V

�
x + y � inf(x + y)

si(x + y)

�
� si(x + y)

= inf(x + y) + ~V

�
 � inf  
si( )

�
� si(x + y)

= y + x �V ( )
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(c�) �V is comonotonic additive: Let  and ' be comonotonic. In view of (b�),

we can assume that they are both non-constant. We have

�V ( + ') = inf( + ') + ��( + ') � si( + ')

= inf( + ') + ~V

�
 + '� inf( + ')

si( + ')

�
� si( + ')

= inf( + ') + ~V

�
 � inf  
si( )

si( )

si( + ')
+
'� inf '
si(')

si(')

si( + ')

�
� si( + ')

(by comonotonicity of  and ')

= inf( + ') +

�
si( )

si( + ')
~V

�
 � inf  
si( )

�
+

si(')

si( + ')
~V

�
'� inf '
si(')

��
� si( + ')

(by property (d) above)

= �V ( ) + �V (')

(d) �V is monotone: Let  � '. By using the de�nition of �V , it is easily checked
that the statement is trivially true if either  or ' is constant. Hence, we can

assume that they are both non-constant. There exists an n 2 N, such that both

0 � 1

n

inf  � inf '
si( )

< 1 and 0 <
1

n

si(')

si( )
< 1

For such an n, 1n
 �inf  
si( ) 2 K0. Moreover,  � ' is equivalent to

1

2

1

n

 � inf  
si( )

+
1

2

1

n

inf  � inf '
si( )

� 1
2

1

n

si(')

si( )

'� inf '
si(')

Since both sides are elements in K0, monotonicity of ~V on K0 implies

~V

�
1

2

1

n

 � inf  
si( )

+
1

2

1

n

inf  � inf '
si( )

�
� ~V

�
1

2

1

n

si(')

si( )

'� inf '
si(')

�
By using property (c) above, this implies

~V

�
 � inf  
si( )

�
+
inf  � inf '

si( )
� si(')

si( )
~V

�
'� inf '
si(')

�
which, in turn, is equivalent to

�V ( ) � �V (')

Summarizing, the functional �V : B(M) �! R de�ned by

�V ( ) = (1� ��( )) inf
m2M

 + ��( ) sup
m2M

 

is an extension of the GMM functional V in (3.2), and �V is monotone and comonotonic

additive. From Schmeidler�s theorem [8], it follows that �V ( ) =
Z
 dC, where the

capacity C is de�ned by the restriction of �V to the indicator functions. Hence, any
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invariant biseparable preference functional I : B(S) �! R can be written as

I(f) =

Z
�(f)dC

where � is the canonical mapping B(S) �! A(M).

Conversely, any functional B(M) �! R of the type �V ( ) =
Z
 dC, de�nes a

functional B(S) �! R by means of I(f) =
Z
�(f)dC, and the preference relation

induced by the functional I thus de�ned satis�es axioms 1 to 5 of Section 3. �

6.1. Monotone continuous preferences. In [3], GMM introduced an additional

axiom, called Monotone Continuity ([3], Sec B.3), which guarantees that all the

priors in the representation (3.1) are countably additive. Moreover, the new axiom

guarantees ([3], Sec B.3) that the setM is weak-compact and there exists a measure

m̂ 2 ca(�) (ca = countably additive measures) such that all the priors in M are

absolutely continuous with respect to m̂. From these results, it follows (by using

Radon-Nikodym) that the set of priors M is isometrically isomorphic to a subset

of L1(m̂), and hence metrizable. In such a case, the space C(M) of continuous
functions on M is separable, and we can prove the same result as in Theorem 1 by

using simple induction instead of trans�nite induction. The proof goes as follows.

First, one extends the GMM functional V : A(M) �! R in (3.2) to a functional
C(M) �! R, which is monotone and comonotonic additive. The extension obtains
exactly as in the proof of Theorem 1, but simple induction is now su¢ cient due

to the separability of C(M). C(M) does not contain indicator functions, but now
the capacity and the associated Choquet integral can be obtained by using Zhou�s

theorem [10].

7. The interpretation of the coefficient �(f): barycenters and

adjoint

By Theorem 1, all models of decision making compatible with axioms 1 to 5 of

Section 3 are straightforward generalizations of SEU: just replace a probability by

a capacity when you integrate over priors. Yet, as we already noticed in Section

3, there is a wide variety of models compatible with axioms 1 to 5. Thus, it

makes sense to take a closer look at the process of passing from a probability to a

capacity. To this end, the notions of adjoint of a linear operator and of barycenter

of a probability measure will come handy.

Let X and Y be Banach spaces and let T : X �! Y be a linear operator.

Recall that the adjoint T � of T is the linear operator T � : Y � �! X� (where the

� denotes dual spaces) de�ned as follows: if L 2 Y �, then T �(L) = L � T . We are
going to be interested in the adjoint of the canonical mapping � : B(S) �! A(M).
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Since �(B(S)) = A(M) is a Banach space, the adjoint �� of � is then the linear

operator �� : A�(M) �! B(S)� de�ned by ��(F ) = F � � for F 2 A�(M). Notice
that, in particular, for F represented by a probability measure P on M , we have

��(P )(f) =

Z
�(f)dP , for any f 2 B(S).

The barycenter of a probability measure is de�ned as follows. Recall that the

compact, convex set of priors M is a subset of B(S)�, the dual of B(S). By

de�nition(see [7]), the barycenter of a probability P on M is a point � 2 M such

that for any linear functional L in B(S)��, we have

L(�) =

Z
LdP

Notice that, since in our setting every measure P on M has a unique barycenter

([7], Ch. 2), we have that for any f 2 B(S)Z
�(f)dP = �(f)(�) =

Z
fd�

7.1. The �(f)-MEU representation of SEU. In this subsection, we are going
to see that there are two equivalent ways of describing SEU, that is the process of

integrating over priors with respect to a probability. The �rst obtains by considering

the adjoint �� of �, while the second obtains by requiring that the coe¢ cient �(f)

in the GMM functional (3.2) be given a certain meaning. Later in the section, we

will extend these two procedures by passing from the case of a probability to that

of a general capacity. We will see that the equivalence between the two procedures

breaks down when we do so: one extension, which turns out to be more permissive,

leads to a general �(f)-MEU model, while the other leads to the CEU model.

When �(f)-MEU reduces to SEU, we have that for any f 2 B(S)

I(f) =

Z
�(f)dP

where P is a probability on M . By using the de�nitions of barycenter and adjoint

given above, we also see that for any f 2 B(S)

I(f) =

Z
�(f)dP = �(f)(�) =

Z
fd� = ��(P )(f)

The second equality says that by "integrating over priors" we get the barycenter

� of P , which thus de�nes the SEU functional. The last equality says that this is

exactly what the adjoint does: it associates P with its barycenter �, which again

de�nes the SEU functional.

There is another way of describing the mechanics of SEU which calls into play

another barycenter. This is intimately related to the coe¢ cient �(f).



(CHOQUET-) INTEGRATING OVER PRIORS: �(f)-MEU 15

In fact, from the identities

�(f) =

Z
�(f)dP � inf �(f)

sup�(f)� inf �(f)
andZ

�(f)dP � inf �(f) =

Z
P f�(f) > tg dt

we see that �(f) is the mean value of the survival function associated to �(f). By

letting FP denote the distribution function of the random variable �(f), we also

see that

�(f) =

Z
tdFP

sup�(f)� inf �(f) =
mean of �(f)

sup�(f)� inf �(f) =
E(�(f))

sup�(f)� inf �(f)
that is �(f) is the barycenter of the measure generated by FP . Hence, the �(f)-

MEU functional can be written as

I = inf �(f) + bc(FP ) � [sup�(f)� inf �(f)] = inf �(f) + E(�(f))

where bc(FP ) stands for the barycenter of the measure generated by FP .

With a wild (yet suggestive) abuse of notation, we can summarize these two

equivalent views by means of the diagram below: for each f 2 B(S)

FP  � P

# # ��

bc(FP )
I�!

Z
fd�

The RHS of the diagram describes the job of the adjoint: it associated P with its

barycenter, and this de�nes a linear functional on B(S). The other part of the

diagram describes the second process: P determines the distribution of the r.v.

�(f), which leads to the barycenter of the associated measure; then, the �(f)-MEU

functional is applied. For each f 2 B(S) the diagram commutes, thus expressing

that these ways are equivalent.

7.2. General �(f)-MEU. In the general case, by virtue of Theorem 1, we have

I(f) =

Z
�(f)dC, for some capacity C onM . This suggests the following question:

starting from a functional
Z
�(f)dC on A(M), how do we extend (from the case

of a probability to that of a capacity) the two procedures described in the diagram

above?
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The second procedure (the one described by the LHS of the diagram) admits a

straightforward generalization. In fact, we still have the identities

�(f) =

Z
�(f)dC � inf �(f)

sup�(f)� inf �(f)
andZ

�(f)dC � inf �(f) =

Z
C f�(f) > tg dt

Then, we can de�ne �by (formal) analogy with the case of a probability �the same

concepts of mean and barycenter, and proceed like above. By doing so, we obtain

the �(f)-MEU functional. In other words, the �(f)-MEU theorem appears to be

exactly the generalization (to the case of a capacity) of the procedure described by

LHS of the above diagram.

7.3. CEU preferences. The procedure described by the adjoint seems, however,
to naturally lend itself to a di¤erent type of generalization. To see this, let us �rst

reconsider the case of a probability P onM . In such a case, we can think of the job

of the adjoint as of consisting of two parts. First, the probability P is associated

to its barycenter �; then � is extend to B(S) by means of the formula

(7.1)
Z
fd� =

+1Z
0

�(f > t)dt+

0Z
�1

[�(f > t)� 1]dt

The �rst part corresponds to computing, for each A 2 �,
Z
�AdP which is equal

(by de�nition of barycenter) to �A(�) =
Z
�Ad� = �(A). Such computation can

be readily extended to the case of a capacity C on M by de�ning a capacity � on

� by means of the formula �(A) =
Z
�AdC. Once this is done, the extension of �

to B(S) can be obtained by means of the same formula (7.1). Clearly, this process

leads to a Choquet integral on B(S), that is to a CEU preference. As such, generally

speaking, it does not coincide with the �(f)-MEU functional (which corresponds

to the "other" generalization).

The corollary below states an easy necessary and su¢ cient condition for an

�(f)-MEU preference to be of the CEU type. Let C be a capacity on M . Also let

� : � �! [0; 1] be de�ned by �(A) =
Z
�AdC, for any A 2 �, and set E�(f) =Z

�(f > t)dt and EC(�(f)) =
Z
C(�(f) > t)dt (i.e., mean=integral of survival

function). We have
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Corollary 2 (CEU preferences). An �(f)-MEU preference relation

f % g iff

Z
�(f)dC �

Z
�(g)dC

for C a capacity on M , is a CEU preference relation if and only if

E�(f)� EC(�(f)) = inf �(f)� inf f

for every f 2 B(S).

Appendix

The following lemma and subsequent proposition describe a few more properties

of functionals of the form (4.1).

Lemma 2. If a comonotonic additive functional W : B(M) �! R has the form

(4.1), then for any non-constant  2 B(M), we have �(y ) = �( ) for any y > 0.

In particular, for any any y > 0 and x 2 R, �(y + x) = �( ).

Proof. For W is comonotonic additive, take  = ' in condition (a) Proposition 2

to get 2�(2 ) = 2�( ) =) �(2 ) = �( ). In the same condition, take ' = n ,

n 2 N, to get
(n+ 1)�((n+ 1) ) = n�( ) + �( )

Now, this and the previous one imply �(n ) = �( ), 8n 2 N. Hence,

�( ) = �(
n

n
 ) = �(

1

n
 ) 8n 2 N

and for q 2 Q++
�(q ) = �(

m

n
 ) = �(

1

n
 ) = �( )

Now, for � 2 B(M) and non-constant, let  = t0�, ' = h� and let t0 > 0.

Consider the function Ft0;� : R! R de�ned by

Ft0;�(h) = t0[�((t0 + h)�)� �(t0�)] + h[�((t0 + h)�)� �(h�)]

Notice that Ft0;� is de�ned on the whole line because �(�) is de�ned on the whole
B(M), and that Ft0;�(0) = 0 (because �(�) is bounded).
Now, notice that if h > 0, then  = t0� and ' = h� are comonotonic,

and condition (a) Proposition 2 implies that Ft0;�(h) = 0. This implies that

lim
h!0+

Ft0;�(h) = 0. Next, we are going to show that lim
h!0�

Ft0;�(h) = 0. To this

end, observe that the second addendum in the de�nition of Ft0;� always goes to
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zero as h goes to zero because �(�) is bounded. Hence,

lim
h!0�

t0[�((t0 + h)�)� �(t0�)] + h[�((t0 + h)�)� �(h�)]

= lim
h!0�

t0[�((t0 + h)�)� �(t0�)] + h[�(2(t0 + h)�)� �((t0 + 2h)�)]

(by the previous observation)

= lim
h!0�

t0[�(2(t0 + h)�)� �(t0�)] + h[�(2(t0 + h)�)� �((t0 + 2h)�)]

(by homogeneity over N)

Now, notice that for h su¢ ciently close to zero, t0+2h > 0. That is, for h su¢ ciently

close to zero, the functions  = t0� and ' = (t0 + 2h)� are comonotonic, and

Ft0;�(h) = 0. This establishes lim
h!0�

Ft0;�(h) = 0. Since t0 is an arbitrary positive

number, this implies that 8t0 > 0

0 = lim
h!0

Ft0;�(h) = lim
h!0

[�((t0 + h)�)� �(t0�)]

That is, the function ~�� : R++ ! R de�ned by ~��(t) = �(t�) is continuous at each

t > 0. From the preceding, we know that such a function is constant on Q++ and
equal to �(�). It follows, that the function is constant and equal to �(�) on the

whole R++. This completes the proof of the �rst statement. The second follows
immediately by using condition (b) in Proposition 2. �

Proposition 3. If W is comonotonic additive, then W is (i) positively homo-

geneous; and (ii) constant additive. If, in addition, W is monotone, then W is

sup-norm continuous.

Proof. For the �rst part, just observe that, in light of the previous lemma, for y > 0,

x 2 R and 8 2 B(M)

W (y + x) = (1� �(y + x)) inf
m2M

(y + x) + �(y + x) sup
m2M

(y + x)

= (1� �( )) inf
m2M

(y + x) + �( ) sup
m2M

(y + x)

= yW ( ) + x

For the second, it is well-known (and easy to check) that monotone, constant ad-

ditive functionals are sup-norm continuous. �
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