Influential Opinion Leaders

Jakub Steiner¹ Colin Stewart²

¹Kellogg, MEDS

²Toronto

We rely on expert advice in choices of:

- investments,
- technologies,
- political candidates.

Do experts influence mass opinions?

"Rational players cannot be fooled":

- Cheap talk,
- Signalling.

But there is evidence:

Page, et. al (1987); Beck et. al. (2002); Druckman, and Parkin (2008); and DellaVigna, and Kaplan (2007).

Rational players can be coordinated:

Corsetti et al. (2004), Ekmekci (2009).

Many experts:

How do they coordinate?

Social Learning under Strategic Uncertainty

Global games:

- Strategic uncertainty has large equilibrium consequences.
- Strategic uncertainty only in rare contingencies.
- But that set is pivotal.

Social learning in global games:

- Voters interpret actions of experts.
- Voters neglect the contingencies with strategic uncertainty.
- When strategic uncertainty arises, the voters "get fooled".

Overview

Setup:

- Many experts: endorse candidates.
- Voters:
 - observe endorsements,
 - elect a winner by majority rule.
- Coordination motive.

Experts' strategic position is weak:

- No individual "market power".
- Heterogenous preferences.
- Distribution of biases is common knowledge.

Yet, manipulation arises.

Intuition

Typical State

- experts know the outcome
- no impact of biases

Pivotal State

- uncertain election outcome
- impact of biases

- Bayesian updating: based on typical state.
- Equilibrium condition: based on pivotal state.

Conformism

- Psychological motives, Callander (2007, 2008) based on Asch (1951).
- Strategic voting, Cox (1997), Myatt (2007).
- Desire for united party.

Election Without Experts

model

Voters

- Voters $i \in [0, 1]$.
- ► $a^i \in \{A, B\}.$
- Majority rule; $w \in \{A, B\}$ the winner.
- Partisan voters, 2/3.
- Swing voters, 1/3:

$$u_{v}(a^{i},w)=\mathbf{1}_{a^{i}=w}.$$

Uncertainty

- Uncertainty over distribution of partisans.
- State θ :
 - if $\theta < 0$ then A wins,
 - if $\theta > 1$ then *B* wins,
 - if θ ∈ (0, 1) then tie arises when share of swing votes for A equals θ.
- $\theta \sim$ strength of candidate *B*.

Information

- Common prior: $\theta \sim U[\underline{\theta}, \overline{\theta}]$.
- Voters' signals $y^i = \theta + \epsilon^i$.
- Strategy maps y^i to a^i .

analysis

Pivotal Condition

Symmetric monotone Bayes Nash equilibrium:

- Outcome monotone in θ .
- θ^* pivotal state in which tie arises:

$$\begin{cases} w = A, \text{ if } \theta < \theta^*, \\ \text{tie, if } \theta = \theta^*, \\ w = B, \text{ if } \theta > \theta^*. \end{cases}$$

Pivotal condition:

$$\theta^* = \Pr(s(y^i) = A \mid \theta^*).$$

Behavior in the Pivotal State

 $\text{Beliefs} \longrightarrow \text{actions:}$

Vote for the likely winner.

Distribution of beliefs:

- $\pi(y^i)$ posterior that *A* wins.
- $\blacktriangleright \pi(y^i)|\theta^* \sim U[0,1].$

Recall pivotal condition:

$$\theta^* = \Pr(\pi(y^i) > 1/2 \mid \theta^*) = 1/2.$$

Result

Summary

Unique monotone BNE.
θ* = 1/2.

Election With Experts

model

Experts

- Experts $j \in [0, 1]$.
- ► $a^j \in \{A, B\}.$
- ▶ 1/3, partisans supporting *A*.
- ▶ 1/3, partisans supporting *B*.
- ► 1/3, swing experts:

$$u_e(a^j,w)=b^j\mathbf{1}_{a^j=A}+\mathbf{1}_{a^j=w},$$

 $-1 < b^j < 1.$

Distribution of biases known.

Information

Experts' signals:

- $\blacktriangleright x^j = \theta + \sigma \xi^j,$
- Support: $\xi^j \in [-1/2, 1/2]$.

Social Learning:

- Each voter *i* privately observes a random sample of *n* endorsements.
- ► $\lambda^i \in \{0, ..., n\}$ # of endorsements for *A* in *i*'s sample.
- Unobserved preferences.

Strategy of

- expert maps x^j to a^j,
- voter maps (y^i, λ^i) to a^i .

analysis

Pivotal Condition

- Monotone Weak Perfect Bayesian equilibrium.
- Pivotal Condition:

$$\theta^* = \Pr\left(s(y^i, \lambda^i) = A \mid \theta^*\right).$$

We need to understand:

- experts' behavior,
- voters' interpretation of experts' behavior,
- voters' behavior.

Experts' Behavior

 $e(\theta, \theta^*)$ — fraction of experts endorsing *A*.

Depends on:

- realized state θ ,
- pivotal state θ^* ,
- bias and error distribution.

Simple cases:

$$e(\theta, \theta^*) = \begin{cases} \frac{1}{3}, \text{ for } \theta > \theta^* + \sigma; \\ \frac{2}{3}, \text{ for } \theta < \theta^* - \sigma; \\ \frac{1}{2} + \frac{\overline{b}}{6}, \text{ for } \theta = \theta^*. \end{cases}$$

Voters bayesian updating

• As $\sigma \to 0$ voters assign vanishing probability to atypical θ .

- $p_v(y, \lambda)$ voter's posterior that A wins.
 - monotone in λ ,
 - independent of the distribution of biases.

Voters

behavior in the pivotal state **Distribution of signals at** θ^* :

$$\blacktriangleright \ \lambda | \theta^* \sim B\left(\frac{1}{2} + \frac{\overline{b}}{6}, n\right).$$

Updating rule:

Does not correct for the bias.

Optimal behavior:

Vote for the more likely winner.

Recall pivotal condition:

$$\theta^* = \Pr\left(s(y^i, \lambda^i) = A \mid \theta^*\right).$$

Results

Summary

4.

- 1. Unique monotone weak perfect equilibrium.
- 2. Characterization of $\theta^{**} = \lim_{\sigma \to 0} \theta^*(\sigma)$.
- 3. θ^{**} increases with average bias \overline{b} .

$$\lim_{n\to\infty}\theta^{**}(n) = \begin{cases} 1, \text{ if } \overline{b} > 0, \\ 0, \text{ if } \overline{b} < 0. \end{cases}$$

Noise Independence

Consequences:

- Providing additional information to voters does not help.
- Experts' influence can be large.

Summary

"Rational players cannot be fooled"...

Weak interpretation:

Rational social learning:

 $I_e|I_v.$

Truism.

Strong interpretation:

Correct beliefs in every state:

 $(I_e|I_v) = (I_e|I_v,\theta).$

Incorrect.

In Our Model

Voters get fooled at the pivotal state:

- Gap between $I_e | I_v$ and $I_e | (I_v, \theta^*)$.
- Monotone in experts' biases.
- \blacktriangleright \Rightarrow Equilibrium is monotone in experts' biases.
- Voters get fooled on a small set of θ .
- But equilibrium consequences are large.