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Object of Study

o Game: infinitely repeated n-player Battle-of-the Sexes with
discounting

o Perfect (2-players) and limited (n > 2 players) feedback (monitoring)
@ Setting: one-shot (explain!) and unlabeled (explain!)

What we do NOT study: suggest a place for a date
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Not typically considered a symmetric game
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But, unlabelled, it is symmetric
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Objective of this Paper

@ Study implications of symmetry in this game

@ Provide theory to identify the obvious way to play this game

@ Test this theory using experiments

Solution Concept

@ Focal point a la Schelling (1960)

@ as interpreted by Alos-Ferrer and Kuzmics (2008)

@ as attainable equilibria (compare Crawford and Haller, 1990)

@ based on player symmetry

@ and based on the meta-norm (Alos-Ferrer and Kuzmics, 2008) of
Pareto-efficiency, and secondarily (lexicographically) simplicity
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Meta-Objective of this Paper

o While, it is difficult to justify general (Nash, SP, sequential)
equilibrium in repeated games,

@ this paper provides a possible justification for some equilibria, and a
somewhat general approach to do so in other (symmetric) games

@ an example of (uninformed, naive, pure, constrained) theory first,
then evidence

@ highlights a possibly more general interplay between ex-ante
efficiency, ex-ante symmetry, and ex-post symmetry




Introduction
L]
Roadmap and Results

@ essentially almost any payoff-pair can be sustained by an attainable
strategy profile

@ we do NOT get a folk theorem for attainable equilibria

@ the set of attainable equilibrium payoff-pairs is an interesting subset
of the set of feasible individually rational payoff-pairs

there is a unique ex-ante efficient attainable equilibrium outcome
ex-ante efficiency implies ex-post symmetry
many attainable strategy profiles implement it (especially as 6 — 1)

there is a (surprising) unique one, which uniformly dominates “all”
others as § — 1

@ which we don't believe to be the obvious one, though

@ there is a unique simplest attainable one (in theory only for 6 = 1)
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Attainable Payoffs
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Attainability

Here attainability simply implies that both (all) players use the same
repeated game strategy (or same automaton). E.g.

HH or LL 1

1

LH'%
s

“Randomize until symmetry is broken, then play some usual repeated
game strategy between the H-guy and the L-guy”
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Set of feasible attainable payoffs
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where u(H) is the discounted, normalized payoff of the H-guy and u(L)
that of the L-guy

o F(8) = F for all § > 3 (Sorin, 1986; Mailath and Samuelson, 2006,
Lemma 3.7.1)

o lims_y F2(6) = F
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NOT a folk theorem!

u(L)

Payoff-vectors u and u’ cannot be sustained in an attainable equilibrium.
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Bounds on the attainable equilibrium payoff-set
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@ Lower bound is based on stationary (Markov) equilibria

@ Upper bound (conjecture) is based on fixed point arguments of an
appropriate mapping

o Upper bound (conjecture): u € F with [u(H) — u(L)| > % cannot be
sustained in an attainable equilibrium
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Ex-ante efficiency implies ex-post symmetry
@ there are many ex-ante efficient attainable payoff-pairs (P-frontier)
@ only one is part of an attainable equilibrium

@ to maximize joint payoffs players need to initially randomize %,%
until symmetry is broken

@ players only have an incentive to do so if continuation payoffs are
symmetric
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Implementing ex-post symmetric payoffs, Notation

o Consider H-guy plays some sequence {y:}2°;, where y; € {L, H} or
y: € {0,1}

Example: H,H, H,L,L,H,L,.. (1,1,1,0,0,1,0,...)

If H-guy plays H (or L), L-guy plays opposite L (or H)

Define uf(y,8) = (1 —6) Yoo 0 ye

Define ut(y,d)

Define A(y,8) = u''(y,d) — ut(y, §) (payoff-difference between H
and L-guy)
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Implementing ex-post symmetric payoffs, Result

@ Recall A(y, ) is payoff-difference between H and L-guy
Ex-post symmetric if A(y,d) =0

There is a special sequence y*, such that

for every periodic sequence, y, there is a § < 1 such that

for every § > 0: |A(y*%,6)| < |A(y, 0)]

y*® “beats” all periodic sequences (is most symmetric)

Special sequence is 1/0/01/0110/01101001|0110100110010110]...
Explain special sequence and its properties!

Dispense with “periodic”? Don't know.

Restrict attention to balanced sequences: lims_1 A(y,d) =0
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Simplicity

@ Is the special sequence the obvious way to play?
@ It is uniquely most efficient as § — 1

@ But somewhat complicated?

@ There is a unique simplest attainable ex-post symmetric strategy
(6 —1)

@ in terms of state-complexity of automaton

tit for tat:

(]

HH or LL

More interesting for n > 3 players
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