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Abstract

We characterize the revenue maximizing policy in the dynamic and stochas-
tic knapsack problem where a given capacity needs to be allocated by a given
deadline to sequentially arriving agents. Each agent is described by a two-
dimensional type that re�ects his capacity requirement and his willingness to
pay per unit of capacity. Types are private information. We �rst characterize
implementable policies. Then we solve the revenue maximization problem for
the special case where there is private information about per-unit values, but
weights are observable. After that we derive two sets of additional conditions on
the joint distribution of values and weights under which the revenue maximizing
policy for the case with observable weights is implementable, and thus optimal
also for the case with two-dimensional private information. Finally, we analyze
a simple policy for which per-unit prices vary with requested weight but do not
vary with time. Its implementation requirements are similar to those of the
optimal policy and it turns out to be asymptotically revenue maximizing when
available capacity/ time to the deadline both go to in�nity.

1 Introduction

The knapsack problem is a classic combinatorial optimization problem with numerous
practical applications: several objects with given, known capacity requests (or weights)
and given, known, values must be packed in a "knapsack" of given capacity in order
to maximize the value of the included objects. In the dynamic and stochastic version
(see Ross and Tsang [22]) objects sequentially arrive over time and their weight/value
combination is stochastic but becomes known to the designer at arrival times.
In the present paper we add incomplete information to the dynamic and stochastic

setting: there is a �nite number of periods, and at each period a request for capacity
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arrives from an agent that is privately informed about both his valuation per unit of
capacity and the needed capacity1. Each agent derives positive utility if he gets the
needed capacity (or more), and zero utility otherwise. The designer accepts or rejects
the requests in order to maximize the revenue obtained from the allocation.
The dynamic and stochastic knapsack problem with complete information about

values and requests has been analyzed by Papastavrou, Rajagopalan and Kleywegt
[18] and by Kleywegt and Papastavrou [13]. These authors have characterized optimal
policies in terms of thresholds. Kincaid and Darling [11] , and Gallego and van Ryzin
[7] look at a model that can be re-interpreted as having (one dimensional) incomplete
information about values, but in their frameworks all requests have the same known
weight2. In particular, Gallego and van Ryzin show that revenue is concave in capacity
in the case of equal weights. Kleywegt and Papastavrou have examples showing that
total value may not be concave in capacity if the weight requests are heterogeneous.
Gershkov and Moldovanu [8] generalize the Gallego-van Ryzin model to incorporate
objects with the same weight but with several qualities that are equally ranked by all
agents, independently of their types (which are also one-dimensional).
The theory of multidimensional mechanism design is relatively complex: the main

problem is that incentive compatibility - which in the one-dimensional case often re-
duces to a monotonicity constraint - imposes, besides a monotonicity requirement, an
integrability constraint that is not easily included in maximization problems (see ex-
amples in Rochet [20], Armstrong [2], Jehiel, Moldovanu and Stacchetti [10], and the
survey of Rochet and Stole [21]). Our implementation problem is special though be-
cause useful deviations in the weight dimension can only be one-sided (upwards). This
feature allows us a less cumbersome characterization of implementable policies that
can be embedded in the dynamic analysis under certain conditions on the joint distrib-
ution of values and weights of the arriving agents. Other multidimensional mechanism
design problems with restricted deviations in one or more dimensions have been stud-
ied by Blackorby and Szalay [4], Iyengar and Kumar [9], Kittsteiner and Moldovanu
[12], and Pai and Vohra [17].
Our main results characterize the revenue maximizing policy for the knapsack prob-

lem in several cases. The logic of the construction is as follows: We �rst characterize
implementable policies, as explained above. Then we solve the revenue maximiza-
tion problem for the special case where there is private information about per-unit
values, but weights are observable: under a standard monotonicity assumption on vir-
tual values, we show that this policy is Markovian, deterministic, and has a threshold
property. It is important to emphasize that the resulting optimal policy need not be
implementable for the case where both values and weights are unobservable, unless
additional conditions are imposed. We then derive two sets of additional conditions

1The results are easily extended to the setting where arrivals are stochastic and/or time is contin-
uous.

2We refer the reader to the book by Talluri and Van Ryzin [23] for references to the large literature
on revenue (or yield) management that adopts variations on these models.
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on the joint distribution of values and weights under which the revenue maximizing
policy for the case with observable weights is implementable, and thus optimal also for
the case with two-dimensional private information. These conditions - which are sat-
is�ed in a variety of intuitive settings - involve a form of positive correlation between
weights and values expressed by a hazard rate ordering of conditional values, and a
weakening of the �rst set of su¢ cient conditions in combination with the non-primitive
assumption of concave revenues respectively.
Finally, we analyze a simple policy for which per-unit prices vary with requested

weight but not with time. Its implementation requirements are similar to those of the
optimal policy and it turns out to be asymptotically revenue maximizing when available
capacity/ time to the deadline both go to in�nity. This is particularly valuable since
policies which lead to prices that sometimes decrease in time create incentive issues if
agents are strategic with respect to their arrival times. We also point out that a policy
that varies with time but not with requested weight (whose asymptotic optimality in
the complete information case has been established by Lin, Lu and Yao [14]) is usually
not optimal under incomplete information.
The paper is organized as follows: In Section 2 we present the dynamic model and

the informational assumptions about values and weights. In Section 3 we characterize
incentive compatible allocation policies. In Section 4 we focus on dynamic revenue
maximization. We �rst characterize the revenue maximizing policy for the case where
values are private information but weight requests are observable. We then o¤er two
results that exhibit conditions under which the above policy is incentive compatible,
and thus optimal also for the case where both values and weights are private informa-
tion. In Section 5 we introduce a simpler time-independent policy as described above,
analyze the limit case where the capacity and time to deadline become very large and
demonstrate asymptotic optimality.

2 The Model

The designer has a "knapsack" of given capacity C 2 R that he wants to allocate in a
revenue-maximizing way to several agents in at most T <1 periods. In each period,
an impatient agent arrives with a demand for capacity characterized by a weight or
quantity request w and by a per-unit value v3: While the vector (w; v) is private
information to the arriving agent, the designer is assumed to know the distribution of
the random vector (w; v) which is given by the joint cumulative distribution function
F (w; v), with continuously di¤erentiable density f(w; v), de�ned on [0;1)2. Demands
are independent across di¤erent periods.
In each period, the designer decides how much capacity to allocate to the arriving

agent (possibly none) and on a monetary payment. Type (w; v)�s utility is given by
wv � p if at price p he is allocated a capacity w0 � w and by �p if he is assigned

3It is an easy extension to assume that the arrival probability per period is given by p < 1:
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an insu¢ cient capacity w0 < w. Each agent observes the remaining capacity of the
designer.4 Finally, we assume strict monotonicity of the conditional virtual values,
more precisely: for all w, v̂(v; w) := v � 1�F (vjw)

f(vjw) is increasing in v with strictly
positive derivative.

3 Incentive Compatible Policies

In this section, we characterize incentive compatible allocation policies. Without loss of
generality, we restrict attention to direct mechanisms where every agent, upon arrival,
reports a type (w; v) and where the mechanism then speci�es an allocation and a
payment. The schemes we develop also have an obvious and immediate interpretation
as indirect mechanisms, where the designer sets a time- and capacity-dependent menu
of per-unit prices, one for each weight demand.
An allocation policy is called deterministic and Markovian if, at any period t =

1; :::; T and for any possible type of agent arriving at t, it uses a non-random allocation
rule that only depends on the arrival time t, on the declared type of the arriving agent,
and on the still available capacity at period t, denoted by c. The restriction to these
policies is innocuous as shown in Section 4.
We can assume without loss of generality that a deterministic Markovian allocation

policy for time t with remaining capacity c has the form �ct : [0;+1)2 ! f1; 0g where
1 (0) means that the reported capacity demand w is satis�ed (not satis�ed). Indeed, it
never makes sense to allocate an insu¢ cient quantity 0 < w0 < w because individually
rational agents are not willing to pay for this. On the other hand, allocating more
capacity than the reported demand is useless as well: Such allocations do not further
increase agents�utility while they may decrease continuation values for the designer.
Let qct : [0;+1)2 ! R be the associated payment rule.

Proposition 1 A deterministic, Markovian allocation policy f�ctgt;c is implementable
if and only if for every t and every c it holds that:

1. 8 (w; v); v0 � v; �ct(w; v) = 1 ) �ct(w; v
0) = 1.

2. The function wpct(w) is non-decreasing in w; where
pct(w) = inffv = �ct(w; v) = 1g5

Proof. See Appendix.
The threshold property embodied in condition 1 of the above Proposition is stan-

dard, and is a natural feature of welfare maximizing rules under complete information.
When there is incomplete information in the value dimension, this condition imposes

4Alternatively, we can assume that each agent observes the entire history of the previous alloca-
tions.

5We set pct(w) =1 if the set fv=�ct(w; v) = 1g is empty.
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limitations on the payments that can be extracted in equilibrium. Condition 2 is new:
it re�ects the limitations imposed in our model by the incomplete information in the
weight dimension.

4 Dynamic Revenue Maximization

In this section, we �rst demonstrate how the dynamic revenue maximization problem
may be solved if w is observable. Hence we �rst assume that there is incomplete
information only about v. We then identify a set of conditions ensuring that the
corresponding optimal policy is implementable even if w is not observable. The logic
of the derivation for solving the revenue maximization problem is somewhat involved,
and we now detail it below:

1. Without loss of generality, we can restrict attention to Markovian policies. The
optimality of Markovian, possibly randomized, policies is standard for all models
where, as is the case here, the per-period rewards and transition probabilities are
history-independent - see for example Theorem 11.1.1 in Puterman [19] which
shows that, for any history-dependent policy, there is a Markovian, possibly
randomized, policy with the same payo¤.

2. If there is incomplete information about v; but complete information about the
weight requirement w, then Markovian, deterministic and implementable policies
are characterized for each t and c by the threshold property of Condition 1 in
Proposition 1.

3. Naturally, in the given revenue maximization problem with complete informa-
tion about w we need to restrict attention to interim individually-rational poli-
cies where no agent ever pays more than the utility obtained from her actual
capacity allocation. It is easy to see that, for any Markov, deterministic and
implementable allocation policy �ct , the maximal, individually-rational payment
function which supports it is given by

qct (w; v) =

�
wpct(w) if �ct(w; v) = 1
0 if �ct(w; v) = 0

where pct(w) = inffv = �ct(w; v) = 1g as de�ned in the above section. Otherwise,
the designer pays some positive subsidy to the agent, and this cannot be revenue-
maximizing.

4. At each period t, and for each remaining capacity c; the designer�s problem
under complete information about w is equivalent to a simpler, one-dimensional
static problem where a known capacity needs to be allocated to the arriving
agent, and where the seller has a salvage value for each remaining capacity: the
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salvage values in the static problem correspond to the continuation values in
the dynamic version. Analogously to the analysis of Myerson [16], each static
revenue-maximization problem has a monotone (in the sense of Condition 1 in
Proposition 1), non-randomized solution as long as, for any weight w; the agent�s
conditional virtual valuation v� 1�F (vjw)

f(vjw) is increasing in v. Indeed, the expected
revenue R(c; T + 1 � t) if per-unit prices are set at pct(w) in period t � T with
remaining capacity c and if the optimal Markovian policy is followed from time
t+ 1 onwards can be written as:

R(c; T + 1� t) =
Z c

0

w pct(w) (1� F (pct(w)jw)) �fw(w) dw

+

Z c

0

[(1� F (pct(w)jw))R�(c� w; T � t) + F (pct(w)jw)R�(c; T � t)] �fw(w) dw;

where �fw denotes the marginal density in w, and where R� denotes optimal
revenues with R�(c; 0) = 0 for all c. The �rst-order conditions for the revenue-
maximizing unit prices pct(w) are given by:

w

�
pct(w)�

1� F (pct(w)jw)
f(pct(w)jw)

�
= R�(c; T � t)�R�(c� w; T � t):

5. By backward induction, and by the above reasoning, the seller has a Markov, non-
randomized optimal policy in the dynamic problem with complete information
about w. Note also that, by a simple duplication argument, R�(c; T +1�t) must
be monotone non-decreasing in c:

Points 1, 4 and 5 above imply that the restriction to the deterministic and Markov-
ian allocation problems is without loss of generality. If the above solution satis�es the
incentive compatibility constraint in the weight dimension, i.e. if wpct(w) happens to be
monotone as required by Condition 2 of Proposition 1, then the associated allocation
where �ct(w; v) = 1 if and only if v � pct(w) is also implementable in the original prob-
lem with incomplete information about both v and w. It then constitutes the revenue
maximizing scheme that we are after. The next example illustrates that Condition 2
of Proposition 1 can be binding.

Example 1 Assume that T = 1. The distribution of the agents� types is given by
the following stochastic process. First, the weight request w is realized according to
an exponential distribution with parameter �. Next, the per-unit value of the agent is
sampled from the following distribution

F (vjw) =
(
1� e��v if w > w�

1� e��v if w � w�

where � > � and w� 2 (0; c).
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In this case, for an observable weight request, the seller charges the take-it-or-leave-
it o¤er of 1

�
( 1
�
) per unit if the weight request is smaller (larger) than or equal to w�:

This implies that

wpct(w) =

(
w
�
if w > w�

w
�
if w � w� .

and therefore, wpct(w) is not monotone.

We next proceed to identify conditions on the distribution of types ensuring the
monotonicity of wpct(w).

4.1 The Hazard Rate Stochastic Ordering

A key condition guaranteeing implementability is a stochastic ordering of the con-
ditional distributions of per-unit values: the conditional distribution given a higher
weight should be (weakly) statistically higher in the hazard rate order than the con-
ditional distribution given a lower weight.

Theorem 1 For each c; t; and w let pct(w) denote the solution to the revenue max-
imizing problem under complete information about w, determined recursively by the
Bellman equation

w

�
pct(w)�

1� F (pct(w)jw)
f(pct(w)jw)

�
= R�(c; T � t)�R�(c� w; T � t): (1)

Assume that the following conditions hold:

1. For any w; the conditional hazard rate f(vjw)
1�F (vjw) is non-decreasing in v

6:

2. For any w0 � w, and for any v; f(vjw)
1�F (vjw) �

f(vjw0)
1�F (vjw0) .

Then, wpct(w) is non-decreasing in w; and, consequently, the underlying allocation
where �ct(w; v) = 1 if and only if v � pct(w) is implementable. In particular, equations
(1) characterize the revenue maximizing scheme under incomplete information about
both values and weights.

Proof. See Appendix.
An important special case for which the conditions of the above Theorem hold is

the one where the distribution of per-unit values is independent of the distribution of
weights, and has an increasing hazard rate.

6Note that this condition already implies the needed monotonicity in v of the conditional virtual
value for all w:
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4.2 Concavity of Expected Revenue in Capacity

A major result for the case where capacity comes in discrete units, and where all
weights are equal is that expected revenue is concave in capacity (see Gallego and
van Ryzin [7] for a continuous time framework with Poisson arrivals and Bitran and
Mondschein [3] for a discrete time setting). This is a very intuitive property since it
says that additional capacity is more valuable to the designer when capacity itself is
scarce. Due to the more complicated combinatorial nature of the knapsack problem
with heterogenous weights, concavity need not generally hold (see Papastavrou, Ra-
jagopalan and Kleywegt [18] for examples where concavity of expected welfare in the
framework with complete information fails).
Our main result in this subsection identi�es a condition on the distribution of

types that, together with concavity of the expected revenue in the remaining capacity,
ensures that, for each t and c, wpct(w) is increasing, hence rendering the underlying dis-
tribution implementable. Afterwards we provide conditions on the models�primitives
that are su¢ cient for the concavity of the expected revenue.

Theorem 2 Assume that

1. The expected revenue R�(c; T + 1� t) is a concave function of c for all times t:

2. For any w � w0; v � 1�F (vjw)
f(vjw) � vw

w0 �
1�F ( vw

w0 jw
0)

f( vw
w0 jw

0) .

For each c; t; and w let pct(w) denote the solution to the revenue maximizing problem
under complete information about w; determined recursively by equations (1). Then
wpct(w) is non-decreasing in w; and hence the underlying allocation where �

c
t(w; v) = 1

if and only if v � pct(w) is implementable. In particular, equation (1) characterizes
the revenue maximizing scheme under incomplete information about both values and
weights.

Proof. See Appendix.

Remark 1 The su¢ cient conditions for implementability used in Theorem 1 are,
taken together, stronger than Condition 2 in Theorem 2. To see this, assume that,
for any w; the conditional hazard rate f(vjw)

1�F (vjw) is increasing in v; and that for any

w0 � w and for all v, f(vjw)
1�F (vjw) �

f(vjw0)
1�F (vjw0) . This yields:

v � 1� F (vjw)
f(vjw) � vw

w0
�
1� F (vw

w0 jw)
f(vw

w0 jw)
� vw

w0
�
1� F (vw

w0 jw
0)

f(vw
w0 jw0)

where the �rst inequality follows by the monotonicity of the hazard rate, and the second
by the stochastic order assumption.
Theorem 2 and in particular its Condition 2 will also be useful when discussing the
implementability of the simple policy in Section 5.2. Note also that Condition 2 of
Theorem 2 can be formulated as requiring that the functions �v � 1�F (�vjw

�
)

f(�vjw
�
)
are non-

decreasing in �.
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Our next result identi�es conditions on the joint distribution F (w; v) that imply
concavity of expected revenue with respect to c for all periods, as required by the
above Theorem. It is convenient to introduce the joint distribution of weight and total
valuation u = vw, which we denote by G(w; u) with density g(w; u). By means of a
transformation of variables, the densities f and g are related by w g(w;wv) = f(w; v):

In particular, marginal densities in w coincide, i.e.

�fw(w) =

Z 1

0

f(w; v) dv =

Z 1

0

g(w; u) du = �gw(w):

An increasing virtual value implies that the virtual total value is increasing in u
with strictly positive derivative for any given w:

û(u;w) := u� 1�G(ujw)
g(ujw) = wv � 1� F (vjw)

f(vjw)=w = wv̂(v; w)

We write û�1(û; w) for the inverse of û(u;w) with respect to u and de�ne a distribution
Ĝ(û; w) by both Ĝ(ûjw) := G(û�1(û; w)jw) for all w and �̂gw(w) := �gw(w). On the level
of v̂, this corresponds to F̂ (v̂jw) = F (v̂�1(v̂; w)jw) and �̂fw(w) = �fw(w).

Theorem 3 Assume that the conditional distribution Ĝ(wjû) is concave in w for all
û; that both ĝ(wjû) and d

dw
ĝ(wjû) are bounded, and that the total virtual value û has

a �nite mean. Then, in the revenue maximization problem where the designer has
complete information about w; the expected revenue R�(c; T + 1 � t) is concave as a
function of c for all times t:

Proof. See Appendix.

Example 2 A simple example where the conditions of Theorem 2 are satis�ed is ob-
tained by assuming that G(u;w) is such that u and w are independent, u� 1�Gu(u)

gu(u)
is

di¤erentiable with strictly positive derivative, and Gw is concave7. Condition 1 in that
Theorem is satis�ed by Theorem 3, while Condition 2 is satis�ed since by independence
w0v̂(vw

w0 ; w
0) = û(vw;w0) = û(vw;w) = wv̂(v; w) and w � w0 by assumption.

5 Simple, Asymptotically Optimal Policies

The optimal policy characterized above seems too sensitive to be used in practice since
it requires price adjustments in every period, and for any quantity request w. Our
main result in the present section suggests that while exploiting dependency between
w and v - if there is any - may be important for revenue maximization, carefully chosen
dynamics are super�uous if both capacity and time go to in�nity. As above, we start by
focusing on the case of observable weights. We then show that the su¢ cient conditions

7We also assume that the other very mild technical conditions of Theorem 3 are satis�ed.
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identi�ed in Theorem 1 are also applicable here, ensuring the implementability of the
obtained policy.
Instead of solving the stochastic problem, we �rst solve a simpler, suitably chosen

deterministic maximization problem. The revenue obtained in the solution to that
problem provides an upper bound for the optimal expected revenue of the stochastic
problem, and suggests the use of per-unit prices that depend on w, but that are
constant in time. We next show that the derived policy is asymptotically optimal also
in the original stochastic problem where both capacity and time go to in�nity: the
ratio of expected revenue from following the considered policy over expected revenue
from the optimal Markovian policy converges to one. Moreover, there are various ways
to quantify this ratio for moderately large capacities and time horizons. The basic logic
hence follows a suggestion made by Gallego and van Ryzin [7]. However, our knapsack
problem with a general distribution F (w; v) is substantially more complex than the
model tackled in their paper.
Let us �rst recall some assumptions, and introduce further notation. The mar-

ginal density �fw(w) and the conditional densities f(vjw) pin down the distribution of
(independent) arriving types (wt; vt)Tt=1. Given w, the demanded per-unit price p and
the probability �w of a request being accepted are related by �w(p) = 1 � F (pjw).
Let pw(�) be the inverse of �, and note that this is well de�ned on (0; 1]. Because
of monotonicity of conditional virtual values, the instantaneous (expected) per-unit
revenue functions rw(�) := � pw(�) are strictly concave, and each one attains a unique
interior maximum. Indeed, pw(�) = F (�jw)�1(1� �) and hence

d

d�
rw(�) = pw(�)� � 1

f(pw(�)jw) = pw(�)� 1� F (p
w(�)jw)

f(pw(�)jw) = v̂(pw(�); w);

d2

d�2
rw(�) = �

�
@

@v
v̂

�
(pw(�); w)

1

f(pw(�)jw) < 0:

Consequently, rw is strictly concave, strictly increasing up to the �w;� that satis�es
v̂(pw(�w;�); w) = 0 and strictly decreasing from there on.

5.1 The Deterministic Problem

We now formulate an auxiliary deterministic problem. Let Cap : (0;1)! (0;1) ; w 7!
Cap(w) be a measurable function. Consider the problem:

max
Cap(�)

Z 1

0

max
(�wt )t=1;:::;T

 
TX
t=1

rw(�wt )

!
w �fw(w) dw; (2)

subject to

TX
t=1

�wt w
�fw(w) � Cap(w) a.s. and

Z 1

0

Cap(w) dw � C: (3)

In words, we analyze a problem where:
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1. The capacity C needs to be divided into capacities Cap(w), one for each w:

2. In each w - subproblem, a deterministic quantity request of w �fw(w) arrives in
each period, and �wt determines a share (not a probability!) of this request that
is accepted and sold at per-unit price pw(�wt ).

3. In each sub-problem, the allocated capacity over time cannot exceed Cap(w),
and total allocated capacity in all sub-problems

R1
0
Cap(w) dw, cannot exceed

C.

4. The designer�s goal is to maximize total revenue. We call the revenue at the
solution Rd(C; T ).

As rw is strictly concave and increasing up to �w;�, it is straightforward to verify
that, given a choice Cap(w); the solution to the w - subproblem,

max
(�wt )t=1;:::;T

 
TX
t=1

rw(�wt )

!
w �fw(w) such that

TX
t=1

�wt w
�fw(w) � Cap(w)

is given by:

�wt � �w;d :=
(
�w;� if �w;� � Cap(w)

Tw �fw(w)
Cap(w)
Tw �fw(w)

else
(4)

Accordingly, the revenue in the w-subproblem is rw(�w;d)Tw �fw(w).

Proposition 2 The solution to the deterministic problem given by (2) and (3) is
characterized by :

1. v̂(pw(�w;d); w) = �(C; T ) = const

2. �wt = �w;d = Cap(w)

Tw �fw(w)
,

3.
R1
0
Cap(w) dw = min(C; T

R1
0
�w;�w �fw(w) dw)

Proof. See Appendix.
To get an intuition for the above result, observe that the marginal increase of the

optimal revenue for the w-subproblem from marginally increasing Cap(w) is:�
d

d�
rw
��

Cap(w)
Tw �fw(w)

�
= v̂(pw(�w;d); w) if �w;� >

Cap(w)
Tw �fw(w)

;

and 0 else.
Proposition 2 says that, optimally, the capacity should be split in such a way that

the marginal revenue from increasing Cap(w) is the same for all w. Actually solving
the problem amounts to the simple static exercise of determining the constant �(C; T )
in accordance with the integral feasibility constraint.
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The above construction is justi�ed by the following result, showing that the optimal
revenue in the deterministic problem bounds from above the optimal revenue in our
original stochastic problem.
Since we assume here that weights are observable, a Markovian policy � for the

original stochastic problem is characterized by the acceptance probabilities �wtt [ct]
contingent on current time t, remaining capacity ct and weight request wt. Expected
revenue from policy � at the beginning of period t (i.e. when there are (T � t + 1)
periods left) with remaining capacity ct is given by:

R�(ct; T � t+ 1) = E�

"
TX
s=t

ws p
ws(�wss [cs]) Ifvs�pws (�wss [cs])g

#

s:t:
TX
s=t

ws Ifvs�pws (�wss [cs])g � ct:

Here, the constraint must hold almost surely when following �. As before, we write
R�(ct; T �t+1) for the optimal revenue, i.e. the supremum of expected revenues taken
over all feasible Markovian policies �.

Theorem 4 For any capacity C and deadline T , it holds that R�(C; T ) � Rd(C; T ).

Proof. See Appendix.

5.2 A Simple Policy for The Stochastic Problem

Theorem 4 above suggests that a w-contingent yet time-independent pricing policy
may be able to yield close to optimal revenues in the stochastic problem. To construct
such a Markovian time-independent policy for the stochastic problem, �TI ; we proceed
as follows:

1. Given C and T , solve the deterministic problem to obtain �(C; T ), �w;d and thus
pw;d := pw(�w;d) = v̂�1(�(C; T ); w).

2. In the stochastic problem charge these weight-contingent prices pw;d for the entire
time horizon, provided that the quantity request does not exceed the remaining
capacity. Else, charge a price equal to +1 (i.e., reject the request).

An important observation is that, under the conditions of Theorem 1, the time
independent policy �TI de�ned above is implementable also for the case that interests
us, where weights are not observable. This follows immediately by recalling that the
weight-contingent prices pw;d satisfy the equation v̂(pw(�w;d); w) = �(C; T ): Indeed,
under the conditions of Theorem 1, the solution to this equation is monotonic in w;
and hence wpw;d is also monotonic in w; as required for implementability. Moreover,
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implementability is even satis�ed under the strictly weaker Condition 2 of Theorem
2, since setting all virtual valuation thresholds equal to a constant is like setting them
optimally for linear and hence concave salvage values.
We now determine how well the time-independent policy constructed above per-

forms compared to the optimal Markovian policy. We do this by comparing its ex-
pected revenue, RTI(C; T ); with the optimal revenue in the deterministic problem,
Rd(C; T ); which, as we know by Theorem 4, provides an upper bound for the optimal
revenue in the stochastic problem, R�(C; T ).

Theorem 5 1. For any joint distribution of values and weights,

lim
C;T!1;C

T
=const

RTI(C; T )

Rd(C; T )
= 1

2. Assume that w and v are independent. Then,

RTI(C; T )

Rd(C; T )
�
 
1 �

p
E[w2]=E[w]

2
p
min(C; ��E[w]T )

!
:

In particular, limmin(C;T )!1
RTI(C;T )
Rd(C;T )

= 1

Proof. See Appendix.
We have chosen to focus on these two general limit results. Various others could

be proven by similar techniques at the expense of slightly more technical e¤ort and
possibly some further assumptions on F . As we indicated in the introduction, an
interesting remark is that, since the policy �TI is stationary, it does not generate
incentives to postpone arrivals even in a more complex model where buyers are patient
and can choose their arrival time.

Remark 2 In a complete information knapsack model, Lin, Lu and Yao [14] study
policies which start by accepting only high value requests, and then switch-over to
accepting also lower values as time goes by. They establish asymptotic optimality of
such policies (with carefully chosen switch-over times) as available capacity and time
go to in�nity. In other words, their prices are time-dependent but do not condition
on the weight request. It is easy to show that, in our incomplete information model
such policies are, in general, suboptimal. Consider �rst a one-period example where
the seller has capacity 2, and where the arriving agent has either a weight request of 1
or 2 (equally likely). If the weight request is 1(2), the agent�s per-unit value distributes
uniformly between 0 and 1 (between 1 and 2). The optimal mechanism in this case is
as follows: if the buyer requests one unit, the seller sells it for a price of 0.5, and if the
buyer requests two units, the seller sells each unit at a price of 1. Note that this policy
is implementable since the requested per-unit price is monotonically increasing in the
weight request. The expected revenue is 9/8. If, however, the seller is forced to sell
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all units at the same per-unit price without conditioning on the weight request, he will
charge the price of 1 for each unit, yielding an expected revenue of 1, and thus loose
1/8 versus the optimal policy. Replicate now this problem so that there are T periods
and capacity C=2T. Then, the expected revenue from the optimal mechanism is 9/8T,
while the expected revenue from the constrained mechanism is only T. Obviously, the
constrained mechanism is not asymptotically optimal.

6 Appendix

Proof of Proposition 1. I) =) So assume that conditions 1 and 2 are satis�ed
and de�ne for any t; c:

qct (w; v) =

(
wpct(w) if �ct(w; v) = 1

0 if �ct(w; v) = 0

Consider then an arrival of type (w; v) in period t with remaining capacity c: There
are two cases:
a) �ct(w; v) = 1: In particular, v � pct(w). Then, truth-telling yields utility w(v �

pct(w)) � 0. Assume that the agent reports instead ( bw; bv): If �ct( bw; bv) = 0; then the
agent�s utility is zero and the deviation is not pro�table. Assume then that �ct( bw; bv) =
1: By the form of the utility function, a report of bw < w is never pro�table. But, forbw � w, the agent�s utility is wv� bwpct( bw) � w(v� pct(w)), where we used condition 2.
Therefore, such a deviation is also not pro�table.
b) �ct(w; v) = 0: In particular, v � pct(w). Truth-telling yields here utility of zero.

Assume that the agent reports instead ( bw; bv): If �ct( bw; bv) = 0; then the agent�s utility
remains zero, and the deviation is not pro�table. Assume then that �ct( bw; bv) = 1: By
the form of the utility function, a report of bw < w is never pro�table. Thus, consider
the case where bw � w. In this case, the agent�s utility is wv� bwpct( bw) � w(v�pct(w)) �
0; where we used condition 2. Therefore, such a deviation is also not pro�table.

II) (= Consider now an implementable, deterministic and Markovian allo-
cation policy f�ctgt;c. Assume �rst, by contradiction, that condition 1 in the state-
ment of the Proposition is not satis�ed. Then, there exist (w; v) and (w; v0) such
that v0 > v, �ct(w; v) = 1 and �ct(w; v

0) = 0: We obtain the chain of inequalities
wv0 � qct (w; v) > wv � qct (w; v) � �qct (w; v0) where the second inequality follows by
incentive compatibility for type (w; v). This shows that a deviation to a report (w; v)
is pro�table for type (w; v0); a contradiction to implementability. Therefore, condition
1 must hold.
In particular, note that for any two types who have the same weight request, (w; v)

and (w; v0), if both are accepted, i.e. �ct(w; v) = �
c
t(w; v

0) = 1; the payment must be
the same (otherwise the type which needs to make the higher payment would deviate
and report the other type). Denote this payment by rct (w). Note also that any two
types (w; v) and (w0; v0) such that �ct(w; v) = �

c
t(w

0; v0) = 0 must also make the same
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payment (otherwise the type that needs to make the higher payment would deviate
and report the other type) and denote this payment by s.
Assume now, by contradiction, that condition 2 does not hold. Then there exist

w and w0 such that w0 > w but w0pct(w
0) < wpct(w): In particular, w

0pct(w
0) < 1; and

therefore pct(w
0) <1:

Assume �rst that pct(w) <1. We have w0pct(w0)� rct (w0) = wpct(w)� rct (w) = �s
because, by incentive compatibility, both types (w; pct(w)) and (w

0; pct(w
0)) must be

indi¤erent between getting their request and not getting it. Since by assumption
w0pct(w

0) < wpct(w); we obtain that r
c
t (w

0) < rct (w): Consider now a type (w; v) for
which v > pct(w). By reporting truthfully, this type gets utility wv � rct (w); while
by deviating to (w0; v) he gets utility wv � rct (w0) > wv � rct (w); a contradiction to
incentive compatibility.
Assume now that pct(w) is in�nite, and therefore wp

c
t(w) is in�nite. Consider a type

(w0; v) where v > pct(w
0): The utility of this type is w0v� rct (w0) > w0pct(w0)� rct (w0) =

�s. In particular, rct (w0) must be �nite. By reporting truthfully, a type (w; v) gets
utility �s , while by deviating to a report of (w0; v) he gets wv � rct (w0): For v large
enough, we obtain wv � rct (w0) > �s; a contradiction to implementability.
Thus, condition 2 must hold and, in particular, the payment rct (w) is monotonic in

w:

Proof of Theorem 1. Let w < w0. We need to show that wpct(w) � w0pct(w0) � 0:
If pct(w) � pct(w0) the result is clear. Assume then that pct(w) > pct(w0): We obtain the
following chain of inequalities:

w

�
1� F (pct(w)jw)
f(pct(w)jw)

�
� w0

�
1� F (pct(w0)jw0)
f(pct(w

0)jw0)

�
� w0

�
1� F (pct(w)jw)
f(pct(w)jw)

� 1� F (p
c
t(w

0)jw0)
f(pct(w

0)jw0)

�
� w0

�
1� F (pct(w0)jw)
f(pct(w

0)jw) � 1� F (p
c
t(w

0)jw0)
f(pct(w

0)jw0)

�
� 0;

where the second inequality follows by the monotonicity of the hazard rate, and
the third by the hazard rate ordering condition.
Since R�(c� w; T � t) is monotonically decreasing in w, we obtain that

w

�
pct(w)�

1� F (pct(w)jw)
f(pct(w)jw)

�
� w0

�
pct(w

0)� 1� F (p
c
t(w

0)jw0)
f(pct(w

0)jw0)

�
,

wpct(w)� w0pct(w0) � w

�
1� F (pct(w)jw)
f(pct(w)jw)

�
� w0

�
1� F (pct(w0)jw0)
f(pct(w

0)jw0)

�
� 0

where the last inequality follows by the derivation above. Hence wpct(w)�w0pct(w0) � 0
as desired.
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Proof of Theorem 2. For any concave function �, and for any x < y < z in its
domain, the well known "Three Chord Lemma" asserts that

�(y)� �(x)
y � x � �(z)� �(x)

z � x � �(z)� �(y)
z � y

Consider then w < w0 and let x = c � w0 < y = c � w < z = c: For the case of a
concave revenue, the Lemma yields then:

R�(c� w; T � t)�R�(c� w0; T � t)
w0 � w � R�(c; T � t)�R�(c� w0; T � t)

w0

� R�(c; T � t)�R�(c� w; T � t)
w

:

We obtain in particular

pct(w
0)� 1� F (p

c
t(w

0)jw0)
f(pct(w

0)jw0) =
R�(c; T � t)�R�(c� w0; T � t)

w0

� R�(c; T � t)�R�(c� w; T � t)
w

= pct(w)�
1� F (pct(w)jw)
f(pct(w)jw)

;

which yields

pct(w
0)� 1� F (p

c
t(w

0)jw0)
f(pct(w

0)jw0) � pct(w)�
1� F (pct(w)jw)
f(pct(w)jw)

� w

w0
pct(w)�

1� F ( w
w0p

c
t(w)jw0)

f( w
w0p

c
t(w)jw0)

where the last inequality follows by the condition in the statement of the Theorem.
Since virtual values are increasing, this yields pct(w

0) � w
w0p

c
t(w), w0pct(w

0) � wpct(w)
as desired.

For the proof of Theorem 3, we �rst need a Lemma on maximization of expected
welfare under complete information. The result appears (without proof) in Papas-
tavrou, Rajagopalan and Kleywegt [18].

Lemma 1 . Assume that the total value u has �nite mean, and that both g(wju) and
d
dw
g(wju) are bounded and continuous. Consider the allocation policy that maximizes

expected welfare under complete information (i..e, upon arrival the agent�s type is
revealed to the designer). If G(wju) is concave in w for all u; then the optimal expected
welfare, denoted U ct is twice continuously di¤erentiable and concave in the remaining
capacity c for all periods t � T .

Proof. Note that, for notational convenience throughout this proof, we index optimal
expected welfare by the current time t and not by periods remaining to deadline. By
standard arguments, the optimal policy for this unconstrained dynamic optimization
problem is deterministic and Markovian, and U ct is non-decreasing in remaining ca-
pacity c by a simple strategy duplication argument. Moreover, the optimal policy
can be characterized by weight thresholds wct (u) � c : If c remains at time t and a
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request whose acceptance would generate value u arrives, then it is accepted if and
only if w � wct (u). If U ct+1 � u, then the weight threshold must satisfy the indi¤erence
condition

u = U ct+1 � U
c�wct (u)
t+1 : (5)

Otherwise, we have wct (u) = c.
We now prove the Lemma by backward induction. At time t = T , i.e. in the deadline
period, it holds that

U cT =

Z 1

0

G(cju)u �gu(u) du:

This is concave in c because all G(cju) are concave by assumption, because u �gu(u) is
positive, and because the distribution of u has a �nite mean. Since both g(wju) and
d
dw
g(wju) are bounded and continuous, U cT is also twice continuously di¤erentiable.

Suppose now that the Lemma has been proven down to time t + 1. The optimal
expected welfare at t provided that capacity c remains may be written as:

U ct =

Z 1

0

"
uG(wct (u)ju) +

Z wct (u)

0

U c�wt+1 g(wju) dw + (1�G(wct (u)ju))U ct+1

#
�gu(u) du:

(6)
We proceed to show concavity with respect to c of the term in brackets, for all u.
This in turn implies concavity of U ct and hence, with a short additional argument for
di¤erentiability, is su¢ cient to conclude the induction step. We distinguish the cases
u > U ct+1 for which the indi¤erence condition (5) does not hold, and u � U ct+1 for
which it does. For both cases, we demonstrate that the second derivative (one-sided
if necessary) of the bracket term with respect to c is non-positive, and thus establish
global concavity.
Case 1: u > U ct+1. The bracket term becomes uG(cju) +

R c
0
U c�wt+1 g(wju) dw+ (1�

G(cju))U ct+1. By continuity of U ct+1, this representation also holds in a small interval
around c. We �nd

d

dc

�
uG(cju) +

Z c

0

U c�wt+1 g(wju) dw + (1�G(cju))U ct+1
�

= ug(cju) +
Z c

0

d

dc
U c�wt+1 g(wju) dw + U0t+1 g(cju)

�g(cju)U ct+1 + (1�G(cju))
d

dc
U ct+1

= (u� U ct+1)g(cju) +
Z c

0

d

dc
U c�wt+1 g(wju) dw + (1�G(cju))

d

dc
U ct+1
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and

d2

dc2

�
uG(cju) +

Z c

0

U c�wt+1 g(wju) dw + (1�G(cju))U ct+1
�

= (u� U ct+1)g0(cju)� g(cju)
d

dc
U ct+1 +

Z c

0

d2

dc2
U c�wt+1 g(wju) dw

+
d

dw
Uwt+1

��
w=0

g(cju)� g(cju) d
dc
U ct+1 + (1�G(cju))

d2

dc2
U ct+1: (7)

The last term is non-positive by the concavity of U ct+1, the �rst term is non-positive
because u > U ct+1 and because G(cju) has a non-increasing density by assumption. In
addition, g(cju) d

dc
U ct+1 is non-negative, and hence (7) is bounded from above byZ c

0

d2

dc2
U c�wt+1 g(wju) dw + g(cju)

�
d

dw
Uwt+1

��
w=0

� d

dc
U ct+1

�
:

But
R c
0
d2

dc2
U c�wt+1 g(wju) dw may be bounded from above by g(cju)

R c
0
d2

dc2
U c�wt+1 dw because

of the decreasing density and because d2

dc2
U c�wt+1 � 0. Thus,

d2

dc2

�
uG(cju) +

Z c

0

U c�wt+1 g(wju) dw + (1�G(cju))U ct+1
�

� g(cju)
�Z c

0

d2

dc2
U c�wt+1 dw +

d

dw
Uwt+1

��
w=0

� d

dc
U ct+1

�
= g(cju)

�Z c

0

d2

dw2
U c�wt+1 dw +

d

dw
Uwt+1

��
w=0

� d

dc
U ct+1

�
= 0: (8)

Case 2: u � U ct+1 . Here u = U ct+1 � U
c�wct (u)
t+1 . Consequently, the bracket term in

(6) becomes

U ct+1 � U
c�wct (u)
t+1 G(wct (u)ju) +

Z wct (u)

0

U c�wt+1 g(wju) dw: (9)

Before computing its �rst and second derivatives, we di¤erentiate the identity u =

U ct+1 � U
c�wct (u)
t+1 to obtain an expression for d

dc
wct (u) (derivative from the right if u =

U ct+1):

0 =
d

dc
U ct+1 �

d

dw
Uwt+1

��
w=c�wct (u)

�
1� d

dc
wct (u)

�
:

Since indeed d
dw
Uwt+1 > 0 in our setup with strictly positive densities, this implies

d

dc
wct (u) =

d
dw
Uwt+1

��
w=c�wct (u)

� d
dc
U ct+1

d
dw
Uwt+1

��
w=c�wct (u)

: (10)

By concavity of U ct+1, its derivative is non-increasing and hence the identity (10) yields
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in particular d
dc
wct (u) � 0. We now compute the derivatives of (9):

d

dc

"
U ct+1 � U

c�wct (u)
t+1 G(wct (u)ju) +

Z wct (u)

0

U c�wt+1 g(wju) dw
#

=
d

dc
U ct+1 �

d

dw
Uwt+1

��
w=c�wct (u)

�
1� d

dc
wct (u)

�
G(wct (u)ju)� U

c�wct (u)
t+1 g(wct (u)ju)

d

dc
wct (u)

+ U
c�wct (u)
t+1 g(wct (u)ju)

d

dc
wct (u) +

Z wct (u)

0

d

dc
U c�wt+1 g(wju) dw

(10)
=

d

dc
U ct+1 �

d

dc
U ct+1G(w

c
t (u)ju) +

Z wct (u)

0

d

dc
U c�wt+1 g(wju) dw

=
d

dc
U ct+1(1�G(wct (u)ju)) +

Z wct (u)

0

d

dc
U c�wt+1 g(wju) dw:

Thus,

d2

dc2

"
U ct+1 � U

c�wct (u)
t+1 G(wct (u)ju) +

Z wct (u)

0

U c�wt+1 g(wju) dw
#

=
d2

dc2
U ct+1(1�G(wct (u)ju))�

d

dc
U ct+1 g(w

c
t (u)ju)

d

dc
wct (u)

+
d

dw
Uwt+1

��
w=c�wct (u)

g(wct (u)ju)
d

dc
wct (u) +

Z wct (u)

0

d2

dc2
U c�wt+1 g(wju) dw

� g(wct (u)ju)
d

dc
wct (u)

�
d

dw
Uwt+1

��
w=c�wct (u)

� d

dc
U ct+1

�
+

Z wct (u)

0

d2

dw2
U c�wt+1 g(wju) dw:

For the �nal inequality we used concavity of U ct+1, as well as
d2

dc2
U c�wt+1 = d2

dw2
U c�wt+1 .

Noting that (10) implies that d
dc
wct (u) � 1 and once more using concavity of U ct+1, we

may bound the �rst term from above. Since g(wju) is non-increasing in w, we can also
bound the second term to obtain:

d2

dc2

"
U ct+1 � U

c�wct (u)
t+1 G(wct (u)ju) +

Z wct (u)

0

U c�wt+1 g(wju) dw
#

(11)

� g(wct (u)ju)
 
d

dw
Uwt+1

��
w=c�wct (u)

� d

dc
U ct+1 +

Z wct (u)

0

d2

dw2
U c�wt+1 dw

!
= 0:

Taken together, (8) and (11) establish concavity of the integrand in (6) with respect
to c. This implies that U ct is concave. Having a second look at the computations just
done reveals that the integrand in (6) has a kink in the second derivative at u = U ct+1.
However, this event has measure zero for any given c, so that we also get that U ct is
twice continuously di¤erentiable. This completes the induction step.

Proof of Theorem 3. The main idea of the proof is to translate the problem of
setting revenue-maximizing prices when w is observable into the problem of maximizing
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welfare with respect to virtual values (rather than the values themselves), and then to
use Lemma 1.
To begin with, note that there is a dual way to describe the policy that maximizes

expected welfare under complete information. In the proof of Lemma 1, we char-
acterized it by optimal weight thresholds wct (u). Alternatively, given any requested
quantity w, (not greater than the remaining c) we may set a valuation per unit thresh-
old vct (w). Requests above this valuation are accepted, those below are not. Optimal
such thresholds are characterized by the Bellman-type condition:

w vct (w) = U ct+1 � U c�wt+1 : (12)

Thus, one way of writing the optimal expected welfare under complete information is:

U ct =

Z c

0

w

Z 1

vct (w)

vf(vjw) dv �fw(w) dw

+

Z c

0

�
(1� F (vct (w)jw))U c�wt+1 + F (vct (w)jw)U ct+1

�
�fw(w) dw: (13)

In contrast, the optimal expected revenue with complete information about w but
incomplete information about v satis�es:

R�(c; T + 1� t) =
Z c

0

w pct(w) (1� F (pct(w)jw)) �fw(w) dw (14)

+

Z c

0

[(1� F (pct(w)jw))R�(c� w; T � t) + F (pct(w)jw)R�(c; T � t)] �fw(w) dw;

where pct(w) are the per-unit prices from (1). We rephrase this in terms of F̂ , whose
de�nition required monotonicity of virtual values. Setting v̂ct (w) := v̂(pct(w); w) we
have on the one hand:

F (pct(w)jw) = F̂ (v̂ct (w)jw):

On the other hand:

pct(w) (1� F (pct(w)jw)) =

Z 1

pct (w)

[v f(vjw)� (1� F (vjw))] dv

=

Z 1

pct (w)

v̂(v; w) f̂(v̂(v; w)jw) d
dv
v̂(v; w) dv

=

Z 1

v̂ct (w)

v̂ f̂(v̂jw) dv̂:

Plugging this and the identities for the marginal densities in w into (14), we obtain:

R�(c; T + 1� t) =
Z 1

0

w

Z 1

v̂ct (w)

v̂f̂(v̂jw) dv̂ �̂fw(w) dw

+

Z 1

0

h
(1� F̂ (v̂ct (w)jw))R�(c� w; T � t) + F̂ (v̂ct (w)jw)R�(c; T � t)

i
�̂
fw(w) dw:
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Comparing this with (13), it follows that maximizing expected revenue when w is
observable is equivalent to maximizing expected welfare with respect to the distribution
of weight and conditional virtual valuation (note the identical zero boundary values at
T + 1). Invoking Lemma 1 applied to Ĝ, we see that R�(c; T + 1� t) is concave with
respect to c for all t (note that the fact that the support of virtual valuations contains
also negative numbers does not matter for the argument of Lemma 1).

Proof of Proposition 2. The Proposition is an immediate consequence of the
characterization (4) of optimal solutions for the w-subproblems given Cap(w), and of
a straightforward variational argument ensuring that marginal revenues from marginal
increase of Cap(w) must be constant almost surely in w.
Proof of Theorem 4. We need to distinguish two cases:
Case 1: Assume that C > T

R1
0
�w;�w �fw(w) dw. In this case, �(C; T ) = 0 and

Rd(C; T ) = T
R1
0
rw(�w;�)w �fw(w) dw. We also know that R�(C; T ) � R�(+1; T );

where R�(+1; T ) denotes the optimal expected revenue from a stochastic problem
without any capacity constraint. But, for such a problem, the optimal Markovian
policy maximizes at each period the instantaneous expected revenue upon observing
wt, wt rwt(�): That is, the optimal policy sets �

wt
t [+1] = �w;�. Thus,

R�(C; T ) � R�(+1; T ) = T

Z 1

0

w rw(�w;�) �fw(w) dw = Rd(C; T ):

Case 2: Assume now that C � T
R1
0
�w;�w �fw(w) dw. For � � 0 , consider the

unconstrained maximization problem

max
Cap(�)

�Z 1

0

rw
�
Cap(w)
Tw �fw(w)

�
Tw �fw(w) dw + �

�
C �

Z 1

0

Cap(w) dw
��

The Euler-Lagrange equation is
�
d
d�
rw
� � Cap(w)

Tw �fw(w)

�
= �. Hence, if we write Rd(C; T; �)

for the optimal value of the above problem, and if we let � = �(C; T ) where �(C; T )
is the constant from Proposition 2, then the solution equals the one of the constrained
deterministic problem. In particular

R1
0
Cap(w) dw = C, and Rd(C; T; �(C; T )) =

Rd(C; T ) .
Recall that for the stochastic problem, and for any Markovian policy � we have

R�(C; T ) = E�

"
TX
t=1

wt p
wt(�wtt [ct]) Ifvt�pwt (�wtt [ct])g

#
;

and de�ne

R�(C; T; �(C; T )) = R�(C; T ) + �(C; T )

 
C � E�

"
TX
t=1

wt Ifvt�pwt (�wtt [ct])g

#!
:

Since for any policy � that is admissible in the original problem, it holds that

TX
t=1

wt Ifvt�pwt (�wtt [ct])g � C a:s:;
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we have R�(C; T ) � R�(C; T; �(C; T )). We will show below that, for arbitrary �
(which satis�es the capacity constraint or not), it holds that:

R�(C; T; �(C; T )) � Rd(C; T; �(C; T )): (15)

This yields for any � that is admissible in the original problem:

R�(C; T ) � R�(C; T; �(C; T )) � Rd(C; T; �(C; T )) = Rd(C; T ):

Taking the supremum over � concludes then the proof for the second case.

It remains to prove (15). The argument uses the �ltration fFtgTt=1 of � - algebras
containing information prior to time t ( in particular the value of ct) and in addition
the currently observed wt.

R�(C; T; �(C; T )) = E�

"
TX
t=1

wt (p
wt(�wtt [ct])� �(C; T )) Ifvt�pwt (�wtt [ct])g

#
+ �(C; T )C

= E�

"
TX
t=1

E�

h
wt (p

wt(�wtt [ct])� �(C; T )) Ifvt�pwt (�wtt [ct])gjFt
i#
+ �(C; T )C

= E�

"
TX
t=1

wt (p
wt(�wtt [ct])� �(C; T ))E�

h
Ifvt�pwt (�wtt [ct])gjFt

i#
+ �(C; T )C

= E�

"
TX
t=1

wt (r
wt(�wtt [ct])� �(C; T )�wtt [ct])

#
+ �(C; T )C

� E�

"
TX
t=1

wt
�
rwt(�wt;d)� �(C; T )�wt;d

�#
+ �(C; T )C

= E(wt)Tt=1

"
TX
t=1

wt
�
rwt(�wt;d)� �(C; T )�wt;d

�#
+ �(C; T )C

= T

Z 1

0

(rw(�w;d)� �(C; T )�w;d)w �fw(w) dw + �(C; T )C = Rd(C; T; �(C; T )):

For the inequality, we have used that �w;d maximizes rw(�)� �(C; T )�.

For the proof of Theorem 5, we �rst need a Lemma:

Lemma 2 Let RTI(C; T ) be the revenue obtained form the stationary policy �TI : Let
( ewt; evt)Tt=1 be an independent copy of the process (wt; vt)Tt=1. It holds that:
1.

RTI(C; T ) = E(wt)Tt=1

"
TX
t=1

rwt(�wt;d)wt

 
1� P

"
t�1X
s=1

ewsIfevs�p ews;dg > C � wt
#!#

:

(16)
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2.

RTI(C; T )

Rd(C; T )
� 1 (17)

�

PT
t=1

R1
0
rw(�w;d)w

�
min

�
1;

(t�1)�2d
((T�t+1)�d�w)2

�
Ifw�(T�t+1)�dg + Ifw>(T�t+1)�dg

�
�fw(w) dw

T
R1
0
rw(�w;d)w �fw(w) dw

where �d :=
min(C;T

R1
0 �w;�w �fw(w) dw)

T
, and where �2d := E[w2Ifv�pw;dg] � �2d =R1

0
w2�w;d �fw(w) dw � �2d.

Proof. 1. RTI(C; T ) may be written as:

RTI(C; T ) = E(wt;vt)Tt=1

"
TX
t=1

pwt;dwt Ifvt�pwt;dg If
Pt�1
s=1 ws Ifvs�pws;dg�C�wtg

#

= E(wt)Tt=1

"
TX
t=1

rwt(�wt;d)wt

#
� E(wt;vt)Tt=1

"
TX
t=1

pwt;dwt Ifvt�pwt;dg If
Pt�1
s=1 ws Ifvs�pws;dg>C�wtg

#

In order to simplify the second term, we use the fact that vt and (ws; vs)t�1s=1 are inde-
pendent conditional on wt:

E(wt;vt)Tt=1

"
TX
t=1

pwt;dwt Ifvt�pwt;dg If
Pt�1
s=1 ws Ifvs�pws;dg>C�wtg

#

= E(wt;vt)Tt=1

"
TX
t=1

E
h
pwt;dwt Ifvt�pwt;dg If

Pt�1
s=1 ws Ifvs�pws;dg>C�wtg

jwt
i#

= E(wt;vt)Tt=1

"
TX
t=1

pwt;dwtE
�
Ifvt�pwt;dgjwt

�
E
h
If
Pt�1
s=1 ws Ifvs�pws;dg>C�wtg

jwt
i#

= E(wt;vt)Tt=1

"
TX
t=1

pwt;dwt �
wt;d P

"
t�1X
s=1

ews Ifevs�p ews;dg > C � wt

##

= E(wt)Tt=1

"
TX
t=1

rwt(�wt;d)wt P

"
t�1X
s=1

ews Ifevs�p ews;dg > C � wt

##
:

This establishes equation (16).

2. Recall that Rd(C; T ) = T
R1
0
rw(�w;d)w �fw(w) dw. Observe furthermore that

�w;d depends onC and T only through the ratio C
e¤

T
, whereCe¤ = min(C; T

R1
0
�w;�w �fw(w) dw),

via E[wIfv�pw;dg] =
R1
0
w�w;d �fw(w) dw = Ce¤

T
= �d. Observe �rst that

P

"
t�1X
s=1

ews Ifevs�p ews;dg > C � wt

#
� P

"
t�1X
s=1

ews Ifevs�p ews;dg > T�d � wt

#

= P

"
t�1X
s=1

ews Ifevs�p ews;dg � (t� 1)�d > (T � t+ 1)�d � wt

#
:
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We trivially bound the last expression by 1 if (T � t+ 1)�d � wt � 0 , and otherwise
use Chebychev�s inequality to deduce

P

"
t�1X
s=1

ews Ifevs�p ews;dg � (t� 1)�d > (T � t+ 1)�d � wt

#

� P

24 t�1X
s=1

ews Ifevs�p ews;dg � (t� 1)�d

!2
> ((T � t+ 1)�d � wt)2

35
�

E
h�Pt�1

s=1 ews Ifevs�p ews;dg � (t� 1)�d
�2i

((T � t+ 1)�d � wt)2
=

(t� 1)�2d
((T � t+ 1)�d � wt)2

:

As we are bounding a probability, we can replace this estimate by the trivial bound
1 again whenever this is better, i.e. if wt is smaller than but close to (T � t + 1)�d.
Thus,

E(wt;vt)Tt=1

"
TX
t=1

pwt;dwt Ifvt�pwt;dg If
Pt�1
s=1 ws Ifvs�pws;dg>C�wtg

#

�
TX
t=1

Z 1

0

rw(�w;d)w

�
min

�
1;

(t� 1)�2d
((T � t+ 1)�d � w)2

�
Ifw�(T�t+1)�dg + Ifw>(T�t+1)�dg

�
�fw(w) dw:

Finally, dividing by Rd(C; T ) yields the desired estimate.

Proof of Theorem 5. 1. The starting point is the estimate from (17). Note that
rw(�w;d)w �fw(w) is an integrable upper bound for

rw(�w;d)w

�
min

�
1;

(t� 1)�2d
((T � t+ 1)�d � w)2

�
Ifw�(T�t+1)�dg + Ifw>(T�t+1)�dg

�
�fw(w):

Moreover, for �xed w, for arbitrary � 2 (0; 1) and for t � �T we have w < (1� �)T�d
eventually as T;C !1, C

T
= const. Moreover,

(t� 1)�2d
((T � t+ 1)�d � w)2

� �T�2d
((1� �)T�d � w)2

! 0; as T !1:

The Dominated Convergence Theorem implies then thatZ 1

0

rw(�w;d)w

�
min

�
1;

(t� 1)�2d
((T � t+ 1)�d � w)2

�
Ifw�(T�t+1)�dg + Ifw>(T�t+1)�dg

�
�fw(w) dw ! 0;

in the considered limit, for arbitrary � 2 (0; 1) and for t � �T . Consequently, also the
term that is subtracted in the estimate (17) converges to zero.
2. If w and v are independent, all the �w;d for di¤erent w coincide, as do the �w;�.

Call them �d and ��, respectively. We have then

RTI(C; T ) = p(�d)E

"
min

 
C;

TX
t=1

wt Ifvt�p(�d)g

!#

= p(�d)E

24 TX
t=1

wt Ifvt�p(�d)g �
 

TX
t=1

wt Ifvt�p(�d)g � C

!+35
24



We use now the following estimate for E[(X � k)+], where X is a random variable
with mean m and variance �2 and where k is a constant:

E[(X � k)+] �
p
�2 + (k �m)2 � (k �m)

2
:

Note that by independence

E

"
TX
t=1

wt Ifvt�p(�d)g

#
= E[w]T�d;

V ar

"
TX
t=1

wt Ifvt�p(�d)g

#
= T

�
E[(w Ifv�p(�d)g)

2]� E[w]2(�d)2
�

= T
�
E[w2]�d � E[w]2(�d)2

�
If ��TE[w] > C and hence if �d = C

TE[w]
this yields:

RCP (C; T ) � Rd(C; T )� p(�d)

q
TE[w2]�d

2
= Rd(C; T )

 
1 �

p
E[w2]=E[w]

2
p
C

!
:

If ��TE[w] � C and hence if �d = ��, then C � E
hPT

t=1wt Ifvt�p(�d)g

i
, so that

E

��PT
t=1wt Ifvt�p(�d)g � C

�+�
�

p
�2

2
. Thus,

RTI(C; T ) � Rd(C; T )� p(��)
p
��TE(w2)

2
= Rd(C; T )

 
1 �

p
E[w2]=E[w]

2
p
��E(w)T

!
:

Hence, we can conclude that:

RTI(C; T )

Rd(C; T )
�
 
1 �

p
E[w2]=E[w]

2
p
min(C; T��E[w]))

!
:
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