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Abstract

The standard framework for analyzing games with incomplete information models

players as if they have an infinite depth of reasoning. This paper generalizes the type

spaces of Harsanyi (1967–1968) so that players can have a finite depth of reasoning.

The innovation is that players can have a coarse perception of the higher-order beliefs

of other players, thus formalizing the small-world idea of Savage (1954) in a type-space

context. Unlike in other models of finite-order reasoning, players with a finite depth of

reasoning can reason about higher-order events if these events are generated by events

of sufficiently low order. In particular, an event F can be common belief if it is entailed

by some public event. This is true even if players cannot reason about higher-order

statements like “Ann believes that Bob believes that Ann believes. . . (58 times). . . that

F” in isolation. Thus, the usual equivalence between the iterative and the fixed-point

account of common belief breaks down when players have a finite depth, and common

belief is easier to attain than as suggested by the iterative approach.
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1. Introduction

Analyzing games of incomplete information requires taking into account not only the beliefs

of players, but also their higher-order beliefs. Consider, for example, a player who needs to

decide which project to invest in. The payoff associated with each choice depends on the

economic fundamentals—the state of nature—, as well as the actions of other investors. The

player’s optimal decision thus depends on her beliefs about the state of nature and the actions

of the other players. Because the same is true for her opponents, the player’s optimal action

will also depend on her belief about her opponents’ beliefs about the state of nature, that

is, a second-order belief. And because her opponents in turn condition their action on their

beliefs about their opponents’ beliefs about the state of nature, the player’s action choice will

depend on her belief about her opponents’ beliefs about their opponents’ beliefs about nature

(a third-order belief), and so on, ad infinitum (Harsanyi, 1967–1968).

Are “real” players capable of such higher-order reasoning? The answer to this question

is not so clear-cut as it may seem. A statement such as “John Dean did not know that

Nixon knew that Dean knew that Nixon knew that McCord had burgled O’Brien’s office

in the Watergate Apartments” is inherently difficult to reason about (Clark and Marshall,

1981; Kinderman et al., 1998). At the same time, other types of higher-order reasoning seem

unproblematic. If two players sit across the table from each other and have eye contact with

each other, then clearly each of them believes that they have eye contact, believes that the

other believes that, believes that the other believes that they believe that, and so on. That

is, it is common belief between the players that they have eye contact (Lewis, 1969; Chwe,

2001).1

Existing models do not take into account that some higher-order events are easier to reason

about than others. On the one hand, the standard game-theoretic framework models players

as if they have higher-order beliefs about every possible event, at all orders, i.e., as if players

have an infinite depth of reasoning. On the other hand, in models in which players can have a

finite depth of reasoning, such as cognitive-hierarchy models or models of level-k reasoning,2

it is assumed that a player with a finite depth of reasoning cannot reason about any event

at higher orders. Because beliefs at arbitrarily high order can have a significant impact on

economic outcomes,3 it is important to carefully model which higher-order events players can

1We follow the recent literature in game theory in using the terms “belief” and “common belief” rather

than “knowledge” and “common knowledge.” The formal distinction is that knowledge is considered to be

always true, while (probability-one) belief may be true or false.
2See, e.g., Nagel (1995), Stahl and Wilson (1995) Ho et al. (1998), Costa-Gomes et al. (2001), Crawford

and Iriberri (2007), Strzalecki (2009), and Heifetz and Kets (2011). See Crawford et al. (2012) for a survey.
3An action that is optimal for a player given her kth-order belief, for example, may no longer be optimal
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hold beliefs about. This paper provides a framework that does just that.

We propose a class of type spaces, called extended type spaces, starting from the idea that

a player can have a coarse perception of the state of the world. A player who has a coarse

perception does not distinguish among states of the world that differ only in certain details,

such as the beliefs of other players at very high orders.

More specifically, each type in an extended type space is associated with a belief (probabil-

ity measure) over the states of nature and the types of other players, as in the type spaces of

Harsanyi (1967–1968). Unlike in Harsanyi type spaces, however, the beliefs of different types

of a given player can be defined on different σ-algebras. As a type’s belief assigns a probability

only to those subsets of her opponents’ types that are in the type’s σ-algebra, a type with

a coarse σ-algebra has a coarse perception of the other players’ types. And because types

generate higher-order beliefs, the coarseness of a type’s σ-algebra determines what features of

the other players’ higher-order beliefs the type can reason about.

Coarse perceptions thus model small worlds, as introduced by Savage (1954) in the context

of one-person decision situations. A state in a small world describes the possible uncertainties

a decision-maker faces in less detail than a state in a larger world, by neglecting certain

distinctions between states. This means that “a state of the smaller world corresponds not

to one state of the larger, but to a set of states” (Savage, 1954, p. 9, emphasis added). In

the present framework, a player may ignore the distinction between types for the other player

that differ only in the beliefs they generate at high order, by lumping together these types

into one set in her σ-algebra.

Because a Harsanyi type space is simply an extended type space in which each type has an

infinite depth of reasoning, extended type spaces generalize the Harsanyi framework. Extended

type spaces can also be seen as a generalization of cognitive-hierarchy and level-k models: Kets

(2012) constructs an extended type space such that a player who has a finite depth k cannot

reason about any nontrivial event of order greater than k, as is also true in cognitive-hierarchy

and level-k models.

The framework helps shed light on the question how players can attain common belief in

an event F even if they are bounded in their reasoning. Intuitively, certain lower-order events,

such as a public announcement that F is the case, immediately generate all the relevant higher-

order beliefs, just like the event that players have eye contact leads them to have common

belief in that event. This is true even if players cannot reason about the event that F is

kth-order mutual belief for some fixed k in isolation, as we show. This means that we no

given her (k+1)th-order belief, for any finite k (Rubinstein, 1989; Carlsson and van Damme, 1993). Also, beliefs

at arbitrarily high order may determine whether players with a common prior can have different posteriors

(Aumann, 1976; Geanakoplos and Polemarchakis, 1982).
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longer have the usual equivalence between common belief as a conjunction of mutual belief at

all orders and common belief as an event that is induced by a public event.

The idea that ‘simple’ events can induce (almost) common knowledge is not new; it is

central to the conceptualization of common knowledge by the philosopher David Lewis (1969)

and it underlies the formalization of common knowledge and approximate common belief in

Aumann (1976) and Monderer and Samet (1989), respectively. Indeed, speaking of a belief

hierarchy such as the one that describes a player’s higher-order beliefs about the event that

she and another player have eye contact, Lewis writes: “this is a chain of implications, [it

does not represent] steps in anyone’s actual reasoning. Therefore, there is nothing improper

about its infinite length” (p. 53). Our contribution here is to point out that this idea applies

beyond the context of common belief and, more fundamentally, to formalize it in the context

of players with bounded reasoning abilities, and to use it to show that the usual equivalence

between different notions of common belief can break down.

The remainder of this paper is organized as follows. The next section illustrates the main

results with some simple examples. Section 3 formally introduces the notion of an extended

type space, and Section 4 considers the higher-order beliefs that types can have. Section 5

considers the different notions of common belief that have appeared in the literature, and

studies their relations. Section 6 presents a direct characterization of the depth of reasoning

of types. Section 7 discusses the related literature, and Section 8 concludes. Most proofs are

relegated to the appendices.

2. Examples

2.1. Extended type spaces

We present some examples to introduce the framework and to illustrate the main results.

We consider a setting in which two players, Ann (a) and Bob (b), are uncertain about the

state of nature θ ∈ Θ. The uncertainty faced by the players, including their uncertainty about

the beliefs of the other player, is represented by an (extended) type space. As in the type

spaces of Harsanyi (1967–1968), each player i = a, b is endowed with a type space Ti, and

each type ti ∈ Ti is associated with a belief (probability measure) βi(ti) about the state of

nature and the other player’s type. Unlike in a Harsanyi type space, the beliefs of types can

be defined on different σ-algebras. Specifically, Ann’s type set is endowed with a collection

Πa of σ-algebras, and the belief βb(tb) for a type tb for Bob about Ann’s type is defined on a

σ-algebra Σb(tb) from that collection, and similarly with the player labels interchanged. We

will see that the σ-algebra on which a type’s belief is defined reflects the extent to which the
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type “thinks through” the beliefs of the other player. The σ-algebras have to satisfy some

conditions that ensure that types induce well-defined belief hierarchies; see Section 2.3.

2.1.1. Infinite depth

We start with a simple example to illustrate how types generate higher-order beliefs. The

state of nature θ can be either high (h) or low (`), and each player i = a, b has two types,

labeled t1i , t
2
i . Each type ta for Ann is endowed with the power set, that is, Σa(ta) is the

collection of all subsets of Bob’s type set, and likewise for the types for Bob.

βa(t
1
a) h ` βa(t

2
a) h ` βb(t

1
b) h ` βb(t

2
b) h `

t1b
1
2

0 t1b 0 0 t1a
1
3

0 t1a 0 1
4

t2b
1
2

0 t2b 0 1 t2a
2
3

0 t2a
3
4

0

Figure 1: An extended type space where every type has an infinite depth of reasoning, with

the beliefs for types for Ann on the left, and those for Bob on the right; we write x for the

singleton {x}.

Because Bob’s type sets is finite, it suffices to specify the belief βa(ta) for a type ta for Ann

on the (unique) partition of Bob’s type set that generates the σ-algebra Σa(ta). In this case,

specifying the belief for type ta on the pairs (θ, tb) for every state of nature θ and every type

tb for Bob specifies its belief on the full σ-algebra. The beliefs for the types for Bob can be

described similarly; see Figure 1.

The types and their beliefs specify players’ higher-order beliefs. For example, type t1a for

Ann believes (with probability 1) that the state of nature is h and assigns probability 1
2

to the

event that Bob believes that, as it assigns probability 1
2

to type t1b , which believes that θ = h.

Because each type for Bob similarly has a belief about Ann’s belief about θ, t1a also induces a

belief about Bob’s beliefs about Ann’s belief about θ, and so on.

In this case, the reasoning does not stop at some fixed order, and each type has an infinite

depth of reasoning. Indeed, the type space in Figure 1 is just a Harsanyi type space. In

general, a Harsanyi type space is an extended type space in which the beliefs of types are

defined on σ-algebras that are sufficiently fine to induce beliefs at all orders. Extended type

spaces thus generalize the Harsanyi framework.

2.1.2. Finite depth

What happens if types are endowed with a coarser σ-algebra? Consider the extended

type space in Figure 2. The collection Πa of σ-algebras on Ann’s type set consists of the

trivial σ-algebra F0
a and the σ-algebra F∗a that is generated by the partition {{t1a, t2a}, {t3a, t4a}};
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the collection Πb is similarly defined. Each type tb for Bob is endowed with the σ-algebra

Σb(tb) = F∗a , and likewise for the types for Ann.

βa(t
1
a) h ` βa(t

2
a) h ` βb(t

1
b) h ` βb(t

2
b) h `

{t1b , t2b} 1 0 {t1b , t2b} 0 0 {t1a, t2a} 1 0 {t1a, t2a} 0 0

{t3b , t4b} 0 0 {t3b , t4b} 1 0 {t3a, t4a} 0 0 {t3a, t4a} 1 0

βa(t
3
a) h ` βa(t

4
a) h ` βb(t

3
b) h ` βb(t

4
b) h `

{t1b , t2b} 0 1 {t1b , t2b} 0 0 {t1a, t2a} 0 1 {t1a, t2a} 0 0

{t3b , t4b} 0 0 {t3b , t4b} 0 1 {t3a, t4a} 0 0 {t3a, t4a} 0 1

Figure 2: An extended type space with coarse σ-algebras.

Each type ta for Ann has a first-order belief, that is, it assigns a probability to each event

that involves the state of nature. Type t1a, for example, believes that the state of nature is

h. Each type also induces a second-order belief, that is, a belief about any belief Bob may

have about θ. Type t1a, for example, assigns probability 1 to the event that Bob has type t1b
or t2b (i.e., to {t1b , t2b}), and thus to the event that Bob believes that the state of nature is h.

However, type t1a does not have a well-articulated belief about Bob’s beliefs about her belief

about the state of nature, since t1b and t2b differ in their beliefs about Ann’s belief about nature:

type t1b believes that Ann believes that θ = h, and t2b believes that Ann believes that θ = `.

This means that t1a has a finite depth of reasoning.

By endowing different types for a player with different σ-algebras, we can model situations

in which players are uncertain about the depth of reasoning of their opponent; Example 1 in

Section 6 provides an instance of this. Before discussing the depth of reasoning of types in

more detail, we turn to the question what higher-order beliefs players can have if they are

bounded in their reasoning.

2.2. Higher-order beliefs

Some forms of higher-order reasoning seem unproblematic, even if players have a finite

depth of reasoning. Can we understand that in the context of this framework? And can that

help us understand how common belief can be attained?

2.2.1. Eye contact

Consider the type space in Figure 3. The set of states of nature is Θ = {eh, e`, n}. If the

state of nature θ is eh or e`, then Ann and Bob have eye contact with each other. If the state

is eh, then the value of a particular good is high; if the state is e`, then the value is low. If
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θ = n, then Ann and Bob do not have eye contact (and the value of the good is immaterial).

The collection Πi of σ-algebras on the type set for player i = a, b contains the trivial σ-algebra

F0
i and the σ-algebra Fi that is generated by the partition {{t1i , t2i }, {t3i , t4i }, {t5i }}; every type

ta for Ann is endowed with the σ-algebra Σa(ta) = Fb, and likewise for the types for Bob.

βa(t
1
a) eh e` n βa(t

2
a) eh e` n

{t1b , t2b} 1 0 0 {t1b , t2b} 0 0 0

{t3b , t4b} 0 0 0 {t3b , t4b} 1 0 0

{t5b} 0 0 0 {t5b} 0 0 0

βa(t
3
a) eh e` n βa(t

4
a) eh e` n

{t1b , t2b} 0 1 0 {t1b , t2b} 0 0 0

{t3b , t4b} 0 0 0 {t3b , t4b} 0 1 0

{t5b} 0 0 0 {t5b} 0 0 0

Figure 3: The beliefs for Ann’s types t1a, t
2
a, t

3
a, t

4
a. Type t5a assigns probability 1 to (θ, tb) =

(n, t5b). The beliefs for the types for Bob can be obtained by exchanging the indices a and b.

The types for Ann have beliefs about Bob’s beliefs about the value of the good, but not

about Bob’s beliefs about Ann’s belief about the value. Type t1a, for example, believes that

the value of the good is high (because t1a assigns probability 1 to θ = eh) and believes that

Bob believes that (because t1a assigns probability 1 to the event that Bob has type t1b or t2b ,

both of which believe that θ = eh). The type, however, cannot reason about the event that

Bob believes that Ann believes that the value is high, because the type’s σ-algebra does not

separate the types that differ in their beliefs about Ann’s beliefs about the value of the good,

such as types t1b and t2b . Thus, t1a does not have a well-articulated third-order belief about

certain events, and the same, in fact, holds for the other types.

Players can nevertheless have nontrivial beliefs at higher orders. For example, type t1a for

Ann believes that there is eye contact (i.e., t1a assigns probability 1 to θ ∈ {eh, e`}), believes

that Bob believes that (t1a assigns probability 1 to types for Bob that assign probability 1 to

θ ∈ {eh, e`}), and so on, and similarly for type t1b for Bob. The key is that the high-order

events that both players believe that there is eye contact, believe that the other believes that,

and so on, are equivalent to the low-order event Ee = Θ×{t1a, t2a, t3a, t4a}×{t1b , t2b , t3b , t4b} that the

players believe that they have eye contact. Because players can reason about this low-order

event, they can form beliefs about the high-order events as well.

By contrast, events concerning players’ higher-order beliefs about the value of the good

cannot be expressed in terms of an event of sufficiently low order. Intuitively, that Ann and
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Bob believe that the value is high does not imply that they believe that the other believes

that. More formally, the higher-order event Ehh = Θ× {t1a} × {t1b} (both players believe that

the value is high and that the other believes it is high) is strictly contained in the lower-order

event Eh = Θ × {t1a, t2a} × {t1b , t2b} (both players believe that the value is high), and no type

can reason about the higher-order event.

This holds generally: a player that has a finite depth of reasoning can form beliefs about

a higher-order event if and only if the event corresponds to an event of sufficiently low order

(Proposition 4.4).

2.2.2. Common belief

The event Ee that Ann and Bob believe they have eye contact is a so-called public event :

whenever it occurs, both players believe it. This event induces common belief in the event

that they have eye contact: both players believe they have eye contact, believe that the other

believes that, and so on. Indeed, in Harsanyi type spaces, public events generate common

belief in the events that they entail, and in fact generate kth-order mutual belief in such

events, for any k. That is, any sentence of the form “both players believe that. . . (k times)

that the event is true” holds. What is the relationship between these notions when players

have a finite depth of reasoning?

Consider the type space in Figure 4. The set of states of nature is Θ = {h,m, `}, and the

collection Πi of σ-algebras on the type set for player i = a, b contains the trivial σ-algebra and

the σ-algebra generated by the partition {{t1i , t2i }, {t3i , t4i }, {t5i , t6i }, {t7i , t8i }}.
The event E := Θ × {t1a, t2a, t3a, t4a} × {t1b , t2b , t3b , t4b} is a public event: whenever the players

have a type that is consistent with E (e.g., ta = t1a and tb = t2b), both of them assign probability

1 to E. Now consider players’ higher-order beliefs in the event F that the state of nature θ

is h or `, that is, F := {h,m} × Ta × Tb. Then, whenever the players have a type that is

consistent with E, both of them believe F ; and believe that both believe F ; and believe that

both believe that both believe F ; and. . . That is, the public event E—perhaps E is a public

announcement that F is the case—can induce common belief in F .

However, there is no type that believes the sentence s2 = “both players believe that both

players believe that F is the case (and players may or may not believe that both players believe

that both players believe that F holds).” The problem is that no player can reason about the

event Es2 = Θ×{t1a, t2a, t3a, t4a, t5a}×{t1b , t2b , t3b , t4b , t5a} that corresponds to the sentence s2: it does

not correspond to a suitable low-order event. This implies that F is not third-order mutual

belief.

Nonetheless, there are types that believe the sentence s′2 = “both players believe that both

players believe that F and E are the case”: the sentence s′2 corresponds to the event E that
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βa(t
1
a) h m ` βa(t

2
a) h m ` βa(t

3
a) h m ` βa(t

4
a) h m `

{t1b , t2b} 1 0 0 {t1b , t2b} 0 0 0 {t1b , t2b} 0 1 0 {t1b , t2b} 0 0 0

{t3b , t4b} 0 0 0 {t3b , t4b} 1 0 0 {t3b , t4b} 0 0 0 {t3b , t4b} 0 1 0

{t5b , t6b} 0 0 0 {t5b , t6b} 0 0 0 {t5b , t6b} 0 0 0 {t5b , t6b} 0 0 0

{t7b , t8b} 0 0 0 {t7b , t8b} 0 0 0 {t7b , t8b} 0 0 0 {t7b , t8b} 0 0 0

βa(t
5
a) h m ` βa(t

6
a) h m ` βa(t

7
a) h m ` βa(t

8
a) h m `

{t1b , t2b} 0 0 0 {t1b , t2b} 0 0 0 {t1b , t2b} 0 0 0 {t1b , t2b} 0 0 0

{t3b , t4b} 0 0 0 {t3b , t4b} 0 0 0 {t3b , t4b} 0 0 0 {t3b , t4b} 0 0 0

{t5b , t6b} 1
2

1
2

0 {t5b , t6b} 0 0 0 {t5b , t6b} 0 0 1
2

{t5b , t6b} 0 0 0

{t7b , t8b} 0 0 0 {t7b , t8b} 1
2

1
2

0 {t7b , t8b} 0 0 1
2

{t7b , t8b} 0 0 1

Figure 4: The beliefs for the types for Ann in an extended type space in which there is common

belief that θ is h or m, even if there is no third-order mutual belief in that event.

there is a public announcement of F , and that event is of sufficiently low order. Intuitively,

players cannot reason about the other player’s higher-order belief about θ in isolation, while

they are able to reason about such beliefs in the context of the public event. This makes

sense: when there is no public announcement of F , a player, say Ann, may still believe that

F is the case (as do the types t5a and t6a), and even believe that the other player believes F

(as does t5a), but it is not transparent to her whether or not the other player believes that she

believes F , and considering the different possibilities is too hard for her. If there is a public

announcement, on the other hand, then the higher-order beliefs are fixed by the low-order

public event, and are completely transparent to her.

Thus, when players have a finite depth of reasoning, common belief in an event F does not

necessarily imply that there is mutual belief in F at each order (Proposition 5.3). In other

words, it is not the case that attaining common belief is at least as hard as attaining kth-order

mutual belief for all k. This is not the case in the Harsanyi context: in a Harsanyi type space,

an event is common belief if and only if it is mutual belief at every order.

2.3. Depth of reasoning

We now consider a type’s depth of reasoning in more detail. A type for Ann has a depth

(of reasoning) of at least k if the type induces a well-articulated kth-order belief, i.e., it can

assign a probability to all events involving Bob’s (k − 1)th-order beliefs. How can we ensure

that each type has a well-defined depth of reasoning? And how can we characterize a type’s

depth?

9



2.3.1. A first pass

As we have seen, a type with a coarse σ-algebra can have a finite depth of reasoning. But,

because the depth of reasoning of a type is inherently a property of the belief hierarchy that

it induces, it is not clear a priori how the type’s σ-algebra determines its depth of reasoning.

Some intuition can be gleaned from the type space in Figure 2. Consider an arbitrary

type tb for Bob, say t1b , with σ-algebra Σb(t
1
b) = F∗a . As we have seen, t1b can form a second-

order belief, owing to the fact that its σ-algebra F∗a lumps together the types for Ann that

put probability 1 on h (viz., types t1a and t2a) and separates them from those types that put

probability 1 on ` (viz., types t3a and t4a); and more generally, contains all the subsets{
ta : βa(ta) assigns probability at least p to E

}
, (2.1)

for any probability p and any event E of the form E = E ′ × Tb, where E ′ ⊆ {h, `}, or,

equivalently, any event E in the product σ-algebra F{h,`} × {Tb, ∅}, where F{h,`} is the usual

σ-algebra on the set of states of nature, and {Tb, ∅} is the trivial σ-algebra on Bob’s type set.

Hence, the σ-algebra F∗a separates the types for Ann according to their first-order belief, and

the types for Bob have a second-order belief.

This, of course, holds generally: a type for Bob has a kth-order belief if its σ-algebra

separates the types for Ann according to their (k− 1)th-order beliefs, and similarly for Ann’s

types. Thus, the challenge is to identify conditions that ensure that a type’s σ-algebra sepa-

rates the types for the other player according to their beliefs up to some order, and to classify

the σ-algebras according to the order up to which they separate the types.

2.3.2. Separating the types according to their beliefs

In principle, we can check whether a σ-algebra separates the types according to their

higher-order beliefs by writing out the belief hierarchies that the types induce. But the belief

hierarchy induced by a type depends on the σ-algebras on the type sets, and may be ill-defined

if the σ-algebras do not separate the types according to their higher-order beliefs. We thus

want to find a condition on the type space that guarantees that the σ-algebras separate the

types according to their higher-order beliefs.

We can again gain some intuition from the type space in Figure 2. As we noted, a type

for Ann generates a third-order belief if its σ-algebra separates the types for Bob according to

their second-order belief. How can we identify the types for Bob that have the same second-

order belief? Recall that the σ-algebra F∗a lumps together exactly those types for Ann that

have the same first-order belief. Therefore, the types for Bob that have the same second-order

belief are precisely those types that have the same belief about nature and whose beliefs about
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Ann’s type coincide on the σ-algebra F∗a . That is, a σ-algebra separates the types for Bob

according to their second-order belief if it contains the subsets of the form{
tb : βb(tb) assigns probability at least p to E

}
,

for any probability p and event E that belongs to the product σ-algebra F{h,`} × F∗a . If a

σ-algebra Σa(ta) associated with a type ta for Bob contains these sets, then we say that Σa(ta)

dominates the σ-algebra F∗a .

This can of course be generalized: a σ-algebra F̃b separates the types for Bob according

to their kth-order beliefs if F̃b dominates a σ-algebra F̃a on Ann’s type set that separates her

types according to their (k − 1)th-order belief, which is the case if F̃a dominates a σ-algebra

F̃ ′b on Bob’s type set that separates the types according to their (k − 2)th-order beliefs, and

so on.

2.3.3. No extraneous sets

However, even if a type’s σ-algebra dominates the appropriate σ-algebras, its depth of

reasoning may not be well-defined. Consider the structure in Figure 5. The collection Πa of

σ-algebras on Ann’s type set contains the trivial σ-algebra and the σ-algebra generated by

the partition {{t1a, t2a}, {t3a}, {t4a}}; the collection Πb of σ-algebras on Bob’s type set is defined

similarly.

βa(t
1
a) h ` βa(t

2
a) h ` βb(t

1
b) h ` βb(t

2
b) h `

{t1b , t2b} 1
2

0 {t1b , t2b} 0 0 {t1a, t2a} 1
2

0 {t1a, t2a} 0 0

{t3b} 1
2

0 {t3b} 0 0 {t3a} 1
2

0 {t3a} 0 0

{t4b} 0 0 {t4b} 1 0 {t4a} 0 0 {t4a} 1 0

βa(t
3
a) h ` βa(t

4
a) h ` βb(t

3
b) h ` βb(t

4
b) h `

{t1b , t2b} 0 1
2

{t1b , t2b} 0 0 {t1a, t2a} 0 1
2

{t1a, t2a} 0 0

{t3b} 0 1
2

{t3b} 0 0 {t3a} 0 1
2

{t3a} 0 0

{t4b} 0 0 {t4b} 0 1 {t4a} 0 0 {t4a} 0 1

Figure 5: The σ-algebra associated with the types for Ann is not the coarsest σ-algebra that

dominates the trivial σ-algebra.

The σ-algebra Σb(t
1
b) associated with type t1b for Bob dominates the trivial σ-algebra on

Bob’s type set. As we have seen in (2.1), this means that the type has a belief about Ann’s

belief about nature. In addition, the type can assign a probability to some events involving

Ann’s beliefs about nature and about Bob’s beliefs about nature, but not to others. For
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example, t1b can form a belief about the event that Ann assigns equal probability to the event

E`h that θ = ` and that Bob believes that θ = h, and to the event E`` that θ = ` and that Bob

believes that θ = `. The reason is that t1b can assign a probability to the subset of types (the

singleton {t3a}) that have this second-order belief. On the other hand, t1b cannot form a belief

about another event that requires the same level of sophistication: it cannot reason about the

event that Ann assigns equal probability to the event Ehh that θ = h and that Bob believes

that θ = h and to the event Eh` that θ = h and that Bob believes that θ = `, because it can

only assign a probability to the set {t1a, t2a}, not to the individual types; and t1a and t2a have

different beliefs about Ehh and Eh`.

Unlike in the type spaces in Figures 3 and 4, the event {t3a} that Ann assigns equal

probability to the events E`h and E`` is not generated by some lower-order event, so it is

not the case that Bob can reason about this event because it is entailed by a suitable lower-

order event. Thus, the “depth” of t1b depends on the event it reasons about, and if we allow

that, there is nothing we can rule out when it comes to a player’s reasoning about others.

The problem is that the σ-algebra Σb(t
1
b) contains a set, viz. {t3a}, that is of higher order

than the other events that the type can reason about. The coarsest σ-algebra that dominates

the trivial σ-algebra does not have this problem: it contains precisely the subsets of types for

Ann that differ in their first-order beliefs, but no ‘extraneous’ sets like {t3a}.
So, a type has a well-defined depth of reasoning if its σ-algebra is the coarsest σ-algebra

that dominates the coarsest σ-algebra. . . that dominates the trivial σ-algebra. This is the

case if every (nontrivial) σ-algebra in the collection Πb of σ-algebras on Bob’s type set is the

coarsest σ-algebra that dominates some σ-algebra in Πa (and likewise with the labels a and b

interchanged).

2.3.4. More than two players

For the case of two players, this condition guarantees that each type generates a belief

hierarchy of a well-defined depth. When there are three or more players, the situation is a bit

more involved. Suppose there are three players, Ann, Bob, and Carol. Each player i = a, b, c

has four types, labeled as t1i , t
2
i , t

3
i , t

4
i . The σ-algebras in Πi are the trivial σ-algebra F0

i and the

σ-algebra F1
i generated by the partition {{t1i , t2i }, {t3i , t4i }}. We now endow each type for Ann

with a product σ-algebra, describing the beliefs it can have about the types for Bob and Carol,

and similarly for the types for Bob and Carol. For each player i, the types t1i and t2i believe

that the state of nature is h; the other types believe that the state of nature is `. Suppose that

type t1a has the product σ-algebra Σa(t
1
a) = F1

b × F0
a , and that it assigns probability 1 to the

event {h} × {t1b , t2b} × {t1c , t2c , t3c , t4c}. Then, the type believes that Bob believes that the state

of nature is h (as both t1b and t2b assign probability 1 to that event), but it does not have a
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well-articulated belief about Carol’s belief about nature. That is, Ann can reason about Bob’s

first-order beliefs, but not about Carol’s, meaning that her “depth” of reasoning depends on

the identity of the player she reasons about.

A type ta for Ann has the same ability to reason about Bob’s beliefs as about Carol’s if

there is some k such that its σ-algebra Σa(ta) separates the types for Bob and Carol according

to their kth-order belief. So, to bring the extent to which Ann can reason about Bob’s higher-

order beliefs in line with the degree to which she can reason about Carol’s belief, we have to

impose a condition not on the σ-algebras on individual type sets, as we did earlier, but on

the combinations of σ-algebras, that is, on the product σ-algebras. We can then extend our

earlier analysis in a straightforward way.

More specifically, we organize the σ-algebras on players’ type sets into so-called profiles

F := Fa ×Fb ×Fc. The set of profiles, denoted Π, then represents the possible combinations

of σ-algebras that types can have. We can extend the notion of dominance to profiles, and

the natural analogue of our condition for the two-player case is the following:4

For every (nontrivial) profile F ∈ Π, there is a profile F ′ = F ′a×F ′b×F ′c ∈ Π such

that Fa is the coarsest σ-algebra that contains all the sets of the form{
ta : βa(ta) assigns probability at least p to E

}
,

where p is a probability and E belongs to F{h,`}×F ′b×F ′c, and similarly for Fb and

Fc.

This condition is sufficient to ensure that each type generates a belief hierarchy of a well-

defined depth (Theorem 4.2). In fact, it is stronger than necessary; in the formal treatment,

we therefore work with a somewhat weaker condition (Assumption 1) which turns out to

be a weakening of the standard condition on Harsanyi type spaces that the belief maps be

measurable.

2.3.5. Characterizing a type’s depth

We can exploit the recursive nature of our condition to characterize a type’s depth of

reasoning. Every type has a σ-algebra that is consistent with some profile, and that profile

dominates a profile which in turn dominates another profile, and so on. Thus, we can classify

4This condition, which puts restrictions on the possible profiles of σ-algebras, is somewhat stronger for the

case of two players than the condition on individual type sets we identified in Section 2.3.3. However, for every

extended type space for two players that satisfies the weaker condition, there exists an extended type space

that satisfies the stronger variant and in which types generate the same belief hierarchies. In that sense, there

is no loss of generality in adopting the stronger version also for two-player games.
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the profiles according to the profiles they dominate. We can start with the profiles that do not

dominate any other profile; those are the profiles that do not separate the types according to

their beliefs, and thus correspond to depth 1. The profiles that dominate profiles that do not

dominate any profiles themselves (but no other profiles) separate the types according to their

beliefs about θ, and thus correspond to depth 2, and so on. This gives us a simple recursive

procedure to determine a type’s depth (Proposition 6.3).5 .

Indeed, in the type space in Figure 2, the profile F0
a × F0

b of trivial σ-algebras does not

dominate another profile, and thus correspond to depth 1. The profile F∗a × F∗b dominates

F0
a × F0

b , but no other profile. The types for Ann, which are endowed with the σ-algebra

Σa(ta) = F∗b , therefore have depth 2, and similarly for the types for Bob. There are no types

that have depth 1; the trivial σ-algebras F0
a ,F0

b are used only to the specify the beliefs of

types that have a higher depth.

We can thus determine a type’s depth without explicitly writing out its belief hierarchy. All

together, extended type spaces provide an implicit description of players’ finite and infinite hi-

erarchies of beliefs, by specifying types, beliefs about types, and a collection of σ-algebras, just

like the Harsanyi type spaces implicitly model players’ infinite belief hierarchies, by specifying

types and beliefs about types.

3. Extended type spaces

We now begin the formal treatment. Section 3.1 defines the class of extended type spaces,

and Section 3.2 demonstrates that each Harsanyi type space can be seen as an extended type

space.

3.1. Definition

There is a set of players N ; to avoid trivialities, we assume that the number of players is

at least 2. Players are uncertain about the state of nature, which is drawn from a nonempty

set Θ. A state of nature θ ∈ Θ could, for instance, specify the payoff functions of the players,

or their actions. The set Θ of states of nature is endowed with some σ-algebra FΘ. Given a

family of sets {Yj}j∈N and a player i ∈ N , we denote by Y and Y−i the product spaces×j∈N Yj

and×j 6=i
Yj, respectively, and we write y ∈ Y and y−i ∈ Y−i for their typical elements. Given

a family of measurable spaces (Yj,Fj)j∈N , we write F and F−i for the product σ-algebras

5There are some subtleties, though. First, in some type spaces, this procedure only gives a lower bound

on a type’s depth. Second, profiles can also be part of a cycle or infinite chain of profiles that dominate each

other, so that this “bottom-up” procedure does not work for these profiles; see Section 6.
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×j∈N Fj and×j 6=i
Fj on Y and Y−i, respectively.

A (Θ-based) (extended) type space is a tuple

T = ((Ti,Σi, βi)i∈N ,Π),

that satisfies Assumption 1 below. The set Ti is a nonempty set of types for player i ∈ N , and

Π is a set of profiles, where a profile is a product σ-algebra F on the set T of type profiles.

Given the set Π of profiles and a player i ∈ N , we can define

Π−i := {F−i : there is Fi such that Fi × F−i ∈ Π}

to be the set of σ-algebras on T−i that are induced by one of the profiles in Π. The function

Σi maps each type ti ∈ Ti into a (product) σ-algebra Σi(ti) in Π−i. The function βi maps each

type ti into a probability measure βi(ti) on the product σ-algebra FΘ × Σi(ti) on Θ × T−i.

The function βi is the belief map for player i, and the probability measure βi(ti) is the belief

of ti ∈ Ti about the state of nature and the types of the other players.

To state Assumption 1, we need some more notation. Fix product σ-algebras F =×j∈N Fj

and F ′ =×j∈N F
′
j on the set T of type profiles, and let i ∈ N . Then, the σ-algebra Fi i-

dominates the product σ-algebra F ′ if for each event E ∈ FΘ × F ′−i, and p ∈ [0, 1],{
ti ∈ Ti : E ∈ FΘ × Σi(ti), βi(ti)(E) ≥ p

}
∈ Fi.

If Fi i-dominates F ′ for each player i ∈ N , then we say that F dominates F ′, and we write

F � F ′. Similarly, if for each player i, Fi is the coarsest σ-algebra that i-dominates F ′, then

we write F �* F ′.6 If the product σ-algebra F dominates itself, that is, F � F , then we say

that F is self-dominating.

We can now state the assumption:

Assumption 1. For every profile F =×j∈N Fj ∈ Π such that Fi 6= {Ti, ∅} for some i ∈ N ,

one of the following holds:

(a) F is self-dominating; or

(b) there is a profile F ′ ∈ Π such that for each player j ∈ N , the σ-algebra Fj is the coarsest

σ-algebra that j-dominates F ′, that is, F �* F ′.

Remark. Assumption 1 is weaker than the condition discussed in Section 2.3.4: part (a) of

Assumption 1 says that if a profile F is self-dominating, then Fj need not be the coarsest

6The coarsest σ-algebra that i-dominates F ′ is well-defined: it is the σ-algebra that is the intersection of

all σ-algebras on Ti (such as the power set) that i-dominate F ′.
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σ-algebra that j-dominates some profile F ′. As we will see, types whose σ-algebra is derived

from a self-dominating profile have an infinite depth of reasoning (Lemma A.3(e)), so that

‘extraneous’ sets in a type’s σ-algebra (cf. Section 2.3.3) do not affect what higher-order

events a type can reason about.7,8 /

3.2. Harsanyi type spaces

As we show now, extended type spaces generalize Harsanyi type spaces, in the sense that

every Harsanyi type space can be viewed as an extended type space. A (Θ-based) Harsanyi

type space is a tuple (THi ,FHi , βHi )i∈N , where for each player i, THi is a nonempty set of types,

and FHi is a σ-algebra on Ti. The function βHi maps each type ti ∈ THi into a probability

measure βHi (ti) on the product σ-algebra FΘ×FH−i. The set of probability measures on FΘ×FH−i
is endowed with the σ-algebra that is generated by the sets{

µ : µ(E) ≥ p
}

: E ∈ FΘ × FH−i, p ∈ [0, 1].

That is, the set of probability measures on FΘ × FH−i is endowed with the coarsest σ-algebra

that contains the sets of probability measures that assign probability at least p to the event

E, for any E ∈ FΘ × FH−i and p ∈ [0, 1]. The belief maps βHi are assumed to be measurable.

(This specifications covers most of the alternative definitions in the literature, such as those

that require that type sets be separable metrizable or Polish, and assume that the belief maps

are Borel measurable or continuous.)

Given a Harsanyi type space (THi ,FHi , βHi )i∈N , we can define the tuple ((T ∗i ,Σ
∗
i , β

∗
i )i∈N ,Π

∗),

where for each player i ∈ N , T ∗i := THi , the collection Π∗ of profiles is the singleton {FH},
Σ∗i (ti) := FH−i for each ti ∈ T ∗i , and β∗i := βHi . This structure is an extended type space, as the

next result shows.

Proposition 3.1. The tuple ((T ∗i ,Σ
∗
i , β

∗
i )i∈N ,Π

∗) satisfies Assumption 1. Therefore, any

Harsanyi type space can be seen as an extended type space.

In fact, as can be seen from the proof of Proposition 3.1, the requirement that the belief

maps be measurable is equivalent to the condition that the product σ-algebra FH is self-

dominating. Thus, Assumption 1 relaxes the condition that the belief maps be measurable,

by allowing for profiles that do not dominate themselves (as in the type space in Figure 2, for

example).

7However, such sets can affect strategic behavior, at least in a Harsanyi type space, depending on the

solution concept (Ely and P eski, 2006; Dekel et al., 2007).
8While every Harsanyi type space satisfies Assumption 1 (Proposition 3.1), not every Harsanyi type space

satisfies the stronger condition (Friedenberg and Meier, 2012).
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4. Higher-order beliefs

We are interested in the question of what higher-order beliefs types can have. Section 4.1

demonstrates how each type can be mapped into a belief hierarchy, where a belief hierarchy

describes a type’s beliefs at all orders. Section 4.2 shows that each type has a well-defined

depth of reasoning, and characterizes the events that a type with a finite depth can reason

about.

4.1. Belief hierarchies

We first construct the space of belief hierarchies. In contrast to constructions of the space

of belief hierarchies for the Harsanyi case (e.g., Mertens and Zamir, 1985; Brandenburger

and Dekel, 1993), we need to take into account the fact that types can have a finite depth

of reasoning. To accommodate that, the set of kth-order beliefs for a player i is endowed

with a collection of σ-algebras, as opposed to a single one, with different σ-algebras capturing

different perceptions for player j 6= i of player i’s kth-order beliefs.

To construct the space of belief hierarchies, we need some more notation. Given a set X and

a (nonempty) collection S of σ-algebras on X, let ∆(X,S ) be the set of probability measures

that are defined on one of the σ-algebras in S . If µ is a probability measure in ∆(X,S ), then

the σ-algebra on which µ is defined is denoted by Σ(µ) ∈ S . The set ∆(X,S ) of probability

measures is endowed with the σ-algebra F∆(X,S ) generated by the sets{
µ ∈ ∆(X,S ) : E ∈ Σ(µ), µ(E) ≥ p

}
: E ∈ F ,F ∈ S , p ∈ [0, 1].

This σ-algebra naturally separates beliefs (probability measures) according to the probability

they assign to events; this makes it possible to talk about “beliefs about beliefs,” and so on

(Heifetz and Samet, 1998). Finally, given a collection {fj : Xj → Yj}j∈N of functions and a

player i ∈ N , we write f−i and f−i(x−i) for (fj)j 6=i and (fj(xj))j 6=i, respectively.

We are now ready to construct the space of belief hierarchies. We construct a sequence

B0
i , B

1
i , . . . of spaces for each player i that describe the higher-order beliefs for that player.

Formally, for each player i ∈ N , fix an arbitrary “seed” µ0
i . Then define

B0
i := {µ0

i },

and let FB0
i

:= {B0
i , ∅} be the trivial σ-algebra on B0

i .

For k > 0, suppose that for each i ∈ N and n ≤ k − 1, the set Bn
i has been defined, and

that FBn
i

is a σ-algebra on Bn
i . Then, for each player i, define

S k
i :=

{
FΘ ×Ak−1

−i : Ak−1
j is a sub-σ algebra of FBk−1

j
, j 6= i

}
,
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and

Bk
i := Bk−1

i ×∆(Θ×Bk−1
−i ,S

k
i ).

Let FBk
i

be the product σ-algebra FBk−1
i
×F∆(Θ×Bk−1

−i ,S k
i ).

This defines a sequence of spaces B0
i , B

1
i , . . . for each player i. The space Bk

i is the set of

kth-order belief hierarchies (µ0
i , µ

1
i , . . . , µ

k
i ), with µk

i a kth-order belief, i.e., a belief about the

state of nature and the (k − 1)th-order beliefs of the other players.

We can map each type into a belief hierarchy. Fix an extended type space T = ((Ti,Σi, βi)i∈N ,Π)

and a player i ∈ N . Define the function hT ,0i from Ti into B0
i in the obvious way: hT ,0i (ti) := µ0

i

for ti ∈ Ti. For k > 0, define the function hT ,ki from Ti into Bk
i by:

hT ,ki (ti) =
(
hT ,k−1
i (ti), βi(ti) ◦

(
IdΘ, h

T ,k−1
−i

)−1)
,

where βi(ti) ◦
(
IdΘ, h

T ,k−1
−i

)−1
is the probability measure induced by ti over the set of states of

nature and the (k − 1)th-order beliefs of the other players. That is, for each E ⊆ Θ×Bk−1
−i ,

βi(ti) ◦
(
IdΘ, h

T ,k−1
−i

)−1
(E) = βi(ti)

({
(θ, t−i) : (θ, hT ,k−1

−i (t−i)) ∈ E
})

is the probability that type ti assigns to the event that the state of nature and the (k − 1)th-

order belief hierarchies for the other players lie in E, whenever this probability is well-defined.

Thus, hT ,ki (ti) is the kth-order belief hierarchy induced by ti, and βi(ti) ◦
(
IdΘ, h

T ,k−1
−i

)−1
is its

kth-order belief.

A (full) belief hierarchy of a type ti is simply a sequence of probability measures that

specifies the kth-order beliefs induced by ti for every k. Formally, define the function hTi from

Ti into the product space×∞k=1
∆(Θ×Bk−1

−i ,S
k
i ) by

hTi (ti) :=
(
βi(ti) ◦

(
IdΘ, h

T ,0
−i
)−1

, βi(ti) ◦
(
IdΘ, h

T ,1
−i
)−1

, . . .).

Then, hTi (ti) is the belief hierarchy generated by type ti in type space T . The next result says

that the functions hT ,ki and hi are well-defined.

Proposition 4.1. Let T = ((Ti,Σi, βi)i∈N ,Π) be an extended type space. Then, for each

player i ∈ N and type ti ∈ Ti, the following hold:

(a) Type ti induces a kth-order belief hierarchy for every k, that is, hT ,ki (ti) is an element of

the set Bk
i for every k.

(b) Type ti induces a full belief hierarchy, that is, hTi (ti) is an element of the set×∞k=1
∆(Θ×

Bk−1
−i ,S

k
i ).

18



We can now define Hi to be the set of belief hierarchies generated by some type for player

i in some extended type space T , so that Hi is a subset of×∞k=1
∆(Θ × Bk−1

−i ,S
k
i ). By

Proposition 4.1(b), the set Hi of belief hierarchies is nonempty.

The present construction extends the construction of Heifetz and Samet (1998) for the

Harsanyi case to the case where types can have a finite (as well as infinite) depth of reasoning.9

The next section defines the depth of reasoning of types, and shows that each type has a well-

defined depth.

4.2. Depth of reasoning

Intuitively, a type has an infinite depth of reasoning if it can assign a probability to every

kth-order event for every k, where a kth-order event concerns the state of nature and the

(k − 1)th-order belief of the other players. A type has a finite depth of reasoning k if it

induces a well-defined belief about every mth-order event for m ≤ k, but there exist higher-

order events to which it cannot assign a probability.

Formally, fix an extended type space T = ((Ti,Σi, βi)i∈N ,Π), and for each player i ∈ N
and k = 0, 1, . . ., let BT ,ki be the image of the kth-order hierarchy map hT ,ki in Bk

i , that is,

BT ,ki := hT ,ki (Ti). By Proposition 4.1(a), the set BT ,ki is a (nonempty) subset of Bk
i , and we

endow BT ,ki with the relative σ-algebra FBT ,k
i

induced by the σ-algebra FBk
i
.

Then, a kth-order event for a player i ∈ N is an event that involves the state of nature

and the (k − 1)th-order beliefs of the other players, that is, a kth-order event for i is an

event in FΘ ××j 6=i
FBT ,k−1

j
. A type ti can reason at order k if for every kth-order event

E ∈ FΘ ××j 6=i
FBT ,k−1

j
, the probability

βi(ti) ◦
(
IdΘ, h

T ,k−1
−i

)−1
(E) = βi(ti)

({
(θ, t−i) : (θ, hT ,k−1

−i (t−i)) ∈ E
})

is well-defined, or, equivalently, if for every E ′ ∈×j 6=i
FBT ,k−1

j
, we have that{

t−i ∈ T−i : hT ,k−1
−i (t−i) ∈ E ′

}
∈ Σi(ti).

If a type can reason at order k, then it can reason at every order ` < k, due to the recursive

structure of belief hierarchies. Conversely, a type ti cannot reason at order k+ 1 if there is an

event E ′ ∈×j 6=i
FBT ,k

j
such that{

t−i ∈ T−i : hT ,k−i (t−i) ∈ E ′
}
6∈ Σi(ti).

Clearly, a type that cannot reason at order k + 1 cannot reason at any order ` > k + 1.

We can now define the depth of reasoning of types.

9Indeed, the space constructed by Heifetz and Samet (1998) is equivalent to the subset HHi ( Hi of belief

hierarchies that are induced by extended type spaces that are derived from Harsanyi type spaces.
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Definition. Fix a type ti ∈ Ti for player i. Then:

(a) type ti has finite depth (of reasoning) k = 1, 2, . . . if ti can reason at order k, but not at

order k + 1;

(b) type ti has an infinite depth (of reasoning) if ti can reason at every order.

We write di(ti) for the depth of reasoning of a type ti, where di(ti) =∞ if ti has an infinite

depth of reasoning, and di(ti) = k if ti has finite depth k. The next result states that each

type has a well-defined depth:10

Theorem 4.2. Let T = ((Ti,Σi, βi)i∈N ,Π) be an extended type space and fix a player i ∈ N
and a type ti ∈ Ti for i. Then, there is a unique k such that di(ti) = k, where k = 1, 2, . . . or

k =∞.

It is straightforward to show that types from Harsanyi type spaces have an infinite depth

of reasoning:

Proposition 4.3. Let T = ((Ti,Σi, βi)i∈N ,Π) be an extended type space derived from a

Harsanyi type space, and fix a player i ∈ N and type ti ∈ Ti for i. Then, ti has an infi-

nite depth of reasoning.

The next result shows that types with a finite depth can reason about a higher-order event

if and only if the event correspond to an event at lower order.

Proposition 4.4. Fix a player i and a type ti ∈ Ti. Suppose di(ti) = k <∞. Then, for each

event B ⊆ H−i that describes the belief hierarchies for the players j 6= i, we have{
t−i ∈ T−i : hT−i(t−i) ∈ B

}
∈ Σi(ti)

if and only if there is an event Bk−1 ∈×j 6=i
FBT ,k−1

j
such that{

t−i ∈ T−i : hT−i(t−i) ∈ B
}

=
{
t−i ∈ T−i : hT ,k−1

−i (t−i) ∈ Bk−1

}
.

In the next section, we use these results to study the conditions under which common

belief and kth-order mutual belief can be attained. Section 6 provides a characterization of

the depth of reasoning of types.

10It is easy to verify that if different types (possibly from different type spaces) generate the same belief

hierarchy (µ1, µ2, . . .), then they have the same depth of reasoning.
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5. Common belief

We apply the framework to understand how common belief can be attained when players

have a finite depth. The next section defines a belief operator for our setting. We then consider

the various accounts of common belief that have appeared in the literature, and show that

common belief can obtain even if mutual belief cannot be obtained at all orders.

5.1. Belief operators

We extend the standard belief operators to our setting (cf. Brandenburger and Dekel, 1987;

Monderer and Samet, 1989). Fix an extended type space T = ((Ti,Σi, βi)i∈N ,Π). A state of

the world (θ, t) ∈ Θ× T specifies a state of nature θ and a type ti for each player i ∈ N . Fix

an event E ⊆ Θ× T , and for player i ∈ N and type ti ∈ Ti, define

Eti := {(θ, t−i) : (θ, t) ∈ E}.

Then, define

Bi(E) := {(θ, t) ∈ Θ× T : Eti ∈ FΘ × Σi(ti), βi(ti)(Eti) = 1}

to be the event that player i believes E (with probability 1). Let

B(E) :=
⋂
i∈N

Bi(E)

be the event that all players believe the event E, that is, B(E) is the event that E is mutual

belief. The set of states at which E is kth-order mutual belief is Bk(E), where B1(E) := B(E),

and Bk := B ◦ Bk−1.

The belief operator Bi coincides with the standard one for the Harsanyi case, and indeed it

satisfies many of the usual properties, as we show in Appendix B. However, the belief operator

is not monotonic, unlike the standard operator: if a player believes an event E, she need not

believe an event E ′ that is implied by E. Intuitively, a player can only believe events that she

can reason about (i.e., events that belong to her σ-algebra), and that she can reason about E

does not imply that she can reason about E ′.

5.2. Common belief: different accounts

We investigate the relationship between different notions of common belief when players

can have a finite depth of reasoning. Game-theoretic applications often focus on the iterative

account: an event F ⊆ Θ×T is common belief if all players believe F , believe that all players
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believe F , and so on. That is, F is common belief in the iterative sense at a state of the world

(θ, t) ∈ Θ× T if

(θ, t) ∈
∞⋂
k=1

Bk(F ).

Denote the set of states of the world in which F is common belief in the iterative sense by

C it(F ).

While this definition of common belief is close to the informal description, it seems unlikely

that players check whether each of the infinitely many events Bk(F ) obtains, even if they have

an infinite depth of reasoning. An alternate approach is the fixed-point approach. The idea

is that if an event F is common belief, then every player believes F and believes that F is

common belief; and conversely, if every player believes F and believes that F is common belief,

then F is common belief (Aumann, 1976; Lewis, 1969; Halpern and Moses, 1990). Formally,

the event F is common belief in the fixed-point sense at a state of the world (θ, t) ∈ Θ× T if

there is an event X ⊆ Θ× T such that (θ, t) ∈ X, and

X ⊆ B(X ∩ F ), and

X ⊇ B(X ∩ F ).

Equivalently, F is common belief in the fixed-point sense at (θ, t) if (θ, t) belongs to a fixed

point of the mapping fF defined by

fF (A) = B(A ∩ F ),

where A ⊆ Θ × T . Denote the set of states of the world in which F is common belief in the

fixed-point sense by Cfp(F ).

The fixed-point account does not refer to infinitely many statements regarding players’

beliefs, but it is silent on how common belief can be attained in practice. This motivates

the following definition (Monderer and Samet, 1989; Clark and Marshall, 1981). An event is

common belief due to a public event at (θ, t) if there exists an event E ⊆ Θ × T such that

(θ, t) ∈ E and for each player i ∈ N , we have

E ⊆ Bi(E), and (5.1)

E ⊆ Bi(F ).

An event E that satisfies (5.1) for each i ∈ N is called a public or self-evident event: whenever

E occurs, every player believes E. Denote the set of states of the world in which F is common

belief due to a public event by Cpub(F ).

We are particularly interested in the case of common belief about the state of nature, that

is, common belief in events that do not make reference to players’ higher-order beliefs. Say
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that F ⊆ Θ × T is a primitive event if F ∈ FΘ ××j∈N{Tj, ∅} (The restriction to primitive

events is not essential; what matters is that the relevant types can reason about F .)

The fixed-point notion and the notion of common belief due to a public event are known

to be equivalent for Harsanyi type spaces; the next result shows that this holds even if players

have a finite depth of reasoning:

Proposition 5.1. Let F be a primitive event. Then, Cfp(F ) = Cpub(F ).

Since the two notions are equivalent, we write C for Cfp = Cpub in the remainder of this

section. In a Harsanyi context, the iterative account is equivalent to the other two accounts,

as is well-known.

Proposition 5.2. Suppose T is derived from a Harsanyi type space with the set of profiles

given by Π = {FH}. Then, for any primitive event F , we have that C it(F ) = C(F ).

However, the iterative account need not be equivalent to the other two in general type

spaces:

Proposition 5.3. There exists a type space T and a primitive event F in T such that C(F )

is nonempty, but C it(F ) = ∅. That is, a public event can generate common belief, but common

belief in the iterative sense does not obtain.

Proof. Take T to be the type space in Figure 4 in Section 2.2.2. As in Section 2.2.2, let

F := {h,m} × Ta × Tb, and E := Θ × {t1a, t2a, t3a, t4a} × {t1b , t2b , t3b , t4b}. Then, for each player

i = a, b, we have

E ⊆ Bi(E);

E ⊆ Bi(F ).

Hence, C(F ) = Θ× {t1a, t2a, t3a, t4a} × {t1b , t2b , t3b , t4b}.
However, for every i = a, b and type ti ∈ Ti, we have that either

[B2(F )]ti = Θ× {t1i , t2i , t3i , t4i , t5i } 6∈ FΘ × Σi(ti)

or [B2(F )]ti = ∅. Hence, the set Bi(B2(F )) is empty for every i = a, b, and so is C it(F ) =⋂∞
k=1 Bk(F ). �

Technically, the reason that the proof of Proposition 5.2 does not go through when players

have a finite depth of reasoning is that the belief operator is not monotonic. Indeed, in the

type space in the proof of Proposition 5.3, we have that

Bi(Θ× {t1a, t2a, t3a, t4a, t5a} × {t1b , t2b , t3b , t4b , t5b}) = ∅,
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while

Bi(Θ× {t1a, t2a, t3a, t4a} × {t1b , t2b , t3b , t4b}) = Θ× {t1a, t2a, t3a, t4a} × {t1b , t2b , t3b , t4b}.

In general, it can be shown that C it(F ) is a (possibly empty) fixed point of fF . Hence,

if common belief in an iterative sense obtains, then so does common belief in the fixed-point

sense (and thus common belief due to a public event). The converse does not hold, however:

Proposition 5.3 demonstrates that common belief can be attained even if common belief in

the iterative sense does not obtain.11

6. Characterizing a type’s depth

We provide a characterization of the depth of reasoning of types in terms of the properties

of the type space alone. The value of such a characterization is that we can determine a

type’s depth of reasoning without writing out its belief hierarchy. We first classify the profiles

according to the profiles that they dominate. We then use this classification to characterize a

type’s depth.

Formally, fix an extended type space T = ((Ti,Σi, βi)i∈N ,Π). Define

O1 :=
{
F ∈ Π : there is no F ′ ∈ Π such that F � F ′

}
to be the set of profiles that do not dominate any profile. For k = 2, 3, . . ., let

Ok :=
{
F ∈ Π : there is F ′ ∈ Ok−1 such that F � F ′, and

there is no F ′′ ∈ Π \
⋃

m≤k−1

Om such that F � F ′′
}
.

In words, a profile F belongs to the collection Ok if it dominates some profile in Ok−1, and,

moreover, any profile that is dominated by F belongs to a class Om for m ≤ k − 1. Finally,

let

O∞ :=
{
F ∈ Π : for each k = 1, 2, . . ., there is F ′ ∈ Π \

⋃
m≤k−1

Om such that F � F ′
}

be the collection of profiles F ∈ Π such that for any k, there is a profile that is dominated by

F that does not belong to any of the classes Om, m ≤ k − 1, where O0 := ∅.
The classes O∞, O1,O2, . . . thus classify the profiles in Π according to the profiles that

they dominate. Each profile belongs to precisely one of these subsets, as the next result

demonstrates.
11One could, of course, try to restore equivalence by defining a belief operator that is monotonic, such as one

that is based on inner measures. This involves, however, relaxing the (σ-)additivity condition that probability

measures satisfy; we therefore do not pursue this direction further.
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Lemma 6.1. The collection {O∞,O1,O2, . . .} is a partition of Π.

We say that a profile F ∈ Π has order k if F ∈ Ok, where k = 1, 2, . . . or k = ∞. By

Lemma 6.1, the order of each profile is well-defined.

The rank ri(ti) of a type ti ∈ Ti is the maximum order of the profiles that are consistent

with its σ-algebra:

ri(ti) := max
{
k =∞, 1, 2, . . . : Fi × Σi(ti) ∈ Ok for some Fi

}
.

The rank of a type provides a lower bound to its depth.

Proposition 6.2. Fix a player i ∈ N and a type ti ∈ Ti. Then, the depth of ti is at least its

rank, that is, di(ti) ≥ ri(ti). In particular, if ri(ti) =∞, then di(ti) =∞.

However, the bound need not be tight, as the following two examples illustrate.

Example 1. There are two players, Ann (a) and Bob (b) and the state of nature θ is either h or

`. The type space is given in Figure 6. The set of profiles is Π = {F0
a ×F0

b ,F1
a ×F0

b ,F2
a ×F2

b },
where F0

i and F2
i , i = a, b, are the trivial σ-algebra and the power set, respectively, on the

type set of player i, and F1
a is the σ-algebra on Ann’s type set that is generated by the

partition {{t1a, t2a}, {t3a, t4a}}. It can be checked that F1
a ×F0

b �* F0
a ×F0

b , and that F2
a ×F2

b is

self-dominating, so that Assumption 1 is satisfied.

βa(t
1
a) h ` βa(t

2
a) h ` βb(t

1
b) h ` βb(t

2
b) h `

t1b 1 0 {t1b , t2b , t3b , t4b} 1 0 t1a
1
2

0 {t1a, t2a} 1 0

t2b 0 0 t2a
1
2

0 {t3a, t4a} 0 0

t3b 0 0 t3a 0 0

t4b 0 0 t4a 0 0

βa(t
3
a) h ` βa(t

4
a) h ` βb(t

3
b) h ` βb(t

4
b) h `

t1b 0 0 {t1b , t2b , t3b , t4b} 0 1 t1a 0 0 {t1a, t2a} 0 0

t2b 0 0 t2a 0 0 {t3a, t4a} 1 0

t3b 0 1 t3a
1
2

0

t4b 0 0 t4a
1
2

0

Figure 6: The type space for Example 1.

The rank of a type can be lower than its depth. Type t2b , for example, is endowed with the

σ-algebra F1
a , and the order of the corresponding profile F1

a × F0
b is rb(t

2
b) = 2. However, the

depth of t2b is db(t
2
b) = 3. The same, of course, applies to type t4b . /
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Thus, a type with a finite depth of reasoning can be assigned a rank that is strictly lower

than its depth. The next example demonstrates that a type with an infinite depth of reasoning

can be assigned a finite rank.

Example 2. Consider the type space in Figure 7. The collection Π of profiles consists of

F̃0
a×F̃0

b and F̃1
a×F̃0

b , where F̃0
i , i = a, b, is the trivial σ-algebra on the type set for player i, and

F̃1
a is the power set on Ann’s type set. It is straightforward to verify that F̃1

a ×F̃0
b �* F̃0

a ×F̃0
b .

Again, some types have a rank that is strictly lower than their depth. Types q1
b and q2

b are

assigned rank 2, but have an infinite depth. /

βa(q
1
a) h ` βa(q

2
a) h ` βb(q

1
b ) h ` βb(q

2
b ) h `

{q1
b , q

2
b} 1 0 {q1

b , q
2
b} 0 1 q1

a 1 0 q1
a 0 0

q2
a 0 0 q2

a 1 0

Figure 7: The type space for Example 2.

In both examples, the beliefs of Ann’s types at some higher order are completely determined

by their beliefs at some lower order. In Example 1, Ann’s beliefs about θ fix her belief about

θ and Bob’s belief about θ (because all types for Bob have the same belief about θ), and in

Example 2, Ann’s belief about θ completely determine her belief at all orders (because Ann

has no beliefs beyond the first order). This implies that the pertinent σ-algebras on Ann’s

type set (F1
a in Example 1, F̃1

a in Example 2) can form a profile with σ-algebras on Bob’s type

set that separate Bob’s types at the relevant lower order, but not at the higher order (F0
b and

F̃0
b , respectively), so that the “order” of the σ-algebras on Ann’s type set is greater than the

order of the profiles as a whole (F1
a ×F0

b and F̃1
a × F̃0

b , respectively), and a type for Bob with

such a σ-algebra is assigned a rank that is lower than its depth.

This is ruled out if all σ-algebras Fj that make up a profile F have the same “order,” as

required by the following condition:12,13

Assumption 2. Fix a profile F ∈ Π. Then one of the following holds:

12One might think that one could alternatively assign an order to the product σ-algebras F−i ∈ Π−i, rather

than to the profiles F ∈ Π. However, this approach does not seem to be straightforward if there are more than

two players. More importantly, even in the case of two players, a type’s ‘rank’ defined in this way can be lower

than its depth, at least without additional conditions. In Example 2, for example, the ‘order’ of the σ-algebra

F̃1
a associated with q1b and q2b would be 3 (because F̃1

a a-dominates the σ-algebra F̃0
b which b-dominates F̃0

a ,

and the latter does not a-dominate any σ-algebras), but the depth of q1b and q2b is infinite.
13While this condition rules out that the beliefs of types at higher order are completely determined by their

beliefs at lower order (as in Examples 1 and 2), it does not rule out that the beliefs of a type about a particular

event are fixed by its beliefs at lower order. In particular, the type spaces in Section 2.2 satisfy Assumption 2.
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(1) For each j ∈ N , the σ-algebra Fj contains the sets{
tj ∈ Tj : hT ,mj (tj) ∈ Bm

}
for all m = 0, 1, . . . and Bm ∈ FBT ,m

j
; or

(2) There exists k = 1, 2, . . . such that for each j ∈ N , the σ-algebra Fj contains the sets{
tj ∈ Tj : hT ,mj (tj) ∈ Bm

}
for m = 0, 1, . . . , k − 1 and Bm ∈ FBT ,m

j
; and{

tj ∈ Tj : hT ,kj (tj) ∈ Bk

}
6∈ Fj

for some Bk ∈ FBT ,k
j

.

That is, if a σ-algebra Fj in a profile F does not contain every (k+ 1)th-order event, then

neither does the σ-algebra Fi, for any player i 6= j.14

Under this additional assumption, a type’s rank fully characterizes its depth.

Proposition 6.3. Suppose T satisfies Assumption 2, and fix a player i ∈ N and a type ti ∈ Ti.
Then, the depth of ti is equal to its rank, that is, di(ti) = ri(ti).

While Assumption 2 is intuitive, it may be hard to check whether a particular type space

satisfies it, given that it is a condition on the belief hierarchies. We thus present a condition

that is formulated in terms of the properties of the type space alone, and show that it is

equivalent to Assumption 2.

Assumption 3. Fix a profile F ∈ Π. If Fi i-dominates F for some i ∈ N , then there exist

profiles F 1,F 2, . . . ∈ Π (not necessarily distinct) such that

F � F 1 � F 2 � · · · .

That is, F is self-dominating, or is part of a cycle or infinite chain of profiles that dominate

each other.

Proposition 6.4. Let T = ((Ti,Σi, βi)i∈N ,Π) be an extended type space. Then T satisfies

Assumption 2 if and only if it satisfies Assumption 3.

14Indeed, Examples 1 and 2 do not satisfy Assumption 2. In Example 1, the σ-algebra F1
a contains all third-

order events, but the σ-algebra F0
b (with which F1

a forms a profile) does not. In Example 2, the σ-algebra

F̃1
a contains all higher-order events, but the σ-algebra F̃0

b (that forms the profile F̃1
a × F̃0

b with F̃1
a) does not

contain any nontrivial higher-order events.

27



Together with Proposition 6.3, Proposition 6.4 implies that the depth of each type is given

by its rank provided that the type space satisfies Assumption 3. Even if a type space does not

satisfy Assumption 3 (or, equivalently, Assumption 2), the classification of profiles of orders

can still be used to obtain a complete characterization of each type’s depth, using an approach

that is notationally more involved; see the online appendix.

7. Related literature

7.1. Bounded reasoning

Besides cognitive hierarchy and level-k models and the present framework, there are other

ways of modeling that players are somehow bounded in their reasoning about the higher-order

beliefs of other players. One approach is to model a player who does not have a belief about a

kth-order event as having ambiguous beliefs. Ahn (2007) defines type spaces with ambiguous

beliefs, but does not apply his framework to model players’ depth of reasoning. Indeed, there

seems to be a conceptual distinction between small worlds and a finite depth of reasoning on

the one hand, and ambiguous beliefs about higher-order beliefs on the other.

Another possible approach is to model a player with a bounded depth of reasoning as a

player who has incomplete preferences over states that differ only in the beliefs of the other

player at high orders. Di Tillio (2008) considers a class of type structures that allow for

incomplete preferences, but does not consider type spaces in which the incompleteness of a

type’s preferences reflect its depth of reasoning.

Finally, one could view a player with a finite depth of reasoning as a player who is unaware

that she can reason about events at higher orders. Fagin and Halpern (1988) propose a logic

that can capture very general forms of unawareness; and their formalism can in principle be

used to model that players have a finite depth of reasoning. However, the inability of players

to reason about other players’ higher-order beliefs seems to be more a matter of limited

computational powers than of unawareness; see, e.g., Davis and Pratt (1995) and Kinderman

et al. (1998) for some supporting evidence.

Some papers study environments in which players can be unaware of some aspects of the

state of nature and have a finite depth of reasoning. Pintér and Udvari (2011) generalize the

extended type spaces defined here to allow for unawareness as well as bounded reasoning.

However, because Pintér and Udvari do not impose a condition like Assumption 1, the depth

of reasoning of a type need not be defined in their framework. Heinsalu (2011) considers a

class of type spaces in which players may be unaware of certain states of nature and can be

bounded in their reasoning about others in the sense of level-k or cognitive-hierarchy models
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(cf. Strzalecki, 2009; Heifetz and Kets, 2011). The present formalism has the advantage that it

separates the issue of bounded reasoning from the conceptually distinct issue of unawareness.15

7.2. Iterative versus fixed-point notions of common belief

The relation between the iterative and fixed-point account of common knowledge or com-

mon belief has been the focus of a number of papers in logic, linguistics, and game theory

(e.g., Lewis, 1969; Aumann, 1976; Clark and Marshall, 1981; Milgrom, 1981; Barwise, 1988;

Monderer and Samet, 1989; Halpern and Moses, 1990). The different notions of common

knowledge/common belief coincide for Harsanyi type spaces and related belief structures, but

the equivalence can break down in more general structures. The nature of the breakdown

observed in these papers here is strikingly different from the one demonstrated here: in the

structures studied thus far, common belief in the fixed-point sense implies the conjunction of

mutual belief at all orders, while the opposite is true for the example in Section 2.2 (Halpern

and Moses, 1990; Lismont and Mongin, 1995; Heifetz, 1999).

The failure of the equivalence result in the present case is due to the fact that the belief

operator is not monotonic. Nonmonotonic belief operators have been used in epistemic game

theory to characterize various solution concepts (Battigalli and Siniscalchi, 2002; Branden-

burger et al., 2008, 2012). These papers use the iterative notion of common belief.

7.3. Measurable structures on type sets

One insight of the present paper is that, by choosing the measurable sets on which a type’s

belief is defined, we can get types that can reason about only finitely many orders of beliefs.

Indeed, the technical contribution of this paper is to formulate conditions on the type space

that guarantee that the σ-algebra of a type with a finite depth k lumps together precisely the

types that induce belief hierarchies that coincide up to order k− 1. The idea that a type’s σ-

algebra can determine its depth of reasoning fits in with a broader literature that studies how

the measurable structure associated with types in Harsanyi type spaces can implicitly impose

restrictions on reasoning, i.e., on belief hierarchies (e.g., Brandenburger and Keisler, 2006;

Friedenberg and Meier, 2012); see Friedenberg and Keisler (2011) for a detailed discussion and

further references.

15Also, Jehiel and Koessler (2008) characterize equilibrium behavior in a game when players do not condition

their behavior on their higher-order beliefs; and Ciancaruso and Germano (2011) define an equilibrium notion

for quotient type spaces based on Harsanyi type spaces.
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8. Concluding remarks

This paper introduces a novel framework for analyzing situations in which players can have

a finite depth of reasoning, building on the notion of a small world of Savage (1954). The

present approach makes it possible to model situations in which players with a finite depth of

reasoning are able to reason about ‘simple’ higher-order events, where an event is simple if it

is expressible in terms of an event of sufficiently low order.

It is an open question whether, and if so, how, the strategic behavior of players with a

finite depth of reasoning depends on what higher-order events they can form a belief about,

that is, whether the behavior of a player with a fixed, finite depth k depends on the context

she is in.

To investigate this, it is important to understand what contexts we should include in our

model given certain assumptions on players’ reasoning process and given the strategic situation

that players face. Experiments can of course be of great help here. In addition, a syntactic

model, that is, a framework that explicitly specifies what statements (about the economic

fundamentals and about beliefs) players can reason about, may provide complementary in-

sights. Assumptions on players’ reasoning process put restrictions on the syntax, which in

turn translate into restrictions on the class of type spaces and thus on the context; see, e.g.,

Samet (1990) for an early example of this approach. Together, these lines of research can

perhaps ultimately lead to a better understanding of the strategic behavior of players with a

finite depth of reasoning.

Appendix A Proofs for Sections 3 and 4

A.1 Preliminary results

We start with some auxiliary results. The first result says that taking inverse images

preserves σ-algebras:

Lemma A.1. Let f : X → Y be a function from X into Y , and let E be a nonempty collection

of subsets of Y . Then,

σ
({
f−1(E) : E ∈ E

})
=
{
f−1(E) : E ∈ σ(E)

}
,

where σ(E) is the σ-algebra generated by E.

The proof is standard, and thus omitted.

We next show that the belief maps are measurable if and only if the relevant product σ-

algebra is self-dominating. To state the result, we need some more notation. Fix an extended
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type space T = ((Ti,Σi, βi)i∈N ,Π), and for each player i ∈ N , define

Si := {FΘ × F−i : F−i ∈ Π−i}

to be the collection of product σ-algebras on Θ × T−i on which the belief of a type for i can

be defined. Recall that the set of probability measures on a σ-algebra in Si is denoted by

∆(Θ × T−i,Si), and that ∆(Θ × T−i,Si) is endowed with the σ-algebra F∆(Θ×T−i,Si) that is

generated by the sets{
µ ∈ ∆(Θ× T−i,Si}) : E ∈ Σ(µ), µ(E) ≥ p

}
: E ∈ F ,F ∈ Si, p ∈ [0, 1].

We can also define the set of σ-algebras on Tj, j ∈ N , that are consistent with some profile:

Πj := {Fj : there is F−j such that Fj × F−j ∈ Π}.

Fix a player i ∈ N . Clearly, if for each player j 6= i, there is a σ-algebra F∗j ∈ Πj such that

Fj ⊆ F∗j for all Fj ∈ Πj, then F∆(Θ×T−i,Si) is generated by the sets{
µ ∈ ∆(Θ× T−i,Si) : E ∈ Σ(µ), µ(E) ≥ p

}
: E ∈ FΘ × F ∗−i, p ∈ [0, 1].

We can now state the result:

Lemma A.2. Let ((Ti,Σi, βi)i∈N ,Π) be an extended type space, and suppose that for each

player j ∈ N , there is F∗j ∈ Πj such that Fj ⊆ F∗j for all Fj ∈ Πj. Then, the following are

equivalent:

(a) for each player i ∈ N , the belief map βi is measurable with respect to the σ-algebras F∗i
and F∆(Θ×T−i,Si);

(b) the profile F ∗ is self-dominating.

Proof. Fix i ∈ N . It follows from Lemma A.1 that the belief map βi is measurable with

respect to F∗i and F∆(Θ×T−i,Si) if and only if for every E ∈ FΘ × F ∗−i and p ∈ [0, 1],{
ti ∈ Ti : E ∈ FΘ × Σi(ti), βi(ti)(E) ≥ p} ∈ F∗i .

Hence, the functions βi, i ∈ N , are measurable if and only if F ∗ � F ∗, that is, F ∗ is self-

dominating. �

To state the next few results, we need some more notation. Given a type space T =

((Ti,Σi, βi)i∈N ,Π), a player i ∈ N and k = 0, 1, . . ., denote the image hT ,ki (Ti) of Ti in Bk
i by

BT ,ki , whenever the function hT ,ki is well-defined. In that case, we endow BT ,ki with the relative
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σ-algebra induced by FBk
i
. Define σ(hT ,ki ) to be the σ-algebra generated by the function hT ,ki ,

that is,

σ
(
hT ,ki

)
:=
{{
ti ∈ Ti : hT ,ki (ti) ∈ B

}
: B ∈ FBT ,k

i

}
.

It is easy to see that if hT ,ki and hT ,k+1
i are well-defined, then

σ
(
hT ,ki

)
⊆ σ

(
hT ,k+1
i

)
,

a result we use without explicit mention. Also, note that σ(hT ,0i ) = {Ti, ∅}, an observation

we will use frequently. Finally, given a product space Z = X × Y , we define projZX to be the

projection function from Z into X.

The next result plays a central role in many of our results. Part (a) makes it possible to

use an inductive proof, even though we do not have an a priori ordering on the profiles in Π.

Part (b) shows that each type induces a well-defined belief hierarchy, and part (d) is critical

for the characterization of profiles in Corollary A.4 below. Parts (c) and (e) are auxiliary

results.

Lemma A.3. For each k = 1, 2, . . ., the following hold:

(a) For each profile F ∈ Π, we have Fi ⊆ σ(hT ,k−1
i ) for all i ∈ N , or Fi ⊇ σ(hT ,k−1

i ) for all

i ∈ N .

(b) For each player i ∈ N and type ti ∈ Ti, we have hT ,ki (ti) ∈ Bk
i .

(c) We have×j∈N σ(hT ,kj ) �*×j∈N σ(hT ,k−1
j ).

(d) For each profile F ∈ Π such that Fi ⊇ σ(hT ,k−1
i ) and Fi ( σ(hT ,ki ) for some i ∈ N ,

there is m ≤ k − 1 such that Fj = σ(hT ,mj ) for all j ∈ N , and σ(hT ,mn ) ( σ(hT ,m+1
n ) for

some player n ∈ N .

(e) For each profile F ∈ Π that is self-dominating and for each player j ∈ N , we have that

Fj ⊇ σ(hT ,kj ).

Proof. The proof is by induction. Clearly, for each profile F and a player i ∈ N , we have that

Fi ⊇ σ(hT ,0i ). Also, for each player i ∈ N and type ti ∈ Ti, we have hT ,0i (ti) ∈ B0
i . We next

want to show that hT ,1i (ti) ∈ B1
i . This holds if and only if βi(ti) ◦ (IdΘ, h

T ,0
−i )−1 is a probability

measure in ∆(Θ × B0
−i,S

1
i ). But this is immediate: if we write Σi(ti) = F̃−i, then clearly

F̃j ⊇ σ(hT ,0j ) for all j 6= i, and the result follows.

The next step is to prove that×j∈N σ(hT ,1j ) �*×j∈N σ(hT ,0j ). To see this, note that for

each player i ∈ N ,

σ
(
hT ,1i

)
=
{{
ti ∈ Ti : βi(ti) ◦

(
IdΘ, h

T ,0
−i
)−1 ∈ B

}
: B ∈ F∆(Θ×B0

−i,S
1
i )

}
,
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so that by Lemma A.1, the σ-algebra σ(hT ,1i ) is generated by the sets{
ti ∈ Ti : E ∈ FΘ × Σi(ti), βi(ti)(E) ≥ p

}
: E ∈ FΘ ××

j 6=i

σ(hT ,0j ), p ∈ [0, 1],

and the result follows. We can apply this immediately to show that if a profile F ∈ Π is

self-dominating, then Fi ⊇ σ(hT ,1i ) for all i ∈ N . To show this, fix a profile F ∈ Π that is

self-dominating and a player i ∈ N . Because Fj ⊇ σ(hT ,0j ) for all j ∈ N , it follows from the

fact that F � F that Fi ⊇ σ(hT ,1i ).

Finally, fix a profile F ∈ Π and suppose that there is a player i ∈ N such that Fi ⊇ σ(hT ,0i )

and Fi ( σ(hT ,1i ). We claim that Fj = σ(hT ,0j ) for all j ∈ N . Suppose by contradiction that

there is a player n ∈ N such that Fn 6= σ(hT ,0n ). Then, by Assumption 1, there is a profile

F ′ ∈ Π such that F � F ′ (where possibly F ′ = F ). Since F ′j ⊇ σ(hT ,0j ) for each player

j ∈ N , this implies that F �×j∈N σ(hT ,0j ). But because for each player j ∈ N , the σ-algebra

σ(hT ,1j ) is the coarsest σ-algebra that j-dominates×j′∈N σ(hT ,0j′ ), we have Fi ⊇ σ(hT ,1i ), a

contradiction.

For k > 1, suppose that for all ` ≤ k − 1, we have established the following:

(a’) For each F ∈ Π, we have Fi ⊆ σ(hT ,`−1
i ) for all i ∈ N , or Fi ⊇ σ(hT ,`−1

i ) for all i ∈ N .

(b’) For each i ∈ N and ti ∈ Ti, we have hT ,`i (ti) ∈ B`
i .

(c’) We have×j∈N σ(hT ,`j ) �*×j∈N σ(hT ,`−1
j ).

(d’) For each F ∈ Π such that Fi ⊇ σ(hT ,`−1
i ) and Fi ( σ(hT ,`i ) for some i ∈ N , there is

m ≤ ` − 1 such that Fj = σ(hT ,mj ) for all j ∈ N , and σ(hT ,mn ) ( σ(hT ,m+1
n ) for some

player n ∈ N .

(e’) For each profile F ∈ Π that is self-dominating and for each player j ∈ N , we have that

Fj ⊇ σ(hT ,`j ).

The proof then follows from the following claims.

Claim 1. For each F ∈ Π, we have Fi ⊆ σ(hT ,k−1
i ) for all i ∈ N , or Fi ⊇ σ(hT ,k−1

i ) for all

i ∈ N .

Proof of Claim 1. Let F ∈ Π. We want to show that either Fi ⊆ σ(hT ,k−1
i ) for each player

i ∈ N , or Fi ⊇ σ(hT ,k−1
i ) for each player i ∈ N . If F is self-dominating, then the result follows

from the induction hypothesis (e’). So suppose F is not self-dominating. If Fj = {Tj, ∅} for

each player j ∈ N , then clearly Fj ⊆ σ(hT ,k−1
j ) for each player j ∈ N . Hence, suppose there

is a player n ∈ N such that Fn 6= {Tn, ∅}. Then, by Assumption 1, there is a profile F ′ ∈ Π

such that F �* F ′. We claim that F ′ is not self-dominating. For suppose not. Then F �* F ′
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implies that F ′j ⊇ Fj for each player j ∈ N . But then the fact that F dominates F ′ implies

that F dominates itself, a contradiction.

It will be useful to define F0
j := Fj and F1

j := F ′j for j ∈ N . Then, by Assumption 1,

there exist profiles F 2,F 3, . . . ∈ Π such that F `, ` ≥ 0, is not self-dominating, and one of the

following holds:

(i) the profiles form a cycle or infinite chain, that is,

F 0 �* F 1 �* F 2 �* · · · ;

(ii) the profiles form a finite chain, that is, there is m <∞ such that

F 0 �* F 1 �* F 2 �* · · · �* Fm =×
j∈N
{Tj, ∅}.

(Note that there is no profile Fm+1 ∈ Π such that Fm �* Fm+1, given that Fm =×j∈N{Tj, ∅}
is not self-dominating.)

First consider (i). Because F1
j ⊇ σ(hT ,0j ) for j ∈ N , it follows from the induction hypothesis

(c’) that F0
j ⊇ σ(hT ,1j ) for each j ∈ N . By a similar argument, F1

j ⊇ σ(hT ,1j ) for all j ∈ N .

Repeating this argument, we find that Fj ⊇ σ(hT ,k−1
j ) for all j ∈ N .

Next consider (ii). If m ≤ k − 1, then it follows from the induction hypothesis (c’) that

Fj = σ(hT ,mj ) ⊆ σ(hT ,k−1
j ) for all j ∈ N . If m > k− 1, then, by the induction hypothesis (c’),

we have

F 0 �* F 1 �* F 2 �* · · · �* Fm−(k−1) �*×
j∈N

σ(hT ,k−2
j ).

By the induction hypothesis (c’), we have Fm−(k−1)
j = σ(hT ,k−1

j ) for each j ∈ N ; and

the fact that Fm−(k−1)−1 �* Fm−(k−1) implies that Fm−(k−1)−1 �*×j∈N σ(hT ,k−2
j ). Hence,

Fm−(k−1)−1
j ⊇ σ(hT ,k−1

j ) for each j ∈ N . Repeating this argument gives that for each j ∈ N ,

Fj ⊇ σ(hT ,k−1
j ). �

Claim 2. For each i ∈ N and ti ∈ Ti, we have hT ,ki (ti) ∈ Bk
i .

Proof of Claim 2. Fix a player i and a type ti ∈ Ti. By the induction hypothesis (b’), we

have hT ,ki (ti) ∈ Bk
i if and only if βi(ti) · (IdΘ, h

T ,k−1
−i )−1 is an element of ∆(Θ × Bk−1

−i ,S
k
i ),

i.e., for each j 6= i, there is a sub-σ algebra Ak−1
j of FBk−1

j
such that for each E ∈ Ak−1

−i ,

(hT ,k−1
−i )−1(E) ∈ Σi(ti).

Let F ∈ Π be a profile consistent with Σi(ti), that is, Σi(ti) = F−i. By Claim 1, we have

Fj ⊆ σ(hT ,k−1
j ) for all j ∈ N , or Fj ⊇ σ(hT ,k−1

j ) for all j ∈ N .

First suppose that Fj ⊆ σ(hT ,k−1
j ) for all j 6= i and Fn ( σ(hT ,k−1

n ) for some n 6= i. By the

induction hypotheses (a’) and (d’), there is m′ < k − 1 such that Fj = σ(hT ,m
′

j ) for all j 6= i;
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take m to be the maximum m′ < k − 1 for which this holds. Using that for each j 6= i, the

σ-algebra FBT ,m
j

is the relative σ-algebra on BT ,mj = hT ,mj (Tj) induced by FBm
j

, we have

σ
(
hT ,mj

)
=

{{
tj ∈ Tj : hT ,mj (tj) ∈ B

}
: B ∈ FBT ,m

j

}
=

{{
tj ∈ Tj : hT ,mj (tj) ∈ B ∩BT ,mj

}
: B ∈ FBm

j

}
=

{{
tj ∈ Tj : hT ,mj (tj) ∈ B

}
: B ∈ FBm

j

}
.

Consequently, βi(ti) ◦ (IdΘ, h
T ,k−1
−i )−1 is a probability measure on the product σ-algebra FΘ ×{(

proj
Bk−1
−i

Bm
−i

)−1
(B) : B ∈×j 6=i

FBm
j

}
. Since the projection function is measurable, this is a

sub-σ algebra of FΘ ××j 6=i
FBk−1

j
, and it follows that hT ,ki (ti) ∈ Bk

i .

Finally, if Fj ⊇ σ(hT ,k−1
j ) for all j 6= i, then βi(ti)◦ (IdΘ, h

T ,k−1
−i )−1 is a probability measure

on FΘ ××j 6=i
FBk−1

j
, and the result is immediate. �

By Claim 2, the function hT ,ki is well-defined for i ∈ N , so that the σ-algebra σ(hT ,ki ) is

well-defined.

Claim 3. We have×j∈N σ(hT ,kj ) �*×j∈N σ(hT ,k−1
j ).

Proof of Claim 3. If we prove that for each player i ∈ N , the σ-algebra σ(hT ,ki ) is generated

by the sets{
ti ∈ Ti :

(
IdΘ, h

T ,k−1
−i

)−1
(E) ∈ FΘ × Σi(ti), βi(ti) ◦

(
IdΘ, h

T ,k−1
−i

)−1
(E) ≥ p

}
:

E ∈ FΘ ××
j 6=i

FBT ,k−1
j

, p ∈ [0, 1], (A.1)

then the result is immediate: If σ(hT ,ki ) is generated by the sets in (A.1), then it follows

directly from the definition of σ(hT ,k−1
j ), j 6= i, that σ(hT ,ki ) is the coarsest σ-algebra that

includes the sets

{ti ∈ Ti : E ∈ FΘ × Σi(ti), βi(ti)(E) ≥ p}

for E ∈ FΘ××j 6=i
σ(hT ,k−1

j ) and p ∈ [0, 1], or, equivalently, that×j∈N σ(hT ,kj ) �*×j∈N σ(hT ,k−1
j ).

Hence, it remains to show that σ(hT ,ki ) is generated by the sets in (A.1). We can write

σ(hT ,ki ) =
{{
ti ∈ Ti : hT ,ki (ti) ∈ B

}
: B ∈ FBT ,k−1

i
×F∆(Θ×Bk−1

−i ,S k
i )

}
.

Because every σ-algebra in S k
i is a sub-σ algebra of FΘ××j 6=i

FBk−1
j

, the σ-algebra F∆(Θ×Bk−1
−i ,S k

i )

is generated by the sets{
µk
i ∈ ∆(Θ×Bk−1

−i ,S
k
i ) : E ∈ Σ(µk

i ), µk
i (E) ≥ p

}
: E ∈ FΘ ××

j 6=i

FBk−1
j
, p ∈ [0, 1].
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It then follows from these observations and Lemma A.1 that the σ-algebra σ(hT ,ki ) is generated

by the sets in σ(hT ,k−1
i ) and the sets{

ti ∈ Ti :
(
IdΘ, h

T ,k−1
−i

)−1
(E) ∈ FΘ × Σi(ti), βi(ti) ◦

(
IdΘ, h

T ,k−1
−i

)−1
(E) ≥ p

}
:

E ∈ FΘ ××
j 6=i

FBk−1
j
, p ∈ [0, 1]. (A.2)

The proof is complete if we show that the σ-algebra σ(hT ,k−1
i ) is generated by a subset of the

family of sets in (A.2), given that the collection of sets in (A.2) is just the generating family

of sets in (A.1) (by a similar transformation as in the proof of Claim 2).

By the induction hypothesis (c’), the σ-algebra σ(hT ,k−1
i ) is generated by the sets{

ti ∈ Ti :
(
IdΘ, h

T ,k−2
−i

)−1
(E) ∈ FΘ × Σi(ti), βi(ti) ◦

(
IdΘ, h

T ,k−2
−i

)−1
(E) ≥ p

}
:

E ∈ FΘ ××
j 6=i

FBT ,k−2
j

, p ∈ [0, 1].

Fix E ∈ FΘ ××j 6=i
FBT ,k−2

j
and p ∈ [0, 1], and define E ′ :=

(
proj

Θ×BT ,k−1
−i

Θ×BT ,k−2
−i

)−1
(E). Then

E ′ ∈ FΘ ××j 6=i
FBT ,k−1

j
, and

{
ti ∈ Ti :

(
IdΘ, h

T ,k−2
−i

)−1
(E) ∈ FΘ × Σi(ti), βi(ti) ◦

(
IdΘ, h

T ,k−2
−i

)−1
(E) ≥ p

}
={

ti ∈ Ti :
(
IdΘ, h

T ,k−1
−i

)−1
(E ′) ∈ FΘ × Σi(ti), βi(ti) ◦

(
IdΘ, h

T ,k−1
−i

)−1
(E ′) ≥ p

}
.

Hence, the σ-algebra σ(hT ,k−1
i ) is generated by a subset of the sets in (A.2). �

Claim 4. For each profile F ∈ Π that is self-dominating, we have Fj ⊇ σ(hT ,kj ) for each

player j ∈ N .

Proof of Claim 4. Immediate from the induction hypothesis (e’) and Claim 3. �

Claim 5. For each F ∈ Π such that Fi ⊇ σ(hT ,k−1
i ) and Fi ( σ(hT ,ki ) for some i ∈ N , there

is m ≤ k − 1 such that Fj = σ(hT ,mj ) for all j ∈ N , and σ(hT ,mn ) ( σ(hT ,m+1
n ) for some player

n ∈ N .

Proof of Claim 5. By Claim 1, either Fj ⊆ σ(hT ,k−1
j ) for all j ∈ N , or Fj ⊇ σ(hT ,k−1

j ) for

all j ∈ N . If Fj = {Tj, ∅} for j ∈ N , then the result follows immediately. So suppose there

is some player n ∈ N such that Fn 6= {Tn, ∅}. By Claim 4, the profile F does not dominate

itself. Hence, by Assumption 1, there is a profile F ′ ∈ Π such that F � F ′. Define F0
j := Fj

and F1
j := F ′j for j ∈ N . Then, by a similar argument as in the proof of Claim 1, it follows

that there exist m <∞ and profiles F 2,F 3, . . . ,Fm ∈ Π such that F `, ` = 0, . . . ,m, does not

dominate itself, and

F 0 �* F 1 �* F 2 �* · · · �* Fm =×
j∈N
{Tj, ∅}.
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Since Fi ( σ(hT ,ki ), it follows from (c’) and Claim 3 that the maximum m for which this holds

is at most k − 1, and Fj = F0
j = σ(hT ,mj ) for all j. �

This completes the induction. �

Lemma A.3 has a useful corollary:

Corollary A.4. Fix a profile F ∈ Π. Then one of the following holds:

(a) for each player j ∈ N , Fj ⊇ σ(hT ,mj ) for all m; or

(b) there is k = 0, 1, . . . such that Fj = σ(hT ,kj ) for each player j ∈ N , and Fi ( σ(hT ,k+1
i )

for some player i ∈ N .

Proof. By Lemma A.3(a), for every k = 0, 1, . . ., one of the following is the case:

• for each player j, Fj ⊆ σ(hT ,kj ); or

• for each player j, Fj ⊇ σ(hT ,kj ).

If for each j ∈ N , Fj ⊇ σ(hT ,kj ) for all k, then we have (a). So suppose there is k = 0, 1, . . .

and a player i ∈ N such that Fi ( σ(hT ,k+1
i ). Then, by Lemma A.3, there is m ≤ k such that

Fj = σ(hT ,mj ) for each j ∈ N , and Fn ( σ(hT ,m+1
n ) for some player n ∈ N . �

A.2 Proof of Proposition 3.1

It follows from Lemma A.2 that the structure ((T ∗i ,Σ
∗
i , β

∗
i )i∈N ,Π

∗) satisfies Assumption 1

(with Si := {FΘ × FH−i}). �

A.3 Proof of Proposition 4.1

This follows directly from Lemma A.3(b). �

A.4 Proof of Theorem 4.2

Write F−i =×j 6=i
Fj for Σi(ti). By Corollary A.4, one of the following is the case:

(a) for all m, Fj ⊇ σ(hT ,mj ) for all j 6= i; or

(b) there is k = 0, 1, . . . such that for each j 6= i, Fj = σ(hT ,k−1
j ), and Fn ( σ(hT ,kn ) for some

n 6= i.
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The proof now follows directly from the definitions. Fix k. If for each j 6= i, Fj ⊇ σ(hT ,kj ),

then it follows from the definition of a product σ-algebra and Lemma A.1 that for any B ∈
×j 6=i

FBT ,k
j

, {
t−i ∈ T−i : hT ,k−i (t−i) ∈ B

}
∈ Σi(ti).

If Fn ( σ(hT ,kn ) for some n 6= i, on the other hand, then there is B ∈×j 6=i
FBT ,k

j
such that{

t−i ∈ T−i : hT ,k−i (t−i) ∈ B
}
6∈ Σi(ti).

Consequently, if for all j 6= i, Fj ⊇ σ(hT ,mj ) for all m, then di(ti) =∞. If there is k = 1, 2, . . .

such that Fj = σ(hT ,k−1
j ) for all j 6= i, and Fn ( σ(hT ,kn ) for some n 6= i, then di(ti) = k. �

A.5 Proof of Proposition 4.3

The proof follows directly from Lemmas A.2 and Lemma A.3(e). �

A.6 Proof of Proposition 4.4

Because the depth di(ti) of type ti is k <∞, it follows from Corollary A.4 that

Σi(ti) =×
j 6=i

σ(hT ,k−1
j ) =

{{
t−i ∈ T−i : hT ,k−1

−i (t−i) ∈ Bk−1

}
: Bk−1 ∈×

j 6=i

FBT ,k−1
j

}
. (A.3)

(Again, use the definition of a product σ-algebra and Lemma A.1.) For any B ⊆ H−i, if there

is Bk−1 ∈×j 6=i
FBT ,k−1

j
such that{

t−i ∈ T−i : hT−i(t−i) ∈ B
}

=
{
t−i ∈ T−i : hT ,k−1

−i (t−i) ∈ Bk−1

}
,

then, clearly, {
t−i ∈ T−i : hT−i(t−i) ∈ B

}
∈ Σi(ti).

The converse is also immediate from A.3. �

Appendix B Properties of the belief operator

This appendix considers the properties of the belief operator. The belief operator coincides

with the standard one in Harsanyi type spaces. The next few results show that it satisfies the

usual introspection properties even if players have a finite depth of reasoning.

Lemma B.1. (Positive introspection (1)) For each G ⊆ Θ× T and i ∈ N , we have that

Bi(G) ⊆ Bi(Bi(G)).
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Proof. Fix i ∈ N , and suppose (θ, t) ∈ Bi(G). Then, [Bi(G)]ti = Θ×T−i, so [Bi(G)]ti ∈ Σi(ti),

and βi(ti)([Bi(G)]ti) = 1. Hence, (θ, t) ∈ Bi(Bi(G)). �

Lemma B.2. (Positive introspection (2)) For each G ⊆ Θ× T and i ∈ N , we have that

Bi(Bi(G)) ⊆ Bi(G).

Proof. Fix i ∈ N , and let (θ, t) ∈ Bi(Bi(G)). Then, [Bi(G)]ti 6= ∅, that is, there exist θ′, t′−i
such that (θ′, ti, t

′
−i) ∈ Bi(G). Since Bi(G) is of the form Θ×Qi × T−i, with Qi ⊆ Ti, we can

set θ′ = θ and t′−i = t−i, and the result follows. �

Given an event G ⊆ Θ× T and a player i ∈ N , define

NBi(G) :=
{

(θ, t) : Gti 6∈ FΘ × Σi(ti), or βi(ti)(Gti) < 1
}

to be the event that i cannot reason about G, or assigns less than full probability to G.

Lemma B.3. (Negative introspection) For each G ⊆ Θ × T and i ∈ N , we have that

NBi(G) ⊆ Bi(NBi(G)).

Proof. Immediate �

However, the belief operator fails some of the other standard properties of belief operators,

at least partly. Importantly, the belief operator is not monotonic when players can have a

finite depth, in the sense that the usual monotonicity property holds only for events that

belong to the σ-algebras of the pertinent types.

Lemma B.4. (Partial monotonicity) Let G,G′ ⊆ Θ × T and i ∈ N . If G ⊆ G′ and

G′ti ∈ FΘ×Σi(ti) for all ti ∈ Ti such that (θ, ti, t−i) ∈ Bi(G) for some (θ, t−i) ∈ Θ× T−i, then

Bi(G) ⊆ Bi(G′).

Proof. Let ti ∈ Ti be such that (θ, ti, t−i) ∈ Bi(G) for some (θ, t−i) ∈ Θ × T−i. By assump-

tion, G′ti ∈ FΘ × Σi(ti), so that βi(ti)(G
′
ti

) is well-defined. It then follows immediately that

βi(ti)(G
′
ti

) = 1. �

Clearly, if the type space is derived from a Harsanyi type space (so that every type ti for

player i has the same σ-algebra Σi(ti) = FH−i), then the belief operator is monotonic for events

in the standard σ-algebra FΘ × FH.

Finally, we note that while the belief operator fails one the directions of the standard

conjunction property when it is not monotonic, it does satisfy the other:
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Lemma B.5. (Partial conjunction) Let E1, E2, . . . ⊆ Θ × T and fix i ∈ N . Then,⋂∞
k=1 Bi(Ek) ⊆ Bi

(⋂∞
k=1 Ek

)
.

Proof. Suppose that (θ, t) ∈
⋂∞

k=1 Bi(Ek). Then, [Ek]ti ∈ FΘ × Σi(ti) for all k, so that

[
⋂∞

k=1Ek]ti ∈ FΘ × Σi(ti). Moreover,

βi(ti)
([ ∞⋂

k=1

Ek

]
ti

)
= 1− βi(ti)

( ∞⋃
k=1

{
(θ′, t′−i) : (θ′, ti, t

′
−i) 6∈ Ek

})
≥ 1−

∞∑
k=1

βi(ti)
({

(θ′, t′−i) : (θ′, ti, t
′
−i) 6∈ Ek

})
= 1.

Hence, (θ, t) ∈ Bi
(⋂∞

k=1Ek

)
. �

Again, if the type space is derived from a Harsanyi type space, then the reverse inclusion also

holds for the case that E1, E2, . . . ∈ FΘ×FH, as the belief operator is monotonic in that case.

Appendix C Proofs for Sections 5 and 6

C.1 Proof of Proposition 5.1

Suppose (θ, t) ∈ Cfp(F ). That is, there is X ⊆ Θ × T such that (θ, t) ∈ X, and X =

B(F ∩ X). Fix i ∈ N . Then, [F ∩ X]ti ∈ FΘ × Σi(ti), and βi(ti)([F ∩ X]ti) = 1. As F is a

primitive event, this implies that Fti ∈ FΘ × Σi(ti) and Xti ∈ FΘ × Σi(ti). By Lemma B.4,

βi(ti)(Fti) = 1 and βi(ti)(Xti) = 1. Hence, for all i ∈ N , X ⊆ Bi(F ) and X ⊆ Bi(X), and

(θ, t) ∈ Cpub(F ).

To prove the converse, suppose that (θ, t) ∈ Cpub(F ). That is, there is E ⊆ Θ × T such

that (θ, t) ∈ E, and for all i ∈ N , E ⊆ Bi(E) and E ⊆ Bi(F ). Define

E ′ := {θ′ ∈ Θ : there is t′ ∈ T s.t. (θ′, t′) ∈ E}×

×
i∈N
{t′i ∈ Ti : there is (θ′, t′−i) ∈ Θ× T−i s.t. (θ′, t′) ∈ E}

to be the product event corresponding to E; note that (θ, t) ∈ E ′. It is easy to verify that for

each i ∈ N , we have that E ′ ⊆ Bi(F ). Similarly, E ′ ⊆ Bi(E). To show that E ′ ⊆ Bi(E ′), note

that for each i ∈ N and t′′i ∈ Ti, we have that E ′t′′i
∈ FΘ ×Σi(t

′′
i ) whenever Et′′i

∈ FΘ ×Σi(t
′′
i ).

Hence, by Lemma B.4, E ′ ⊆ Bi(E) ⊆ Bi(E ′) for each i ∈ N .

We show that E ′ is a fixed point of fF . Fix (θ′, t′) ∈ E ′ and i ∈ N . Then, E ′t′i
, Ft′i

∈
FΘ × Σi(t

′
i), so that [E ′ ∩ F ]t′i ∈ FΘ × Σi(t

′
i). Moreover, by Lemma B.5, we have that

βi(t
′
i)([E

′ ∩ F ]t′i) = 1. Hence, (θ′, t′) ∈ B(E ′ ∩ F ), and it follows that E ′ ⊆ B(E ′ ∩ F ).
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To prove that B(E ′ ∩ F ) ⊆ E ′, fix (θ′, t′) ∈ B(E ′ ∩ F ) and i ∈ N . Then, [E ′ ∩ F ]ti 6= ∅, so

that there exists (θ′′, t′′−i) ∈ Θ × T−i such that (θ′′, t′i, t
′′
−i) ∈ E ′. Since E ′ is a product event,

we can take θ′′ = θ′ and t′′−i = t′−i. Hence, B(E ′ ∩ F ) ⊆ E ′. �

C.2 Proof of Proposition 5.2

We first show that the operator Bi, i ∈ N , is downward continuous in the Harsanyi case.

Lemma C.1. Suppose T is derived from a Harsanyi type space with the set of profiles given

by Π = {FH}. Suppose A1, A2, . . . is a decreasing sequence in FΘ×FH, and fix i ∈ N . Then,

Bi
( ∞⋂
k=1

Ak

)
=
∞⋂
k=1

Bi
(
Ak

)
.

That is, Bi is downward continuous.

Proof. It follows from Lemma B.4 that Bi
(⋂∞

k=1 Ak

)
⊆
⋂∞

k=1 Bi
(
Ak

)
. To show the reverse

inclusion, note that for any ti ∈ Ti, we have that [
⋂∞

k=1 Ak]ti ∈ FΘ × Σi(ti). Let (θ, t) ∈⋂∞
k=1 Bi

(
Ak

)
. Then,

βi(ti)
([ ∞⋂

k=1

Ak

]
ti

)
= lim

k→∞
βi(ti)([Ak]ti) = 1,

and it follows that (θ, t) ∈ Bi
(⋂∞

k=1Ak

)
. �

Note that if Bi is downward continuous, then so is fF (·) = Bi(F ∩ ·).
We are now ready to prove Proposition 5.2. It suffices to show that C it(F ) is the greatest

fixed point of fF . For if fF has a greatest fixed point gfp(fF ), then

gfp(fF ) =
⋃{

X : X = fF (X)} = C(F ).

We use the following lemma, which is due to Halpern and Moses (1990).

Lemma C.2. If f is a downward continuous mapping from the subsets of some space Y to

the subsets of Y , then the greatest fixed point of f exists and is given by

gfp(f) =
∞⋂
k=0

fk(Y ),

where f 0(Y ) = Y , and fk(Y ) = f(fk−1(Y )) for k > 0.

Hence, by Lemma C.2, the greatest fixed point of fF is

gfp(fF ) = (Θ× T ) ∩ B(F ) ∩ B(F ∩ B(F )) ∩ · · ·

= B(F ) ∩ B2(F ) ∩ B3(F ) ∩ · · ·

= C it(F ),
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where we have used the conjunction property, i.e., B(V ∩Z) = B(V )∩B(Z) for V, Z ∈ FΘ×FH.

�

C.3 Proof of Lemma 6.1

We start with some preliminary results. The first result shows that profiles that are self-

dominating or are part of a cycle or infinite chain have an infinite order.

Lemma C.3. Suppose there exist profiles F 0,F 1, . . . ∈ Π (not necessarily distinct) such that

F 0 � F 1 � F 2 � · · · ,

that is, the profiles are self-dominating, form a cycle, or form an infinite chain. Then, F ` ∈
O∞ for all ` ≥ 0.

Proof. We prove the result for ` = 0; the proof for ` > 0 is similar. Because F 1 � F 2, we

have F 1 6∈ O1. By a similar argument, F 2 6∈ O1, so that F 1 6∈ O2. If we repeat this argument,

we have that F 1 ∈ Π \
⋃

m≤k−1Om for every k = 1, 2, . . ., and the result follows. �

The next result helps us to classify the profiles in Π.

Lemma C.4. Let F ∈ Π. Then:

(a) If for each i ∈ N , Fi ⊇ σ(hT ,mi ) for all m, then F ∈ O∞.

(b) If there is k = 0, 1, . . . such that Fj = σ(hT ,kj ) for all j ∈ N , and Fi ( σ(hT ,k+1
i ) for

some i ∈ N , then F ∈ Ok+1.

Proof. (a) First suppose that for each i ∈ N , we have Fi = σ(hT ,0i ) = σ(hT ,1i ) = . . .. Then,

by Lemma A.3(c), the profile F is self-dominating. The result then follows from Lemma C.3.

So suppose there is ` ∈ N such that F` 6= σ(hT ,0` ).

Again, if F dominates itself, then it follows from Lemma C.3 that F ∈ O∞. Hence, it

remains to consider the case that F is not self-dominating. By Assumption 1, there is F ′ ∈ Π

such that F �* F ′. By a similar argument as in the proof of Lemma A.3 (Claim 1), the profile

F ′ is not self-dominating. Define F0
j := Fj and F1

j := F ′j for j ∈ N . Then there exist profiles

F 2,F 3, . . . ∈ Π such that F x is not self-dominating for any x ≥ 0, and one of the following

holds:

(i) the profiles form a cycle or infinite chain, that is,

F 0 �* F 1 �* F 2 �* · · · ;
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(ii) the profiles form a finite chain, that is, there is m <∞ such that

F 0 �* F 1 �* F 2 �* · · · �* Fm =×
j∈N
{Tj, ∅}.

If (i) is the case, then the result follows from Lemma C.3. We claim that (ii) does not hold.

For suppose not. Then, by Lemma A.3(c), we have Fj = F0
j = σ(hT ,mj ) for j ∈ N , so that for

each player j ∈ N and ` ≥ m, σ(hT ,`j ) = σ(hT ,mj ). Using Lemma A.3(c) again, we see that F

is self-dominating, a contradiction.

(b) The proof is by induction. Fix F ∈ Π, and suppose that Fj = σ(hT ,0j ) for all j ∈ N , and

Fi ( σ(hT ,1i ) for some i. Then F 6�×j∈N{Tj, ∅} (by Lemma A.3(c)), and it follows that there

is no F ′ ∈ Π such that F � F ′. Hence, F ∈ O1.

For k > 0, suppose that for all ` ≤ k − 1 and F ∈ Π, we have

F ∈ O`+1 (C.1)

whenever Fj = σ(hT ,`j ) for all j ∈ N , and Fi ( σ(hT ,`+1
i ) for some i.

Fix F ∈ Π, and suppose that Fj = σ(hT ,kj ) for all j, and Fi ( σ(hT ,k+1
i ) for some i. By

Lemma A.3(e), the profile F is not self-dominating. We claim that there is a player n ∈ N
such that Fn 6= {Tn, ∅}. For suppose not. Then, for all j ∈ N , we have Fj = σ(hT ,0j ) =

· · · = σ(hT ,kj ). By Lemma A.3(c), the profile F is self-dominating (given that k > 0), a

contradiction.

Hence, by Assumption 1, there is F ′ ∈ Π such that F �* F ′. By Lemma A.3(e), F ′ does

not dominate itself. Again, as in the proof of part (a), we define F0
j := Fj and F1

j := F ′j
for j ∈ N , and there exist profiles F 2,F 3, . . . ∈ Π such that F x is not self-dominating for

x ≥ 0, and the profiles form a cycle or infinite chain (case (i) above), or a finite chain (case

(ii) above).

We claim that the profiles do not form a cycle or infinite chain. Suppose not. Then, because

F1
j ⊇ σ(hT ,0j ) for j ∈ N , it follows from Lemma A.3(c) that F0

j ⊇ σ(hT ,1j ) for j ∈ N . Similarly,

F1
j ⊇ σ(hT ,1j ) for j ∈ N . Applying Lemma A.3(c) repeatedly gives Fi = F0

i ⊇ σ(hT ,k+1
i ), a

contradiction.

Consequently, there is m <∞ such that

F 0 �* F 1 �* F 2 �* · · · �* Fm =×
j∈N
{Tj, ∅}.

We use the following claim:

Claim. For each ` = 0, 1, . . . ,m, the following hold:

• Fm−`
j = σ(hT ,`j ) for j ∈ N ; and
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• there is i` ∈ N such that Fm−`
i`

( σ(hT ,`+1
i`

).

Proof of Claim. The proof is by induction. By assumption, Fm
j = σ(hT ,0j ) for all j ∈ N .

We need to show that there is i0 such that Fi0 ( σ(hT ,1i0
). Suppose not. Then Fm is self-

dominating (by Lemma A.3(c)), which leads to a contradiction. For ` > 0, suppose the result

holds for ` − 1, and consider Fm−`. By Lemma A.3(c), we have Fm−`
j = σ(hT ,`j ) for j ∈ N .

Again, a simple proof by contradiction can be used to show that there is i` ∈ N such that

Fm−`
i`

( σ(hT ,`+1
i`

). �

It follows that m = k, and, by the induction hypothesis (C.1), we have F 1 ∈ Ok. Since

F � F 1 by assumption, it remains to show that there is no F̃ ∈ Π \
⋃

`≤kO` such that

F � F̃ . Suppose by contradiction that there exists such a profile F̃ . Then, by (C.1), there is

no ` = 0, 1, . . . , k − 1 such that F̃j = σ(hT ,`j ) for j ∈ N , and F̃n ( σ(hT ,`+1
n ) for some player

n ∈ N . By Corollary A.4, therefore, F̃j ⊇ σ(hT ,kj ) for j ∈ N . But then it follows from Lemma

A.3(c) that Fi ⊇ σ(hT ,k+1
i ), a contradiction. �

We can now prove Lemma 6.1. A straightforward argument by contradiction establishes

that O` ∩Om = ∅ whenever ` 6= m. By definition, O∞ ∪
⋃∞

m=1Om ⊆ Π. Hence, it remains to

show the reverse inclusion, that is, for each F ∈ Π, there is k ∈ N ∪ {∞} such that F ∈ Ok.

This follows directly from Corollary A.4 and Lemma C.4. �

C.4 Proof of Proposition 6.2

We start with an observation that follows directly from Corollary A.4 and Lemma C.4.

Corollary C.5. For each k = 1, 2, . . ., there is a nonempty subset Nk of N such that

Ok =
{×

j∈N
σ(hT ,k−1

j ) ∈ Π : σ(hT ,k−1
i ) ( σ(hT ,ki ) iff i ∈ Nk

}
.

Moreover, we have that

O∞ =
{
F ∈ Π : Fj ⊇ σ(hT ,jj ) for all m

}
.

The next preliminary result implies that a type cannot be assigned an infinite rank, unless

its σ-algebra is consistent with a profile of infinite order.

Lemma C.6. Let i ∈ N and F−i ∈ Π−i. If there is no Fi ∈ Πi such that Fi × F−i ∈ O∞,

then

max{` =∞, 1, 2, . . . : Fi × F−i ∈ O` for some Fi} <∞
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Proof. Suppose there is no Fi ∈ Πi such that Fi × F−i ∈ O∞. Suppose by contradiction

that max{` = ∞, 1, 2, . . . : Fi × F−i ∈ O` for some Fi} = ∞. Then, by Assumption 1 and

Corollary C.5, there exist k1 < k2 <∞ and F1
i ,F2

i ∈ Πi such that:

• {Ti, ∅} ( F1
i ( F2

i ; and

• F `
i is the coarsest σ-algebra that dominates {Ti, ∅} × F−i, ` = 1, 2. (The choice of

σ-algebra on Ti is immaterial here.)

But this is of course a contradiction. �

We can now prove Proposition 6.2. Fix i ∈ N and ti ∈ Ti. It will be convenient to write

F−i =×j 6=i
Fj for Σi(ti). Recall that di(ti) = ∞ if and only if for each j 6= i, Fj ⊇ σ(hT ,mj )

for all m. Also, di(ti) = k <∞ if and only if for each j 6= i, Fj = σ(hT ,k−1
j ), and F` ( σ(hT ,kj )

for some ` 6= i.

First suppose that for all j 6= i, Fj ⊇ σ(hT ,mj ) for all m. If there is Fi ∈ Πi such

that Fi ⊇ σ(hT ,mi ) for all m and Fi × F−i ∈ Π, then it follows from Corollary C.5 that

ri(ti) =∞ = di(ti). Otherwise, there exists k <∞ such that Fj = σ(hT ,k−1
j ) = σ(hT ,kj ) = . . .

for all j 6= i (by Corollary A.4); and by Lemmas 6.1 and C.6, there is Fm
i ∈ Πi such that

Fm
i × F−i ∈ Om, and there is no F `

i ∈ Πi such that F `
i × F−i ∈ O` for ` > m. In that case,

ri(ti) = m <∞ = di(ti).

Next suppose that there is k <∞ such that for each j 6= i, Fj = σ(hT ,k−1
j ) and F` ( σ(hT ,k` )

for some ` 6= i. If there is Fk
i ∈ Πi such that Fk

i × F−i ∈ Ok, then ri(ti) = k = di(ti) (by

Corollary C.5). Otherwise, by Lemma 6.1 and Corollary C.5, there is Fi ∈ Πi such that

Fi×F−i ∈ Om for some m ≤ k− 1. We claim that m = k− 1. To see this, note that because

σ(hT ,k−1
` ) ( σ(hT ,k` ) by assumption, we have that σ(hT ,k−2

i ) ( σ(hT ,k−1
i ) by Lemma A.3 (given

that σ(hT ,k−2
j ) = σ(hT ,k−1

j ) for j 6= i by assumption). But then, by a similar argument, there

is j 6= i such that σ(hT ,k−3
j ) ( σ(hT ,k−2

j ). Hence, m ≥ k − 1, and thus m = k − 1. It follows

that ri(ti) = k − 1 < k = di(ti). �

C.5 Proof of Proposition 6.3

Fix i ∈ N and ti ∈ Ti. Again, it will be convenient to write F−i =×j 6=i
Fj for Σi(ti).

First suppose that for each j 6= i, Fj ⊇ σ(hT ,mj ) for all m. By Assumption 2, there is Fi ∈ Πi

such that Fi ⊇ σ(hT ,mi ) for all m, and Fi × F−i ∈ Π. By Corollary C.5, we then have that

ri(ti) =∞ = di(ti).

Next suppose there is k = 1, 2, . . . such that for each j 6= i, Fj = σ(hT ,k−1
j ) ( σ(hT ,kj ).

Then, by Assumption 2, σ(hT ,k−1
i )× F−i ∈ Π, and it follows from Corollary C.5 that ri(ti) =
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k = di(ti). �

C.6 Proof of Proposition 6.4

We first show that if a type space satisfies Assumption 3, then it satisfies Assumption 2.

Suppose T satisfies Assumption 3, and suppose by contradiction that it violates Assumption

2. Then, by Corollary A.4, there exist a profile F ∈ Π and k < ∞ such that Fj = σ(hT ,k−1
j )

for all j ∈ N , σ(hT ,k−1
i ) = σ(hT ,ki ) for some i ∈ N , and σ(hT ,k−1

` ) ( σ(hT ,k` ) for some ` ∈ N .

Then, by a similar argument as in the proof of Lemma C.4, F does not dominate itself, is

not part of a cycle or an infinite chain. But Fi i-dominates F , contradicting that T satisfies

Assumption 3.

Next, suppose that T satisfies Assumption 2. Suppose there exist a profile F ∈ Π and

a player i ∈ N such that Fi i-dominates F . Assume by contradiction that F is not self-

dominating, and is not part of a cycle or infinite chain.

It follows from Corollary A.4 that there is k < ∞ such that Fj = σ(hT ,k−1
j ) for all j ∈ N

and F` ( σ(hT ,k` ) for some ` ∈ N . Hence, by Assumption 2, we have that Fj ( σ(hT ,kj ) for

all j ∈ N . Because Fi i-dominates F , we have that k > 1, Fj = σ(hT ,k−2
j ) for all j 6= i, and

Fi ) σ(hT ,k−2
i ) (by Lemma A.3(c)).

By Corollary C.5, we have that F ∈ Ok, and, by definition, Ok−1 6= ∅. By Corollary

C.5, Ok−1 = {×j∈N σ(hT ,k−2
j )}. But then, because σ(hT ,k−2

j ) = σ(hT ,k−1
j ) for j 6= i and

Fi ) σ(hT ,k−2
i ), T does not satisfy Assumption 2, a contradiction. �
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