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Abstract 
 
New products and practices take time to diffuse, a fact that is often attributed to 

some form of heterogeneity among potential adopters.  People may realize 

different benefits and costs from the innovation, or have different beliefs about 

its benefits and costs, hear about it at different times, or delay in acting on their 

information.  This paper analyzes the dynamics arising from different sources of 

heterogeneity in a completely general setting without placing parametric 

restrictions on the distribution of the relevant characteristics.  The structure of 

the dynamics, especially the pattern of acceleration, depends importantly on 

which type of heterogeneity is driving the process.  These differences are 

sufficiently marked that they provide a potential tool for discriminating 

empirically among diffusion mechanisms.  The results have potential application 

to marketing, technological change, fads, and epidemics.   
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1. Introduction 

 

The diffusion of new products and practices usually takes time, and the 

proportion of people who have adopted at each point in time frequently, though 

not invariably, traces out an S-shaped curve.  There is an extensive theoretical 

and empirical literature on this phenomenon and the mechanisms that might 

give rise to it.1    Different lines of explanation have been pursued in the various 

disciplines -- marketing, sociology, and economics – where innovation diffusion 

has been most intensively studied.   A crucial feature of some of these 

explanations is that heterogeneity among the agents is the reason they adopt at 

different times.  Nevertheless, most of the extant models incorporate 

heterogeneity in a very restricted fashion, say by considering two homogeneous 

populations of agents, or by assuming that the heterogeneity is described by a 

particular family of distributions. 2 

 

In this paper we shall show how to incorporate heterogeneity into some of the 

benchmark models in marketing, sociology, and economics without imposing 

any parametric restrictions on the distribution of parameters.   The resulting 

dynamical systems turn out to be surprisingly tractable analytically; indeed, 

some of them can be solved explicitly for any distribution of the parameter 

values.   We then demonstrate that different models leave distinctive ‘footprints’; 

in particular, they exhibit noticeably different patterns of acceleration, especially 

in the start-up phase, with few or no assumptions on the distribution of the  

                                                 
1 For reviews of the literature see Mahajan and Peterson (1985), Mahajan, Muller, and Bass (1990), 
Geroski (2000), Stoneman (2002), and Valente (1995, 1996, 2005).   
2 See among others Jeuland, 1981; Jensen, 1982;  Karshenas and Stoneman, 1992; Geroski, 2000. 
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parameters.  The reason is that the models themselves have fundamentally 

different structures that even large differences in the distributions cannot 

overcome.  It follows that, given sufficient data on the aggregate dynamics of a 

diffusion process, one could assess the relative plausibility of different 

mechanisms that might be driving it with little or no prior knowledge about the 

distribution of parameters. While this type of analysis is certainly no substitute 

for having good micro-level data, it could be useful in situations where such data 

are unavailable. 3   

 

We shall consider five general approaches to explaining innovation diffusion.  

 

1. Inertia. People delay adopting out of inertia or because they need to wait for a 

revision opportunity to come along.  

 

2. Contagion.  People adopt the innovation when they hear about it from someone 

who has already adopted.   

 

3. Conformity. People adopt when enough other people in the group have 

adopted.    

  

4. Social learning. People adopt once they see enough evidence among prior 

adopters to convince them that the innovation is worth adopting.  

 

5.  Moving equilibrium.  As external conditions change, say as the cost of the 

innovation decreases or information about it increases, more and more people 

adopt as their reservation thresholds are crossed. 

                                                 
3 An exploratory study of this type using Griliches’ data on hybrid corn can be found in Young 
(2006).  
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Contagion (or epidemic) models are common in the marketing literature. 

Conformity (or threshold) models are the standard explanation in sociology. 

Learning and moving equilibrium models are the preferred approaches in 

economics.   The paper is structured as follows.   For each type of explanation we 

begin with a benchmark model and show how to incorporate heterogeneity of 

the parameters in complete generality.  (In the case of social learning we develop 

the benchmark model from scratch, since surprisingly little has been done on this 

approach in the prior literature.)   We then show how to solve the resulting 

dynamical systems and investigate their dynamic properties, particularly the 

pattern of acceleration.    In all of these cases I adopt a mean-field approach,  in 

which agents are assumed to interact at random and the population is large.  

This allows the expected motion of the process to be analyzed using systems of 

differential equations.  The analysis can be extended to small population settings 

and to situations where agents interact through a social network.  These 

extensions require substantially different techniques, however, and will be 

treated separately.  

 
2. Inertia 

 

To fix ideas it will be helpful to begin with one of the simplest explanations of 

diffusion, namely, that people sometimes delay in acting on their information.  

Such delays might be caused by pure procrastination, for example, or the need to 

wait until a replacement opportunity arises, e.g., a person adopts a new product 

only when his current model wears out.   Suppose first that there is no 

heterogeneity among agents, and and let λ  be the instantaneous rate at which 

any given non-adopter first adopts.    
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We treat adoption as an irreversible process in the short run.  Let ( )p t  be the 

proportion of adopters by time t , where we set the clock so that (0) 0p = .  The 

function ( )p t  is called the adoption curve.   When the population is homogeneous 

with instantaneous adoption rate λ , the expected motion is described by the 

ordinary differential equation ( ) (1 ( ))p t p tλ= − , and the unique solution is 

( ) 1 tp t e λ−= − .    

 

Notice that this curve is concave throughout; in particular, it is not S-shaped.  We 

claim that this remains true when any amount of heterogeneity is introduced.  

Specifically, let ( )ν λ  be a distribution of  λ  in the population whose support lies 

in some bounded interval 0 bλ≤ ≤ .   Then the expected trajectory of the process 

is given by  

 

                                                     ( ) 1 tp t e dλ ν−= − ∫ .                                                   (1) 

 

Differentiating (1) twice over, we see that ( ) 0p t <  irrespective of the distribution 

( )ν λ .  The intuition is straightforward: agents with low inertia (high λ ) tend to 

adopt earlier than those with high inertia (low λ ).  Hence the rate of adoption 

falls for two reasons: first, because the average degree of inertia in the remaining 

population of non-adopters is increasing over time, and second, because the 

number of non-adopters is decreasing over time.   

 

This simple example illustrates the kinds of results that hold in more complex 

diffusion processes: the logic of the model has implications for the shape of the 

curve that remain true even when an arbitrary degree of heterogeneity is 

introduced.  
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3. Contagion 

 

The next example we shall consider is the benchmark model in the marketing 

literature, which is variously known as the Bass model of new product diffusion 

(Bass, 1969, 1980) or the mixed-influence diffusion model (Mahajan and Peterson, 

1985).   The basic idea is that people adopt an innovation once they hear about it, 

and they can hear about it in one of two ways: from sources within the group or 

from sources external to the group (or both).  The relative strength of these two 

information channels determines the shape of the curve.   

 

Specifically, let λ  be the instantaneous rate at which a current non-adopter hears 

about the innovation from a previous adopter within the group, and let γ  be the 

instantaneous rate at which he hears about it from sources outside of the group.  

We shall assume that λ  and γ  are nonnegative, and that not both are zero.  In 

the absence of heterogeneity, such a process is described by the ordinary 

differential equation  ( ) ( ( ) )(1 ( ))p t p t p tλ γ= + − , and the solution is  

 

                                  ( ) ( )( ) [1 ] /[1 ]t tp t e eλ γ λ γβγ βλ− + − += − + ,  β > 0.                        (2)                 

 

When contagion is generated purely from internal sources ( 0γ = ) this boils 

down to the ordinary logistic function, which is of course S-shaped.4  When  

innovation is driven solely by an external source ( 0γ >  and 0λ = ), the result is 

the negative exponential distribution, just as in the case of pure inertia.  When 

both γ  and λ  are positive, we can choose β  in expression (2) so that (0) 0p = ; 

namely, with 1/β γ=  we obtain 
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                                       ( ) ( )( ) [1 ] /[1 ( ) ]t tp t e eλ γ λ γλ γ− + − += − + / .                                     (3) 

 

This basic model has spawned many variants, some of which assume a degree of 

heterogeneity, such as two groups with different contagion parameters 

(Karshenas and Stoneman , 1992;  Geroski, 2000) or employ a specific parametric 

form such as the gamma distribution (Jeuland, 1981).  

 

The fully heterogeneous version can be formulated as follows.   Let μ  be the 

joint distribution of the contagion parameters λ  and γ .  For convenience we 

shall assume that μ  has bounded support, which we may take to be 2[0,1]Ω = .   

(Rescaling λ  and γ  by a common factor is equivalent to changing the time scale, 

so this involves no real loss of generality.)  In what follows we shall always 

assume that 0dγ γ μ
Ω

= >∫ , for otherwise the process cannot get out of the initial 

state (0) 0p = .    

 

Let ( )p tλ γ,  be the proportion of all type- ( )λ γ, individuals who have adopted by 

time t .   Then the proportion of all individuals who have adopted by time t  is  

 

                                                          ( ) ( )p t p t dλ γ μ,= ∫ .                                              (4) 

  

(Hereafter integration over Ω  is understood.) Each subpopulation of adopters 

( )p tλ γ,  evolves according to the differential equation  

 

                                                                                                                                                 
4 The logistic model was common in the early work on innovation diffusion; see for example 
Griliches (1957) and Mansfield (1961).  Dixon (1980) showed that Griliches’ data are better 
modeled by Gompertz functions. 
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                                           ( ) ( ( ) )(1 ( ))p t p t p tλ γ λ γλ γ, ,= + − .                                      (5) 

 

This defines a system of first-order differential equations coupled through the 

common term ( )p t .   We can reduce it to an ordinary differential equation by the 

following device.  Let ( ) ln(1 ( ))x t p tλ γ λ γ, ,= −  and observe that (5) is equivalent to 

the system ( ) ( ( ) )x t p tλ γ λ γ, = − +  for all ( )λ γ, .  From this and the initial condition 

(0) 0xλ γ, =  we obtain 

 

                                        
t

0 0
( ) ( ( ) ) ( )

t
x t p s ds p s ds tλ γ λ γ λ γ, = − + = − −∫ ∫ .                      (6) 

 

From the definition of ( )x tλ γ, it follows that 

 

                                                         
( )

( ) 1
x t

p t e dλ γ μ,= − ∫ ;                                             (7) 

 

that is, ( )p t  satisfies the integral equation  

                       

                                                           0
( )

( ) 1
t

t p s ds
p t e d

γ λ
μ

− − ∫= − ∫ .                                            (8) 

Differentiating we obtain 

 

                                             0
( )

( ) ( ( ) )
t

t p s ds
p t p t e d

γ λ
λ γ μ

− − ∫= +∫ .                                  (9) 

 

Expression (9) can be put in more standard form by defining 
0

( ) ( )
t

y t p s ds= ∫ .  

Then ( ) ( )y t p t= , ( ) ( )y t p t= , and (9) becomes a second-order differential equation 

in y .  Note that the right-hand side is Lipschitz continuous in , ,t y and y , hence 
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on any finite interval 0 t T≤ ≤  there exists a unique continuous solution 

satisfying the initial condition (0) 0p = .   By the Picard-Lindelöf theorem, such a 

solution can be constructed by successive approximation (Coddington and 

Levinson, 1955).   It turns out, however, that we can deduce some key dynamic 

properties of the process without solving it explicitly: in particular, we will show 

that ( ) / ( )p t p t  is strictly decreasing irrespective of the joint distribution of λ  and μ . 

These and other properties of the model will be derived in section 7. 

 

4. Conformity  

                                                      

The sociological literature on innovation stresses the idea that people have 

different ‘thresholds’ that determine when they will adopt as a function of the 

number (or proportion) of others who have adopted.     The dynamics of these 

models were first studied by Schelling (1971, 1978), Granovetter (1978), and 

Granovetter and Soong (1988); for more recent work in this vein see Macy (1991), 

Valente (1995, 1996, 2005), Centola (2006), and Lopez-Pintado and Watts (2006). 

 

 For each agent i , suppose that there exists a minimum proportion 0ir ≥  such 

that i  adopts as soon as ir  or more of the group has adopted.  (If 1ir >  the agent 

never adopts.)  This is called the threshold or resistance of agent i .  Let ( )F r  be the 

cumulative distribution function of resistance in the population.   One can then 

define the discrete-time version of the process as follows (Granovetter, 1978).   

Let ( )p t  be the proportion of adopters at period 0,1,2,...t = .   The clock starts in 

period 0 when no one has yet adopted.  In period 1, everyone adopts whose 

thresholds are zero.  These are the innovators.   By definition of F  the innovators 

constitute the fraction (0)F  of the population, which we shall assume henceforth 

is strictly positive.  In period 2, everyone adopts whose thresholds are at most 

(0)F .   Thus at the end of the second period the fraction ( (0))F F  have adopted.   
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Proceeding in this way, we obtain [ ]( ) (0)tp t F= , where [ ]tF  is the t -fold 

composition of F  with itself.  

 

A useful generalization is to allow for some inertia in the adoption decision.  

Specifically, let us assume that in each period only a fraction (0,1)α ∈  of those 

who are prepared to adopt actually do so.   In other words, among those people 

whose thresholds have been crossed but have not yet adopted by the end of 

period t , only α will adopt by the end of the next period.  This yields the 

discrete-time process  

 

                                             ( 1) ( ) [ ( ( )) ( )]p t p t F p t p tα+ − = − .                                  (10) 

 

The continuous-time analog is  

 

                                                ( ) [ ( ( )) ( )], 0p t F p t p tλ λ= − > .5                                   (11) 

 

Assume now that (0) 0F >  and let b  be the smallest number in (0, 1] such that 

( )F b b= , if any such exists; otherwise let 1b = .   We then have ( )F p p>  for all 

[0, )p b∈ .   Since (11) is a separable ordinary differential equation, we obtain the 

following explicit solution for the inverse function 1( )t p x−= :  

                                                                                        
                                 [0, ),x b∀ ∈      1

0
( ) (1/ ) /( ( ) )

x
t p x dr F r rλ−= = −∫ .                       (12) 

                                                                                       
 

                                                 
5 Lopez‐Pintado and Watts (2006) derive the same continuous‐time generalization and study its 
fixed points under various assumptions about F. 
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Observe that the right-hand side is integrable because ( )F r  is monotone 

nondecreasing and ( )F r r−  is bounded away from zero for all r  in the interval 

[0, ]x  whenever x b< .   (The constant of integration is zero because of the initial  

condition (0) 0p = .)  The fact that this kind of process has an explicit analytic 

solution for any distribution seems not to have been recognized before.  

 

Suppose now that the parameters 0 , 1rλ≤ ≤  are jointly distributed in the 

population.  Assume that the joint distribution can be expressed as a conditional 

cumulative distribution ( )F rλ  for each λ  together with an unconditional density 

( )ν λ .6   Then the cumulative joint distribution function can be written 

0
( , ) ( ) ( )G r F r d

λ

λλ ν λ λ= ∫ .    Let ( )p tλ  be the proportion of adopters in the λ –

population at time t , and let ( ) ( ) ( )p t p t dλ ν λ λ= ∫  be the proportion of adopters in 

the total population at time t .   Then 

 

                                                        ( ) [ ( ( )) ( )]p t F p t p tλ λ λλ= − ,                               (13) 

and  

                                         ( ) ( ( )) ( ) ( ) ( )p t F p t d p t dλ λλ ν λ λ λ ν λ λ= −∫ ∫ .                   (14) 

 

Unlike the previous case this system is not necessarily separable.   Nevertheless a 

lot can be said about its acceleration properties, as we shall see in section 7.  

 

                                                 
6 In fact all the arguments go through when λ  has a discrete distribution; the assumption of a 
density is purely for notational convenience.  
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5.  Social learning 

 

Next we consider processes in which agents adopt only when they see enough 

positive evidence from the outcomes among previous adopters.   These are called 

social learning models, or more precisely, social learning models based on direct 

observation.7   We shall first outline the general approach and then work out a 

specific example using normal-normal updating.    

 

Consider a large population of individuals and suppose (for the moment) that 

the adoption process operates in discrete time 1,2,3,...t = .   Each adopter i  

generates a payoff iX  that can be observed by those who have not yet adopted.  

Assume that the realizations iX  are i.i.d. with finite mean μ  and variance 2σ .   

We shall interpret μ  to be the expected payoff difference between the innovation 

and the status quo, and we shall assume that in expectation the innovation is 

superior to the status quo, that is, 0μ > .   Ex ante people do not know that 0μ > ; 

rather, they start with different beliefs (based on their private information) about 

the value of μ . These beliefs are updated as they see the realized payoffs among 

prior adopters.   

 

For simplicity let us assume that all agents are risk neutral, and they adopt once 

they believe the mean is positive (given their posteriors).   For the process to get 

started there must exist a group that needs no persuading; these are the 

optimists.   Once they adopt (possibly with some lag), their outcomes are 

observed by others who were initially pessimistic.  Since 0μ >  by assumption,  

                                                 
7  Another form of social learning occurs in herding models, where agents decide whether to adopt 
based on the fact that others have adopted, not on the realized outcomes, which are private 
information (Bikchandani, Hirshleifer, and Welsh, 1992; Banerjee, 1992).    
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the mean outcome among these prior adopters will be positive (in expectation), 

which will tip some of the pessimists into the optimists’ camp.   In sum, as more 

and more people adopt, a larger base of information is created, this information 

is on average positive, which causes the next group of agents to become 

optimistic and adopt, which further enlarges the information base, and so forth.  

Whether this snowball effect reaches saturation or fizzles out depends on the 

distribution of prior beliefs in the population, as we shall see in a moment.  In 

any event, the expected dynamics of the process can be expressed in a 

surprisingly simple way as a function of the distribution of prior beliefs.     

 

We shall first walk through the argument assuming a discrete-time process and a 

large but finite population, then pass to the continuous limit.   For the sake of 

concreteness let us temporarily assume a specific parametric structure for the 

updating process, namely, normal-normal updating; it will soon become 

apparent that the argument does not depend on this particular parametric 

structure.   Suppose then that the random variables iX  are i.i.d. normal with 

mean 0μ >  and variance 2σ .   At the start of the process, before any outcomes 

have been observed, each agent  i  has a prior belief about the value of μ , where 

the belief is normal with mean (0)im  and variance 2
iτ .  These beliefs are based on 

agents’ private information and may differ among agents.  Let there be n  agents 

in the population, where n  is large.   By period t  the proportion ( )p t  will have 

adopted, and they will have generated ( )np t  outcomes with a realized mean   
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( )tμ .   Assume for simplicity that all agents can view ( )tμ .8   Then 'i s  Bayesian 

posterior ( )im t  is a convex combination of  (0)im  and ( )tμ , namely, 9 

 

                                         
2

2

( ) (0) / ( )( )
1 1/ ( )

i i
i

i

t m np tm t
np t

μ τ
τ

+
=

+
 .                                             (15) 

 
    

By assumption i  is risk-neutral, so she is prepared to adopt once ( ) 0im t > .  In 

particular, agents such that (0) 0im >  need no convincing and are prepared to 

adopt right away.   These optimists propel the process forward initially.   By 

contrast, an agent i  such that (0) 0im <  is initially pessimistic; she only changes 

her mind once she sees enough positive outcomes among prior adopters.  

Specifically, expression (15) shows that she will change her mind provided that  
2( ) (0) / ( )i it m np tμ τ> − , which is equivalent to 

 

                                                     2( ) (0) / ( )i ip t m n tτ μ> − .                                       (16) 

 

By assumption, ( )tμ  is ( / ( ))N np tμ σ, .    Assuming that n  is large, the realized 

mean ( )tμ  is close to the actual mean with high probability unless ( )p t  is very 

small.  Thus, except possibly when ( )p t  is near zero, we can say that i  adopts 

with high probability once the proportion ( )p t  passes the threshold  

 

                                                         2(0) /i i ir m nτ μ= − .                                         (17) 

 

                                                 
8 A more realistic assumption would be that each agent observes a subset of outcomes, say those 
generated among his acquaintances. This modification does not change the aggregate dynamics 
in any fundamental way, since idiosyncratic variations among individual realizations are 
smoothed out when aggregated over the whole population.    



 15 

(We shall consider the situation when ( )p t  is small in a moment.)   Observe that 

the number ir  an ex ante property of agent i: it depends on her initial beliefs, as 

well as on n  and μ , all of which are fixed.10  Thus, ir  functions like a resistance in 

the model considered in the previous section, and the aggregate dynamics are 

determined by the distribution of the resistances in the population.   Specifically, 

let ( )F r  be the c.d.f of r  in the population, where r  is derived from the initial 

beliefs as in (17).   Then the expected motion of the discrete-time process is well-

approximated by the difference equation (10), that is, 

 

                                            ( 1) ( ) [ ( ( )) ( )]p t p t F p t p tα+ − = − ,  

 

where 0 1α< <  and (0) 0F > .  We claim that this remains a good approximation 

even in the start-up phase when ( )p t  is small.  The reason is that the process is 

initially driven forward by the optimists, who by assumption represent a positive 

fraction (0)F  of the population.    In other words, adoption is initially driven by 

a population of ( ( ( )) ( ))n F p t p t−  individuals, which is large even in the start-up 

phase when ( )p t  is small; hence the preceding approximations remain valid.   

 

The continuous-time analog is analogous to (11), namely,   

 

                                              ( ) [ ( ( )) ( )] for some 0p t F p t p tλ λ= − > . 

    

While we derived this expression using normal-normal updating, this was not 

crucial to the argument: the essential point is that, as the proportion of adopters 

                                                                                                                                                 
9 See, for example, DeGroot (1970). 
10 If agent  i  obtains information only from a circle of  is  acquaintances, her threshold will instead 

be   2(0) /i i i ir m sτ μ= − .  
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grows, the information they generate gradually overcomes the skepticism of 

those who remain.  This property holds in expectation for a variety of Bayesian 

updating procedures; for example, it holds when the outcome variable X  is 

binomially distributed and agents have different priors about its mean (Lopez-

Pintado and Watts, 2006). 11 

We now consider a variant of the preceding model in which the information 

generated by each prior adopter accumulates over time.  Suppose, for example, that 

the innovation is a new medication whose efficacy can only be determined when 

taken over a substantial period of time.  An agent who is deciding whether to 

adopt the medication will therefore be interested, not only in how many prior 

adopters there are, but how long each of them has been using it.   In this and other 

situations, each adopter’s outcome needs to be weighted by the length of time 

since he first adopted.  If all adopters are weighted equally and there is no 

discounting, the total amount of information generated up to time t  is found by 

integrating the adoption curve up to t , namely,  

 

                                                          
0

( ) ( )
t

r t p s ds= ∫ .12                                           (18) 

 

Following the previous line of argument, we may suppose that each agent  i  has 

an  information  threshold  or  resistance  0ir ≥ , determined  by  his  initial  beliefs, 

such  that  he  is  adopts with  high  probability  once  the  amount  of  information 

exceeds his threshold:  ( ) ir t r> .  Letting  ( )F r  be the cumulative distribution  

 

                                                 
11  In earlier work, Jensen (1982) studied the special case in which X  is binomial and the prior 
beliefs are uniformly distributed.  
12 More generally, 

0
( ) ( )

t

r t p s dsγ= ∫  where  γ   is the rate at which information is generated by 

prior adopters. For notational simplicity we shall take  1γ =  .  
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function of  r , we obtain the dynamical equation 

 

                                                
0

( ) [ ( ( ) ) ( )], 0
t

p t F p s ds p tλ λ= − >∫ .                          (19) 

 

A process of this form will be called a cumulative learning model, in contrast to the 

previous class of processes, which will be called non‐cumulative learning models or 

simply threshold models.   

 

When  λ   and  r   are  jointly distributed, we  obtain  a  system  analogous  to  (13), 

namely,  

 

            [0,1],λ∀ ∈    ( ) [ ( ( )) ( )]p t F r t p tλ λ λλ= − ,  where 
1

0 0
( ) ( )

t
r t p s d dsλ ν= ∫ ∫ .         (20) 

                                                                                                

As  before,  a  unique  continuous  solution  is  guaranteed  on  any  finite  interval 

[0, ]t T∈ , assuming  that  (0) 0Fλ >   for each value of  λ .   This system  is  typically 

more difficult to solve than the non‐cumulative version, even when  λ  does not 

vary.       However, when  r   is uniformly distributed  (and  λ   is constant) we can 

obtain explicit solutions in both cases.    

 

First,  consider  the  threshold  model  generated  by  the  uniform  distribution 

( )F r ar b= + , where  0a > ,  1a ≠ ,  0 1b< < , and  0 (1 ) /r b a≤ ≤ − .    Integrating as in 

(12), it follows that on some interval  [0, ]t T∈ , the unique solution is  

 

                                                     ( 1)( ) ( /( 1))( 1)a tp t b a eλ −= − − .                                   (21) 
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If 1a >  the path is exponentially increasing until the first time T  such that 

( ) 1p T = , after which ( )p t  remains constant.    If 1a < , the path is increasing, 

concave, and approaches the value /(1 )p b a= −  asymptotically as t → ∞ .   

 

Consider now the cumulative learning model generated by the same 

distribution.  Differentiating (19) with respect to t , and using the fact that 

( ) ( )p t r t= , we obtain 

 

                                               (1/ ) ( ) ( ) ( ) 0.p t p t ap tλ + − =                                             (22)   

 

This is a second-order equation with constant coefficients.   The initial condition 

is (0) 0p = ; moreover from (19) we know that (0)p bλ= .    It follows that the 

unique solution is13  

 

                        ( / 2)[ 1 1 4 / ] ( / 2)[1 1 4 / ]( ) [ / 1 4 / ][ ].a t a tp t b a e eλ λ λ λλ − + + − + += + −                       (23) 

 

The shape of this curve is illustrated in Figure 1.  Notice that it is concave 

initially, then convex; in other words it is inverse-S-shaped.  Curves like this are 

probably quite rare in practice; in particular, empirical studies suggest that 

adoption curves usually decelerate as they approach their upper bound (Valente, 

1995; Rogers, 2003).   

 

                                                 
13 Substitute ( ) tp t eα β+=  into (22)  and solve the resulting quadratic equation for α and β  . Both 
roots appear in the solution (23) in order to satisfy the initial conditions.  
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Figure 1. Cumulative learning dynamics generated by the uniform distribution 
              ( ) 5 / 4 1/ 5F r r= +  and 4λ = .  
 

 

The peculiar behavior of this curve arises from the assumption that resistances 

are uniformly distributed.  If the distribution of resistances has a sufficiently thin 

right tail, then deceleration eventually sets in, as one would expect.   This effect is 

illustrated in Figure 2 for a normal distribution.  Note, however, that the 

cumulative learning curve still decelerates initially, just as it did under the uniform 

distribution.  It turns out that initial deceleration is a feature of the cumulative 

learning model no matter what the distribution of resistances, as we shall show in 

section 7.    The reason is that cumulative learning attaches a lot of weight to 

information generated by very early adopters, of which there are very few, 

which creates an initial drag on the process.  
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Figure 2.  Top: normal distribution of resistances N(.10, .10);   Middle: 
noncumulative learning curve ( 4)λ = ; Bottom: cumulative learning curve 
( 4)λ = .  
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6. Exogeneously driven moving equilibrium models 

 

In contagion, conformity, and social learning models the process is propelled by 

a feedback loop between prior adopters and future adopters.   In this section we 

consider models in which the dynamics are driven solely by changes in an 

exogenous variable and there is no internal feedback.    

 

As an example, consider a new product whose price declines over time.  If agents 

have different costs of adoption, those with the lowest costs will adopt first, then 

the next lowest, and so forth (David, 1966, 1969, 1975, 2003; David and Olsen, 

1984, 1986; Stoneman, 2002).   Another example would be increasing information 

about the new product that is generated from outside sources.   As more 

becomes known about it, agents who were initially skeptical change their minds.   

Note that this is very similar to the learning model, except that in this case the 

information is generated exogenously.   In general, let ( )tθ  be the value of an 

exogenous scalar parameter at time  t , which is assumed to be monotonically 

increasing.   Each agent adopts when ( )tθ  is large enough, and the crucial value 

of θ  represents that agent’s threshold.  Heterogeneity is described by a 

cumulative distribution function ( )F θ  in the population of potential adopters.  

Thus the proportion of adopters at time  t  is    

 

                                                             ( ) ( ( ))p t F tθ= .                                               (24) 

 

Such a process is sometimes called a “moving equilibrium model” (David, 1969).  

Here I shall call it an externally driven moving equilibrium model to emphasize the 

importance of the external driving force.   Indeed, the learning dynamics 

discussed earlier have an equal claim to being called moving equilibrium 
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models, because at each point in time agents make optimal choices given their 

information.  The crucial difference between the two approaches is that, in 

learning models, the key parameter that propels the process forward is 

information generated internally by prior adopters, whereas in the models 

discussed here the process is propelled by changes in an exogenous parameter.  

For example, if ( )tθ  represents the mean realized payoff from a series of trials 

external to the group, and θ  is the resistance of a given individual within the 

group as determined by his prior beliefs, then the exogenous aspect is the only 

essential difference between this and the previous class of social learning models.     

 

Unlike social learning models and the other models discussed above, there is no 

differential equation to solve in this case: ( )p t  is simply the composition of two 

monotone increasing functions ( )F θ  and ( )tθ .    Since any monotone increasing 

function ( )p t  can be expressed in many ways as the composition of two 

monotone functions, the model has no predictive power without more 

knowledge about the nature of ( )F θ  and  ( )tθ .   Nevertheless, if we assume a 

definite form for ( )tθ , for example that it is linear, then something interesting 

can be said about the acceleration of the process without placing undue 

restrictions on F , as we shall see towards the end of the next section. 

 

7. Acceleration analysis 

 

In this section we shall show that each of the models introduced above leads to 

predictions about the acceleration pattern of the diffusion curve that require few, if 

any, restrictions on the underlying distribution of heterogeneous characteristics.  

The key measures that we shall study are the rate of acceleration ( )p t  and the 

relative rate of acceleration ( ) / ( )p t p t .      
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To fix ideas, let us first consider the threshold model when there is no 

heterogeneity.   As we have already seen, the differential equation describing 

such a process is given by  

 

                                                  ( ) [ ( ( )) ( )]p t F p t p tλ= − ,                                          (25) 

 

where ( )F r  is the distribution function of “resistance” in the population.  As 

before, we shall assume that ( )F r r>  on some initial interval 0 r b≤ < , for 

otherwise the process cannot get started.   In this case ( )p t  is positive over some 

initial interval [0, ]T .  Assume that ( )F r  has a continuous density ( )f r  on the 

open interval (0,1)r ∈ .   (Note that, since (0) 0F > , the density  f  is not defined at 

0r = .) Differentiating (25) with respect to t  and dividing through by ( )p t , which 

by assumption is positive, we obtain 

 

                     [0, ],t T∀ ∈                ( ) / ( ) [ ( ( )) 1]p t p t f p tλ= − .                                      (26) 

It follows that the relative acceleration rate traces out a positive linear transformation of 

the underlying density.  

 

Notice that the process has positive acceleration if and only if the density is large 

enough, namely, if and only if ( ) 1f r > .  Suppose further that ( )f r  is unimodal -- 

first strictly increasing and then strictly decreasing.  Then the relative 

acceleration rate exhibits the same pattern.   In particular, the start-up phase of 

the process exhibits superexponential growth.   (When ( ) / ( )p t p t  is constant ( )p t  

grows exponentially, and when ( ) / ( )p t p t  is strictly increasing ( )p t  grows 

superexponentially.)    
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This phenomenon results from the compounding of two effects.  First, as more 

and more people adopt, the amount of information available to the remainder of 

the population increases.  Second, the number of people persuaded by each 

additional bit of information increases as the process moves up the left tail of the 

distribution of resistances.  These conclusions continue to hold when λ  is 

heterogeneously distributed, under quite weak non-parametric assumptions on 

the joint distribution of resistances and inertia levels. ( )F rλ .   

 

Proposition 1.  Suppose that diffusion is driven by a heterogeneous threshold model, 

where for each level of inertia (0,1]λ ∈  the conditional distribution of resistance has a 

density ( )f rλ  that is continuous and bounded, and (0) 0Fλ > . Let 
0

(0) lim ( ).
r

f f rλ λ+→
=   

Then: 

 i) if (0) 1fλ >   for every λ , the process initially accelerates;  

 

ii) if the conditional densities ( )f rλ  are strictly increasing on an open interval (0, )r , the 

relative acceleration rate ( ) / ( )p t p t is strictly increasing on the same interval. 

    

Proof.  The equations of motion are   

 

                                                 ( ) [ ( ( )) ( )]p t F p t p tλ λ λλ= − .                                         (27) 

Hence for 0t > , 

                                               ( ) [ ( ( )) 1] ( )p t f p t p tλ λ λλ= −                                            (28) 

and 

                                              ( ) [ ( ( )) 1] ( )p t f p t p t dλ λλ ν= −∫ .                                      (29) 

 

Letting 0t +→  and using the continuity of ( )p t  and ( )p t  we have   
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                                                2(0) [ (0) 1] (0)p f F dλ λλ ν= −∫ ,                                      (30) 

 

from which i) follows immediately.  

 

To establish ii), notice that (28) implies ( ) / ( ) [ ( ( )) 1]p t p t f p tλ λ λλ= −  for every λ .  

By the hypothesis in ii), the functions ( ( ))f p tλ  are strictly increasing on some 

interval 0 ( )p t r< < .   It follows that, for every λ  and all t  in a suitable interval 

(0, ]T , 

 

                                             2( ) / ( ) ( ( ) / ( )) 0p t p t p t p tλ λ λ λ− > ,                                 (31) 

that is, 

                                                           ( ) ( ) ( )p t p t p tλ λ λ> .                                       (32) 

Hence 

                                                  ( ) ( ) ( ) ( )p t p t d p t d p tλ λ λν ν> =∫ ∫ .                         (33) 

By Hölder’s Inequality,  

 

                               1/ 2( ) ( ) ( ( ) ( ) ) ( ) ( )p t p t p t d p t d p t p t dλ λ λ λν ν ν= ≥∫ ∫ ∫ .            (34) 

 

Combining this with (33) we conclude that ( ) ( ) ( )p t p t p t> , which implies that 

( ) / ( )p t p t  is strictly increasing on (0, ]T . This concludes the proof of the 

proposition. 

 

We now show that the cumulative learning model always decelerates initially.  

We shall first run through the argument assuming constant λ ; it will then be 

clear how to generalize it to the heterogeneous case.   Let ( )F r  be the 

distribution function of resistance r  and let 
0

( ) ( )
t

r t p s ds= ∫ .  Assume that ( )F r  
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has a differentiable density ( )f r  such that ( )f r′  is continuous and bounded on 

0 1r< ≤ .   Differentiating the defining equation (19) with respect to t , and 

recalling that ( ) ( )p t r t= , we obtain the following expression 

 

                                                   (1/ ) ( ) ( ) ( ( )) ( )p t p t f r t p tλ = − .                                 (35)   

 

The solution ( )p t  is continuous and therefore 
0

lim ( ) (0) 0
t

p t p+→
= = .   Hence 

( ( )) ( )f r t p t  approaches zero as 0t +→ .    We also know from (19) that 

(0) (0) 0p Fλ= > .   It follows from this and (35) that  

 

                                                        2
0

lim ( ) (0) 0
t

p t Fλ+→
= − < .                                (36) 

 

In short, the adoption curve must be decelerating in a neighborhood of the origin.   

(Figures 1 and 2 illustrate this phenomenon.)  The reason is that the initial block 

of optimists (0)F  exerts a decelerative drag on the process: they contribute at a 

decreasing rate as their numbers diminish, while the information generated by 

the new adopters gathers steam fairly slowly because at first there are so few of 

them.  These arguments continue to hold when there is heterogeneity in λ , as the 

reader may verify. 

 

Next we shall show that the relative acceleration rate is strictly increasing in a 

neighborhood of the origin provided that 
0

(0) lim ( ) 0
r

f f r+→
= > . Let 

( ) (1/ ) ( ) / ( )t p t p tφ λ= .   From (35) we deduce that 

 

                                                 ( ) ( ( )) ( ) / ( ) 1t f r t p t p tφ = − .                                          (37) 

 

Differentiating (37) we obtain 
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                          2 2( ) ( ( )) ( ) / ( ) ( ( )) ( ( )) ( ) ( ) / ( )t f r t p t p t f r t f r t p t p t p tφ ′= + − .             (38) 

 

As 0t +→  the first term goes to zero, because by assumption f ′  is bounded,  

( ) 0p t → , and (0) 0p > .  The third term also goes to zero.  However, 

( ( )) (0) 0f r t f→ > , so the second term is positive in the limit. It follows from 

continuity that ( )tφ  is strictly positive on some initial interval 0 t T≤ ≤ .   

 

The reader may verify that a similar argument holds in the heterogeneous case 

provided that all of the conditional distributions satisfy 
0

(0) lim ( ) 0
r

f f rλ λ+→
= > , 

and the derivatives are bounded and continuous in a neighborhood of zero.  

These findings are summarized in the following.   

 

Proposition 2.  Suppose that diffusion is driven by cumulative social learning, where for 

each level of inertia (0,1]λ ∈  the conditional distributions of resistance satisfy (0) 0Fλ >  

and 
0

(0) lim ( ) 0
r

f f rλ λ+→
= > , and the derivatives ( )f rλ′  are continuous and bounded on 

0 1r< ≤ .   Then initially the process strictly decelerates whereas the relative acceleration 

rate strictly increases.   

 

Next we shall study the shape of the curves generated by heterogeneous 

contagion.   It turns out that a key statistic in this case is the hazard rate 

( ) ( ) /(1 ( ))h t p t p t= − .   Consider a heterogeneous contagion model where μ  is the 

joint distribution of the internal and external contagion parameters λ  and γ .    

As before we shall assume that the support of μ  lies in the unit square 2[0,1]Ω = .   

To assure that the process gets started, we shall also suppose that 0dγ γ μ
Ω

= >∫ .    
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Proposition 3.  Suppose that diffusion is driven by heterogeneous contagion with joint 

distribution μ  on the parameters 2( ) [0,1]λ γ, ∈  such that 0γ > .  For all 0t > , 

( ) / ( )h t p t  is strictly decreasing in t , equivalently, 

 

            0,t∀ >                  ( ) / ( ) (1 2 ( )) ( ) / ( )p t p t p t h t p t< − .                                          (39)                                               

 

Furthermore, 

                                                          (0) 0pλ γ< ⇒ < .                                                (40)  

 

Corollary 3.1. If ( )p t  is generated by heterogeneous contagion, then ( ) / ( )p t p t is 

strictly decreasing.  

 

The corollary follows immediately from the fact that ( ) / ( )h t p t  is strictly 

decreasing: namely, if ( ) / ( ) ( ') / ( ')h t p t h t p t<  for some 't t< , then 

( ) / ( ) ( ') / ( ')p t p t p t p t< .  Notice, however, that this does not necessarily imply that 

the relative acceleration rate ( ) / ( )p t p t  is strictly decreasing.   Rather, the fact that  

( ) / ( )h t p t  is decreasing  implies that ( ) / ( )p t p t  is bounded above (see (39)), where 

the bound goes to zero as  ( )p t  approaches one-half.   These predictions should 

be straightforward to check given sufficient empirical data.  

 

Proof of proposition 3.  Define the function ( )H t = ( ) / ( )h t p t : this is well-defined 

for all 0t >  because (0) 0p γ= >  and hence ( ) 0p t > .  To establish the first claim 

of the proposition we shall show that ( ) 0H t < . 

 

For each parameter pair ( )λ γ,  let ( ) (1 ( ))q t p tλ γ λ γ, ,= −  denote the proportion of the 

( )λ γ, -population that has not yet adopted by time t .  The proportion of the total 

population that has not adopted by t  is therefore  
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                                                      ( ) ( )q t q t dλ γ μ,= ∫ .                                                 (41) 

 

For each ( )λ γ,  we have 

 

                                               ( ) ( ( ) ) ( )p t p t q tλ γ λ γλ γ, ,= + .                                          (42) 

 

Integration with respect to μ  yields  

 

                                               ( ) [ ( ) ( ) ( )] ( )p t t p t t q tλ γ= + ,                                          (43)                 

 

where 

                           1( ) ( ) ( )t q t q t dλ γλ λ μ−
,= ∫  and 1( ) ( ) ( )t q t q t dλ γγ γ μ−

,= ∫ .                 (44) 

 

Note that ( )tλ  and ( )tγ  are the expected values of λ  and γ  in the population of 

non-adopters at time t .   It follows that 

 

                                        ( ) ( ) /[ ( ) ( )] ( ) ( ) / ( )H t p t p t q t t t p tλ γ= = + .                            (45) 

 

Claim:  For every 0t > , ( ) ( ) ( ) 0t p t tλ γ+ ≤  .                                                              (46) 

 

Proof of claim.  For every 0t >  we have 

 

                                     
2

( ) ( ) ( )
( )

( ) [ ( ) ]

q t d q t d q t d
t

q t d q t d
λ γ λ γ λ γ

λ γ λ γ

λ μ λ μ μ
λ

μ μ
, , ,

, ,

= −∫ ∫ ∫
∫ ∫

,                         (47) 

and 
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2

( ) ( ) ( )
( )

( ) [ ( ) ]

q t d q t d q t d
t

q t d q t d
λ γ λ γ λ γ

λ γ λ γ

γ μ γ μ μ
γ

μ μ
, , ,

, ,

= −∫ ∫ ∫
∫ ∫

.                         (48) 

 

To show that ( ) ( ) ( ) 0t p t tλ γ+ ≤ , multiply (47) by ( )p t  and add it to (48); after 

simplifying we obtain the equivalent condition  

 

         ( ( ) ) ( ) ( )p t q t d q t dλ γ λ γλ γ μ μ, ,+∫ ∫ ( ( ) ) ( ) ( )p t q t d q t dλ γ λ γλ γ μ μ, ,− +∫ ∫ 0≤ .         (49) 

 

(Notice that t  does not vary in this expression; t  is fixed and integration is taken 

with respect to λ  and γ .)   

 

We know from (42) that ( ) ( ( ) ) ( )q t p t q tλ γ λ γλ γ, ,= − +  for every λ γ, , and t .   

Substituting this into (49) we obtain  

 

                        2( ( ) ) ( ) ( )p t q t d q t dλ γ λ γλ γ μ μ, ,+∫ ∫ 2[ ( ( ) ) ( ) ]p t q t dλ γλ γ μ,≥ +∫ .           (50) 

 

Fix 0t >  and define the random variables  

 

                                  ( ( ) ) ( )X p t q tλ γλ γ ,= +  and ( )Y q tλ γ,= .                               (51) 

 

The realizations of X  and Y  are determined by random draws from μ .   Then 

(50) follows directly from Schwarz’s inequality: 2 2 2[ ] [ ] ( [ ])E X E Y E XY≥ .  This 

establishes the claim.   

 

We now use this result to show that ( )H t  is strictly decreasing in t for all 0t > .  

Direct differentiation leads to 
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                                         2( ) ( ) ( ) / ( ) ( ) ( ) / ( )H t t t p t t p t p tλ γ γ= + − .                         (52) 

 

By the above claim, ( ) ( ) ( ) 0t p t tλ γ+ ≤ , so division by ( ) 0p t >  yields 

( ) ( ) / ( ) 0t t p tλ γ+ ≤ .    Thus the sum of the first two terms on the right-hand side 

of (52) is nonpositive.   But the last term is strictly negative, because ( ) 0tγ >  for 

all 0t >  given the initial condition (0) 0γ γ= > .   Hence ( )H t  is strictly 

decreasing in  t , which establishes the first claim of the proposition.   Expression 

(39) is an immediate consequence of the fact that  ( ) 0H t < . 

 

To prove (40), recall that 

     

                                         ( ) ( ) ( ( ) ) ( )p t p t d p t q t dλ γ λ γμ λ γ μ, ,= = +∫ ∫ .                          (53) 

 

Differentiate (53) and evaluate it at 0t =  to obtain 

 

                          (0) (0) (0) (0) (0) (0)p p q d p q d q dλ γ λ γ λ γλ μ λ μ γ μ, , ,= + +∫ ∫ ∫ .              (54) 

 

Now use the fact that (0) 0,p =  (0)p γ= , and (0)qλ γ γ, = −  to deduce that  

                                            

                                           2(0) (0)p q dλ γγλ γ μ,= − ∫            

                                             2 2 )γγλ γ σ γ λ γ= − − ≤ ( − .                                             (55) 

 

Hence (0) 0p <  if λ γ< .   This concludes the proof of Proposition 3.  
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There exist perfectly reasonable S-shaped curves for which ( ) / ( )h t p t  is strictly 

monotone increasing, and which are therefore inconsistent with a heterogeneous 

contagion model for any distribution of the contagion parameters.    Consider, for 

example, curves of form ( ) ( )(1 ( ))ap t p t p t= − , which were first proposed by 

Easingwood, Mahajan, and Muller (1981, 1983).    When 1a > , 1( ) / ( ) ( )ah t p t p t−=  

is strictly increasing, hence the process cannot arise from a heterogeneous 

contagion model.   Yet it generates adoption curves that look superficially very 

much like other S-shaped curves, including some, like the Bass model, that do 

arise from contagion (see Figure 3).   The differences are only revealed by 

studying the behavior of the first and second order derivatives.  
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Figure 3.  Two adoption curves: the solid line is generated by 1.2( ) (1 )p t p p= −  
and (0) 0.01p = , the dashed line by the Bass model with .75λ = and .0025γ = . 
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Finally, let us turn to the externally driven moving equilibrium models.   

Somewhat less definitive statements can be made in this case due to the 

extremely general nature of the model; nevertheless something can be said. 

 

Recall from (24) that such a process takes the form ( ) ( ( ))p t F tθ= , where ( )F θ  is 

the distribution function of a scale parameter θ , which increases over time.  As 

with the previous models, we are interested in analyzing the dynamics without 

making restrictive assumptions about the distribution of heterogeneity.  Notice 

that in this case the heterogeneity is embodied entirely in ( )F θ ;  to say anything 

about the dynamics we must first specify the behavior of ( )tθ .  The simplest 

assumption is that θ  increases at a constant rate, that is, 0θ >  and 0θ = .   In this 

case ( )p t  traces out a portion of the cumulative distribution curve starting at  

(0) ( (0))p F θ= .   If the density ( )f θ  is unimodal, this will be an S-shaped curve.   

To make comparisons with the previous models, note that  

 

                              ( ) / ( ) ( ( )) / ( ( ))p t p t af t f tθ θ′= , where ( ) 0a tθ= > .                 (56) 

 

For many common distributions ( ( )) / ( ( ))f t f tθ θ′  is nonincreasing, that is, the 

density ( )f θ  is logconcave.  These include the normal, lognormal, exponential, 

and uniform distributions.  For all of these distributions the relative acceleration 

rate ( ) / ( )p t p t  will be nonincreasing.    This stands in marked contrast with  

heterogeneous threshold models, where the relative acceleration rate is 

increasing whenever the density ( )f θ  is increasing.   
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Proposition 4.  Suppose that ( )p t  arises from an externally driven moving equilibrium 

model ( ) ( ( ))p t F tθ= , where ( ) 0tθ > , ( ) 0tθ = , and the density ( )f θ  is continuously 

differentiable and logconcave.  Then the relative acceleration rate ( ) / ( )p t p t  is 

nonincreasing.   

 

8. Summary 

 

In this paper we have studied five families of diffusion models, and shown how 

to solve them for completely general distributions of the underlying 

heterogeneous characteristics.   Each family of models has a distinctive pattern of 

acceleration, as shown in Table 1.    In situations where good micro-level 

adoption data are not available, this framework has the potential for assessing 

the relative plausibility of different diffusion models based on the behavior of the 

aggregate dynamics.   Of course, actual tests of significance would require a 

detailed analysis of the error structure in a finite-population setting, which we 

have side-stepped in order to study the mean-field dynamics.   The extension of 

the results to a fully stochastic framework, and their application to empirical 

adoption curves, will be treated separately.  
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    Model                              Footprint                  Restrictions on distribution 

________________________________________________________________________ 

1. Inertia                                               ( ) 0p t <                                    none 

                                                        

 
2.   Threshold                                      (0) 0p >                      density initially increasing 
                                                      ( ) / ( )p t p t ↑  initially              and greater than unity 
 
 

3. Cumulative learning                      (0) 0p <                                    none                                   

                                                    ( ) / ( )p t p t ↑  initially         density initially increasing 
                                                                                                    
                              

4. External moving                          (0) 0p >                    density initially increasing 
   equilibrium  ( ( ))F tθ             ( ) / ( )p t p t ↓ initially      and logconcave; ( )tθ  linear  
 

5. Contagion                                   ( ) / ( )p t p t ↓  
                                              ( ) / ( ) (1 2 ( )) ( ) / ( )p t p t p t h t p t< −                none 

                                                         
  
                                                                           
Table 1. Diffusion models and their acceleration  ‘footprints.’ Non‐cumulative 
learning and conformity fall under the heading of threshold models. 
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