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Abstract

Let X = (XI‘XZ"") be a sequence of random variables distributed
according to an unknown distribution u = My and let ﬁ = ;X be a known
hypothetical distribution. The paper provides a condition under which the

conditional hypothetical distribution. ﬁx X X approaches the real

“n+1° 71 n

and thus making the Bayesian forecasting

one, .
#Xn+1'X1""‘Xn

asymptotically accurate.



1. Introduction

Let X = (Xl.Xz....) be a sequence of real valued random variables with

M= #X denoting their unknown joint distribution. For times n = 1,2,... we
denote the history at time n by X; = (X,.X ...,Xn) and the infinite future
by X; = (Xn'Xn+1"")' The problem of forecasting we are interested in, is
predicting the probability distribution of the future after observing a
sufficiently long past, e.g., approximating the conditional probability
distributions #X X" or pX+ X The method of approximation we study

n+1 “n n+l “n

starts with a known hypothetical distribution for X, ﬁ. and uses ;X X
n+l 'n

and ;X+ X" to approximate the unknown correct conditional distributions.
n+l "n
Blackwell and Dubins (1962) showed] that if u is absolutely continuous
with respect to ﬁ then with g-probability one ;X+ X must "merge" with
“n+l1 "n

#X+ X In other words. posteriors computed according to a incorrect
n+l n

distribution will eventually approximate the correct posteriors provided
that absolute continuity holds.

The above result has proven useful for applications in game theory and
economics.2 For example, in Kalai and Lehrer (1990b), Xn denoted the action
taken at time n by the opponents of a player in an infinitely repeated game.
The Blackwell-Dubins theorem was used to illustrate that such a player
learns with time to predict the distribution of his opponents' future
actions. As a result, it was shown that utility maximizing players in such
a game, who start with individual subjective beliefs about opponents'

strategies, must converge with time to a true Nash equilibrium play. A

1See also Diaconis and Freedman (1986) and Schervish and Seidenfeld
(1990) .

2See. for example, Kalai and Lehrer (1990b) and (1992), Nyarko (1992),

and Kreps and Fudenberg (1992).



similar approach was used in Kalai and Lehrer (1992) to illustrate
convergence to equilibrium of a dynamic economy, by utility-maximizing

price-taking agents that learn to forecast future prices given by a vector

x'.
n

It turns out that for economic applications, as above, learning in the
Blacwell-Dubins sense is stronger than necessary. Economic agents, who
discount future payoffs, have no need to predict the probability of events
in the unbounded infinite horizon. Thus, rather than estimating the

conditional distribution of the infinite vector X;+ they need only

1’

estimate the conditional probabilities of finite horizon futures of the type

X X D

. . Also in the economic applications above, the assumption
n+1'"n+2

n+Q’
of absolute continuity is strong and severely restrict the generality of the

results. Less restrictive sufficient conditions that result in a weaker

notion of learning are the subject of this paper.

2. Examples and Definitions

For n = 1,2,... we let Qn be the set of values Xn can take. We assume
throughout this paper that it is a finite or countable subset of R". we let

Q - x, Q and Q = x Q . F denotes the smallest g-algebra of Q
n Jst 'n nz1 "n n

containing the sets with specified values of Xn' ?; denotes the smallest
g-algebra containing the elements of Ujsn 3j and F denotes the o-algebra
generated by all the cylinder sets of the ?;'s.

We let u and ﬁ be probability distributions of X. Their

interpretations in what follows is that u is the true one while ﬁ is an

alternative one assumed by an uninformed decision maker.
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Definition 2.1: ﬂ merges with g4 if for all € > 0 with g-probability one

there is a time n(e) such that for all n > n(g)

) - o ~ o+ —— i . .
(1) 'H(Xn+1 € AIXn) #(Xn+l € Alxn)l < ¢ for every A € F,
Remark 2.1: In the definition above, and similar ones that follow.

inequality 1 is applied only to the random variables /.L(X;+ € AiXh) when

1

they are well defined. i.e., when #(X; = x;) > 0. In these cases it is

required that the random variables /:(X;+ € Alxg) also be well defined

1

(;(X; = x;) > 0) and satisfy the inequality.

Definition 2.2: 4 is absolutely continuous w.r.t. Z if for every event

~

AeF, ulX € Ay >0 => u(X € A) > 0.

Theorem 2.1 (Blackwell-Dubins): 1f g is absolutely continuous w.r.t. ﬂ then

Z merges with u.

Example 2.1: Let each Xn be a Bernoulli random variable assuming the values

0 or 1, and let Q denote the set of infinite sequences of 0-1's endowed with

the usual o-algebra. For each 8 € (0,1) let Hg be the probability

distribution on Q induced by the sequence of i.i.d. Bernoulli variables with

/.LB(Xn = 1) = 8., Any distribution F over the unit interval (0,1), say, with

the Borel o-algebra, induces a distribution for X in the following way:
, Y R
Mg (X € A) = [ pg(X € A)F(d8).

Let x4 = u . and Z = My with U being the uniform distribution on (0,1).

.5

# 1s not absolutely continuous w.r.t. Z since the event L. that the long run



4
average of ones is precisely .5, has u(X € L) = 1 and ﬁ(X € L) = 0. Indeed,
merging in the sense of Blackwell-Dubins will fail since with u-probability

+
one, #(Xn+] € Lan) = 0 for all n.
As mentioned in the introduction, however, weaker merging (as in Kalai-

Lehrer (1990a)), sufficient for economic applications, will occur.

Definition 2.3: i merges weakly with g if for every € > 0 with u-

probability one there is a time N(€) such that for all n 2 N(¢g)

‘ ) - ) ver c
(2) /.L(Xn+1 € A!Xn) ,u(Xn+1 € AIXn) < € for every A Qn+l

(see Remark 2.1).

Notice that this definition is equivalent to merging for n + Q periods

for any finite &, i.e., replacing Xn in (2) by the vector (Xn , X ).

+1 +1777 7+

In Example 2.1 Ky merges weakly with u 5° It seems to suggest that if
; puts a positive probability on a neighborhood of g4 then weak merging
occurs. The next example shows that this is not the case, under the

following notion of closeness.

Definition 2.4: For every € > 0 we define a neighborhood of u as follows:

C{u,e) = {u': with u-probability 1 for all n

| = i gt (Y [ Ty -
‘#(Xn+1 X IX ) M (hn+1 hn+1‘Xn) < ¢ for all X1 € Qn+1}

For example, #9 is close to ﬂe, in Example 2.1 whenever 6 is close to



(@2}

8'. This is due to the independence of the Xn's there. But, obviously,
closeness in the sense of Definition 2.4 is not restricted to i.i.d. random

variables.

Example 2.2: Let (8 ) be a sequence of real numbers in the

k'k=1,2,...

interval (0,1) with Bk - 1, and let Hg be as in Example 2.1. In addition,
k

let 1 £ N1 < N2 < N3 ... be an increasing sequence of integers, and define a

distribution Hg as follows. At each time of the type n = Ni' independently
0
of other values of X.,'s, u, (X = 1) = u(X = 0) = .5. For all other times
] (S n n
0

To construct a distribution ﬁ on  we start with an infinite sequence
o = (ak)kzo.],Z.... of strictly positive weights summing to 1. We draw an
integer I = 0,1.2,... according to the distribution @ and then use Mg to

I

randomly select the point in Q. We let Z be the probability distribution
induced by the above procedure.

Now we let u be a Dirac measure on Q assigning probability 1 to the
sequence (1,1,...).

Notice that ﬁ is constructed by assigning strictly positive

probabilities to distributions which are arbitrarily close to u. Yet we

have the following.

Claim: There are choices of Nl'NZ"" such that Z does not merge weakly

with u.
Let Jn denote the finite sequence consisting of n ones.

For j = 1,2,... let



| _ n ) s(n)
(3) P(I j ln) = a]en /[qu,_fl aqe + ao(]/z) 1
] q
and
5 B N s(n) o n s(n)
(4) P(1 =001 = a (1/2) /[Zq:1 aqenq v o (1/2) ]

with s(n) denoting the number of i's with Nj < n. Then

~ ©  ~ N ~
u(xn+1 = 1\1n) = stl p(l = J\ln)e + p(I = Olln)y(n)

where y(n) = 1/2 if n + 1 = Ni for some i and y(n) = 1 otherwise. To

justify our claim it suffices to show that the Ni‘s can be chosen so that

E(I = 051N ml) are bounded below for all values of i. Considering equality
i

(4) we note that the left side of its denominator approaches zero as n - .

Thus. by choosing the Ni's sparsely we can make S(I = O!Jn "1) arbitrarily
i

close to 1 for all i.

3. Forecasting Finite Future Events

In this section the distribution of X u = u_, where Hg is one chosen

g’
from a parameterized family {#8}866 according to a probability distribution
F defined on a set of parameters ®. Not knowing the chosen value of 8, a

Bayesian forecaster starts with a distribution ﬁ =Hy, induced on X by the

choice of B8 according to F, i.e.

(X € A) = § u (X € A)F(dB).



For every € > 0 we define as before a neighborhood of 6 by

C(B.€) = {8': Img(X . = x _IX

n+1 n) h #6'(Xn+1 X

n)l

X < €
n+1

tfor all n and all values Xieq € Qn+1 ye-a.s‘}.

We assume that the topology generated by {C(8,e)} is separable. and we let H
be the o-algebra of &, so F is a distribution over (®,H).

We assume that: (i) every open set is in H, and (ii) that the
functions g(8) = #B(A) are measureable so Mg is well defined.

As we know from Example 2.2, there are realizations of 8 such that,
even if F assigns positive probability to their neighborhood, Mg will not
even weakly merge with Mg However, the set of such 6 must have F-measure

0.

Theorem 3.1: Suppose F(C(8,8)) > 0 for all 8 € ® and 4 > 0. For F-almost

every 6 #F merges weakly with #6'

Proof: Fix an € > 0, and fix an open set of the form C = C(6,€). Denote by
v the measure on (Q,F) induced by ¥ restricted to C and by (#B}BEC' That
is, v(X € A) = (1/F(C)) IC #B(X € A)d¥, for every A € F. Since F(C) > 0, v

is well defined and, moreover, v is absolutely continuous w.r.t. Hgy As a
consequence of Blackwell and Dubins' Theorem for & > 0 with v probability

one there exists a time N(J) s.t. if n > N(J) then

€ Aan) - yF(Xn+ € AIXn)J < /2 for every A € ¥F.

Iv(Xn+ 1

1
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Therefore, there exists a measurable set Ce € C s.t.
(i) F(Ce) = F(C), and

(ii) ¥ 6 € Ce with ue—probability ohe

5 L () X ) - R ve - .
(5) #B(Yn+1 € A.Yn) v(Xn+1 € A\Xn)l < €/2 for every A C Qn+1
Therefore,

ety -
(6) '#G(Xn+1 € A)‘Xn) #F(Xn+] € A!Xn)l < € for every A € Qn+1'

Since ® is separable., we conclude that for every € > 0 and for F-almost
every 8 it is true that with ye—probability one there is an N = N(g) for
which (6) holds. By taking a sequence of €'s that go to zero we obtain the

theorem.

4. Finite Forecasting with Subjective Assessments

In the previous section it was assumed that the true distribution of X,
M= #B’ was chosen randomly using a distribution F on the set ® consisting
of all possible values of 8. Theorem 3.1 was motivated by the implicit
assumption that F is known to the decision maker so that he can use u = M
for his Bayesian updating. In this section we continue with the same model
but analyze a decision maker who does not know F. The more general case,
where he does not even know that u is of the form Hg- is analyzed first.
After that, we consider the special case where he is aware that a

distribution of the form Hg is correct but does not know the true

distribution F by which 6 was chosen.
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positive probabilities to all neighbhorhoods C{(8.4) with 86 € ® and § > O,

then for F-almost every 8 ﬁ merges weakly with Mg

Proof: By using once more the Blackwell and Dubins' theorem and Theorem
3.1. The details are omitted.

When the decision maker does know that an element of (ye) s

pe® "°
chosen, but does not know the true distribution F on ®, he may start with a

subjective distribution F on ® (F is defined on the same o-algebra H of

Section 3). In this case he would use for his Bayesian updating ; = pu . It

F
turns out that the absolute continuity assumption can be brought back to F

and F.

Corollary 4.1: Let F < F and assume that F assigns positive probability to

all neighborhoods C(8,48) for 8 € ® and § > 0. Then for F-almost every © A
¥
merges weakly with Hg-

Proof: It is easy to see under the above assumptions that Mg << -
One can restate Corollary 4.1 replacing the absolute continuity
assumption by the requirements that F and F are sufficiently defused and

that F is "non-atomic.”

Corollary 4.2: Suppose F(D) > 0 if and only if D contains a neighborhood
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C(®8.8) for some ® € ® and § > 0 and F assigns positive probability to all

such neighborhoods. Then for F-almost every 6 u merges weakly with u..
F

Proof: Obviously, absolute continuity of F w.r.t. F follows.
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